40 research outputs found

    Multiplexing regulated traffic streams: design and performance

    Get PDF
    The main network solutions for supporting QoS rely on traf- fic policing (conditioning, shaping). In particular, for IP networks the IETF has developed Intserv (individual flows regulated) and Diffserv (only ag- gregates regulated). The regulator proposed could be based on the (dual) leaky-bucket mechanism. This explains the interest in network element per- formance (loss, delay) for leaky-bucket regulated traffic. This paper describes a novel approach to the above problem. Explicitly using the correlation structure of the sources’ traffic, we derive approxi- mations for both small and large buffers. Importantly, for small (large) buffers the short-term (long-term) correlations are dominant. The large buffer result decomposes the traffic stream in a stream of constant rate and a periodic impulse stream, allowing direct application of the Brownian bridge approximation. Combining the small and large buffer results by a concave majorization, we propose a simple, fast and accurate technique to statistically multiplex homogeneous regulated sources. To address heterogeneous inputs, we present similarly efficient tech- niques to evaluate the performance of multiple classes of traffic, each with distinct characteristics and QoS requirements. These techniques, applica- ble under more general conditions, are based on optimal resource (band- width and buffer) partitioning. They can also be directly applied to set GPS (Generalized Processor Sharing) weights and buffer thresholds in a shared resource system

    Worst Case Latency Analysis for Hoplite FPGA-based NoC

    Get PDF
    Overlay NoCs, such as Hoplite, are cheap to implement on an FPGA but provide no bounds on worst-case routing latency of packets traversing the NoC due to deflection routing. In this paper, we show how to adapt Hoplite to enable calculation of precise upper bounds on routing latency by modifying the routing function to prioritize deflections, and by regulating the injection of packets to meet certain throughput and burstiness constraints. We provide an analytical model for computing end-to-end latency in the form of (1) in-flight time in the network TfT^f, and (2) waiting time at the source node TsT^s. To bound in-flight time in an m×mm \times m NoC, we modify the routing function and switching crossbar richness in the Hoplite router to deliver Tf=ΔX+ΔY+(ΔY×m)+2T^{f} =\Delta X + \Delta Y + (\Delta Y \times m) + 2 where ΔX\Delta X and ΔY\Delta Y are differences of the source and destination address co-ordinates of the packet. To bound the waiting time at the source, we add a Token Bucket regulator with rate ρi\rho_i and burstiness σi\sigma_i for each flow fif_inode (x,y)(x,y) to deliver (1ρi1)+Ts(\lceil\frac{1}{\rho_{_i}}\rceil -1 ) + T^s : T^s =\lceil\frac{\sigma(\Gamma^C_f){1-\rho(\Gamma^C_f)} \rceil which depends on the regulator period 1/ρi1/\rho_i, burstiness σ\sigma and the rate ρ\rho of all interfering flows ΓfC\Gamma^C_f. A 64b implementation of our HopliteRT routerrequires \approx4\% fewer LUTs, and similar number of FFs compared to the original Hoplite router. We also need two small counters at each client port for regulating injection. We evaluate our model and RTL implementation across synthetic traffic patterns and observe behavior that conforms with the analytical bounds

    Scratchpad Memory Management For Multicore Real-Time Embedded Systems

    Get PDF
    Multicore systems will continue to spread in the domain of real-time embedded systems due to the increasing need for high-performance applications. This research discusses some of the challenges associated with employing multicore systems for safety-critical real-time applications. Mainly, this work is concerned with providing: 1) efficient inter-core timing isolation for independent tasks, and 2) predictable task communication for communicating tasks. Principally, we introduce a new task execution model, based on the 3-phase execution model, that exploits the Direct Memory Access (DMA) controllers available in modern embedded platforms along with ScratchPad Memories (SPMs) to enforce strong timing isolation between tasks. The DMA and the SPMs are explicitly managed to pre-load tasks from main memory into the local (private) scratchpad memories. Tasks are then executed from the local SPMs without accessing main memory. This model allows CPU execution to be overlapped with DMA loading/unloading operations from and to main memory. We show that by co-scheduling task execution on CPUs and using DMA to access memory and I/O, we can efficiently hide access latency to physical resources. In turn, this leads to significant improvements in system schedulability, compared to both the case of unregulated contention for access to physical resources and to previous cache and SPM management techniques for real-time systems. The presented SPM-centric scheduling algorithms and analyses cover single-core, partitioned, and global real-time systems. The proposed scheme is also extended to support large tasks that do not fit entirely into the local SPM. Moreover, the schedulability analysis considers the case of recovering from transient soft errors (bit flips caused by a single event upset) in several levels of memories, that cannot be automatically corrected in hardware by the ECC unit. The proposed SPM-centric scheduling is integrated at the OS level; thus it is transparent to applications. The proposed scheme is implemented and evaluated on an FPGA platform and a Commercial-Off-The-Shelf (COTS) platform. In regards to real-time task communication, two types of communication are considered. 1) Asynchronous inter-task communication, between either sequential tasks (single-threaded) or parallel tasks (multi-threaded). 2) Intra-task communication, where parallel threads of the same application exchange data. A new task scheduling model for parallel tasks (Bundled Scheduling) is proposed to facilitate intra-task communication and reduce synchronization overheads. We show that the proposed bundled scheduling model can be applied to several parallel programming models, such as fork-join and DAG-based applications, leading to improved system schedulability. Finally, intra-task communication is governed by a predictable inter-core communication platform. Specifically, we propose HopliteRT, a lean and predictable Network-on-Chip that connects the private SPMs

    Scheduling in CDMA-based wireless packet networks.

    Get PDF
    Thesis (M.Sc. Eng.)-University of Natal, Durban, 2003.Modern networks carry a wide range of different data types, each with its own individual requirements. The scheduler plays an important role in enabling a network to meet all these requirements. In wired networks a large amount of research has been performed on various schedulers, most of which belong to the family of General Processor Sharing (GPS) schedulers. In this dissertation we briefly discuss the work that has been done on a range of wired schedulers, which all attempt to differentiate between heterogeneous traffic. In the world of wireless communications the scheduler plays a very important role, since it can take channel conditions into account to further improve the performance of the network. The main focus of this dissertation is to introduce schedulers, which attempt to meet the Quality of Service requirements of various data types in a wireless environment. Examples of schedulers that take channel conditions into account are the Modified Largest Weighted Delay First (M-LWDF), as well as a new scheduler introduced in this dissertation, known as the Wireless Fair Largest Weighted Delay First (WF-LWDF) algorithm. The two schemes are studied in detail and a comparison of their throughput, delay, power, and packet dropping performance is made through a range of simulations. The results are compared to the performance offour other schedulers. The fairness ofM-LWDF and WFLWDF is determined through simulations. The throughput results are used to establish Chernoff bounds of the fairness of these two algorithms. Finally, a summary is given of the published delay bounds of various schedulers, and the tightness of the resultant bounds is discussed

    Management And Security Of Multi-Cloud Applications

    Get PDF
    Single cloud management platform technology has reached maturity and is quite successful in information technology applications. Enterprises and application service providers are increasingly adopting a multi-cloud strategy to reduce the risk of cloud service provider lock-in and cloud blackouts and, at the same time, get the benefits like competitive pricing, the flexibility of resource provisioning and better points of presence. Another class of applications that are getting cloud service providers increasingly interested in is the carriers\u27 virtualized network services. However, virtualized carrier services require high levels of availability and performance and impose stringent requirements on cloud services. They necessitate the use of multi-cloud management and innovative techniques for placement and performance management. We consider two classes of distributed applications – the virtual network services and the next generation of healthcare – that would benefit immensely from deployment over multiple clouds. This thesis deals with the design and development of new processes and algorithms to enable these classes of applications. We have evolved a method for optimization of multi-cloud platforms that will pave the way for obtaining optimized placement for both classes of services. The approach that we have followed for placement itself is predictive cost optimized latency controlled virtual resource placement for both types of applications. To improve the availability of virtual network services, we have made innovative use of the machine and deep learning for developing a framework for fault detection and localization. Finally, to secure patient data flowing through the wide expanse of sensors, cloud hierarchy, virtualized network, and visualization domain, we have evolved hierarchical autoencoder models for data in motion between the IoT domain and the multi-cloud domain and within the multi-cloud hierarchy

    Scheduling in Networks with Limited Buffers

    Get PDF
    In networks with limited buffer capacity, packet loss can occur at a link even when the average packet arrival rate is low compared to the link's speed. To offer strong loss-rateguarantees, ISPs may need to adopt stringent routing constraints to limit the load at the network links and the routing path length. However, to simultaneously maximize revenue, ISPs should be interested in scheduling algorithms that lead to the least stringent routing constraints. This work attempts to address the ISPs needs as follows. First, by proposing an algorithm that performs well (in terms of routing constraints) on networks of output queued (OQ) routers (that is, ideal routers), and second, by bounding the extra switch fabric speed and buffer capacity required for the emulationof these algorithms in combined input-output queued (CIOQ) routers.The first part of the thesis studies the problem of minimizing the maximum session loss rate in networks of OQ routers. It introduces the Rolling Priority algorithm, a local online scheduling algorithm that offers superior loss guarantees compared to FCFS/Drop Tail and FCFS/Random Drop. Rolling Priority has the following properties: (1) it does not favor any sessions over others at any link, (2) it ensures a proportion of packets from each session are subject to a negligibly small loss probability at every link along the session's path, and (3) maximizes the proportion of packets subject to negligible loss probability. The second part of the thesis studies the emulation of OQ routers using CIOQ. The OQ routers are equipped with a buffer of capacity B packets at every output. For the family of work-conserving scheduling algorithms, we find that whereas every greedy CIOQ policy is valid for the emulation of every OQ algorithm at speedup B, no CIOQ policy is valid at speedup less than the cubic root of B-2 when preemption is allowed. We also find that CCF, a well-studied CIOQ policy, is not valid at any speedup less than B. We then introduce a CIOQ policy CEH, that is valid at speedup greater than the square root of 2(B-1)

    The FCC and the “Pre-Internet”

    Get PDF
    Network neutrality has dominated broadband policy debates for the past decade. While important, network neutrality overshadows other policy levers that are equally important to the goals of better, cheaper, and more open broadband service. This lack of perspective has historical precedent—and understanding this history can help refocus today’s policy debate. In the 1960s and 1970s, telephone companies threatened the growth of the nascent data industry. The FCC responded with a series of rulemakings known as the “Computer Inquiries” proceedings. In the literature, Computer Inquiries enjoys hallowed status as a key foundation of the Internet’s rise. This Article, however, argues that Computer Inquiries is less important than it seems. A series of lesser-known FCC proceedings was more important to the development of the “pre-Internet”—a term I use to describe the ancestral data networks that ultimately evolved into the Internet. When viewed in historical context, Computer Inquiries did not create growth, but instead reflected the growth that the pre-Internet proceedings had already unleashed. Computer Inquiries, however, contributed to the pre-Internet in other ways that the literature overlooks. Specifically, it became a crucial source of information that influenced the more important pre-Internet proceedings. Understanding how the FCC helped build the pre-Internet also provides important lessons for today’s modern policy debates. One implication is that today’s open Internet depended not upon “light touch” restraint, but upon aggressive regulatory enforcement over many years. It also illustrates how the current policy debate focuses too narrowly on network neutrality rules to the exclusion of other proceedings and policy levers that can construct a larger “habitat” of innovation
    corecore