
Odd Multiway Cut in Directed Acyclic Graphs∗

Karthekeyan Chandrasekaran1 and Sahand Mozaffari2

1 University of Illinois, Urbana-Champaign, USA
karthe@illinois.edu

2 University of Illinois, Urbana-Champaign, USA
sahandm2@illinois.edu

Abstract
We investigate the odd multiway node (edge) cut problem where the input is a graph with a
specified collection of terminal nodes and the goal is to find a smallest subset of non-terminal
nodes (edges) to delete so that the terminal nodes do not have an odd length path between
them. In an earlier work, Lokshtanov and Ramanujan showed that both odd multiway node cut
and odd multiway edge cut are fixed-parameter tractable (FPT) when parameterized by the size
of the solution in undirected graphs. In this work, we focus on directed acyclic graphs (DAGs)
and design a fixed-parameter algorithm. Our main contribution is an extension of the shadow-
removal framework for parity problems in DAGs. We complement our FPT results with tight
approximability as well as polyhedral results for 2 terminals in DAGs. Additionally, we show
inapproximability results for odd multiway edge cut in undirected graphs even for 2 terminals.

1998 ACM Subject Classification G.2.2 Graph Theory, I.1.2 Algorithms

Keywords and phrases Odd Multiway Cut, Fixed-Parameter Tractability, Approximation Algo-
rithms

Digital Object Identifier 10.4230/LIPIcs.IPEC.2017.12

1 Introduction

In the classic {s, t}-cut problem, the goal is to delete the smallest number of edges so that
the resulting graph has no path between s and t. A natural generalization of this problem
is the multiway cut, where the input is a graph with a specified set of terminal nodes and
the goal is to delete the smallest number of non-terminal nodes/edges so that the terminals
cannot reach each other in the resulting graph. In this work, we consider a parity variant
of this problem. A path1 is an odd-path (even-path) if the number of edges in the path is
odd (even). In the OddMultiwayNodeCut (similarly, OddMultiwayEdgeCut), the
input is a graph with a collection of terminal nodes and the goal is to delete the smallest
number of non-terminal nodes (edges) so that the resulting graph has no odd-path between
the terminals. This is a generalization of {s, t}-OddPathNodeBlocker (and similarly,
{s, t}-OddPathEdgeBlocker), which is the problem of finding a minimum number of
nodes that are disjoint from s and t (edges) that cover all s− t odd-paths.

Covering and packing paths has been a topic of intensive investigation in graph theory
as well as polyhedral theory. Menger’s theorem gives a perfect duality relation for min

∗ A full version of the paper is available at https://arxiv.org/abs/1708.02323.
1 We emphasize that the term paths refers to simple paths and not walks. This distinction is particularly

important in parity-constrained settings, because the existence of a walk with an odd number of edges
between two nodes s and t does not imply the existence of an odd-path between s and t. This is in
contrast to the non-parity-constrained settings where the existence of a walk between s and t implies
the existence of a path between s and t.

© Karthekeyan Chandrasekaran and Sahand Mozaffari;
licensed under Creative Commons License CC-BY

12th International Symposium on Parameterized and Exact Computation (IPEC 2017).
Editors: Daniel Lokshtanov and Naomi Nishimura; Article No. 12; pp. 12:1–12:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/157699317?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.IPEC.2017.12
https://arxiv.org/abs/1708.02323
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

12:2 Odd Multiway Cut in DAGs

{s, t}-cut: the minimum number of nodes (edges) that cover all s− t paths is equal to the
maximum number of node-disjoint (edge-disjoint) s− t paths. However, packing paths of
restricted kinds is a difficult problem. One special case is when the paths are required to be
of odd-length for which many deep results exist [4, 17, 5]. In this work, we study the problem
of covering s− t odd-paths and more generally all odd-paths between a given collection of
terminals.

Covering s− t odd-paths in undirected graphs has been explored in the literature from the
perspective of polyhedral theory—we refer to Chapter 29 in Schrijver’s book [17]. Given an
undirected graph G = (V,E) with distinct nodes s, t ∈ V and non-negative edge-lengths, we
may find a shortest length s−t odd-path in polynomial time. Edmonds gave a polynomial-time
algorithm for this by reducing the shortest s− t odd-path problem to the minimum-weight
perfect matching problem [13, 7, 8]. However, as observed by Schrijver and Seymour [18], his
approach of reducing to a matching problem does not extend to address other fundamental
problems about s − t odd-paths. One such fundamental problem is the {s, t}-OddPath-
EdgeBlocker problem. Towards investigating {s, t}-OddPathEdgeBlocker, Schrijver
and Seymour [18] considered the following polyhedron:

Podd-cover :=
{
x ∈ RE

+ :
∑
e∈P

xe ≥ 1 ∀ s− t odd-path P in G
}
.

This leads to a natural integer programming formulation of {s, t}-OddPathEdgeBlocker:
min

{∑
e∈E xe : x ∈ Podd-cover ∩ ZE

}
. By Edmonds’ algorithm, we have an efficient sepa-

ration oracle for Podd-cover and hence there exists an efficient algorithm to optimize over
Podd-cover using the Ellipsoid algorithm [10]. It was known that the extreme points of
Podd-cover are not integral. Cook and Sebö conjectured that all extreme points of Podd-cover

are half-integral which was later shown by Schrijver and Seymour [18]. Schrijver and Sey-
mour’s work also gave a min-max relation for the max fractional packing of s− t odd-paths.
However their work does not provide algorithms or address the computational complexity of
{s, t}-OddPathEdgeBlocker. In this work, we show NP-hardness and an inapproximabil-
ity result for {s, t}-OddPathEdgeBlocker in undirected graphs.

The main focus of this work is OddMultiwayNodeCut in directed acyclic graphs
(DAGs). Before describing the reason for focusing on the subfamily of DAGs among directed
graphs, we mention that OddMultiwayNodeCut and OddMultiwayEdgeCut are
equivalent in directed graphs by standard reductions. The reason we focus on the subfamily
of DAGs and not all directed graphs is the following: consider the (s→ t)-OddPathEdge-
Blocker problem where the input is a directed graph with nodes s, t and the goal is to
find a minimum number of edges to delete so that the resulting graph has no odd-path from
s to t. There is a stark contrast in the complexity of {s, t}-OddPathEdgeBlocker in
undirected graphs and (s → t)-OddPathEdgeBlocker in directed graphs: while there
exists a polynomial time algorithm to verify if a given undirected graph has an s− t odd-path
(e.g., by Edmonds’ reduction to a matching problem), it is NP-complete to verify if a given
directed graph has an s→ t odd-path (e.g., see Lapaugh-Papadimitriou [13]). Thus verifying
feasibility of a solution to OddMultiwayEdgeCut is already NP-complete in directed
graphs. However, there exists a polynomial time algorithm to verify if a given directed acyclic
graph (DAG) has an s→ t odd-path. For this reason, we restrict our focus to DAGs.

Our main contribution is a fixed-parameter algorithm for OddMultiwayNodeCut
in DAGs. We complement the fixed-parameter algorithm by showing NP-hardness and
tight approximability results for the two terminal variant, namely (s→ t)-OddPathNode-
Blocker, in DAGs.

K. Chandrasekaran and S. Mozaffari 12:3

In addition to approximation algorithms, fixed-parameter algorithms have served as
an alternative approach to address NP-hard problems [9]. A problem is said to be fixed-
parameter tractable (FPT), if it can be solved in time f(k)nc, where k is the parameter, f is a
computable function, n is the size of the input and c is a universal constant. Fixed-parameter
algorithms for cut problems have provided novel insights into the connectivity structure of
graphs [6]. The notion of important separators and the shadow-removal technique have served
as the main ingredients in the design of fixed-parameter algorithms for numerous cut problems
[6]. Our work also builds upon the shadow-removal technique to design fixed-parameter
algorithms but differs from known applications substantially owing to the parity constraint.

Related Work. We are not aware of any prior work on this problem in directed graphs. We
describe the known results in undirected graphs. A simple reduction from vertex cover2 shows
that {s, t}-OddPathNodeBlocker in undirected graphs is NP-hard and does not admit a
(2− ε)-approximation for ε > 0 assuming the Unique Games Conjecture [11]. These hardness
results also hold for OddMultiwayNodeCut. The most relevant results to this work are
that of Lokshtanov and Ramanujan [15, 16]. They showed a parameter-preserving reduction
from OddMultiwayEdgeCut to OddMultiwayNodeCut and designed a fixed-parameter
algorithm for OddMultiwayNodeCut. However, their algorithmic techniques work only for
undirected graphs and do not extend immediately for OddMultiwayNodeCut in directed
acyclic graphs.

Lokshtanov and Ramanujan also showed that OddMultiwayEdgeCut is NP-hard in
undirected graphs for three terminals. However, their reduction is not an approximation-
preserving reduction. Hence the approximability of OddMultiwayEdgeCut in undirected
graphs merits careful investigation. In particular, the complexity of OddMultiwayEdge-
Cut in undirected graphs even for the case of two terminals is open in spite of existing
polyhedral work in the literature [18] for this problem.

1.1 Results
Directed acyclic graphs. We recall that OddMultiwayNodeCut and OddMultiway-
EdgeCut are equivalent in DAGs by standard reductions. Hence, all of the following results
for DAGs hold for both problems. The following is our main result.

I Theorem 1. OddMultiwayNodeCut in DAGs can be solved in 2O(k2)poly(n) time,
where k is the size of the optimal solution and n is the number of nodes in the input graph.

We briefly remark on the known techniques to illustrate the challenges in designing
the fixed-parameter algorithm for OddMultiwayNodeCut in DAGs. To highlight the
challenges, we will focus on the case of 2 terminals, namely (s→ t)-OddPathNodeBlocker
in DAGs.

Remark 1. It is tempting to design a fixed-parameter algorithm for (s → t)-OddPath-
NodeBlocker by suitably modifying the definition of important separators to account for
parity and using the shadow-removal technique for directed graphs [3]. However, the main
technical challenge lies in understanding and exploiting the acyclic property of the input
directed graph.

2 Given an instance G of vertex cover, introduce two new nodes s and t that are adjacent to all nodes in
G to obtain a graph H. A set S ⊆ V (G) is a feasible vertex cover in G if and only if S is a feasible
solution to {s, t}-OddPathNodeBlocker in H.

IPEC 2017

12:4 Odd Multiway Cut in DAGs

Remark 2. The next natural attempt is to rely on the fixed-parameter algorithm for multicut
in DAGs by Kratsch et al. [12]. However, their technique crucially relies on reducing the
degrees of the source terminals by suitably branching to create a small number of instances.
On the one hand, applying their branching rule directly to reduce the degree of s in (s→ t)-
OddPathNodeBlocker will blow up the number of instances in the branching. On the
other hand, it is unclear how to modify their branching rule to account for parity.

Given the difficulties mentioned in the above two remarks, our algorithm builds upon the
shadow-removal technique and exploits the acyclic property of the input directed graph to
reduce the instance to minimum odd cycle transversal (remove the smallest number of nodes
to make an undirected graph bipartite) which in turn, has a fixed-parameter algorithm when
parameterized by the number of removed nodes. Our technique is yet another illustration of
the broad-applicability of the shadow-removal framework.

We complement our fixed-parameter algorithm in Theorem 1 with tight approximability
results for 2 terminals. We refer the reader to Table 1 for a summary of the complexity
and approximability results. Unlike the case of undirected graphs where there is still a
gap in the approximability of both {s, t}-OddPathEdgeBlocker and {s, t}-OddPath-
NodeBlocker, we present tight approximability results for both (s→ t)-OddPathEdge-
Blocker and (s→ t)-OddPathNodeBlocker.

I Theorem 2. We have the following inapproximability and approximability results:
(i) (s→ t)-OddPathNodeBlocker in DAGs is NP-hard, and has no efficient (2− ε)-

approximation for any ε > 0 assuming the Unique Games Conjecture.
(ii) There exists an efficient 2-approximation algorithm for (s → t)-OddPathNode-

Blocker in DAGs.

We emphasize that our 2-approximation for (s→ t)-OddPathEdgeBlocker mentioned
in Theorem 2 is a combinatorial algorithm and not LP-based. We note that Schrijver and
Seymour’s result [18] that all extreme points of Podd-cover are half-integral holds only in
undirected graphs and fails in DAGs—see Theorem 3 below. Consequently, we are unable
to design a 2-approximation algorithm using the extreme point structure of the natural
LP-relaxation of the path-blocking integer program. Instead, our approximation algorithm
is combinatorial in nature. The correctness argument of our algorithm also shows that the
integrality gap of the LP-relaxation of the path-blocking integer program is at most 2 in
DAGs.

I Theorem 3. The following odd path cover polyhedron is not necessarily half-integral:
Podd-cover-dir:=

{
x ∈ RE

+ :
∑

e∈P xe ≥ 1 ∀ s→ t odd-path P in D
}
.

Undirected graphs. We next turn our attention to undirected graphs. As mentioned earlier,
{s, t}-OddPathNodeBlocker is NP-hard and does not admit a (2 − ε)-approximation
assuming the Unique Games Conjecture. We are unaware of a constant factor approximation
for {s, t}-OddPathNodeBlocker. For {s, t}-OddPathEdgeBlocker, the results of
Schrijver and Seymour [18] show that the LP-relaxation of a natural integer programming
formulation of {s, t}-OddPathEdgeBlocker is half-integral and thus leads to an efficient
2-approximation for {s, t}-OddPathEdgeBlocker. However, the complexity of {s, t}-
OddPathEdgeBlocker was open. We address this gap in complexity by showing the
following NP-hardness and inapproximability results.

I Theorem 4. {s, t}-OddPathEdgeBlocker is NP-hard and has no efficient (6/5− ε)-
approximation assuming the Unique Games Conjecture.

K. Chandrasekaran and S. Mozaffari 12:5

Table 1 Complexity and Approximability. Text in gray refers to known results while text in
black refers to the results from this work.

Problem Undirected graphs DAGs
{s, t}-OddPathNodeBlocker (2− ε)-inapprox [Equiv. to edge-deletion]
{s, t}-OddPathEdgeBlocker LP is half-integral [18] LP is NOT half-integral

(Thm 3)
2-approx [18] 2-approx (Thm 2)

(6
5 − ε)-inapprox (Thm 4) (2− ε)-inapprox (Thm 2)

OddMultiwayEdgeCut NP-hard for 3 terminals [15]
(6

5 − ε)-inapprox for 2 terminals
(Thm 4)

Organization. We summarize the preliminaries in Section 1.2. We prove the FPT for DAGs
(Theorem 1) in Section 2. We refer the reader to the full version of the paper [1] for all
missing proofs.

1.2 Preliminaries
For ease of notation, we will frequently use v instead of {v}. Let G be a (directed) graph
and W be a subset of V (G). A W -path in G is a path with both of its end-nodes in W . We
restate the problem of OddMultiwayNodeCut in DAGs to set the notation.

I Problem 5 (Minimum Odd Multiway Cut in DAGs). Given a directed acyclic graph G = (V,E)
with sets T , V∞ ⊆ V where T ⊆ V∞, an odd multiway cut in G is a set M ⊆ V (G) \ V∞
of nodes that intersects every odd T -path in G. We refer to T as terminals, V \ T as
non-terminals and V∞ as protected nodes. In DagOddMultiwayNodeCut, the input
is specified as (G,V∞, T, k), where k ∈ Z+ and the goal is to verify if there exists an odd
multiway cut in G of size at most k.

For subsets X and Y of V (G) we say that M ⊆ V (G) \ V∞ is an X → Y separator in
G when G \M has no path from X to Y . The set of nodes that can be reached from a
node set X in G is denoted by RG(X). We note that RG(X) always includes X. We define
the forward shadow of a node set M to be fG(M) := V (G \M) \ RG\M (T), i.e., the set
of nodes v such that there is no T → v path in G disjoint from M . Similarly, the reverse
shadow of M , denoted rG(M), is the set of nodes v from which there is no path to T in
G \M . Equivalently, the reverse shadow is fGrev(M), where Grev is the graph obtained from
G by reversing all the edge orientations. We refer to the union of the forward and the reverse
shadow of M in G, as shadow of M in G and denote it by sG(M). An X → Y separator M ′
is said to dominate another X → Y separator M , if |M ′| ≤ |M | and RG\M (X) (RG\M ′(X).
A minimal X → Y separator that is not dominated by any other separator is called an
important X → Y separator. A set M ⊆ V (G) is thin, if every node v ∈ M is not in
rG(M \ {v}).

For a directed graph G, we define the underlying undirected graph of G, denoted by G∗,
as the undirected graph obtained from G by dropping the orientations. In an undirected
graph H with protected nodes V∞, an odd cycle transversal is a set U ⊆ V (H) \ V∞ of
nodes such that H \ U is bipartite. The problem of finding the minimum such set in a given
instance of the problem is called the minimum odd cycle transversal problem and is denoted by
MinOddCycleTransversal. Although this problem is NP-hard, it is fixed-parameter tractable
when parameterized by the size of the solution. The current-best fixed-parameter algorithm

IPEC 2017

12:6 Odd Multiway Cut in DAGs

for MinOddCycleTransversal runs in time O(2.32kpoly(n)) [14]. The problem addressed in
[14] does not allow for protected nodes, but MinOddCycleTransversal with protected nodes,
can easily be reduced to MinOddCycleTransversal without protected nodes by iteratively
replacing each protected node with k + 1 nodes and connecting them to the same set of
neighbors as the original node. We will use MinOddCycleTransversal(H,V∞, k) to denote
the procedure that implements this fixed-parameter algorithm for the input graph H with
protected nodes V∞ and parameter k.

2 FPT of OddMultiwayNodeCut in DAGs

We will use the shadow-removal technique introduced in [3]. We will reduce the problem
to MinOddCycleTransversal problem in an undirected graph, which is a fixed-parameter
tractable problem when parameterized by the solution size.

2.1 Easy instances

I Theorem 6. Suppose the instance (G,V∞, T, k) of DagOddMultiwayNodeCut has
a solution M of size at most k with the following property: every node v ∈ sG(M) has
total degree at most one in G \M . There exists an algorithm that given one such instance
(G,V∞, T, k) as input, finds a solution of size at most k in time O(2.32kpoly(n)), where n is
the number of nodes in the input graph G.

Proof. Let (G,V∞, T, k) be an instance of DagOddMultiwayNodeCut. We recall that
G∗ denotes the undirected graph obtained by dropping the orientations of the edges in G.
We show the following equivalence: a set M ⊆ V \ V∞ with the property as in the statement
is a solution if and only if G∗ \M is bipartite with a bipartition (A,B) such that T ⊆ A.

Suppose G∗ \M is bipartite with a bipartition (A,B) such that T ⊆ A. In a bipartite
graph, every two end-nodes of any odd path are necessarily in different parts. Hence, there
is no odd T -path in G∗ \M . Thus, there is no odd T -path in G \M . Hence, M is a solution
for the odd multiway cut instance (G,V∞, T, k).

Suppose the solution M has the property mentioned in the statement of the theorem. Let
U := V (G \M) \ sG(M). Define A := {x ∈ U : there is an even T → x path in G \M} and
B := {x ∈ U : there is an odd T → x path in G \M}. It follows from the definition of the
shadow that every node in U has a path P1 from T in G \M . Therefore, every node of U is
in A ∪B. Also by definition, every node v in U has a path P2 to T in G \M . The parity of
every T → v path has to be the same as the parity of P2, because the concatenation of a
T → v path and a v → T path in G \M is a T -path in G \M and therefore must be even.
We note that such a concatenation cannot be a cycle since G is acyclic. Thus, no node of U
is in both A and B. Hence, (A,B) is a partition of U .

We observe that there cannot be an edge from a node v in A to a node u in A, as otherwise
the concatenation of the even T → v path Q1 with the edge v → u is an odd T → u path in
G \M which means u ∈ B. This contradicts our conclusion about A and B being disjoint.
By a similar argument, there is no edge between any pair of nodes in B. Thus, the subgraph
of G induced by A and B are independent sets respectively. Hence G∗[A ∪B] is a bipartite
graph. Furthermore, (A,B) is a bipartition of G∗[A ∪ B] with every node of T in A. By
assumption, the degree of every node x ∈ sG(M) is at most one. Therefore, x has neighbors
in at most one of A and B. Thus, we can extend the bipartition (A,B) of G∗[A ∪B] to a
bipartition (A′, B′) of G∗ \M as follows: denote H := G∗[A ∪ B]; repeatedly pick a node

K. Chandrasekaran and S. Mozaffari 12:7

Algorithm 1 SolveEasyInstance
Given: DAG G with terminal set T , a set V∞ of protected nodes containing T , k ∈ Z+,
where (G,V∞, T, k) has the property specified in the statement of Theorem 6

1: G1 ← the underlying undirected graph of G.
2: Let G2 be the graph obtained from G1 by introducing a new node x and connecting it

to every node in T .
3: N ← MinOddCycleTransversal(G2, V

∞ ∪ {x} , k)
4: return N

x ∈ sG(M) \ V (H) with a neighbor in H, include x in a part (A or B) in which x has no
neighbor and update A, B and H.

Hence, if the given instance has a solution M of size at most k such that every node
v ∈ sG(M) has total degree at most one, then such a solution can be found by the fixed-
parameter algorithm for MinOddCycleTransversal. To ensure that the terminal nodes will
be in the same part, we introduce a new protected node into the graph and connect it to
every terminal node. This approach is described in Algorithm 1. All steps in Algorithm 1
can be implemented to run in polynomial time except Step 3. The running time of Step 3 is
O(2.32kpoly(n)) [14]. J

We will use the name SolveEasyInstance to refer to the algorithm of Theorem 6. Our
aim now is to reduce the given arbitrary instance (G,V∞, T, k) to another instance that has
a solution with the property mentioned in Theorem 6 or determine that no solution of size
at most k exists. We need the notion of parity-preserving torso operation on DAGs.

2.2 Parity-Preserving Torso
The parity preserving torso operation was introduced by Lokshtanov and Ramanujan [15]
for undirected graphs. We extend it in a natural fashion for DAGs.

I Definition 7 (Parity-Preserving Torso). Let G be a DAG and Z be a subset of V (G). We
define Parity-Torso(G,V∞, Z) as (G′, V ′∞), where G′ is the DAG obtained from G \ Z by
adding an edge from node u to v, for every pair of nodes u, v ∈ V (G) \ Z such that there
is an odd-path from u to v in G all of whose internal nodes are in Z, and including a new
node xuv and edges u→ xuv and xuv → v for every pair of nodes u, v ∈ V (G) \ Z such that
there is an even path from u to v in G all of whose internal nodes are in Z. The set V ′∞ is
defined to be the union of V∞ \ Z and all the new nodes xuv.

We emphasize that the acyclic nature of the input directed graph allows us to im-
plement the parity-preserving torso operation in polynomial time. Moreover, applying
parity-preserving torso on a DAG results in a DAG as well. In what follows, we state the
properties of the Parity-Torso operation that are exploited by our algorithm. The parity-
preserving torso operation, has the property that it maintains u→ v paths along with their
parities between any pair of nodes u, v ∈ V (G) \ Z. More precisely:

I Lemma 8. Let G be a DAG and Z, V∞ ⊆ V (G). Define (G′, V ′∞) :=
Parity-Torso(G,V∞, Z). Let u, v be nodes in V (G) \ Z. There is a u → v path P in
G if and only if there is a u → v path Q of the same parity in G′. Moreover, the path Q
can be chosen so that the nodes of P in G \ Z are the same as the nodes of Q in G \ Z, i.e.
V (P) ∩ (V (G) \ Z) = V (Q) ∩ (V (G) \ Z).

IPEC 2017

12:8 Odd Multiway Cut in DAGs

Algorithm 2 Minimum odd multiway cut in DAGs
Given: DAG G with terminal set T , a set V∞ of protected nodes containing T , and k ∈ Z+

1: for Z ∈ ShadowContainer(G,V∞, k) do
2: (G1, V

∞
1)← Parity-Torso(G,V∞, Z)

3: N ← SolveEasyInstance(G1, V
∞

1 , T, k)
4: if N is a solution in G then
5: return N

6: return No solution

I Corollary 9. Let I = (G,V∞, T, k) be an instance of DagOddMultiwayNodeCut
and let Z ⊆ V (G) \ T . Let (G′, V ′∞) := Parity-Torso(G,V∞, Z) and denote the instance
(G′, V ′∞, T, k) by I ′. The instance I admits a solution S of size at most k that is disjoint
from Z if and only if the instance I ′ admits a solution of size at most k.

Therefore, we are interested in finding a set Z of nodes that is disjoint from some solution
of size at most k, and moreover, the instance (Parity-Torso(G,V∞, Z), T, k) satisfies the
property mentioned in Theorem 6. The following lemma summarizes our key observation: it
shows that it is sufficient to find a set Z that contains the shadow of a solution.

I Lemma 10. Let G be a DAG and M,Z, V∞ ⊆ V (G). Suppose M intersects every odd
T -path in G and sG(M) ⊆ Z ⊆ V (G) \M . Define (G′, V ′∞) := Parity-Torso(G,V∞, Z).
Then every node in sG′(M) has total degree at most one in G′ \M .

2.3 Difficult instances
Corollary 9 and Lemma 10 show that if we find a set Z such that for some solution
M , the set Z is disjoint from M and contains the shadow of M in G, then considering
Parity-Torso(G,V∞, Z) will give a new instance that satisfies the conditions of Theorem 6.
Our goal now is to obtain such a set Z. We will show the following lemma. We emphasize
that the lemma holds for arbitrary digraphs.

I Lemma 11. There is an algorithm ShadowContainer that given an instance (G,V∞, T, k)
of DagOddMultiwayNodeCut, where G is a digraph, returns a family Z of subsets of
V (G) with |Z| = 2O(k2), with the property that if the problem has a solution of size at most
k, then for some solution M of size at most k, there exists a set Z ∈ Z that is disjoint
from M and contains sG(M). Moreover, the algorithm can be implemented to run in time
2O(k2) poly(|V (G)|).

We defer the proof of Lemma 11 to first see its implications.

I Theorem 12. There exists an algorithm that given an instance (G,V∞, T, k) of DagOdd-
MultiwayNodeCut, runs in 2O(k2) poly(|V (G)|) time and either finds a solution of size at
most k or determines that no such solution exists.

Proof. We use Algorithm 2. Let (G,V∞, T, k) be an instance of DagOddMultiwayNode-
Cut, where G is a DAG. Suppose there exists a solution of size at most k. By Lemma 11,
the procedure ShadowContainer(G,V∞, k) in Line 1 returns a family Z of subsets of V (G)
with |Z| = 2O(k2) containing a set Z such that there is a solution M of size at most k that is
disjoint from Z and Z contains sG(M). Let (G1, V

∞
1) be the result of applying Parity-Torso

operation to the set Z in G (i.e., the result of Step 2 in Algorithm 2). By Lemma 10, every
node in sG1(M) has total degree at most one in G1 \M . Therefore, by Theorem 6, the set

K. Chandrasekaran and S. Mozaffari 12:9

N returned in Line 3 is a solution to the instance (G1, V
∞

1 , T, k). By Corollary 9, the set N
is also a solution to the original instance of the problem.

If there is no solution of size at most k, the algorithm will not find any. Therefore, the
algorithm is correct. The runtime of the algorithm is dominated by Line 2 which can be
implemented to run in 2O(k2)poly(|V (G)|) time by Lemma 11. J

In order to prove Lemma 11, we will use the following result.

I Theorem 13 (Chitnis et al. [2]). There is an algorithm that given a digraph G, a subset of
protected nodes V∞ ⊆ V (G), terminal nodes T ⊆ V∞ and an integer k, returns a family Z
of subsets of V (G) \ V∞ with |Z| = 2O(k2) such that for every S, Y ⊆ V (G) satisfying
(i) S is a thin set with |S| ≤ k, and
(ii) for every v ∈ Y , there exists an important v → T separator contained in S,
there exists Z ∈ Z with Y ⊆ Z ⊆ V (G) \ S. Moreover, the algorithm can be implemented to
run in time 2O(k2) poly(|V (G)|).

To invoke Theorem 13, we need to guarantee that there exists a solution S of size at most
k such that S is thin and its reverse shadow Y in G has the property that for every v ∈ Y
there is an important v → T separator contained in S. Towards obtaining such a solution,
we prove the following.

I Lemma 14. Let (G,V∞, T, k) be an instance of DagOddMultiwayNodeCut, where G
is a DAG. Let M be a solution for this instance. If there exists v ∈ rG(M) such that M does
not contain an important v → T separator, then there exists another solution M ′ of size at
most |M |, such that rG(M) ∪ fG(M) ∪M ⊆ rG(M ′) ∪ fG(M ′) ∪M ′, and rG(M) (rG(M ′).

Proof. Let M0 be the set of nodes u ∈ M for which there is a v → u path in G that
is internally disjoint from M . Since v ∈ rG(M), every v → T path intersects M . For a
v → T path P , the first node u ∈ P ∩M is in M0. Hence, every v → T path intersects M0.
Therefore, the set M0 is a v → T separator in G. Therefore, it contains a minimal separator
M1. Since we assumed that there is no important v → T separator contained in M , the
set M1 is not an important v → T separator. Suppose M1 is dominated by another v → T

separator and let M2 be an important v → T separator that dominates M1. Define M ′ as
(M \M1) ∪M2. We recall that a separator is by definition, disjoint from the protected node
set. Therefore, M ′ ∩ V∞ = ∅. We will show that M ′ contradicts the choice of M . We need
the following claims.

I Claim 15. M \M ′ ⊆ rG(M ′).

Proof. We observe that M \ M ′ = M1 \ M2. Let u be an arbitrary node in M1 \ M2.
Since u ∈ M1 and M1 is a minimal v → T separator, there is a v → u path P1 that is
internally disjoint from M1. Since M2 dominates M1, therefore, RG\M1(v) ⊆ RG\M2(v).
Thus, V (P1) ⊆ RG\M2(v). Hence, P1 is disjoint from M2. Suppose P2 is an arbitrary u→ T

path in G. Concatenation of P1 and P2 is a v → T path in G and therefore, has to intersect
M2. Since P1 is disjoint from M2, the path P2 has to intersect M2. Hence, every u → T

path in G intersects M2 and in particular, intersects M ′. Equivalently, u ∈ rG(M ′). J

We next show that M ′ is a feasible solution for the problem and is no larger than M .

I Claim 16. The set M ′ intersects every odd T -path in G and |M ′| ≤ |M |.

IPEC 2017

12:10 Odd Multiway Cut in DAGs

Proof. By assumption, every odd T -path P intersects M . If P intersects M ∩M ′, then it
also intersects M ′. If P intersects M \M ′, then by Claim 15 it also intersects M ′. Thus,
every odd T -path in G intersects M ′. Furthermore, by definition of M ′, we have

|M ′| = |M |+ (|M2 \M | − |M1 \M2|) ≤ |M |+ (|M2| − |M1|) ≤ |M | . J

I Claim 17. rG(M) ⊆ rG(M ′).

Proof. Let u be an arbitrary node in rG(M). The set M is a u→ T separator. Therefore,
every u→ T path intersects M . We need to show that every u→ T path also intersects M ′.
Let P be a u→ T path. If P intersects M ∩M ′, then it also intersects M ′. If P does not
intersect M ∩M ′, then it has to intersect M \M ′. By Claim 15, every M \M ′ → T path
intersects M ′. Therefore, u ∈ rG(M ′). J

I Claim 18. rG(M) ∪ fG(M) ∪M ⊆ rG(M ′) ∪ fG(M ′) ∪M ′.

Proof. By Claim 15, we have M \M ′ ⊆ rG(M ′) and by Claim 17, we have rG(M) ⊆ rG(M ′).
Thus, it remains to prove that fG(M) ⊆ rG(M ′)∪ fG(M ′)∪M ′. Let u be an arbitrary node
in fG(M) \ (rG(M ′)∪ fG(M ′)∪M ′). Since u /∈ fG(M ′), there is a T → u path P1 in G that
is disjoint from M ′. But u ∈ fG(M). Thus P1 has to intersect M , particularly it has to
intersect M \M ′. Let P2 be a subpath of P1 from M \M ′ to u. Since u /∈ rG(M ′), there is
a u→ T path P3 in G that is disjoint from M ′. The concatenation of P2 and P3 is a path
from M \M ′ to T that is disjoint from M ′. But by Claim 15, every M \M ′ → T path in G
must intersect M ′. This contradiction shows that fG(M) ⊆ (rG(M ′) ∪ fG(M ′) ∪M ′). J

I Claim 19. rG(M) (rG(M ′).

Proof. By Claim 17, rG(M) ⊆ rG(M ′). We need to prove rG(M) 6= rG(M ′). We recall
that M \M ′ = M1 \M2. Since M2 is an important v → T separator, it follows that the
v → T separator M1 is not contained in M2. Therefore M \M ′ is non-empty. Furthermore,
by definition of reverse shadow, M \M ′ is not contained in rG(M), but by Claim 15, it is
contained in rG(M ′). J

By Claim 16, M ′ is a solution and is no larger than M . Therefore, the set M ′ has the
properties claimed in Lemma 14. J

We recall that a set M ⊆ V (G) is thin, if every node v ∈M is not in rG(M \ {v}). The
next result follows from Lemma 14.

I Corollary 20. Let (G,V∞, T, k) be an instance of DagOddMultiwayNodeCut, where
G is a DAG. Let M∗ be an optimal solution that maximizes the size of |rG(S) ∪ fG(S) ∪ S|
among all optimal solutions S. If more than one optimal solution maximizes this quantity,
choose the one with largest |rG(S)|. The set M∗ is thin and for every node v ∈ rG(M∗) there
is an important v → T separator in M∗.

We will use Corollary 20 to prove Lemma 11.

Proof of Lemma 11. Let us use ReverseShadowContainer(G,V∞, k) to denote the algo-
rithm from Theorem 13. We will show that Algorithm 3 generates the desired set.

In Algorithm 3 we use procedure ReverseShadowContainer introduced in Theorem 13.
By Theorem 13, the cardinality of Z returned by the algorithm is 2O(k2). The runtime of the
algorithm follows from the runtime of the procedure ReverseShadowContainer in Theorem
13. To prove the correctness of this algorithm, we argue that at least one of the sets in the
returned family Z has the desired properties.

K. Chandrasekaran and S. Mozaffari 12:11

Algorithm 3 ShadowContainer
Given: DAG G with terminal set T , a set V∞ of protected nodes containing T , and k ∈ Z+

1: Let Grev denote the graph obtained from G by reversing the orientation of all edges
2: Z1 ← ReverseShadowContainer(G,V∞, k)
3: for Z1 ∈ Z1 do
4: Z2 ← ReverseShadowContainer(Grev, V∞ ∪ Z1, k)
5: for Z2 ∈ Z2 do
6: Z ← Z ∪ {Z1 ∪ Z2}
7: return Z

Suppose there exists a solution of size at most k and let M∗ be an optimal solution
that maximizes the size of |rG(S) ∪ fG(S) ∪ S| among all optimal solutions S. If more than
one solution maximizes this quantity, choose the one with largest |rG(S)|. By Corollary 20,
the solution M∗ is thin and has the property that every node v in the reverse shadow of
M∗ has an important v → T separator contained in M∗. By Theorem 13, the procedure
ReverseShadowContainer(G,V∞, k) in Line 2 will return a family Z1 of sets containing a set
Z1 that is disjoint from M∗ and contains its reverse shadow. Let us fix such a Z1.

We note that a solution for the DagOddMultiwayNodeCut instance (Grev, V∞ ∪
Z1, T, k) is also a solution for the instance (G,V∞, T, k). Conversely, a solution for the
instance (G,V∞, T, k) that is disjoint from Z1 is also a solution for the instance (Grev, V∞ ∪
Z1, T, k). Therefore, the set M∗ is also an optimal solution to the instance (Grev, V∞ ∪
Z1, T, k). We observe that fG(S) = rGrev(S) and rG(S) = fGrev(S) for all S ⊆ V (G) \ V∞.
Therefore, M∗ maximizes the size of rGrev(S) ∪ fGrev(S) ∪ S among all optimal solutions S
to (Grev, V∞ ∪ Z1, T, k). We have the following claim.

I Claim 21. If for an optimal solution M ′ for the instance (Grev, V∞ ∪ Z1, T, k) of Dag-
OddMultiwayNodeCut, we have rGrev(M∗)∪fGrev(M∗)∪M∗ ⊆ rGrev(M ′)∪fGrev(M ′)∪M ′
and rGrev(M∗) ⊆ rGrev(M ′), then M ′ = M∗.

Proof. As M∗ maximizes |rGrev(S) ∪ fGrev(S) ∪ S| among all the optimal solutions for the
instance (G,V∞, T, k) and as rGrev(M∗) ∪ fGrev(M∗) ∪M∗ ⊆ rGrev(M ′) ∪ fGrev(M ′) ∪M ′,
hence, the two sets rGrev(M∗) ∪ fGrev(M∗) ∪M∗ and rGrev(M ′) ∪ fGrev(M ′) ∪M ′ must be
equal. Therefore, the set M ′ \M∗ is contained inside rGrev(M∗) ∪ fGrev(M∗) ∪M∗. Since
nodes in fGrev(M∗) are protected in Grev by construction, the solution M ′ cannot contain
any node from fGrev(M∗). Since rGrev(M∗) ⊆ rGrev(M ′) and by definition of reverse shadow,
M ′ is disjoint from rGrev(M∗). Thus, the set M ′ \M∗ is disjoint from M∗ and rGrev(M∗)
and fGrev(M∗), while being contained in rGrev(M∗) ∪ fGrev(M∗) ∪M∗. Hence, M ′ \M∗ = ∅
or equivalently M ′ ⊆M∗. Therefore, M ′ = M∗, because |M ′| = |M∗|. J

Suppose there is a node v ∈ rGrev(M∗) such that no important v → T separator in Grev

is contained in M∗. Then by Lemma 14, there is another optimal solution M ′ such that
rGrev(M∗)∪ fGrev(M∗)∪M∗ ⊆ rGrev(M ′)∪ fGrev(M ′)∪M ′ and rGrev(M∗) (rGrev(M ′). By
Claim 21, the set M ′ = M∗, which contradicts rGrev(M∗) (rGrev(M ′). This contradiction
shows that for every node v ∈ rGrev(M∗), there is an important v → T separator inGrev that is
contained in M∗. Thus, by Theorem 13, the procedure ReverseShadowContainer(Grev, V∞∪
Z1, k) from Line 4 will return a family Z2 of sets containing a set Z2 that is disjoint from
M∗ and contains rGrev(M∗) = fG(M∗). Hence Z1 ∪ Z2 is disjoint from M∗ and contains
sG(M∗). J

IPEC 2017

12:12 Odd Multiway Cut in DAGs

References
1 Karthekeyan Chandrasekaran and Sahand Mozaffari. Odd Multiway Cut in Directed

Acyclic Graphs. https://arxiv.org/abs/????.????, 2017.
2 Rajesh Hemant Chitnis, Marek Cygan, Mohammad Taghi Hajiaghayi, and Dániel Marx.

Directed subset feedback vertex set is fixed-parameter tractable. ACM Trans. Algorithms,
11(4):28:1–28:28, 2015. doi:10.1145/2700209.

3 Rajesh Hemant Chitnis, MohammadTaghi Hajiaghayi, and Dániel Marx. Fixed-parameter
tractability of directed multiway cut parameterized by the size of the cutset. SIAM J.
Comput., 42(4):1674–1696, 2013. doi:10.1137/12086217X.

4 Maria Chudnovsky, Jim Geelen, Bert Gerards, Luis A. Goddyn, Michael Lohman, and
Paul D. Seymour. Packing non-zero a-paths in group-labelled graphs. Combinatorica,
26(5):521–532, 2006. doi:10.1007/s00493-006-0030-1.

5 Ross Churchley, Bojan Mohar, and Hehui Wu. Weak duality for packing edge-disjoint
odd (u, v)-trails. In Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’16, pages 2086–2094, 2016.

6 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

7 Jack Edmonds. Maximum matching and a polyhedron with 0, 1-vertices. Journal of
Research of the National Bureau of Standards, 69(1-2):125–130, 1965.

8 Jack Edmonds. Paths, trees, and flowers. Canadian Journal of Mathematics, 17(3):449–467,
1965.

9 Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theoretical
Computer Science. An EATCS Series. Springer, 2006. doi:10.1007/3-540-29953-X.

10 Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric Algorithms and
Combinatorial Optimization. Springer, 1988. doi:10.1007/978-3-642-78240-4.

11 Subhash Khot and Oded Regev. Vertex cover might be hard to approximate to within 2-
epsilon. J. Comput. Syst. Sci., 74(3):335–349, 2008. doi:10.1016/j.jcss.2007.06.019.

12 Stefan Kratsch, Marcin Pilipczuk, Michal Pilipczuk, and Magnus Wahlström. Fixed-
parameter tractability of multicut in directed acyclic graphs. SIAM J. Discrete Math.,
29(1):122–144, 2015. doi:10.1137/120904202.

13 Andrea S. LaPaugh and Christos H. Papadimitriou. The even-path problem for graphs and
digraphs. Networks, 14(4):507–513, 1984. doi:10.1002/net.3230140403.

14 Daniel Lokshtanov, N. S. Narayanaswamy, Venkatesh Raman, M. S. Ramanujan, and Saket
Saurabh. Faster parameterized algorithms using linear programming. ACM Trans. Algo-
rithms, 11(2):15:1–15:31, 2014. doi:10.1145/2566616.

15 Daniel Lokshtanov and M. S. Ramanujan. Parameterized tractability of multiway cut
with parity constraints. In Artur Czumaj, Kurt Mehlhorn, Andrew M. Pitts, and Roger
Wattenhofer, editors, Automata, Languages, and Programming - 39th International Collo-
quium, ICALP 2012, Warwick, UK, July 9-13, 2012, Proceedings, Part I, volume 7391
of Lecture Notes in Computer Science, pages 750–761. Springer, 2012. doi:10.1007/
978-3-642-31594-7_63.

16 Sridharan Ramanujan. Parameterized Graph Separation Problems: New Techniques and
Algorithms. PhD thesis, The Institute of Mathematical Sciences, Chennai, 2013.

17 Alexander Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Algorithms
and Combinatorics. Springer, 2003.

18 Alexander Schrijver and Paul D. Seymour. Packing odd paths. J. Comb. Theory, Ser. B,
62(2):280–288, 1994. doi:10.1006/jctb.1994.1070.

https://arxiv.org/abs/????.????
http://dx.doi.org/10.1145/2700209
http://dx.doi.org/10.1137/12086217X
http://dx.doi.org/10.1007/s00493-006-0030-1
http://dx.doi.org/10.1007/978-3-319-21275-3
http://dx.doi.org/10.1007/3-540-29953-X
http://dx.doi.org/10.1007/978-3-642-78240-4
http://dx.doi.org/10.1016/j.jcss.2007.06.019
http://dx.doi.org/10.1137/120904202
http://dx.doi.org/10.1002/net.3230140403
http://dx.doi.org/10.1145/2566616
http://dx.doi.org/10.1007/978-3-642-31594-7_63
http://dx.doi.org/10.1007/978-3-642-31594-7_63
http://dx.doi.org/10.1006/jctb.1994.1070

	Introduction
	Results
	Preliminaries

	FPT of OddMultiwayNodeCut in DAGs
	Easy instances
	Parity-Preserving Torso
	Difficult instances

