
Scratchpad Memory Management
For Multicore Real-Time Embedded

Systems

by

Saud Wasly

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2018

c© Saud Wasly 2018

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner: Nathan W. Fisher
Associate Professor
Department of Computer Science,
Wayne State University

Supervisor: Rodolfo Pelizzoni
Associate Professor
Department of Electrical and Computer Engineering,
University of Waterloo

Internal Members: Hiren Patel
Associate Professor
Department of Electrical and Computer Engineering,
University of Waterloo

Sebastian Fischmeister
Associate Professor
Department of Electrical and Computer Engineering,
University of Waterloo

Internal-External Member: Martin Karsten
Associate Professor
Department of Computer Science,
University of Waterloo

ii

Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Statement of Contributions

A large part of the content in this dissertation has been previously disseminated through
8 papers [170, 171, 18, 159, 161, 173, 160, 172], either peer-reviewed or under submission.
The use of the content from the listed publications in this dissertation has been approved
by all co-authors. I am the first author, sole student author and main contributor in [170,
171, 173, 172]. I am a student co-author in [18, 159, 161, 160]; for these collaborative
papers, I further highlight the extent of my contribution below.

The first main contribution in this dissertation is an execution and scheduling model for
3-phase real-time tasks to hide access latency to shared resources, such as main memory,
through the use of a Direct Memory Access (DMA) engine. Section 3.1 discusses the main
concept of the proposed execution model, while Section 3.2 presents a fixed-priority non-
preemptive partitioned scheduling scheme based on the proposed model. The content of
these sections is reproduced from [171]. The proposed scheduling scheme is extended in
Section 3.3 to handle software-based scheduling of the DMA engine, and in Section 3.4 to
recover from soft memory errors. Content in these sections is reprinted from co-authored
papers [159] and [161], respectively. In both cases, my main contribution was to develop
the response time analysis of the proposed execution model (Sections IV-B, V, and VII-E
in [159] and Sections IV-B, V, and VII-D in [161], which are reproduced in this dissertation).

Chapter 4 presents the realization of the proposed scheme. Section 4.1 discusses the
implementation on an FPGA platform. Some of the content of this section is reprinted
from [170], specifically, Sections IV and V in [170]. Section 4.2 presents the implementation
of the proposed system on a COTS platform, including a complete OS design. The content
of this section is reprinted from co-authored papers [159, 161]. I was principally responsible
for the schedulability evaluation, presented in Subsection 4.2.3; the rest of the section is
reproduced for the sake of completeness.

In Chapter 5, the scheduling scheme is extended to global scheduling. The content of
this chapter is reprinted from co-authored paper [18], in which my contribution was to
extend the scheduling policy (Section 5.2), bounding the schedule holes (Section 5.3.2),
and conducting the evaluation (Section 7.3).

In Chapter 6, an asynchronous inter-task communication model is presented. The
content of this chapter is reprinted from co-authored paper [160], in which I was responsible
for adapting the model in the proposed execution scheme, developing the worst-case latency
analysis and conducting the evaluation, (Sections 6.1, 6.3, and 6.4).

Finally, Chapter 7 presents a new scheduling model for parallel tasks, bundled schedul-
ing, and Chapter 8 presents a predictable inter-core NoC. The content of these chapters is
reprinted from [172] and [173], respectively.

iv

Abstract

Multicore systems will continue to spread in the domain of real-time embedded systems
due to the increasing need for high-performance applications. This research discusses some
of the challenges associated with employing multicore systems for safety critical real-time
applications. Mainly, this work is concerned with providing: 1) efficient inter-core timing
isolation for independent tasks, and 2) predictable task communication for communicat-
ing tasks. Principally, we introduce a new task execution model, based on the 3-phase
execution model, that exploits the Direct Memory Access (DMA) controllers available in
modern embedded platforms along with ScratchPad Memories (SPMs) to enforce strong
timing isolation between tasks. The DMA and the SPMs are explicitly managed to pre-
load tasks from main memory into the local (private) scratchpad memories. Tasks are
then executed from the local SPMs without accessing main memory. This model allows
CPU execution to be overlapped with DMA loading/unloading operations from and to
main memory. We show that by co-scheduling task execution on CPUs and using DMA
to access memory and I/O, we can efficiently hide access latency to physical resources. In
turn, this leads to significant improvements in system schedulability, compared to both the
case of unregulated contention for access to physical resources, and to previous cache and
SPM management techniques for real-time systems.

The presented SPM-centric scheduling algorithms and analyses cover single-core, par-
titioned, and global real-time systems. The proposed scheme is also extended to support
large tasks that do not fit entirely into the local SPM. Moreover, the schedulability analysis
considers the case of recovering from transient soft errors (bit flips caused by a single event
upset) in several levels of memories, that cannot be automatically corrected in hardware
by the ECC unit. The proposed SPM-centric scheduling is integrated at the OS level; thus
it is transparent to applications. The proposed scheme is implemented and evaluated on a
FPGA platform and a Commercial-Off-The-Shelf (COTS) platform.

In regards to real-time task communication, two types of communication are consid-
ered. 1) Asynchronous inter-task communication, between either sequential tasks (single-
threaded) or parallel tasks (multi-threaded). 2) Intra-task communication, where parallel
threads of the same application exchange data. A new task scheduling model for par-
allel tasks (Bundled Scheduling) is proposed to facilitate intra-task communication and
reduce synchronization overheads. We show that the proposed bundled scheduling model
can be applied to several parallel programming models, such as fork-join and DAG-based
applications, leading to improved system schedulability. Finally, intra-task communication
is governed by a predictable inter-core communication platform. Specifically, we propose
HopliteRT, a lean and predictable Network-on-Chip that connects the private SPMs.

v

Acknowledgements

First and foremost, I am grateful to Allah for empowering me to complete this thesis.
Without his help, I would not have the ability to reach this stage in my life.

I would like to seize this opportunity to thank all the people who made this dissertation
possible and my Ph.D. a spectacular experience. My deepest gratitude goes to my advisor,
Prof. Rodolfo Pellizzoni. It is hard to describe the uncountable ways in which Rodolfo
impacted my life and career. He has shared with me his expertise and always provided
constructive guidance. He involved me in exciting projects and valued my suggestions.
I truly admire his technical depth and scientific rigorousness. All in all, he has been an
irreplaceable advisor and continues to be a precious friend.

I am extremely grateful to the members of my thesis committee: Prof. Nathan Fisher,
Prof. Hiren Patel, Prof. Sebastian Fischmeister, and Prof. Martin Karsten. Each of them
has supported my work in a peculiar way. I thank Prof. Fisher for taking the time and
serving as the external examiner. His feedback was significantly valuable. My encounter
with Prof. Fischmeister was the initial trigger to gain interest in the field of real-time
systems during my master. I enjoyed his course and admired his regard to the practical
aspects of the field. The lectures of Prof. Patel in computer architecture were inspiring. I
have learned a lot from his research vision and accurate definitions to research problems.
I also have learned a lot from the expertise of Prof. Karsten in operating systems. My
encounter with Prof. Karsten inspired me with several research ideas that ended up in this
dissertation.

I extend my thanks and appreciation to my co-authors, Ahmed Alhammad, Nachiket
Kapre, Rohan Tabish, Renato Mancuso, and Marco Caccamo, with whom I have always en-
joyed discussing the research-related problems and received valuable feedback. My thanks
also extend to Michael Guo, Muhammad Refaat, Anirudh Kaushik, and Mohamed Hassan,
the colleagues who I sadly did not have a chance to write papers with, but their help and
feedback are highly appreciated.

My time at Waterloo was made enjoyable due to the many friends who became a part
of my life. Special thanks go to my close friend Ali Albishi, with whom I really enjoyed
discussing different aspects of life. His enthusiastic personality has been motivational for
me to proceed during the tough times.

I am grateful to King Abdulaziz University for their financial support. Without their
support, I probably would not have the opportunity to attend a great school like the
University of Waterloo.

vi

Foremost, I thank my father, Mohammad, for his endless love and optimism and for
being with me at all times with his prayers. You always encourage me to do the best in
my life. I am also thankful to my deceased mother, Zara’ah, for rising and teaching me to
be a good person. My thanks extend to my brothers and sisters who believed in my cause
and always remembered me in their prayers.

I am thankful for my son, Mohammad, and my daughter, Jumanah, for shining our
home with their beautiful smiles. My deepest and greatest thanks and gratefulness go to
my wife, Hind, for her love, patience, and trust that I was doing the right thing. I could
not have finished my Ph.D. without you.

vii

Dedication

Indeed, my prayer, my rites of sacrifice, my living and my dying are for Allah , Lord of the
worlds. [Quran 6:162]

To the ones I love:
To my parents, Mohammad and Zara’ah
To my devoted and supportive wife, Hind
To my hero son, Mohammed
To my princess daughter, Jumanah

viii

Table of Contents

List of Tables xiii

List of Figures xiv

1 Introduction 1

1.1 Challenges with Multi-Core Systems . 2

1.1.1 Shared Resources and Contention 3

1.1.2 Data Sharing in Parallel Tasks . 5

1.2 Scope and Contributions of This Work . 6

1.2.1 PART(I): Efficient Tasks Isolation 7

1.2.2 PART(II): Predictable Tasks Communication 10

1.3 Structure of the Dissertation . 13

2 Background and Related Work 14

2.1 Predictability and Timing Isolation in Multicore Systems 14

2.1.1 Comparing the Architecture of SPM with Cache 16

2.1.2 Cache Memory . 19

2.1.3 Scratchpad Memory . 22

2.1.4 Other Task Isolation Techniques . 26

2.2 Real-time Tasks Communication . 28

2.2.1 Real-Time Scheduling of Parallel Tasks 29

ix

2.2.2 Memory Model . 31

2.2.3 Predictable Network On-Chip Architectures 36

I Efficient Task Isolation For Real-time Applications 38

3 Partitioned Scratchpad-Centric Scheduling of 3-Phase Real-time Tasks 39

3.1 System Model . 40

3.2 Case (I): Scheduling 3-Phase Tasks with Variable-size DMA Operations . . 44

3.2.1 Schedulability Analysis of The 3-Phase Tasks with Dynamic-size
DMA Operations . 47

3.2.2 Analysis of Multi-Segment Tasks 53

3.3 Case (II): Scheduling 3-Phase Tasks with Fixed-size DMA Operations . . . 58

3.3.1 Schedulability Analysis of The 3-Phase Tasks with Fixed-Size DMA
Operations . 59

3.4 Fault-Tolerant Scheduling of 3-Phase Tasks 65

3.4.1 Extending Schedulability Analysis for Error Recovery 67

3.4.2 Response Time Calculation . 68

3.4.3 Accounting for Error Recovery . 69

3.5 Summary . 72

4 System Implementation 74

4.1 Implementation on an FPGA Platform . 74

4.1.1 Hardware Architecture . 75

4.1.2 Address Translation . 75

4.1.3 Software Implementation . 77

4.1.4 Evaluation . 79

4.2 Implementation on a COTS Platform . 90

4.2.1 Platform Description . 90

x

4.2.2 OS Design . 93

4.2.3 Evaluation . 101

4.3 Summary . 109

5 Global Scratchpad-Centric Scheduling of 3-Phase Real-time Tasks 111

5.1 Task Model and Notations . 112

5.2 Scheduling Algorithm . 112

5.2.1 Scheduler Design . 114

5.3 Schedulability Analysis . 116

5.3.1 Bounding the Interfering Jobs . 117

5.3.2 Bounding the Individual Workload Ik(Ji) 121

5.3.3 Bounding the Total Workload Ik(Γ) 124

5.3.4 Bounding the Interference on a Problem Job 126

5.3.5 Schedulability Condition . 127

5.4 Evaluation . 128

5.5 Summary . 133

II Task Communication For Hard Real-time Applications 134

6 Inter-Task Communication with 3-Phase Task Model 135

6.1 The Proposed Inter-Task Communication Model 135

6.2 Implementation . 136

6.3 Bounding Communication Latency . 137

6.4 Evaluation . 138

6.5 Summary . 140

xi

7 Bundled Scheduling of Parallel Real-time Tasks 141

7.1 System Model . 144

7.1.1 The Scheduling Algorithm . 146

7.1.2 Programming Model . 147

7.2 Schedulability Analysis . 149

7.2.1 Bounding the Contribution . 152

7.2.2 Analysis for Multiple Bundles . 153

7.2.3 Tightening the Analysis . 157

7.2.4 Priority Assignment . 163

7.2.5 Discussion . 164

7.3 Evaluation . 165

7.4 Bundled Scheduling for the 3-Phase Task Model 168

7.5 Summary . 173

8 Predictable Inter-core Communication 175

8.1 The Case for FPGA Overlay NoCs . 178

8.2 Background: Hoplite NoC Architecture . 179

8.3 Managing In-Flight Deflections . 181

8.4 Regulating Traffic Injection . 186

8.4.1 Token Bucket Regulator . 187

8.4.2 Analysis . 188

8.5 Evaluation . 197

8.6 Integrating Communication Time into Execution Time of Bundled Tasks . 200

8.7 Summary . 204

9 Conclusions 206

9.1 Limitations . 207

9.2 Future Directions . 209

References 211

xii

List of Tables

3.1 Task’s Parameters . 44

4.1 Maximum operating frequency comparison 80

4.2 Hardware resource comparison: in this specific implementation, each block
RAM is 36 Kilobits (Kb). 80

4.3 Software Overheads . 81

4.4 Benchmarks Results . 82

4.5 Characteristics of Freescale MPC5777M SoC 91

4.6 Details of OS Parameters . 102

4.7 Details of EEMBC Benchmarks. 105

4.8 Space Overhead of HW versus SW recovery 107

4.9 Suitable Commercial Multicore COTS platforms 110

5.1 Benchmarks . 130

8.1 Routing Function Table to support Real-Time extensions to Hoplite. PE
injection has lowest priority and will stall on conflict. PE→E + W→S is
not supported to avoid an extra select signal driving the multiplexers and
doubling LUT cost by preventing fracturing a 6-LUT into 2×5-LUTs. . . . 185

8.2 FPGA costs for 64b router (4×4 NoC) with Vivado 2016.4 (Default settings)
+ Virtex-7 485T FPGA . 186

xiii

List of Figures

1.1 (A): access time to main memory is growing over proportionally with the
number of contending cores. (B): the WCET is highly affected by the in-
terference caused by the parallel cores. 4

1.2 (A): Simplified hardware architecture. (B): Example schedule showing how
tasks are executed on one core. 8

1.3 Illustration of the proposed system architecture with a predictable intercon-
nect between private SPMs. 12

2.1 Generic multicore architecture, gray blocks might not be available in some
systems . 15

2.2 SPM Architecture . 16

2.3 Direct-Mapped Cache Architecture (From [1]) 17

2.4 Full Associative Cache Architecture (From [1]) 18

3.1 Example schedule showing how tasks are executed to hide memory access
latency. 41

3.2 Illustrative schedule for preemptive CPU execution 45

3.3 Illustrative schedule for preemptive DMA operation 46

3.4 An illustrative schedule of a worst case response time of a task under analysis 49

3.5 Illustrative schedule of multi-interval tasks 53

3.6 Scheduling CPU, DMA and local memory with fixed-size time slots 58

3.7 Example schedule, intervals are highlighted. 60

3.8 Scheduling example with the proposed error recovery mechanism 66

xiv

3.9 Task scheduling with illustration of error recovery mechanism 67

3.10 Example showing how H is extended by an induced interval due to error
recovery prior to IntervalF . 71

4.1 System-Level Block Diagram . 76

4.2 RSMU Memory Translation . 77

4.3 The baseline hardware architecture with cache memory 79

4.4 Execution time comparison between Cache and SPM: SPM1 runs at the
same frequency as cache, SPM2 runs at 22% higher frequency 83

4.5 Application execution speedup: SPM1 runs at the same frequency as cache,
SPM2 runs at 22% higher frequency . 84

4.6 Single-core schedulability comparison between carousel and our approach . 85

4.7 Multi-interval single-core schedulability comparison between Carousel and
our approach . 86

4.8 Single-interval 4-cores schedulability comparison between the three systems 87

4.9 Multi-interval 4-cores schedulability comparison between the three systems 87

4.10 Single-interval 8-cores schedulability comparison between the three systems 88

4.11 Multi-interval 8-cores schedulability comparison between the three systems 88

4.12 Each system’s tolerance to the degradation in memory speed @ 70% utiliza-
tion with multi-interval tasks . 89

4.13 MPC5777M Block Diagram. 90

4.14 Block diagram of error handling circuitry. 92

4.15 Interaction between I/O Core and Core 1 for task scheduling. 95

4.16 Experimental execution time for synthetic benchmarks. 103

4.17 Experimental execution time for EEMBC benchmarks. 104

4.18 Schedulability with SPM-based and traditional scheduling models. 108

4.19 Utilization degradation as a function of tasks periods 109

5.1 An example of scheduling 6 jobs on 2 cores. 113

5.2 The cores are chosen based on the minimum sk. 114

xv

5.3 Carry-in limit for m=2. 119

5.4 The interfering jobs of tasks ∈ hep(k) with no carry-in, computation carry-in
and memory carry-in. 120

5.5 Scheduling interval examples. 121

5.6 The computation phase of the problem job executes after Imaxk 127

5.7 Our schedule on 4 cores showing 100% utilization. 129

5.8 Contention-based schedule on 4 cores showing 50% utilization. 129

5.9 2-cores schedulability comparison. 131

5.10 4-cores schedulability comparison. 131

5.11 8-cores schedulability comparison. 132

5.12 The scalability comparison of the WCRT bound. 132

6.1 Worst-case communication latency between two tasks 138

6.2 End-To-End communication Latency. 139

7.1 Illustrations of the negative impact on synchronized parallel threads if not
co-scheduled at the same time . 142

7.2 Illustrations of how a fork-join parallel task can be scheduled according to
different scheduling strategies . 143

7.3 Fork-join application and resulting bundled task. 147

7.4 DAG application and possible schedules. 148

7.5 Interfering caused by higher priority tasks. The up arrow denotes the arrival
time of the task under analysis. 151

7.6 The maximum workload of task τi within a window of time t 153

7.7 Worst-case contributions of interfering workloads. A: contributing to the
first bundle. B: contributing to the second bundle. 157

7.8 Examples of lower-priority bundles’ ability to run 160

7.9 Schedulability test of the compared analyses on 8 cores with respect to task
set types . 166

7.10 Schedulability test of the compared analyses on 32 cores with respect to task
set types . 168

xvi

7.11 Preemptive versus non-preemptive gang scheduling 169

7.12 Deferred preemption versus synchronous deferred preemption in gang schedul-
ing . 169

7.13 Example schedule of integrating bundles into the 3-phase execution model 171

8.1 System architecture with the proposed predictable interconnect between pri-
vate SPMs. 176

8.2 Implementation choices for the Hoplite FPGA NoC Router. A LUT-economical
version (left) is able to exploit fracturable Xilinx 6-LUTs to fit both 2:1
muxes into a single 6-LUT. The larger, higher-bandwidth version (right)
needs 2 6-LUTs instead as the number of common inputs is lower than
required to allow fracturing. 179

8.3 Endless deflection scenario where red packets from (0,0) → (3,3) are per-
petually deflected by blue packets from (3,3) → (3,1). The red spaghetti is
the flight path of one packet that gets trapped in the top-most ring of the
NoC and never gets a chance to exit due to the bossy blue packets. 181

8.4 Proposed routing function arrangement for bounded in-flight latency. De-
spite splitting the logic into 2× 5-LUTs (3:1 muxes), the same multiplexer
select signals (with different interpretation) drive both multiplexers. This
allows a compact 6-LUT implementation per bit. 182

8.5 Worst-Case path on Hoplite-RT for packet traversing from top-left PE (0,0)
to bottom-right PE (3,3). The red packets will deflect N→E in each ring due
to a conflicting flow (not shown). The blue packets previously had priority
are now deflected in the top-most ring before delivery. 184

8.6 Unlucky client at (1,0) is swamped by client at (0,0) that has flooded the
NoC with packets at full link bandwidth (one packet per cycle). Red packets
from (0,0)→(x,y) are perpetually blocking the client exit at (1,0). This
results in a waiting time of ∞ for packets at (1,0) 186

8.7 Conceptual view of the Token Bucket regulator at the injection port of each
NoC client. FPGA implementation cost is two cascaded counters (no actual
memory is needed to store any tokens). The client can inject a packet into
the NoC only when the NoC is ready and there is at least one token available
in the Token Bucket. 187

xvii

8.8 Understanding interfering traffic flows at a client for determining the set
of conflicting flows ΓCf . Dotted N → E is a deflected flow that will wrap
around the X-ring and return at the W port. The PE → E (red flow) will
interfere with W → E, and also W → S flow due to HopliteRT router limits.
And, the PE → S flow (blue flow) will interfere with N → S, W → S, and
the deflected N → E flows. 190

8.9 Effect of Traffic Patterns on Worst-Case In-Flight Latency of the Workload
at 100% injection rate. Worst-case analytical bounds (red) are easily vio-
lated by baseline Hoplite. With HopliteRT we are always within the bound,
and deliver superior worst-case latency for ALLTO1, TORNADO, RANDOM, and
LOCAL patterns. For TRANSPOSE, the persistent victimization of N → S
packets causes a slightly longer worst-case latency. 197

8.10 Effect of Injection Rate on Worst-Case In-Flight Latency of the RANDOM
Workload for 256 clients. At low injection rates, the NoC routing latencies
are not very different, but as the NoC gets congested, HopliteRT starts to
deliver improvements. 198

8.11 The optimized bound versus the basic one on Worst-Case In-Flight Latency
of RANDOM workload at 100% injection rate of 256 clients 199

8.12 Comparing source queueing times for regulated vs. unregulated HopliteRT
NoCs as a function of system size for the ALLTO1 traffic pattern. Regulated
traffic offers much improved waiting times at the clients. 200

8.13 Comparing source queueing times for regulated vs. unregulated HopliteRT
NoCs as a function of system size for the RANDOM traffic pattern. Again,
regulated traffic offers better latency behavior, but bounds are much lower
than the ALLTO1 pattern. 201

8.14 Effect of Injection Rate on Worst-Case Source-Queueing Latency of the
ALLTO1 workload for 16 clients. The E port can accept more packets
due to the DOR routing policy; and furthermore be blocked by our LUT-
constrained HopliteRT router. Above a certain injection rate, no bounds
can be computed due to infeasible flow rates in the network. 202

8.15 Example of three different cases of bundles that does not suffer communica-
tion interference . 203

8.16 HopliteRT node scheduling (A) and network partitioning (B) 204

8.17 Suggested modification to the router to support dynamic partitioning . . . 205

xviii

Chapter 1

Introduction

Real-time systems require predictable temporal behavior. The system schedules shared
physical resources, such as CPU time, to execute tasks of different applications. An ap-
plication is composed of one or more tasks [98]. Typically, tasks are recurrent: each task
produces a potentially infinite sequence of jobs, activated either periodically or sporadi-
cally. Applications in real-time systems are classified into safety-critical applications known
as hard tasks and less-critical applications known as soft tasks. Each job of a hard task
needs to finish its execution and produce its output before the expiration of a strict time
(deadline); otherwise, the system might catastrophically fail. Medically-implanted pace-
makers and airbag systems in a modern cars are examples of this class of applications. On
the other hand, soft real-time tasks might suffer service degradation when a job exceeds
the execution deadline. Examples of such soft-tasks include real-time communication in
video conferencing. In this dissertation, we focus on hard real-time tasks.

In hard real-time systems, the collection of executed tasks (also known as a task set)
requires timing validation. A task set is called feasible if it can be scheduled such that
all jobs of all tasks meet their deadlines, under all permissible combinations of job-arrival
sequences by the different tasks comprising the system. On a particular computing plat-
form, the system of tasks is said to be A-schedulable with respect to a given scheduling
algorithm A, if the algorithm A schedules the system such that all jobs of all tasks will meet
all deadlines. A schedulability analysis for scheduling algorithm A accepts as input the
specifications of a real-time system, and determines whether the system is A-schedulable
or not. An A-schedulability analysis is said to be exact if it correctly identifies all A-
schedulable systems, and sufficient if it may fail to identify some A-schedulable systems (it
must guarantee, though, that all identified systems are indeed A-schedulable).

1

An important input to the schedulability analysis is the worst-case execution time
(WCET) of each task. It is essential for the WCET estimate of a task to be safe; i.e., the
upper bound of the execution time under all circumstances must be captured. While un-
derestimating the WCET can lead to unsafe schedules (missed deadlines), overestimating
the WCET can lead to a reduction in the system schedulability and leave the hardware
underutilized. It is often desirable for the WCET estimate to be tight, i.e., close to the
actual worst-case execution time. The tightness of WCET bounds can be highly affected
by the underlying platform, including the hardware, the operating system (OS), and the
application runtime environment adopted by the programming language. Predictability is
an important and related term that indicates how tight the WCET estimate is. Specif-
ically, [24] defines predictability as the ratio between the best-case and the worst-case
behavior. That is, a component with constant-time behavior is 100% predictable, and this
percentage decreases as the difference between the best-case and the worst-case behavior
increases. Consequently, when any component in the system behaves in a less predictable
manner, a safe but pessimistic performance assumption is needed to compensate for the
less-predictable timing estimates. This pessimism can reduce the system utilization and
prevents real-time engineers from exploiting the full performance of the hardware.

In the last decade, however, the popularity of multi-core chips has seen an uptrend in the
domain of embedded computing. Modern emergent embedded systems, such as self-driving
cars and Unmanned Aerial Vehicles (UAV), that heavily utilize parallel multi-threaded
applications, such as machine learning, and computer vision, are driving an increasing
performance demand in embedded computing in general and in real-time especially. This
performance demand is answered by high-performance embedded multi-core chips. How-
ever, the introduction of multi-core chips has a disruptive impact on the design of real-time
systems: most of the existing design practices in the field cannot be directly applied to
multi-core systems. Hence, platform selection for the design of modern safety-critical
systems often involves outdated technological solutions or highly inefficient exploitation
of current modern hardware [5], such as disabling all but one core. In response, this is
driving researchers’ efforts to introduce new design methodologies and tools to overcome
challenges with multi-core systems, in particular due to the presence of shared hardware
resources that affect the predictability of the system.

1.1 Challenges with Multi-Core Systems

The introduction of multi-core systems in the real-time domain is relatively new com-
pared to single core systems. Therefore, many challenges related to multi-core systems are

2

currently being addressed by the community. In this dissertation, we address two main
challenges: 1) contention for access to shared physical resources, such as the memory sub-
system of modern Multi-Processor Systems-on-Chip (MPSoC); and 2) the need for data
sharing in real-time parallel applications.

1.1.1 Shared Resources and Contention

In industry, it is often the case that different components of the system are provided by
several vendors and then integrated together. For more than three decades, a fundamental
assumption of the schedulability analysis is that the WCET can be calculated on indi-
vidual tasks in isolation, i.e., without considering the activity of other cores or hardware
components. This simplifies the schedulability analysis of the complete system when tasks
are running together. Unfortunately, this assumption is violated in multi-core systems.
In a single core processor, tasks do not execute concurrently in a single core system, but
rather sequentially, albeit they might be preempted. The sequential execution implies that
a task has an exclusive access to all hardware resources such as caches, main memory, and
I/Os; and no two tasks can access shared resources simultaneously. However, the situation
is different in multi-core systems. Two tasks can run simultaneously on different cores and
access shared resources at the same time, thus causing interference to each other. Con-
sequently, the extensive sharing of hardware resources has made analyzing the temporal
behavior of real-time applications running in parallel on multi-core systems one of the
biggest challenges in the real-time domain today.

Figure 1.1 depicts the implications of contended access to shared resources, main mem-
ory in this case. The figure is based on results from slides presented during a keynote
speech titled as ”Mixed-Criticality Systems - a Journey Embedded in Time and Space”
by M. Paulitsch at 27th Euromicro Conference on Real-Time Systems (ECRTS15), 20151.
The figure shows the performance degradation encountered by a set of concurrently run-
ning synthetic benchmarks, designed to maximize delay due to inter-core interference on
the Freescale P4080 eight-core MPSoC platform. Specifically, the execution time of the
task under analysis is observed first when it runs alone, and then with an increasing number
of applications running in parallel on other cores. Figure 1.1(a) focus on showing the access
time to main memory under four scenarios: when the task under analysis is preforming read
operations and the interfering tasks are also performing read operations (”read-read”); and
when the task under analysis is performing read operations and the interfering tasks are
performing write operations (”read-write”); and so on for ”write-read” and ”write-write”.

1See the presented slides at http://control.lth.se/ecrts2015/files/keynote.pdf

3

http://control.lth.se/ecrts2015/files/keynote.pdf

1 Core

3 Cores

4 Cores

2 Cores

interference-induced
 overhead

isolated
WCET

290%

210%

150%

100%

(B)

A
cc

e
ss

 T
im

e
 (

cy
cl

e
s)

1·101

1·102

1·103

1·104

Active Cores

1 2 3 4 5 6 7 8

read-read
read-write
write-read
write-write

(A)

Figure 1.1: (A): access time to main memory is growing over proportionally with the
number of contending cores. (B): the WCET is highly affected by the interference caused
by the parallel cores.

It can be observed that the access time to the shared main memory in this platform grows
over-proportional to the number of active cores. This performance behavior greatly affects
the WCET, which is depicted in Figure 1.1(b). As it can be seen from the figure, with 4
contending cores, the execution time of the task under analysis is inflated by '3X. While
the slowdown of memory access time is about '10X in the case of 4 contending cores, it
only leads to '3X slowdown in total execution time. This is because, during typical task
execution, a portion of the time is spent for computation-only operations that can progress
in parallel and often hide the extra time required for non-blocking memory operations.
This degraded-performance behavior is not unique to real-time platforms. It has also been
shown in [181] that similar effects are observed by running SPEC CPU2006 applications on
an Intel Xeon X3565 quad-core processor. The results show that the execution time of one
application can increase by 56% compared to the execution time of the same application
when run in isolation. Resource contention has also been acknowledged by certification
authorities, and it represents a source of concern for the use of multi-core processors in
avionics systems [5].

Task isolation can be spacial or temporal. Spacial isolation restricts the ability of
software components to access specified hardware components, or subsets of memory re-
sources. Spacial isolation improves system safety and security by limiting each application

4

or application class to a set of accessible resources with no interaction between unrelated
components; i.e., an isolated faulty application cannot affect other applications. On the
other hand, temporal isolation protects the timing behavior of the isolated application
from other applications running in parallel on other cores; i.e., the performance of the
application is independent of the behavior of the other running applications. While con-
temporary OSs and COTS platforms are already equipped with advanced spacial isolation
techniques, they do not provide extensive support to achieve strong temporal isolation
among applications.

The current industry trend is to use Commercial-Off-The-Shelf (COTS) multi-core plat-
forms to build hard real-time systems. Unfortunately, such platforms are not designed to
support real-time applications, but rather to optimize average-case performance. We argue
that to construct a tight WCET analysis for real-time tasks executing in such platforms,
the designer should obtain: 1) a detailed model of the hardware components, so that their
behavior can be accurately captured; 2) a detailed characterization of all tasks in terms
of their accesses to shared hardware resources. Unfortunately, this approach is not prac-
tical for at least two main reasons. First, due to manufacturers’ intellectual property, the
detailed models of the COTS hardware components are often not available or incomplete.
Second, assuming accurate knowledge of the entire system workload also faces practical
limitations. Particularly, as the number of parallel cores increases, the problem of exhaus-
tively testing all the possible platform/workload configurations combinatorially explodes.

We argue that if tasks are allowed to access shared resources in an unregulated way,
the resulting WCET estimates are typically so large as to be practically unusable. Instead,
the platform should be engineered to achieve strong temporal isolation between cores, ei-
ther through mechanisms at the hardware level, the software, or both (hardware-software
co-design). Temporal isolation allows the designer to determine system schedulability by
composing the WCET of individual tasks. A strong temporal isolation between running
tasks would therefore significantly improve the WCET of the tasks and simplify the schedu-
lability analysis of the system.

1.1.2 Data Sharing in Parallel Tasks

With the increased demand for high-performance real-time applications, such as autonomous
driving and computer vision [158], real-time designers are looking at parallel applications.
Therefore, the real-time community has developed parallel task models, where each task
comprises a number of subtasks, i.e., threads. The threads can be activated on different
computing nodes simultaneously to run in parallel, and usually share data. In the real-time

5

literature, applications are broadly categorized into single-threaded applications known as
sequential tasks, and multi-threaded applications known as parallel tasks.

With the increasing demand for more single-application performance, several parallel
programming models have been adopted for real-time parallel applications, such as the
fork-join and the Directed Acyclic Graph (DAG) models. However, the strong demand for
temporal isolation between sequential hard-real-time applications has delayed the adoption
of multi-core systems. As discussed in the previous section, task isolation permits to
safely utilize multi-core systems for real-time applications, improves predictability, and
simplifies analysis. Unfortunately, the temporal isolation mechanisms used for sequential
tasks cannot be applied to parallel tasks. This is because we cannot isolate the cores
that are communicating. As a matter of fact, existing scheduling schemes for parallel
real-time tasks assume no synchronization cost or data sharing. We argue that parallel
applications need new scheduling models that relax the aforementioned assumptions and
allow for predictable inter-core communication.

1.2 Scope and Contributions of This Work

The goal of this work is to provide a set of solutions at the hardware, software and analysis
level, to increase the predictability of both sequential and parallel safety-critical real-time
applications on multi-core systems. In contrast to other approaches that target COTS
systems only, this work focuses on platform engineering and hardware/software co-design
to achieve better predictable performance for safety-critical applications. Our design phi-
losophy it to employ the knowledge of system workload that exists at the scheduling level,
and pass required information down to the hardware level to optimize task execution. This
methodology significantly simplifies the hardware design and the WCET analysis, at the
cost of more complex scheduling policies.

More in details, we provide solutions to 1) avoid access contention to shared resources
such as main memory and IO devices, 2) provide predictable access to local memory, and
3) provide predictable inter-core communication. In particular, at the hardware level, we
consider Scratchpad Memory (SPM), instead of conventional caches, to implement the lo-
cal memory for predictability reasons 2. Furthermore, we propose a lean and predictable
Network-on-Chip (NoC) that governs inter-core communication. At the software level, we
dynamically manage the local SPMs based on OS support, i.e., SPM management is trans-
parent to the applications. This includes loading tasks into the local SPMs, unloading tasks

2As we discuss in Chapter 2, caches can have significant predictability issues.

6

from the SPMs, and moving data between the local SPMs as needed. The contributions of
this work are broadly divided into two parts, 1) task isolation and 2) task communication.

1.2.1 PART(I): Efficient Tasks Isolation

To achieve strong inter-core timing isolation, we propose to adopt a new task execution
model based on the existing PRedictable Execution Model (PREM) presented in [128].
The work in [128] is a software solution that relies on compiler techniques to instrument a
task’s code with extra instructions to divide the task into memory and execution phases.
It does that by using the CPU to prefetch the required data into cache during the memory
phase; while, in the execution phase, the task executes from cache and does not access the
main memory. This execution model avoids contention by scheduling tasks to access to
main memory while other tasks are in their execution phases. Unlike the original PREM,
we propose to use a Direct Memory Access (DMA) controller to load tasks into the local
SPM without stalling the CPU. Our model is based on hardware/software co-design and
relies on dynamic management of the SPM as local memory.

Figure 1.2 illustrates the main ideas behind the proposed execution model. Part (A)
shows a simplified illustration of the architectural requirements of the model. We assume
that each core has access to a private SPM and a DMA controller. The SPM is dual ported
to allow simultaneous access from the local CPU and the DMA: the CPU and the DMA
can access different portions of the local memory concurrently without causing mutual
interference. A task is loaded into the local SPM before execution, and the CPU does not
need to access main memory while executing the task. Moreover, the SPM is divided into
two partitions to allow the DMA to load a task into one partition while the CPU executes
another task from the other partition simultaneously. Part (B) of the figure shows an
arbitrary schedule of three tasks to illustrate the execution model.

Note that the described system can also be realized through caches. This is possible
by applying cache partitioning techniques [155, 104] in systems that support cache lock-
ing and cache stashing [7]. However, it is still unclear if the proposed scheme will be
deterministic when both the CPU and the DMA are active simultaneously. In addition,
caches are intended to be self-managed, and require more effort to be managed in software.
On the other hand, scratchpad memories, in fact, is simpler to manage and have been
proven to provide better energy consumption [28] and temporal isolation when compared
to traditional caches [136, 110].

A task is divided into three phases, load, execution, and unload. As shown in the
figure, the DMA is used to unload any previously loaded task in the targeted partition

7

Partition #1
: DMA Unload

: DMA Load

: CPU Execution

Partitions
Colour Code

Ta
sk

's
 P

ri
o

rit
y τ1

τ2

τ3

Partition #2

Time
0 4 8 12

CPU

DMA

Main Memory (DRAM)

Local Memory (SPM)

Partition#1

Partition#2

(A) (B)

Figure 1.2: (A): Simplified hardware architecture. (B): Example schedule showing how
tasks are executed on one core.

before loading a new task. After that, the task can be executed from the local memory
with no interference. As depicted, due to the dual partitioning of the local memory, the
CPU is kept busy most of the time and access latency to main memory is effectively hidden
due to the overlap between executing a task from one partition while loading another task
into the other partition. This desirable behavior of completely hiding the access latency
to main memory can be observed as long as the execution time of a task is greater than
or equal to the load time of the next scheduled task on the other partition in the SPM
of the same core. When the execution time is smaller than the load time, the access
latency is still partially hidden with an amount equal to the overlapped execution time.
The proposed execution model can be applied to both sequential and parallel tasks. In
the case of a parallel task, all code and data of the required threads of the task are loaded
or unloaded to/from the SPM partitions together. Note that for communicating parallel
tasks, we propose an orthogonal solution to handle inter-core communication as we discuss
in Section 1.2.2.

The proposed execution model provides four main benefits: 1) it avoids task interference
due to contention for access to main memory. 2) It efficiently hides the access latency to
main memory. 3) It efficiently utilizes the memory transfer bandwidth as it moves bigger
contiguous blocks of data; in particular, sequential transfers in Dynamic RAM (DRAM)
are significantly more efficient than random accesses. 4) It improves the tightness of the
WCET analysis due to the improved predictability of the platform as tasks are executed
out of the local SPMs only.

In regards to I/O handling, we exploit the core specialization available in modern

8

embedded platforms, such as the Freescale MPC5777M used in our implementation. In
short, a dedicated I/O core receives data from I/O devices and buffers them in its local
SPM without affecting the main memory bus. Upon task loading on an application core,
we then program the DMA to move the needed I/O data from the local SPM of the I/O
core to the targeted partition on the application core. Similarly, upon task unloading,
we program the DMA to move the produced I/O data from the task’s partition on the
application core to the corresponding buffer on the I/O core.

From a scheduling point of view, to avoid access contention to physical resources, we
adopt a co-scheduling approach. We contribute several dynamic scheduling algorithms
based on fixed-priority scheme for a set of sporadic real-time tasks, that efficiently co-
schedule processor and DMA execution to hide memory access latency. The proposed algo-
rithms target single-core, partitioned multi-core, and global multi-core scheduling schemes.
We demonstrate that we improve processor utilization significantly compared to existing
scratchpad and cache management systems in addition to contention-based systems.

The analysis is also extended to cover tasks with large memory-footprint that cannot
entirely fit into the local SPM’s partition. In essence, a task can be split into multiple
segments where each segment can fit into the local memory. The first segment is released
like a normal task and the subsequent segment is released after the previous segment
finishes. Jobs of the same task are assumed to produce the same number of segments and
each segment inherits the priority of the producing task. Note that while a segment of a
task is executed by the CPU, the DMA cannot load the next segment of the same task,
since a latter segment might depend on a previous segment’s data.

Task-splitting is quite popular in practice and supported by several commercial tools.
For instance, it is adopted in time-triggered architectures to mitigate the allocation problem
of tasks to cycles [45]. The recent work in [132] shows how to break a program into non-
preemptive segments through compiler analysis. Moreover, there has been a significant
amount of work in literature that proposes techniques to manage the local memory of one
task [53, 101, 25] for code and data, including stack and heap. Our focus in this work,
therefore, is how to provide a timing guarantee for the scheduled jobs rather than showing
how to divide a task into multiple segments.

In addition, a set of scheduling strategies are proposed to recover from detectable
transient memory errors. Specifically, we describe how it is possible to recover from bit
errors, in both main memory and scratchpad, that are detected but not corrected by
the hardware logic via Error-Correcting Code (ECC). The strategy that we follow largely
leverages the existing redundancy in the employed multi-phase task model. A minimum
amount of additional redundancy is introduced to protect data that do not exist as multiple

9

copies in the original scheme. Schedulability analysis is extended to take into account
the overhead introduced by the proposed recovery mechanisms. The proposed analysis
considers different application recovery scenarios and isolates the critical path of the error-
handling procedures, which often correspond to entire task re-execution. The result is a
fault-tolerant scheduling framework for multi-phase real-time tasks.

The proposed approach has been realized in both an in-house FPGA-based architec-
ture [170], and commercial embedded platform (Freescale MPC5777M) [159]. The execu-
tion model and the SPM management logic are integrated at the OS level. In particular,
through collaboration with the co-authors of [159], ERIKA3 [11] RTOS has been extended
with a novel operating system design to exploit core specialization and low level resource
management policies. To the best of our knowledge, this is the first OS that integrates a
scratchpad-based task scheduling mechanism with a schedule-aware I/O subsystem.

The following list is a summary of the contributions in this part:

• SPM-centric system architecture with dynamic management at the OS level.

• Limiting task execution from local memory to enforce timing isolation between cores.

• Extending the PREM execution model to allow for hiding access latency to shared
resource.

• A set of SPM-centric scheduling algorithms with sufficient schedulability analysis for
partitioned and global task systems.

• Extending the schedulability analysis for tasks with large memory footprint that
cannot fit entirely in the local memory.

• Extending the schedulability analysis to account for recovery from memory soft errors
that cannot be directly corrected in hardware by the ECC unit.

• FPGA and COTS implementations of the proposed schemes.

1.2.2 PART(II): Predictable Tasks Communication

In regards to task communication, we considered two communication types, inter-task
and intra-task communication. Inter-task communication addresses the communication

3Erika Enterprise is an open-source RTOS that features a small memory footprint and supports multi-
core platforms.

10

between tasks, whether they are scheduled on the same core or on different cores. In this
type of communication, we assume an asynchronous communication model. This means
that the previously produced data, by a sender task, can be overwritten if it was not
read by the receiver task before. In our proposed model, a sender task’s communication
data is written to main memory during its unload phase. Similarly, any communication
data required by a receiver task is loaded into SPM during its load phase. Therefore, this
model does not require inter-core communication in our proposed SPM-centric system: the
communication is performed via main memory during the loads and unloads phases of the
tasks. This model of communication can be applied to both sequential and parallel tasks,
since the communication is scheduled and performed by the DMA used to load/unload the
tasks. The OS-level management and scheduling policies are extended to account for inter-
task communication. We also provide analytical bounds on the worst-case communication
latency for a chain of sender-receiver tasks.

On the other hand, intra-task communication is unique to parallel tasks. This type
of communication involves data exchange between the simultaneously running threads of
the same parallel task. To facilitate this type of communication, we propose to gang
schedule the communicating threads: all currently active threads of the same parallel task
are executed concurrently. This policy is motivated by two objectives: 1) to facilitate
intra-task communication, and 2) to reduce the synchronization overhead, thus obtaining
a more predictable execution of parallel real-time tasks.

Indeed, gang scheduling of parallel tasks has been proved to have significant per-
formance benefits in many cases [60, 77, 150]. Gang scheduling for parallel real-time
tasks [81, 55, 64] considers a rigid task model, where the number of threads required by
an application is assumed to remain constant over its entire execution time. While the
rigid model has the benefit of simplicity, it can incur a significant loss of performance by
overestimating the computational demand of an application: many parallel applications
change their required number of threads during execution.

Hence, we introduce a novel task model, which we call the bundled model, that supports
gang scheduling of parallel threads without incurring undue pessimism in modeling the
application’s demand. In this model, a real-time task is composed of a sequence of bundles,
where each bundle is characterized by a known worst-case execution time (WCET) and
number of required cores; successive bundles require different numbers of cores. All threads
within a bundle are then gang scheduled. We show that the proposed bundled scheduling
model can be applied to several existing parallel programming models, such as fork-join
and DAG-based applications, and we derive a schedulability analysis for a set of sporadic
bundled task based on fixed priorities.

11

Core 1

SPM

HopliteRT NoC

SPM SPM
Controller

System Bus

Main Memory

DMA

Core m

SPM
Controller

Figure 1.3: Illustration of the proposed system architecture with a predictable intercon-
nect between private SPMs.

A remaining problem is how to bound the delay due to inter-core communication be-
tween threads of the same parallel task. In this dissertation, we propose to employ a dedi-
cated real-time inter-SPM interconnect, that can provide tight bounds on worst-case access
delay. In this regards, we have developed HopliteRT, a lean and predictable deflection-
based Network on Chip (NoC). We then compute the worst-case response time of a parallel
task based on the composition of the WCET on the cores and the worst-case communica-
tion time on the NoC. Figure 1.3 shows a simplified illustration of the considered system
architecture. Note that we still rely on the main system bus for loading and unloading
the tasks including inter-task communication as mentioned earlier; the inter-SPM NoC is
only dedicated for intra-task communication. Note that, any interconnect with provable
real-time bounds can be used instead of HopliteRT. However, aligning with our design
philosophy, we are interested in reducing hardware cost, especially since HopliteRT is only
targeting inter-core communications.

The following list is a summary of the contributions in this part:

• Asynchronous communication model for inter-task communication via main memory.

• Bundled scheduling: a communication-aware scheduling model for parallel tasks with

12

intra-task communication.

• Sufficient schedulability analysis for bundled scheduling.

• Extending bundled scheduling for the proposed 3-phase execution model mentioned
in PART(I).

• Inter-core real-time NoC with provable latency bounds.

1.3 Structure of the Dissertation

The reminder of this dissertation is organized as follows. First, Chapter 2 reviews the
important background concepts and highlights the related work.

Part(I) of the dissertation includes Chapters 3, 4, and 5. Chapter 3 discusses the
fundamental concepts of the proposed execution model and scheduling scheme. Specifically,
in this chapter we show how to hide access latency to shared resources in partitioned
systems, under different ways to handle DMA operations. We also show how to handle
tasks with large memory footprint. In particular, we discuss the case of scheduling multi-
segment tasks where the size of a task cannot entirely fit into the local SPM. Furthermore,
we present an error recovery mechanism with respect to the proposed execution model. In
Chapter 4, we discuss the realization of the proposed approach on two different platforms:
1) a Xilinx FPGA platform using FreeRTOS [8]; and 2) a COTS platform using ERIKA
RTOS [11]. Finally, in Chapter 5 we extend the proposed scheme to globally scheduled
systems.

Part(II) of the dissertation includes Chapters 6, 7, and 8. Chapter 6 addresses the
inter-task asynchronous communication model, while Chapter 7 presents our novel bundled
scheduling model for real-time parallel tasks. In addition, in this chapter, we show how to
integrate bundled scheduling with the proposed multi-phase execution model. Chapter 8
discusses inter-core communication and presents the proposed HopliteRT NoC. We also
show how the communication latency of bundled parallel tasks can be bounded based on
the proposed NoC design.

Finally, Chapter 9 concludes the work by discussing the limitations of the presented
approaches, and providing an overview of possible extensions for this research.

13

Chapter 2

Background and Related Work

This chapter provides a background overview of important concepts required to better
understand the work proposed in the following chapters. Following the same theme of the
dissertation, we first overview important concepts and relevant recent works in regards to
predictability and timing isolation of real-time tasks, for both cache and scratchpad-based
systems. Afterwards, we discuss predictable task communication and related topics, in
particular, scheduling of real-time parallel tasks and inter-core communication.

2.1 Predictability and Timing Isolation in Multicore

Systems

Modern embedded system platforms often incorporate a multicore processor, which is a
chip that has more than one processing core. This is to satisfy the increasing demand for
higher computing performance required by modern real-time applications [13]. These chips
are also known as Chip Multi-Processors (CMP). The generic architecture of a multicore
processor is as shown in Figure 2.1. Throughout this work, we use the terms core, CPU,
and processor interchangeably. Note that the private local memory can be realized as cache
or scratchpad memory. In this dissertation, we focus on using scratchpad architecture.

In real-time systems, schedulability analysis is based on the assumption of a fixed,
known WCET for each task. There are two main approaches to estimate the WCET;
static analysis methods and measurement-based methods. A static analysis method does
not require the task to be actually executed on the hardware. The analysis instead takes
the task’s code as input along with annotations from the user, finds the set of all possible

14

Private
Cache/SPM

Core #NCore #1

Shared Cache

Main Memory

Private
Cache/SPM

• • • • • • • • • • • •

Inter-Cores Communication

Shared Cache

Figure 2.1: Generic multicore architecture, gray blocks might not be available in some
systems

control-flow paths through the task, combines control flows with a model of the hardware,
and estimates an upper bound to the WCET of the task. However, the complex nature
of modern multicore systems makes this type of analysis very difficult or even impossible
due to the lack of precise knowledge about the hardware; and thus hardware modeling
becomes inaccurate [99, 44]. Usually, the results of static analysis are pessimistic due to
the imprecise assumptions they need to consider to model the hardware safely.

On the other hand, measurement-based methods can provide more optimistic (but not
safe) WCET estimates without the need for a precise hardware modeling. Generally, the
task is executed on the hardware for a set of inputs. After that, the distribution of the
observed execution times is determined. However, measurement-based methods are not
guaranteed to cover all possible execution paths. Consequently, the estimated WCET can
be unsafe, i.e., less than the actual WCET. Modern tools often combine measurement and
static analysis methods to improve the accuracy of the estimated WCET and provide safe
bounds. For example, RapiTime [9] is a tool that uses a hybrid technique between static
analysis and measurement. It basically uses measurement to time individual code blocks,
while using analysis to determine the worst program execution path even if it was not
executed during a specific run.

In contrast to analysis solutions, researchers also adopted another approach that tries
to engineer the hardware and software platforms so that they become more predictable and
easier to analyze. In such a case, WCET becomes easier to determine and tight bounds

15

can be achieved. Our research falls in this type of solutions: we focus on the design aspects
of the embedded platforms, rather than WCET analysis. Among the issues that current
multicore platforms impose on real-time systems are contention on shared resources such as
main memory, system bus, and shared last-level cache. Even in the case of a private cache,
tasks’ execution predictability can be affected by inter-task and intra-task conflicts. In what
follows, we briefly compare the SPM and cache architectures, and review related works on
cache and scratchpad systems. Also, we review other platform engineering techniques
aimed at achieving predictability by enforcing timing isolation between cores.

2.1.1 Comparing the Architecture of SPM with Cache

Scratchpad memory (SPM) has received considerable attention in the embedded and real-
time communities as an alternative to processor caches. Contrary to cache memory,
scratchpad memory supports consistent and predictable access times. The SPM is also
better than the cache in terms of area and power efficiency [28]. Figures 2.2 and 2.3 com-
pare the SPM and cache architectures. The SPM is a simpler digital circuit, and hence
occupies smaller area and consumes less power. The on-chip memory (SPM and cache)
is usually built using static RAM circuitry [76]. Static random-access memory (static
RAM or SRAM) is a type of semiconductor memory that uses bistable latching circuitry
(flip-flop) to store each bit.

D
eco

d
er

1-Word Wide

N
:1

 M
U

X

Address Bus
Selected Word

SRAM-Cell Array

Figure 2.2: SPM Architecture

The SPM memory, as shown in Figure 2.2, is a simple memory circuit. From the archi-
tectural prospective, accessing a memory word only requires a decoder and a multiplexer.
Accessing memory and selecting a specific word is called indexing. During the access, the

16

target SRAM cells are selected and then read or written. On the other hand, the cache
architecture is more complicated. It consists of multiple data memories, all of which are
indexed at the same time [28]. In addition, valid-bit and tag arrays are indexed for each
access, which consumes more power. Moreover, the selection of the addressed word is im-
plemented in two levels. First, one word from each data memory is selected the same way
used in the SPM (N:1 MUX). This selects the whole cache line. Second, the block offset
(part of the address) determines which word is selected from the cache line. This multiple
level selection mechanism makes cache memory slower than the scratchpad memory; and
the cache uses more memory to store tags and valid bits.

Figure 2.3: Direct-Mapped Cache Architecture (From [1])

In the direct mapped cache, which is the simplest cache architecture, there is one
comparator that compares the requested tag and the stored tag, to determine if the access
is hit or miss. Associative caches are more complicated, thus slower than direct mapped
cache. In fully-associative caches, as shown in Figure 2.4, the entire address is used as a
tag. Therefore, one comparator is required for each cache line. The increased number of
comparators in the associative cache negativity impacts the maximum clocking frequency
of the system. However, associative cache has better overall system performance than
the direct mapped cache as it reduces the conflict-miss rate. The set-associative cache is
somewhere in between the direct mapped cache and the full associative cache in order to
balance the trade-of between the clocking frequency and the conflict-miss rate. A study

17

by Banakar et el. [28] in the embedded domain compared energy, area and performance of
both SPM and cache. The study indicated that SPM achieves better than cache almost
on all compared counts.

Figure 2.4: Full Associative Cache Architecture (From [1])

Faster access, smaller area, lower power, and predictable access time make scratch-
pad memories attractive for the embedded and real-time domains. However, SPMs are
more difficult to manage. In many cases the application programmers need to do low-
level programming in order to utilize the SPM. Thus, the programmers need to have some
knowledge about the hardware platform they are working on. In multitasking systems,
this becomes very difficult because programmers need to manage the SPM, and synchro-
nize their work accordingly. Caches on the other hand are self managed at the hardware
level and do not impact the software model. In other words, caches are transparent to
programmers. Consequently, applications can be ported to new platforms more easily.

In the embedded system domain, there have been proposals for specialized memory
structures that fall in between a cache and scratchpad. For example TickPad Memory
(TPM) [86]. TPM has a dynamic hardware loading mechanism that is statically con-
trolled. TickPAD stands for Tick Precise Allocation Device. Therefore, it is best suited
for synchronous programming languages such as Esterel [37] and Pret-C [20] which sam-
ple inputs at discrete instants of time and provide outputs at instants known as tick time.
Based on the Timed Concurrent Control Flow Graph (TCCFG) created for the synchronous
program, a tickPad allocation analysis is performed to obtain a configuration file that de-
termines static allocation decisions for the TPM. At runtime, TPM automatically loads
the right context at the right time. TPM generally aims to be more predictable than
cache and easier to manage than SPM. However, TPM relies on a specialized synchronous

18

programming language and is limited to a single application scenario.

2.1.2 Cache Memory

Several well-developed cache analysis techniques have been proposed for single-core pro-
cessors. These techniques analyze the interference due to intra-task and intra-core cache
conflicts. The latter is known as cache related preemption delay (CRPD). The CPRD
focuses on cache reload overhead due to preemptions while the intra-task analysis focuses
on the cache conflicts within the same task assuming non-preemptive execution.

In existing multicore processors, the last-level cache is typically shared by multiple
cores. This design has several merits such as increasing the cache utilization, reducing the
complexity of cache coherency and facilitating a fast communication medium between cores.
However, it is extremely difficult to accurately determine the cache miss rate because the
cache content depends on the size, organization and replacement strategy of the cache in
addition to the order of accesses. Shared caches in multicore processors are similar to caches
in single core processors in that they all have inter/intra-task interference. In addition,
when multiple cores share a cache, they can evict each other’s cache lines, resulting in a
problem known as inter-core interference.

Unfortunately, single-core cache timing analysis techniques are not applicable to mul-
ticore systems with shared caches. Inter-core interference is caused by tasks that can run
in parallel and this requires analyzing all systems tasks. The analysis of non-shared caches
has been already considered as a complex process and extending it to shared caches is even
harder. In fact, the researchers in the community of WCET analysis [155] seem to agree
that ”it will be extremely difficult, if not impossible, to develop analysis methods that can
accurately capture the contention between multiple cores in a shared cache”.

A timing analysis technique for concurrently running software on multicores with shared
caches was proposed by Liang et al. [95], which extend the work in [177]. This analysis
targeted the inter-core cache evictions. In this work, the lifetime of all the tasks that
concurrently run on multiple cores are determined and then the anticipated conflicts in
LLC are computed. The analysis accounts for the cache accesses and use static analysis
approaches to estimate tasks WCETs. Another work by Hardy et al. [70] aimed to tighten
WCET estimate. This work is based on Hardy’s previous work [71]. In this work, the
authors proposed a compile-time method to reduce shared cache interference for instruc-
tions among cores. This work supports WCET estimates in multiple cache levels in the
presence of inter-core interference. In addition, this work statically identifies code blocks

19

that are used only once during the execution enabling these blocks to bypass the cache.
Consequently, a tighter WCET can be computed.

Probabilistic approach to analyze cache also has been introduced in the literature.
Quinones et al. [139] explored the effect of using random cache replacement policy on hard
real-time systems. They showed that by applying Probabilistic Timing Analysis (PTA),
they were able to avoid the risk of the aforementioned cache-based unpredictable access
time. Probabilistic Timing Analysis (PTA) has emerged as a solution to reduce the amount
of information needed to provide tight WCET estimates. Nevertheless, it imposes new
requirements on hardware design. For instance, before [84], only fully-associative random-
replacement caches have been proven to fulfill the needs of PTA, but they are expensive in
size and energy. As a solution Kosmidis et al. [84] have proposed a hardware design that im-
plements random-replacement cache which allows set-associative and direct-mapped caches
to be analyzed with PTA. There however exist other opinions in the real-time community
regarding the use of PTA in real-time systems. For example, Reineke [140] showed that
the probability of hits that are computed for PTA are not independent. Consequently, the
convolution of Execution Time Profiles (ETP) is not possible with randomized caches and
hence is not suggested to be used in real-time systems.

In contrast to timing analysis techniques where caches are used without restrictions,
the approach of managed caches has the advantage to avoid complex analysis methods for
estimating the cache behavior.

Cache Locking and Partitioning

Cache locking and partitioning are techniques to gain predictable access to the shared
cache. By locking a cache-line, no replacement/eviction can occur on the content of that
line until it is unlocked. Cache locking requires hardware support and it is only supported
in some COTS platforms. Different platforms support different styles of locking. For
example, lockdown by cacheline or by way. In addition, in multicore systems, there are
some platforms that support lockdown by master (core) in which the locked cache-way by
some-master cannot be altered by other masters. Among the platforms that support this
feature are Nvidia Tegra-2 and Tegra-31, Xilinx Zynq-70002, and Samsung Exynos 44123.

Similarly, cache partitioning provides exclusive access to a portion/partition of the

1http://www.nvidia.ca/object/tegra-superchip.html
2https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
3https://www.samsung.com/semiconductor/minisite/exynos/products/mobileprocessor/

exynos-4-quad-4412/

20

http://www.nvidia.ca/object/tegra-superchip.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
https://www.samsung.com/semiconductor/minisite/exynos/products/mobileprocessor/exynos-4-quad-4412/
https://www.samsung.com/semiconductor/minisite/exynos/products/mobileprocessor/exynos-4-quad-4412/

cache. Partitioning can be core-based or task-based. Contrarily to locking, cache parti-
tioning can be done in hardware or in software. The most common software-based cache
partitioning technique is page coloring [97, 164, 67]. Page coloring explores the virtual to
physical page address translations presented in virtual memory systems at OS-level. Cache
partitioning can also be done by the compiler [117].

Suhendra et al. [155] explored the effect of locking and partitioning of last-level shared
cache on predictability in multicore systems. They used different locking and partitioning
schemes. The study combined static/dynamic locking with task-based/core-based parti-
tioning. The results showed clear impacts of different configurations on predictability versus
performance. They concluded that there is no one configuration suitable for all types of
applications. The best cache configuration for predictability was static locking/task-based
partitioning, as each task has its own cache partition that was not affected by preemption.
However, a task gets a smaller partition as the number of tasks increases, which impacts
the performance.

Shekhar et al. [147] is another work that utilizes cache locking to improve overall system
utilization. This work targets many-core architecture where each core has lockable private
cache, there is no L2 shared cache in the system. This work proposed a semi-partitioned
scheduling where tasks, as many as possible, are statically assigned to cores. Those tasks
that are not statically assigned to a core are allowed to migrate from one core to another.
Tasks, in each core, are locally scheduled according to Earliest-Deadline-First (EDF). Tasks
are allowed to lock some data in the private local cache. For the migrating tasks, locked
lines belonging to that task are unlocked, migrated and re-locked on the target core.

A work at the kernel-level toward improving performance with guaranteed predictable
timing is done by Mancuso et al. [104]. This work targeted shared last-level cache. In
this work, real-time tasks are first profiled in order to depict the most accessed memory
locations (hot pages) for each task. The profiling information are then used, at runtime, in
a cache coloring and locking mechanism that helped tighten the WCET for real-time tasks.
In this work, the cache space is partitioned among all tasks. Another work by Ward et
al. [169] proposed the use of page coloring mechanism along with cache scheduling instead
of statically partition the cache. However, this work exhibited some overheads due to the
dynamic locking approach. None of the studies reviewed above consider parallel tasks and
associated need for intra-task communication.

21

2.1.3 Scratchpad Memory

We split the discussion of SPM in two categories, general purpose embedded systems, and
real-time embedded systems.

General-Purpose Oriented Approach

As mentioned before, the most important issues in the domain of general embedded sys-
tems, are power consumption and processing performance. Using scratch-pad memories
in embedded platforms can result in significant gains to power efficiency and processing
performance. Different approaches were taken to employ scratch-pad memories in embed-
ded systems, but the common objective was to make it more usable and more programmer
friendly in order to encourage porting software to the new platform. [63][57][127][116]
used conventional MMU to manage the SPM at runtime. Managing the SPM at runtime
allows different applications to utilize the SPM dynamically, resulting in better resource
utilization.

Egger et al. [57] used a compile-time technique to manage the MMU, and loads tasks’
code into the SPM dynamically. In this work, the compiled binary has to be processed by
the post-optimizer, a tool they developed in order to make the final binary optimized for
their memory architecture. Basically, the post-optimizer does a lot of work to disassemble
and profile the code statically to determine the basic blocks and functions boundaries.
Then the post-optimizer generates a profiling binary image by injecting profiling code. The
profiling image in-turn runs in a simulator. By running the profiling image several times a
new set of profiling information can be extracted, such as which parts of the code consume
more power and which parts are executed more frequently, etc. Finally, the post-optimizer
can now generate the SPM-optimized binary image by grouping the code sections into three
main regions. The cached and uncached regions are mapped normally, using the MMU, to
physical addresses. The pageable region is mapped using a runtime component called the
ScratchPad Memory Manager (SPMM). When a process is first loaded, the SPMM disables
all the mapping entries in the page table that correspond to the pageable region. Then
when the code reaches a point that is not mapped to a physical address, the MMU causes
an exception. The runtime in turn forewords the exception to the SPMM, which loads the
code into the SPM and adds the mapping entries into the page table. One advantage of
this technique is that neither the size of the SPM nor the size of the application’s code
is needed to be known at compile time as loading is done at the granularity of the page
size. In this work, the CPU is used to copy the code from the main memory to the SPM
based on interruption from the MMU, which can degrade the performance. This work did

22

not investigate the case of multitasking system, which is more realistic than a single task
system.

Francesco et al. [63] adopted a hardware-software co-design approach to dynamically
manage the SPM at runtime with minimum overhead on the CPU. This study proved
the power efficiency of the SPM in dynamic applications. The study even showed an
improvement in the performance. A DMA component was used to relieve the CPU of
copying data to/from the SPM. Loading applications code into the SPM was not considered
in this study as it only focused on data. The MMU helps map the addresses at runtime.
This work exposes a high-level API to manage and allocate data into the SPM. However,
it is still the programmer’s responsibility to use the API in order to allocate space in the
SPM and move the data back and forth using the DMA.

In [116], a simple technique at the OS level is used to allocate dynamic data (application-
heap) to the SPM. A C++ framework enables the programmer to easily annotate the code.
The annotation directs the OS to make the decision of where to put the data: on the
system heap (main memory) or on the application heap (SPM). The C++ new and delete
operators were overloaded to handle the programmer’s preference of allocation. The OS
handles the actual allocation depending on the available space; hence no guarantee to
allocate data in the desired SPM heap. This work is evaluated on an FPGA platform
and showed improvement in both power efficiency and performance. This technique only
targets dynamically allocated data. In order to get more significant improvement, it is
intended to be coupled with other compile-time techniques to allocate code and static data
into the SPM.

In [162] the authors propose a scratchpad memory management technique for preemp-
tive multi-tasking systems where they introduce three methods for SPM partitioning that
are: (i) spatial, meaning that each task has its exclusive space in the SPM, (ii) temporal,
meaning that a running task can use the entire SPM and the content of SPM is swapped
using the native RTOS support and HW module ofthe context switch, and (iii) hybrid ap-
proaches where the higher priority task can temporarily use the space of the lower priority
task. By employing these three methodologies on a real-time operating system the authors
show that they were able to save 73% of energy when compared to the standard approach.
The authors also conclude that hybrid approaches outperform the other two approaches.
However, this work has not been applied to multi-core processors. Moreover, the focus
of [162] is not predictability but energy efficiency.

Work presented in [127] is also an interesting effort that automatically loads the system
stack into the SPM at runtime to achieve better system performance and power consump-
tion. This work exploits the locality characteristics generally observed in the stack memory

23

access to achieve performance improvement. The basic idea is to continuously map the
stack pointer into the SPM, using the MMU. Since the active part of the stack is always
near to the stack pointer, mapping the stack pointer into the the SPM will improve the
performance of the active part of the stack, which contains the local variables of the cur-
rent function. If stack outgrows the SPM or if the stack grows out of the SPM, the MMU
causes an exception. The exception handler will do a replacement for a segment of the
SPM by saving that segment into the main memory and loading the new addresses into
the SPM. The page table entries are modified accordingly. This mechanism is somewhat
similar to the one used in [57], but this work is still interesting as it does not need post-
compile processing or specialized hardware in addition to the MMU. It is also transparent
to the application programmers and there is no API needed. Like in [57], there is no DMA
component to load/unload the SPM, which results in reduced performance.

Real-time Oriented Approach

In the domain of real-time, SPM has first been utilized by statically allocating and parti-
tioning the SPM to reduce the WCET. Suhendra et al. [156] constructed an Integer Linear
Programming (ILP) to optimally allocate feasible paths into the SPM. Another study [163]
also used ILP to statically partition and allocate tasks on the SPM with the focus on energy
efficiency. The allocation algorithm used heuristics to avoid loading data from unfeasible
paths and thereby reduces the WCET.

Other works such as [136] investigated the use of the SPM in embedded systems. [136]
quantitatively compared memory-mapped SPM to locked cache in terms of WCET. They
used a compile-time algorithm to dynamically load tasks into on-chip memory as needed.
Similar to the work by Pellizzoni et al. [128], they injected code at the boundary of func-
tions and basic blocks. Regardless of the inability, in some cases, of locking two basic
blocks simultaneously in the cache due to their conflicting addresses, the results of testing
benchmarks’ WCET were closed to each other.

Other approaches attempted to manage SPM dynamically at runtime to achieve pre-
dictable execution time. Kim et al. [83] is a work that targeted Software Managed Multicore
(SMM) architectures, such as IBM cell multi-processor [103]. SMM is particularly promis-
ing for real-time systems as it has advantageous characteristics such as scalability, power
efficiency, and predictability. In SMM architectures, each core can only access its scratch-
pad memory (SPM); any access to main memory is done explicitly by DMA. Consequently,
dynamic management of the local SPM for both code and data has to be done by software.
[83] introduced two WCET-oriented dynamic SPM code management techniques for SMM
architectures. One is optimal and is based on ILP. The other is faster heuristic based

24

algorithm. This work focused on determining the optimal function to region mapping for
SPM. This was done by constructing a control flow graph of the task and then performing
an interference analysis of every function whenever the DMA is needed to load new code
into the SPM. In case of mapping conflict, the needed functions need to be reloaded by
DMA.

Whitham et al. [174] proposed simplified runtime load/store operations using custom
instructions coupled with custom hardware. The Scratchpad Memory Management Unit
(SMMU) is a custom hardware component that maps/unmaps data objects and variables to
the SPM. In addition the SMMU performs DMA functionality by moving data from main
memory to the SPM and visa-versa. The SMMU makes memory accesses transparent
by allowing address translation from the CPU virtual address to the physical address in
the main memory or in the SPM. The hardware structure of the SMMU is object-based
and allows only up to N data objects to be mapped at the same time. As a result, the
comparator array circuit of the SMMU can be a performance bottleneck for the system
operating frequency, resulting in a scalability problem.

Whitham et al. [176, 175] is the first work to consider managing on-chip scratchpad
dynamically in a multitasking system. It introduced a new memory model called Carousel.
Carousel acts as a stack of fixed-size blocks. The top few (n) blocks are stored in the SPM,
and the remaining blocks are stored in the main memory. A task is divided into several
Carousel blocks depending on its size. Starting a task requires pushing all its blocks into
the top of the Carousel stack, meaning that the task will be moved, using DMA, from the
main memory to the SPM. In order to free space in the SPM, Carousel also swaps out a
similar number of blocks to the main memory when they are not among the top n blocks of
the stack. The process is reversed when ending a task. All task blocks are popped from the
top of the stack, moving the task to the main memory. Carousel also brings the previously
swapped-out blocks back to the SPM in a stack-wise fashion. The downside of this work
is that the CPU remains idle while the DMA is doing the transfer.

In addition, there has been a significant amount of work in literature that proposes
solutions to dynamically manage the SPM for one task [54, 101, 25, 157, 58] by reusing the
available space over tasks execution. These works propose solutions for managing tasks
code and data including stack and heap. Since SPM is not transparent with respect to
address translation, management schemes have to impose constraints on analyzable code;
in particular, memory aliases must be statically resolved, since otherwise the management
scheme risks loading the same data into two different positions in the SPM.

[54] proposed a complier-level WCET-directed algorithm to dynamically allocate static
data and stack data of a program to scratchpad memory. The granularity of placement of

25

memory transfers are at the function level, basic block boundaries.

2.1.4 Other Task Isolation Techniques

In this section we discuss works that are not strictly categorized as cache- or scratchpad-
oriented solutions. However, they propose engineered hardware or software solutions that
provide better task isolation thus improving predictability.

Hardware Solutions

Huangfu et al. [75] introduced Performance Enhancement Guaranteed Cache (PEG-C). It
is a hardware addition to regular I-cache in the form of a benefit counter for the hit and
miss rates. This hardware design addresses the unpredictability in the access to caches,
and also enhances the average performance comparable to a regular cache. The benefit
counter keeps track of the number of hits and misses at runtime and provides access to the
cache only when the value of the benefit counter is positive; otherwise, the access is served
from memory.

Allard et al. [19] have proposed a hardware component named hardware context switch
(HwCS). HwCS replaces the standard Ll cache controller of a processor. It divides the
cache into two interchangeable layers, similar to our approach. The CPU can execute from
one layer that acts as a regular cache, while enabling to save or load the content of the
other layer simultaneously. HwCS makes the preemption overheads smaller compared to
the task WCET as the cache content is saved after preempting the task and restored before
resuming the task. Since both layers can access main memory at the same time, memory
bandwidth is divided between the tow layers in the worst case.

PRET machine [56, 96, 61, 135] is another line of solutions that target real-time sys-
tems from another angle. PRET stands for PREcision Timed machine. The philosophy
of PRET is to provide a computing environment that is as timely and precise as the
underlying synchronous digital system that implements the computer hardware. PRET
demands big changes in processor design, memory subsystem, Instruction Set Architec-
ture (ISA), programming language, and RTOS. The main reason for these changes is to
deliver or propagate the notion of timing from the circuit-level to the software applica-
tion level. Only then can the programmer express the temporal behavior as easy as the
functional behavior of the application. As a first step, [96] proposed a multi-threaded
single-core processor with extended version of SPARC ISA that delivers predictable tim-
ing. The processor pipeline is interleaved between six hardware threads. Each thread has

26

private instructions and data scratchpad memories. Access to the shared main memory is
arbitrated by a mechanism called memory wheel that uses round-robin scheduling policy
to guarantee an exclusive access of threads to main memory in their time window. In
addition, a deadline instruction has been added to the ISA to help synchronizing threads
precisely. [61] presented a plug-in for LabVIEW Embedded that maps the LabVIEW G
graphical programming language and its timing specifications to PRET. [135] proposed
a tool that statically allocates instructions from multiple threads to a shared SPM for
the PRET architecture. Similarly, Multi-Core Execution of Hard Real-Time Applications
Supporting Analysability (MERASA) is a project that develops hardware specifically for
Hard-real-time system [2, 4, 125]. Similar to PRET, MERASA [167] involves big modi-
fications in processor design, cache memory, and bus and other interconnects for single-
and multi- core systems. P-SOCRATES project [133] focuses on designing a predictable
many-core systems. Specifically, the purpose of P-SOCRATES is to develop an entirely
new design framework, from the conceptual design of the system functionality to its phys-
ical implementation, to facilitate the deployment of standardized parallel architectures in
all kinds of systems.

Software Solutions

Pellizzoni et al. [131] highlighted the impact of the multicore architecture on WCET based
on contention for access to main memory. This work shows a linear increase in the WCET
with the number of cores. Pellizzoni et al. [128] also introduced a Predictable Execution
Model (PREM). PREM provides isolation in a multi-tasking system by scheduling access
to main memory. PREM is based on software only and does not require hardware arbiters.
It is based on compiler and OS techniques to divide a task into a memory phase and an
execution phase; a task can run predictably from cache with no access to main memory
while it is in the execution phase. This allows other masters in the system, such as IO, to
be scheduled to access main memory while a task is in the execution phase. The work has
been extended to multicores in [178] adopting a TDMA arbitration scheme with partitioned
system. [26] studied different scheduling policies for PREM in multicore systems and
compared it with the previous TDMA approach, EDF, and contention-based. The best
schedule was based on least-laxity-first policy. After that, a global schedulability study
has been introduced in [15]. A parallel task model for PREM has also been introduced in
[16]. [178] and its derivatives partition the cache space among all tasks.

Note that, our proposed solution differs from PREM in two ways; 1) while PREM uses
the CPU to prefetch the task into the local cache affectively wasting the CPU time, in ours
solution, we pipeline the CPU execution and the DMA transfer. 2) PREM partitions the

27

cache space among all tasks, while in our solution, we limit the local SPM to two partitions
only.

MemGuard [180] is another work which provides memory performance isolation while
still maximizing memory bandwidth utilization, based on resource reservation or reclaiming
techniques. MemGuard dynamically reserves and regulates per-core memory bandwidth or
accesses based on hardware performance counters. If a core exceeds the predefined maxi-
mum access usage, an interrupt will cause the core to jump back to the OS-level bandwidth
regulator. As a result, the DRAM bandwidth is partitioned among cores guaranteeing a
minimum bandwidth for each core. MemGuard dynamically adjusts the resource provi-
sion based on its actual usage. For example, when the task is highly demanding on the
resource, it can try to reclaim some possible spare resources from other tasks; on the other
hand, when it consumes less than the reserved amount, it can share the extra resource
with others. Another way to achieve predictability can be DRAM bank-aware allocation
(PALLOC) proposed by H. Yun [179]. However, on some platforms (such as NVIDIA TX1),
controlling DRAM bank allocation is problematic due to address randomization aimed at
improving average performance.

From higher level, Mancuso et al. [106] proposed OS-level techniques for COTS mul-
ticore architectures that partition the system into isolated single-core virtual machines.
Usually, modular per-core certification cannot be performed in COTS multicore systems
due to shared resource interference. However, this work allows per-core schedulability re-
sults to be calculated in isolation and to hold when multiple cores run in parallel. Thus,
existing software and schedulability analysis developed for single-core can be used as is in
a multicore environment by utilizing the proposed single-core-equivalent virtual machines.

2.2 Real-time Tasks Communication

As mentioned in Chapter 1 and detailed in Chapter 6, we consider two types of tasks com-
munication, inter-task and, intra-task communication. For the inter-task communication
we consider asynchronous communication model between different tasks. In this model,
the communication is simplified as there is no precedence constraint between tasks as in
synchronous communication. Tasks share data via main memory and a task reads the last
updated data from the senders. Assuming our proposed SPM-centric system architecture,
this type of communication does not not involve inter-core communication as communicat-
ing tasks do not exchange data while running in parallel. Therefore, most of synchronous
real-time communication works is not directly related to this thesis. Note that, in cache-

28

based systems, this model might invoke inter-core coherence activity, e.g., when tasks run
on different cores, there might be invalidation/copy of data modified by the sender.

On the other hand, intra-task communication targets parallel tasks. This involves
inter-core communication, as parallel threads need to exchange data while running in
parallel. In the following subsections we overview related topics. First, in Section 2.2.1,
we discuss parallel tasks in real-time domain and identify the shortcomings in modeling
communicating threads. As discussed earlier in Section 2.1, we assume private SPM for
each core. Accessing shared address in private SPMs breaks memory consistency and
requires inter-SPM coherence. In section 2.2.2, we review memory consistency models and
identify predictable real-time inter-core coherence protocols. Lastly, Section 2.2.3 reviews
real-time NoCs.

2.2.1 Real-Time Scheduling of Parallel Tasks

Real-time scheduling for multicores usually has the assumption of a set of independent
tasks. Lately, there has been increasing trend to schedule multi-threaded applications
(parallel tasks). This growing interest is motivated by modern real-time applications that
require more performance that can not be easily achieved without multi-threaded appli-
cations in which the threads can run in parallel. Some examples include unmanned aerial
vehicles and self-driving cars that require processing data from different sensors including
video cameras. Today, even many hobby toys and models, such as quad-copters, needs
sophisticated real-time computation.

Researchers have devised schedulability analyses for a variety of different system models.
To ease classification, we distinguish between two orthogonal concerns: the scheduling
model and the task model. In the thread scheduling model, parallel threads of the same
task are scheduled independently, whereas in gang scheduling, the threads must execute
concurrently.

Parallel tasks can have multiple threads that can exceed the number of processors
available in the system. It is common that parallel tasks are modeled using fork-join
structure or a directed acyclic graph (DAG). In the fork-join structure, an application
starts with a single thread and then forks multiple threads. After that, the task can
keep alternating between a single sequential thread and multiple parallel threads. The
application also ends, usually, with a single thread. In the case of a DAG, threads can be
modeled as nodes in the graph, and the dependencies are modeled as directed edges. Edges
represent precedence constraints: a predecessor node must be executed before a successor
node.

29

Most related work considers thread scheduling. Work considering the fork-join task
model include [88, 92, 141, 48, 120]. The DAG task model is analyzed in [32, 92, 93].
[109, 31] extended the work on classical DAG model by introducing conditional DAG
model, where subtask execution depends on the conditional path of execution through the
program.

As a first work in parallel real-time tasks scheduling, Lakshmanan et al. [88] proposed
a scheduling algorithm for OpenMP fork-join structure. Nonetheless, the work in [88]
restrictive as task has to fork to the same number of threads each time. Consequently,
Saifullah et al. [141] relaxed the previous model in [88].

Some works have proposed scheduling schemes based on assigning intermediate dead-
lines to individual threads of the same parallel task. Nelissen et al. [120] have proposed
techniques to determine the intermediate artificial deadlines while minimizing the number
of processors needed to schedule the whole task set. In addition, threads are treated as
if they were independent sequential sporadic tasks. Unlike the previous reviewed works,
Baruah et al. [32] proposed a scheduling analysis for single parallel task expressed as a
DAG. Whereas, Li et al. [92] considered the same model but for multiple tasks. Nonethe-
less, all reviewed works are only concerned with pure CPU scheduling, and none of them
considered contention on shared resources, such as shared cache and main memory.

[93] introduced federated scheduling of classical DAG parallel-task model. It is a gener-
alization of partitioned sequential tasks model by allocating dedicated set of cores for tasks
with utilization higher than one. A fundamental assumption is that under these models,
parallel threads of a task can be scheduled independently with no synchronization penalty.

On the other hand, Alhammad et al. [16] is the first work on real-time scheduling for
parallel tasks that considered the interference from other threads caused by contended ac-
cesses to main memory. The technique used in this work, to provide thread isolation, is an
improvement over [15] that avoids contention without the need to hardware arbitration.
This work differs from [15] as it considered multi-threaded application instead of indepen-
dent tasks. In addition, this work used profiling scheme similar to [104] in order to divide
the application into segments. Each thread is segmented into three consecutive phases
(prefetch, execution, write-back) in which synchronization happens at the boundaries of
the memory phases (prefetch and write-back). Threads share data through main memory
as the write-back phase flushes the cache content to main memory before the next thread
starts the prefetch phase. It is also observed that the used technique is more scalable with
the number of cores unlike the contention scheme.

In addition, Alhammad et al. [17], extended the work on federated scheduling in [93]
by considering the cost of accessing memory. Basically, the authors introduce optimizing

30

algorithms to assign computation and memory budgets for each parallel task in the system
to improve overall system schedulability.

Tessler et al. [165], introduced an application-level scheduling strategy to take advantage
of cache memory to tighten the WCET in parallel task. In particular, the proposed method
permits threads to execute across conflict free regions, and blocks those threads that would
create an unnecessary cache conflict. The WCET bound is determined for the entire set
of m threads, rather than treating each thread as a distinct task. The proposed method
relies on the calculation of conflict free regions which are found by a static analysis of the
task object.

The need to concurrently gang schedule related threads of the same parallel application
has been first discussed in [123]. The performance benefits of gang scheduling has been
studied in [60, 77, 150] and many others that looked into co-scheduling in general-purpose
computing. In the real-time domain, the existing literature that consider gang scheduling
distinguish among three task models. In the rigid model [81, 55, 64], the (constant) number
of threads required by a task is fixed off-line. In the moldable [38] case, the number of
threads assigned to each job is decided at run-time by the scheduler, but kept constant
during the execution of the job. In the malleable [47] case, the scheduler can change the
number of assigned threads during the job’s execution.

Our proposed bundled scheduling for parallel tasks, as discussed in Chapter 7, con-
siders systems where the number of parallel threads is dictated by the application’s ex-
ecution, so that global scheduling decisions do not influence the way the application is
executed. Therefore, we only compare our approach against the rigid model. [81] intro-
duced a schedulability analysis for rigid tasks with EDF scheduling policy; whereas, [55]
provided a utilization-based schedulability test for EDF. In contrast, this paper targets
fixed priorities. Furthermore, as noted in [55], [81] contains a mistake in the way carry-
in interference is bounded, while [55] itself is limited to implicit deadlines, rather that
constrained-deadlines as considered in our approach. Finally, [64] proposed an optimal,
off-line slot-based scheduling algorithm for strictly periodic rigid tasks, but the framework
does not naturally extend to sporadic tasks.

2.2.2 Memory Model

Parallel programming in multicore systems is challenging. Even in a shared-memory sys-
tem, programmers can still get unexpected results due to misunderstanding of the under-
lying memory consistency model adopted by the platform. A memory model is the set of

31

specifications that describe how the different components of a system should behave in re-
gards to memory operations. The choice of memory model is affected by many components
in the system, such as CPUs, caches, buses or interconnects, memory controllers, and com-
pilers. For example, whether the CPU issues memory operations in-order or out-of-order,
the CPU has write buffer or not, the cache is write-though or write-back, and the compiler
optimizes and reorders memory operations or not. By understanding the adopted memory
model, programmers can code their programs accordingly to produce functionally correct
applications. The memory model acts as an agreement between the computer platform
and programs or programmers, in which both hardware and software have to adhere to
the memory model; thus providing correct functionality. Memory model is very important
and must be considered when porting applications from one platform to another.

Coming from a uniprocessor system in which all threads or tasks have consistent mem-
ory view, Sequential Consistency (SC) is a natural extension of the uniprocessor notion
of correctness and the most commonly assumed notion of correctness for multiprocessors
[14, 153]. In the SC all memory operations are serialized and viewed by the memory sys-
tem in the original program order. When local caches are present, SC requires that write
operations to the same memory address must be atomic, e.g, no other write to the same
address is permitted until the current write is completed and propagated to all nodes.
This model is considered as the natural successor to the uniprocessor memory model as
programmers can confidently assume that any read will always return the most up-to-date
value. The SC model makes migration of applications that share data from a uniprocessor
system to a multicore system easy [14].

Although SC is good from a programming point of view, SC imposes some performance
challenges such as preventing out-of-order memory operations and enforcing to wait for a
previous write operation to complete [14]. Furthermore, some performance optimizations
that were valid in a uniprocessor system, such as utilizing processor’s write buffer, now
can lead to problems. These restrictions are important because compilers and out-of-order
CPUs generally guarantee the order of the dependent memory operations only, assuming
that independent memory operations will not affect the same thread or task. In multicores
however, this might affect threads or tasks running simultaneously on other cores. In
addition, IO devices can be affected by the order of independent memory operations because
the order of setting some devices’ registers can be important.

Other less strict or more relaxed models have been proposed to allow for performance
optimizations, such as Processor Consistency model (PC), and Total-Store-Order model
(TSO) [153]. For example, TSO relaxed SC by allowing the use of the write buffer, hence
allowing read after write re-ordering. Generally, different relaxed models allow different op-
timizations. To enforce program order, relaxed-modeled CPUs implement specific instruc-

32

tions to enforce order between memory operations, such as memory fences. Programmers
and compilers can utilize these instructions to achieve the desired functionality. Although
relaxed models offer better performance, they introduce more complex programming model
as programs need to use low-level instructions for synchronization.

Another set of models are the Weak Ordering models (WO) [153]. In a weak ordering
model, memory operations are classified as synchronization operations and data opera-
tions. The WO models are based on the intuition that reordering memory operations to
data regions between synchronization operations does not typically affect the correctness of
a program. Therefore, it offers more space for performance optimizations with less complex
programming model than the relaxed memory models. To enforce program order between
two operations, the programmer is required to identify at least one of the operations as a
synchronization operation. In a WO model, all types of re-ordering are allowed between
data memory operations. However, all memory operations issued before the synchroniza-
tion memory operation have to complete before issuing any following memory operation.

Release Consistency model (RC) follows the philosophy of the WO. However, RC pro-
vides a clear and higher-level programming model. In RC synchronization operations are
divided into acquire and release operations; synchronized memory operations are enveloped
between acquire and release. Acquire and release are analogues to lock and unlock respec-
tively. Acquire operations tries to lock (has exclusive access) to a flag that is used to sy
nchronize accesses between parallel threads to what is called a Critical Section (CS). A CS
is a piece of code that accesses memory addresses subjected to synchronization. On the
other hand, release operation unlocks (allow access) the locked flag to allow other threads
to lock it again and gain access to the critical section. All memory operations between
acquire and release are not restricted to be in the program order. However, RC provides
correctness similar to SC as it guarantees atomicity and sequential ordering between criti-
cal sections. For example, depending on the implementation, a release operation might be
delayed until all memory operations enveloped between the acquire and release are com-
pleted and delivered to all relevant nodes. The implementation of this model can be done
in different ways. For example, compilers and programming languages can implement the
semantics of the model utilizing the low-level memory fences, and read-and-modify instruc-
tions. In addition, operating systems can provide a synchronization library that implement
acquire and release semantics.

In this work, RC is chosen to allow more room for performance optimization while
keeping the programming complexity minimal. This become relevant when we discuss the
intra-task communication of parallel tasks in Chapter 8. In particular, our methodology
is to keep the hardware design simple, which what the RC model allows.

33

Cache Coherency

As mentioned earlier, different components in the system, such as cache controller and
interconnect, affect the consistency model. When private caches are not coherent, violation
to the memory consistency can happen. In a shared memory system, a coherence problem
arises if multiple cores have access to multiple copies of the same data, such as in private
caches. Therefore, memory coherence is required in shared memory systems to keep only
one version of data that is equally seen by all cores [115, 148].

A hardware platform implements a coherence protocol to adhere to a specific memory
model. Based on the number of shared or distributed memories in the system, such as
private/shared caches and main memory, and how they are connected, the implementation
complexity of the protocol can vary. There are many cache coherence protocols that have
been introduced in the literature. Examples are MSI, MESI, MOSI, MOESI, MERSI,
MESIF, write-once, Synapse, Berkeley, Firefly, Dragon, and ARM AMBA 4 ACE [21, 85]

Generally, there are two broad classes of coherence protocols, snooping and directory-
based. Snooping protocols tend to be faster, if a common bus with enough bandwidth
is available, since every request is broadcasted to all nodes in the system. However, the
snooping protocol is not scalable as the bus will not be able to provide enough bandwidth
as the number of cores increases. Directory-based, on the other hand, is scalable and can
be distributed but is however slower than snooping, as the directory transactions have to
traverse through the interconnect. In addition, directory-based protocol requires dedicated
memory to store the directory.

Independently of snooping or directory-based protocols, the other major design decision
in a coherence protocol is to decide what to do when a core writes to a block. There are two
options, invalidate and update. Invalidate protocol is when a core invalidates the copies in
all other caches before writing to the block. If another core wishes to read the block after
its copy has been invalidated, it has to initiate a new coherence transaction to obtain the
block, and it will obtain a copy from the core that wrote it, thus preserving coherence. On
the other hand, in update protocol, when a core wishes to write a block, it updates (pushes)
the copies in all other caches to reflect the new value it wrote to the block. Update protocols
reduce the latency for a core to read a newly written block. However, update protocols
typically consume substantially more bandwidth than invalidate protocols because update
messages are larger than invalidate messages. Most of currently implemented protocols are
based on invalidation protocols.

Although there has been a lot of work in improving cache coherency in general-purpose
architecture, real-time systems are still behind in analyzing and introducing predictable
cache coherency protocols.

34

In the real-time community, Sarkar et al. [143] introduced a push mechanism that
pushes some or the whole content of a cache to another cache. This work is presented in
the context of tasks migration, in which a migrated task does not suffer cache warm-up
delay. Similarly, Pyka et al. [138, 137] introduced the on-demand coherent cache (ODC2).
Unlike [143], this work aims specifically for a predictable coherence mechanism for real-time
systems. The ODC2 has two modes, share mode and private mode. In the private mode it
works as a regular non-coherent cache. Whereas, in the share mode it provides coherency.
The share mode is only activated in critical sections. When exiting a critical section, all
the cachelines accessed during the critical section are invalidated and flushed-back to main
memory. Although the (ODC2) provides predictable coherency mechanism, it still uses
main memory for data sharing, which can reduce the performance.

Nowotsch et al. [121] indicates that in COTS systems performance can be degraded by
just enabling cache coherence even with no data sharing. In addition, [166] studied MESI-
based coherence protocols for real-time suitability. The study concluded that to provide
a statically predictable timing behavior of the MESI-based cache coherence protocol, few
conditions have to be met. It requires a time predictable TDMA bus interconnect with
an analyzable memory controller and an update-based dual-ported direct-mapped cache
using bus-snarfing.

Haasn et al. [72] recently proposed (PMSI): a predictable cache coherence for multi-
core systems. The authors extends the classic MSI protocol and enhanced it with transient
coherence states to bound the worst-case access latency. This work also reports possible
sources of unpredictable behavior on conventional coherence protocols. The results show
that, in the worst-case, the arbitration latency scales linearly, whereas the coherence latency
scales quadratically with the number of cores. Although, quadratic coherence latency is
observed for wost-case scenarios, for general-purpose computing the cost is more reasonable
for the average-case scenarios [107]

One-Way Shared Memory [144], proposed a direct communication between cores’ local
memories via a time predictable NoC without relying on main memory. This is to avoid
the unpredictable access time to local memory and the contention on main memory which
is a communication bottleneck in the cache-based system. In [144], the distributed local
memories are connected in a predictable and coherent way so they appear as one shared
memory. Specifically, each local memory is split into TX and RX communication channels
such that each core has (m-1) TX and (m-1) RX channels. The Network Interface (NI)
continuously synchronizes the local memory with the rest of the network. This NoC adopts
a static TDM schedule to arbitrate between injectors and guarantees conflict free commu-
nication. The all-to-all communication mechanism implemented in the NoC guaranteed
that all communications data are fully propagated to all other destinations within bounded

35

time (hyper period).

2.2.3 Predictable Network On-Chip Architectures

With the increase in the number of cores in a single chip, the need for a scalable on-chip
interconnect has increased as well. Network on-Chips (NoCs) form the communication sub-
system for the future chips. It is different from a system bus due to the fact that it applies
networking principles and improves scalability as well as power efficiency. As mentioned
earlier, interconnect can affect or violate the memory consistency model. Therefore, when
designing an interconnect, the adopted memory model has to considered. In particular, the
order and the atomicity of operations have to adhere to the specifications of the adopted
memory model.

As discussed in Chapter 1, we propose a lean NoC for inter-core communication (Ho-
pliteRT), which targets FPGA platforms. HopliteRT routes single-flit packets over a
switched communication network using Dimension Ordered Routing (DOR). DOR pol-
icy makes packets traverse in the X-ring (horizontal) first followed by the Y-ring (vertical).
Hoplite uses bufferless deflection routing and a unidirectional torus topology to save on
hardware implementation cost. We use traffic regulators at the network interfaces to con-
trol injection rates when the flows are not feasible. In relation to this work, we overview
the real-time NoCs in the literature.

Existing literature on real-time NoCs can be summarized in the following broad direc-
tions. Some research has built static routing tables for time-division NoCs such as those
proposed in [65, 78]. However, this approach requires full knowledge of all communication
flows, and is unsuitable for NoCs that needs to support both real-time flows requiring worst
case guarantees and best effort flows where average case delay is important.

Specifically, Goossens et al. [65] introduced Aethereal NoC. Aethereal is without con-
tention by design. The basic idea is that each switch or router has a static table called
slot table, which maps each input to an output in a specific time slot. This synchronous
behavior makes the network easy to implement, as switches or routers do not have buffers
and there is no need for complex dynamic routing. Nonetheless, computing the static
schedule might take some time. Therefore, re-configuring the network at runtime might be
an issue. Generally, NoCs have a constant performance to cost ratio, i.e. the costs linearly
depends on bandwidth and latency.

[112] has different assumptions about the communication pattern, ranging from one-
to-one restriction to none. It uses Time-Division Multiplexed (TDM) schedule to derive
worst-case latency bound and splits traffic into multiple non-interfering flows. However, the

36

bound limits the maximum rates of the flows depending on the number of non-interfering
sets. The TDM schedule may exaggerate the required latency depending on the extent
of interference. For HopliteRT, we only need to know the communication pattern and we
only limit injection rates when flows are not feasible. In addition, TDMA schedule is more
restrictive than HopliteRT as it forces injections at specific time slots.

Other work focuses on wormhole NoCs with virtual channels. The seminal work in [149]
proposes priority-based networks, where each virtual channel corresponds to a different
real-time priority, thus providing reduced latency for high-priority flows at the cost of
low-priority ones. Recent work has extended the analysis to NoCs using credit-based flow
control [80], as well as to round-robin, rather than priority-based arbitration [124]. How-
ever, these designs are expensive on FPGA, and require full knowledge of communication
flows to derive tight latency bounds. In contrast, our approach rely on static modification
of routing function as well as client regulators to bound latencies.

Approaches such as Oldest-First [114] and Golden Flit [59] provide livelock freedom on
deflection-routed networks similar to Hoplite, but are optimized for ASICs and use a richer
mesh topology. On the other hand, minimally buffered deflection NoC [111] is suitable for
FPGA and provides in-order delivery of flits eliminating the need for reassembly buffers.
However, these reviewed approaches do not provide exact bounds on worst-case times.

The use of regulators to bound the maximum network latency is well-known in the
context of network calculus [91]. In [35], the authors show how to use Token Bucket
regulators, to control traffic injection on the Kalray MPPA. Unlike HopliteRT, the Kalray
NoC is source routed (client computes the complete path taken by the packet), and requires
queuing at the client interface and within the NoC.

37

Part I

Efficient Task Isolation For Real-time
Applications

38

Chapter 3

Partitioned Scratchpad-Centric
Scheduling of 3-Phase Real-time
Tasks

In this chapter, we present our first main contribution: a set of scheduling techniques,
and related schedulability analyses, for real-time tasks executed according to the 3-phase
model. In particular, in this chapter we discuss the case of partitioned scheduling, where
a set of tasks is statically allocated to each core off-line; Chapter 5 will later cover global
scheduling of 3-phase tasks.

We begin by discussing the system model in Section 3.1. While we use a consistent
set of rules for scheduling tasks on each core, we consider two different ways in which
DMA accesses to main memory can be scheduled among contending cores: at either the
hardware or software level. For the former case, each DMA transfer can have a different
duration, while in the latter, we are considering a TDMA arbitration based on slots of
equal duration. Hence, we first detail the schedule rules and associated schedulability
analysis for the case of variable-size DMA operations in Section 3.2, and we then extend
the analysis to the case of fixed-size DMA operations in Section 3.3. Lastly, Section 3.4
extends the discussion to fault-tolerant scheduling to recover from detectable memory soft
errors that cannot be corrected automatically in hardware by the Error-Correcting Code
(ECC) unit.

As mentioned in Section 1.3, our proposed 3-phase scheduling scheme has been im-
plemented on two different embedded platforms, which we detail in Chapter 4. Since
the evaluation of the proposed schedulability analyses is necessarily dependant on tasks’

39

parameters, which are affected by the execution platform, we defer it to Chapter 4.

3.1 System Model

Our main objective is to schedule the shared resources (CPU time, DMA time and lo-
cal memory space) between different tasks in a predictable manner while hiding latency
caused by accessing the main memory. We developed novel scheduling algorithms, based
on fixed-priority scheduling, that are able to dynamically manage the system resources
and schedule the tasks to run predictably and achieve better system schedulability. The
proposed scheduling approach is based on the following assumptions.

Hardware Assumptions

We consider an identical multi-processor system composed of m cores. As shown in Fig-
ure 1.2-A, each core has a private scratchpad memory (SPM), and has access to a DMA
engine. We further assume that the SPM is dual-ported, so that accesses to different
memory addresses can proceed concurrently. Consequently, we assume that the DMA and
the processor core can access different portions of the local memory concurrently without
causing mutual interference.

Execution Model

To achieve strong timing isolation between running tasks on different cores, tasks are only
executed from the local memories. We consider a 3-phase task model where all code and
data needed by a task are first loaded into the local memory. After that, the task executes
from the local memory without accessing main memory, thus avoiding any contention.
Lastly, after the task finishes, all modified data are written back to main memory. The
local memory is further partitioned into two partitions. Unlike other schemes [104, 178],
our partitioning approach is independent of the number of tasks; thus it is more realistic.
Since the two partitions can be accessed in parallel, the CPU can execute one task out
of one partition and the DMA can unload and load the other partition at the same time.
This technique allows us to hide the latency of accessing main memory by overlapping the
execution of one task from one partition of the local memory while fetching the next task
from main memory to the other partition of the local memory.

Figure 3.1 depicts a working example of how the shared resources are scheduled among
three jobs of three different tasks. This example consists of three sporadic tasks that are all

40

Partition #1
: DMA Unload

: DMA Load

: CPU Execution

Partitions
Colour Code

Ta
sk

's
 P

ri
or

ity

τ1

τ2

τ3

Partition #2

Time
0 4 8 12

Figure 3.1: Example schedule showing how tasks are executed to hide memory access
latency.

released at the same time. Since it is a static fixed-priority schedule, the highest priority
task, τ1, get scheduled first. At the beginning, the scheduler chooses which local memory
partition to load τ1 into, it is the first partition in this case. After that, the DMA is
instructed to offload the data section1 of any previously loaded task from this partition
back to the main memory. DMA is then instructed to load code and data of τ1 into this
partition. After that, τ1 is able to run. While the CPU is executing τ1 out of partition
P1, the DMA operations are scheduled in parallel, and offload partition P2 and reload it
with τ2. At the same manner, loading τ3 is overlapped with the execution of τ2. τ3 has to
run out of partition P1. Therefore, τ1 is evicted first, by writing its modified data back
to main memory; then τ3 is loaded into this partition. The next task that comes after
τ3 is scheduled to run out of partition P2 and so on. Note that it is possible for a DMA
operation to take longer than a task execution, not shown in this example. For instance,
τ2 can not start executing until both τ1 execution and DMA operations on partition P2
are done, in this case DMA operations and the CPU execution take the same time. In a
fairly loaded system, this approach can completely hide the memory latency as long as the
memory subsystem is fast enough to keep DMA operations shorter than tasks executions.

1We do not need to offload the code of the task since it cannot be modified.

41

In the worst case, a portion of this latency is hidden by the overlapping mechanism, which
leads to a better schedulability.

We consider two scheduling schemes for DMA operations. In the first scheme, we as-
sume the presence of an hardware arbiter, that can arbitrate fairly among DMA operations
of different cores (for example, using the memory controller in [96]), by ensuring that each
core is guaranteed to receive 1/m of the memory bandwidth. In this case, we consider
DMA operations of variable lengths (time), where the amount of time required to load and
unload a task is based on its size, after considering that the DMA engine receives 1/m of
the memory bandwidth. In the second scheme, we do not make any assumption on the
hardware arbiter; hence, to ensure a predictable behavior, we instead schedule the DMA
engine in software. In this case, mainly for simplicity of implementation, we consider a
Time Division Multiple Access (TDMA) scheme where each core receives one time slot of
fixed size σ. We further assume that σ is enough time to load or unload any task in the
system, in this case assuming that the DMA engine receives the full memory bandwidth.
We discuss the first scheme in Section 3.2, while Sections 3.3 and 3.4 are based on the
second scheme. In either case, the memory activity of each core becomes isolated from the
activity of each other core, so that our schedulability analysis can consider each core in
isolation.

Note that since the CPU must execute without accessing main memory, our model
implies that the code and data of each task must fit entirely in local memory partition.
Although this assumption may appear restrictive, we make the following considerations.
First, as will be shown in the evaluation in Chapter 4, some modern COTS scratchpad-
based micro-controllers provide scratchpad memories that have a size in the same order of
magnitude as the main memory. Second, hard real-time control tasks are typically compact
in terms of memory size. Third, if a task violates this size constraint, known methodologies
exist [128, 145, 94] to split a large application into smaller segments that are individually
compliant with the imposed constraint. Each segment executes sequentially, and we assume
that the code and data of the segment, rather than the entire task, can be fully allocated
in local memory partition. The same scheduling scheme can then be employed; after a
segment of a task finishes executing, we can offload the data of the segment and load the
code and data of the next segment of that task while the CPU executes a different task.
We show how to extend the schedulability analysis for variable-size DMA operations to
the multi-segment case in Section 3.2.2.

42

Task Model

We statically partition the set of tasks among the available m identical cores. On each core,
we focus on fixed-priority scheduling of sporadic tasks. Specifically, the system comprises
a set Γ of N sporadic tasks, {τ1,, τN}, each with different priority whereby τ1 has the
highest priority and τN has the lowest priority. Each task τi is further characterized by a
period Ti and a relative deadline Di, with Di ≤ Ti (constrained deadline). τi generates a
(potentially) infinite sequence of jobs, with arrival times of successive jobs separated by at
least Ti time units.

We use Ci, loadi, unloadi for the CPU execution time, DMA load time and DMA unload
time for a task, respectively. Note that loadi, and unloadi denote the variable-length DMA
load time and unload time of a task τi respectively, when considering the hardware-based
DMA scheduling scheme where each core receives 1/m of the memory bandwidth for DMA
operations. In the case of software-based TDMA scheduling of DMA, any task can be
loaded or unloaded within the fixed-size time slot σ dedicated for a DMA operation. In
the case of a multi-segment task covered in Section 3.2.2, we use Ki to denote the number
of segments in a task τi, where {τ 1

i , τ
2
i , ..., τ

K
i } represents the set of segments in a task τi.

Table 3.1 summarizes the notation used for task’s parameters.

The goal of the (sufficient) schedulability analysis will be to compute the worst-case
response time Ri for each task τi; a task set is deemed scheduable if Ri ≤ Di for all tasks in
the task set. Given the 3-phase execution model, it is however important to precisely define
when a job is considered completed in order to determine its response time. We consider
two possible cases: (1) in the first case, the job is considered completed when it finishes its
execution on the core. This model is suitable for systems where any output operation (for
example, writing to an output peripheral) that the task needs to carry out is performed
during the execution of the task itself. Hence, as long as its core execution completes by
the deadline, we consider the job feasible. (2) In the second case, the job is considered
completed when its DMA unload operation finishes. This model is suitable for systems
where the data written back to main memory in the unload operation contains output
data, or in the case of inter-task communication, where some unloaded data needs to be
passed to other tasks; in particular, the COTS platform implementation in Section 4.2
follows this approach. In this case, the unload operation of each job must complete by its
deadline for the job to be feasible.

In summary, considering the two different models for scheduling of DMA operations,
and the two response time models, we have four different cases. Since covering each
case individually would lead to much redundancy, for simplicity we first cover the case of
variable-length DMA operations with deadline based on the job execution in Section 3.2,

43

and we then modify the analysis for the case of fixed-length DMA operations with deadline
based on the unload operation in Section 3.3.

Table 3.1: Task’s Parameters

Term Definition
τi a task in the system
Ti task’s minimum inter-arrival time (MIT)
Ci task’s CPU execution time including all overheads
loadi task’s DMA load time for its code and data sections
unloadi task’s DMA unload time for its data section

σ TDMA slot size for the fixed-size DMA operation case
Ki The number of segments a task comprises
τKi The Kth segment in a multi-segment task
Ri task’s response time

3.2 Case (I): Scheduling 3-Phase Tasks with Variable-

size DMA Operations

We now detail a formal set of rules for our scheduling algorithm. As discussed above,
our goal is to avoid contention for access to memory resources. Since the CPU does not
access main memory while executing a task, the goal can be met as long as we ensure
that CPU and DMA always access different local memory partitions. From a scheduling
perspective, we achieve this by dividing the time line into a set of time intervals. During
each interval, the CPU executes a task out of one partition, while the DMA first unloads
and then loads the other partition; partitions are then swapped between CPU and DMA
in the next interval. It remains to discuss how to order the loading and execution of tasks
in successive intervals. In general, we would like to follow task priorities. However, as we
intuitively show next, allowing preemption of either DMA operations or task execution can
lead to increases in CPU stall time and schedule complexity. Therefore, our scheduling
algorithm executes non-preemptively.

Notice that in the example in Figure 3.1-B there was no preemption needed since the
release time of all the jobs was the same. To depict the effect of CPU preemption on the
ability of hiding memory latency, Figure 3.2-A shows another example of three jobs of three
different tasks arriving at different time. As shown in the figure we allow CPU preemption.

44

Ta
sk

's
 P

ri
or

ity

τ
1

τ2

τ
3

Time
0 4 8 12

(A) Preemptive CPU Execution

Ta
sk

's
 P

ri
or

ity

τ
1

τ2

τ
3

Time
0 4 8 12

(B) Non-preemptive CPU Execution

Figure 3.2: Illustrative schedule for preemptive CPU execution

As a result, the response time of this schedule is now greater than in the previous example.
The response time of the schedule is now 11 time units instead of 10 time units.

As you can notice, the preemption causes τ3 to be loaded twice as it has been evicted
by τ1. In addition, the second load of τ3 is not overlapped very well, only with some
portion of τ2. Furthermore, there is no DMA operation to overlap with the execution of τ1.
Prohibiting CPU preemption results in a better schedule, Figure 3.2-B. DMA operations are
now overlapped with CPU execution. In addition, no extra DMA operations are required
for reloading as there is no task eviction. The response time of this schedule is exactly
matching the schedule in the first example in Figure 3.1-B, which is 10 time units.

In the case of having a job of higher priority task arrived at the middle of a DMA
operation, allowing DMA preemption can make a difference; when the DMA preemption is
allowed, the response time is again affected negatively. Figure 3.3-A depicts the case when
DMA is preemptive. From the figure, it is clear that there are DMA operations that are

45

Ta
sk

's
 P

ri
o

rit
y τ1

τ2

τ
3

Time
0 4 8 12

no overlap
wasted

(A) Preemptive DMA Operation

Ta
sk

's
 P

ri
or

ity

τ
1

τ2

τ
3

Time
0 4 8 12

(B) Non-preemptive DMA Operation

Figure 3.3: Illustrative schedule for preemptive DMA operation

not overlapped with CPU execution. In addition, there are aborted DMA operations which
results in wasted time. The response time of this schedule is now 11 time units. On the
other hand, when prohibiting DMA preemption, as shown in Figure 3.3-B, the task that is
scheduled to be loaded has to complete loading and thus executes without any interruption.
In this case, the result of prohibiting DMA preemption is a schedule with response time of
10 time units. Finally, prohibiting CPU and DMA preemption is motivated by the greedy
choice based on a small example as shown above, and it does not generalize that a non-
preemptive scheduling is better than a preemptive schedule. However, in this particular
architecture, non-preemptive schedule is less complex to implement.

Based on the provided intuition, we can now formally define the scheduling rules for
our algorithm, where a task is said to be active if a job of the task has been released but
it has not yet completed execution:

46

1. The algorithm implicitly divides the schedule into a set of time intervals; scheduling
decisions are only made at the beginning of an interval.

2. At the beginning of each interval, the CPU is scheduled to execute the task that
has been loaded into one of the two partitions during the previous interval, if any.
The DMA is scheduled to load the highest priority task among the set of remaining
active tasks (if any exists) into the other partition; this involves an unload operation
if needed.

3. An interval ends at the completion of the longest operation: either the CPU execution
of the task or the DMA unload/load operation (if an operation is not performed, it
is treated as having a length of zero).

4. If there is any ready task in the system, an interval starts at the end of the previous
one; otherwise, an interval starts when the system transitions from idle to active, e.g.
when a new job arrives while the system is idle.

The next section discusses how a schedulability analysis for the described algorithm
can be developed and proves its correctness.

3.2.1 Schedulability Analysis of The 3-Phase Tasks with Dynamic-
size DMA Operations

Given that the online scheduling algorithm enforces the aforementioned rules, we can cal-
culate a safe bound of worst case execution time based on all tasks’ parameters. Note
that we assume that the task’s execution time, Ci, is actually the adjusted execution time
in which all the overheads are included, such as the context-switch and the DMA setup
routines.

Figure 3.4 depicts an illustrative example of the worst case scheduling scenario (critical
instant) for an example task set, where the task under analysis τ3 completes execution in
the fifth interval, Intrv5, after its arrival right after the beginning of interval Intrv1. At
the beginning of the first interval (Intrv1), at time zero of this schedule, τ5 is scheduled to
execute out of partition P1 assuming it has been loaded to this partition in the previous
interval which is not shown in this figure. Simultaneously, in the same interval, τ4 is
scheduled to be loaded into partition P2 after unloading the previous task, τu, that has
been loaded into this partition two intervals ago and executed in the previous interval.
Slightly after the beginning of the first interval and after all the operations have been

47

scheduled, three jobs of three different tasks τ3, τ2 and τ1 arrive in the system. In this
case τ3 will suffer interference from the previously scheduled lower-priority tasks such as
τ5 and τ4. In addition, τ3 will suffer interference from all higher-priority tasks that arrive
(release) before τ3 is scheduled to load (locked), such as τ1 and τ2. Furthermore, τ3 will
suffer from the unload operation of τu. We assume that τu can be any task in the system
with the largest data section so it takes the longest time to unload. In addition, because
we do know what tasks are previously scheduled, we assume that τ5 and τ4 can be any two
different lower-priority tasks virtually constructed with the longest execution, DMA load
and DMA unload times.

To formally express the response time for τ3, we divide the interference into two groups.
First, the interference caused by τu and the two previously scheduled lower-priority tasks,
we call this the blocking time (B). Second, the interference caused by the higher-priority
tasks, we call this (H). Now the response time of τ3 can be expressed as Rτ3 = C3 +B+H.
As already mentioned, CPU execution and DMA operations can be overlapped during the
course of an interval. Therefore, only the longest one of the two is effectively contributing to
the response time of the task under analysis τ3; therefore we take the maximum duration
between the DMA operations and CPU execution. Furthermore, DMA operations are
actually two parts, unloading and loading of two different tasks respectively. Therefore,
the DMA operation, which is overlapped with the CPU execution, is actually the sum of
an unload and a load operations. For the case in Figure 3.4, a more detailed expression of
τ3’s response time can be written as follows:

Rτ3 = C3 +B +H

B = max(C5, unloadu + load4)

H = max(C4, unload5 + load1)

+max(C1, unload4 + load2)

+max(C2, unload1 + load3)

Building on this synthetic example, we designed an algorithm that can compute the
worst case response time for the task under analysis (τi). hp(i) and lp(i) are the sets of
higher-priority tasks and lower-priority tasks than τi, respectively. Jhp is the set of jobs of
all higher priority tasks. τl1 and τl2 are the two worst lower priority tasks similar to τ4 and
τ5 in the figure, respectively. Algorithm 3.1 shows the steps of how to calculate the worst
case response time of any task under analysis τi. The algorithm addresses the problem
in three main steps, calculate the blocking time B, calculate the interference caused by

48

Ta
sk

's
 P

rio
rit

y

τ
1

τ2

τ
3

τ4

τ5lo
w

er
 p

rio
rit

y
ta

sk
s

hi
gh

er
 p

rio
rit

y
ta

sk
s

ta
sk

 u
nd

er

an
al

ys
is

Intrv1 Intrv2 Intrv3 Intrv4 Intrv5
Time

Figure 3.4: An illustrative schedule of a worst case response time of a task under analysis

the higher-priority tasks H, and apply the recursive response time analysis to determine
the final response time for the task under analysis. Calculating the blocking time B is
straight forward as the tasks involved in B are already scheduled by the time the task
under analysis is released. Step 2 in Algorithm 3.1 calculates B. On the other hand,
calculating H is not straight forward because we do not assume in which order the jobs
of the higher-priority tasks arrive. Therefore, we do not know which CPU execution is
overlapped with DMA operation. As a result, the algorithm methodology is to determine
an upper bound regardless of the order in which the jobs of the higher-priority tasks are
released.

The algorithm constructs three lists, E for execution times, LD for DMA load times
and UD for DMA unload times. The execution times, C, of all released higher-priority jobs
are inserted into the E list. In addition, τl1 is inserted into the E list as it is overlapped
with some DMA load operation of a higher-priority job. For example, in Intrv2 of Figure
3.4, C4 overlaps with load1. Similarly, the LD list contains all DMA load times for all
higher-priority jobs and the DMA load time for the task under analysis, τi, as it has to
overlap with the execution of some higher-priority job. For example, in Intrv4 of Figure
3.4, load3 overlaps with C2. Finally, the UD list contains the DMA unload times for all
higher-priority jobs and the DMA unload times of τl1 and τl2.

The execution of the task under analysis τi can overlap with the DMA unload of a
higher-priority job while it is not contributing to the response time of the task under
analysis τi. For example, in Intrv5 of Figure 3.4, C3 overlaps with unload2. However, this
overlapping DMA operation is not contributing to the response time of τ3. Therefore, not

49

all DMA unloads of the higher-priority jobs are contributing to the response time of the
task under analysis τi. However, we do not know which one it is. As a result, the UD
list contains the DMA unloads of all higher-priority jobs. By doing this, the number of
elements in UD will be one element more than the number of elements in each one of the
other lists, E and LD. As shown in the example in Figure 3.4, the number of interfering
intervals I is the number of the higher-priority jobs plus one, I = len(Jhp) + 1, where
len(Jhp) is the number of element in Jhp. Therefore, the number of elements in each list
E and LD is I and the number of elements in the list UD is I + 1. In fact, I + 1 is the
number of scheduled intervals between the release time and the execution time of the task
under analysis τi.

After constructing the three lists, the algorithm picks the longest times from each list
to form an upper bound worst-case response time. The algorithm does that in two steps.
First, the two DMA lists, LD and UD, are sorted in a descending order from the worst
(longest) at the top to the best (shortest) at the bottom. After that, a unified DMA-times
list (DMA) is constructed by selecting the worst combinations of the two DMA lists, LD
and UD. Basically, this is done by selecting the first I elements from the two sorted lists,
LD and UD, and insert them into the unified DMA list as follows: DMAj = LDj+UDj for
j = 1....I. By doing this we assure that the algorithm only ignores the least contributing
(shortest unload time) element in the UD list, which is what we need. Second, since the
CPU execution and the DMA operation can overlap, the algorithm selects one element from
the both lists, DMA and E, for each interval based on the most contributing elements (the
longest ones). It does that by merging the DMA and E lists into one list M (Maximums).
Then, it sorts the M list in a descending order from the longest at the top to the shortest
at the bottom. Since we only have I interfering intervals, the algorithm sums the first I
elements from the list M and concludes H, which is the interference contributed by the
higher-priority jobs, as follows: H =

∑
(Mj) for j = 1....I. The selected most contributing

elements can be all from the list E or can be all from the list DMA or can be mix of both.
Algorithm 3.1 calculates H in steps 8-16.

The final step in calculating the response time is to apply the standard response time
analysis where the response time is defined as a function of itself. Algorithm 3.1 does this
in steps 3-7 and 17. In step 7, Algorithm 3.1 updates Jhp, which is the set of all higher-
priority jobs, in each iteration to accommodate all higher-priority jobs that will be released
before the execution of the tasks under analysis τi, τj ∈ hp(i). We used the expression
Ri − Ci instead of just Ri because, as introduced earlier, once a task is scheduled to load
it is locked and it will execute to finish with no preemption.

Lemma 3.1. Let Jhp be the set of higher priority jobs that interfere with the task under
analysis τi. Then the value of H computed by Algorithm 3.1 is a safe upper bound to the

50

Algorithm 3.1 Calculating the safe execution bound of the task under analysis τi

1: τu ∈ Γ; τl1, τl2 two virtual tasks ∈ lp(i) : τl1 6= τl2;
2: B = max(Cl2, unloadu + loadl1)
3: Ri ← Ci +B
4: set PrevRi 6= Ri

5: while (Ri 6= PrevRi) do
6: PrevRi ← Ri

7: Jhp ←
⋃
τj∈hp(i)

⋃
1...

⌈
Ri−Ci
Tj

⌉ τj
8: E ← Cl1

⋃
CJhp

9: LD ← loadi
⋃
loadJhp

10: UD ← unloadl1
⋃
unloadl2

⋃
unloadJhp

11: dsort(LD)
12: dsort(UD)
13: DMA←

⋃
1≤j≤len(LD) LDj + UDj

14: M ← E
⋃
DMA

15: dsort(M)
16: H ←

∑
1≤j≤len(E) Mj

17: Ri = Ci +B +H

length of all intervals where higher priority jobs delay the task under analysis.

Proof. As discussed above, the maximum number of intervals where higher priority jobs
interfere with the task under analysis τi is I = len(Jhp) + 1: one interval where the first
higher priority jobs is loaded, plus len(Jhp) intervals to execute each higher priority job. In
each interval there is one CPU execution that overlaps with a DMA load/unload operation;
therefore, the length of each interval is the maximum of the two. We can then obtain H
as the sum of the lengths of I intervals, where each length is either a CPU execution time
or a DMA load/unload time. Now, our algorithm simply takes all CPU execution times
and all DMA times in those intervals, as shown above, and picks the maximum I elements
among all of them; hence, this must result in a upper bound to the actual combined length
of the I intervals.

It remains to show that the way the DMA-time list (DMA in step 13) is constructed
indeed leads to the worst-case. Let DMAj be the j-th element of the DMA list sorted in
descending order (similarly for other lists). Assume that in step 16 the algorithm selects
the maximum k elements from the E list and the maximum k′ from the DMA list, where

51

k + k′ = I. It is easy to show that for any k′,
∑

1≤j≤k′ DMAj is the maximum combined
DMA time that can be constructed out of k′ unload times and k′ load times; this is
because DMAj = LDj + UDj and both LD and UD are sorted in descending order,
hence any element LDj, j ≤ k′ is larger than any element LDj, j > k′ (similarly for UD).
By contradiction, assume that the worst case is instead found by picking k′ + 1 elements
from DMA and k − 1 from E. Then the contribution of DMA times would be increased
by
∑

1≤j≤k′+1 DMAj −
∑

1≤j≤k′ DMAj = DMAk′+1 and the contribution of E would be
decreased by Ek. However, since the algorithm selected k and k′ elements out of E and
DMA, respectively, by picking the maximum elements from the combined list E

⋃
DMA,

it follows that DMAk′+1 cannot be larger than Ek. This causes a contradiction, hence the
lemma holds.

Theorem 3.1. Algorithm 3.1 calculates a safe upper bound to the response time of the
task under analysis τi.

Proof. Algorithm 3.1 calculates the upper-bound response time for the task under analysis
τi by summing the three contributing times, the blocking time caused by lower-priority jobs
B, the interference caused by higher-priority jobs H, and the execution time of the task
under analysis Ci. Therefore, the response time of task under analysis τi is Ri = B+H+Ci.
Ri is a safe upper bound since it is a sum of upper bounds: in particular, B is an upper
bound because we are computing it as the maximum of the computation time and DMA
load/unload of any task that can interfere with τi in the first interval of the busy period
(during which τi arrives). Now note in our system, when a task is scheduled to load, it
will be executed in the next interval with no preemption. Therefore, if Ri is the response
time of the task under analysis (computed at the previous iteration), then the maximum
number of instances of higher priority task τj that can interfere with τi is dRi−Ci

Tj
e. Since

Jhp is computed based on this formula at step 7 of the algorithm and because of Lemma
3.3, it then follows that H is also a safe bound. Finally, Ci is an upper bound by definition.

It remains to show that the release time of the task under analysis τi and all higher-
priority tasks, which are arriving at the same time just ε > 0 time after an interval has
started, with ε arbitrarily small, is indeed the worst case. In particular, if τi arrives
before the interval starts, then it will be locked and scheduled to load and execute without
preemption before the higher-priority tasks, which cannot lead to the worst case. If instead
τi arrives δ time after the beginning of the first interval, but still within the interval, then
the schedule would not change but the response time of τi would be reduced by δ, which
is not the worst case either. Similarly, if a higher-priority task arrives before the interval
starts, τi will not suffer any interference from the lower-priority tasks, reducing its response

52

time. Finally, if a higher-priority task arrive within the same interval but δ time after the
beginning of the interval, the number of higher-priority jobs that will be released before τi
is scheduled is dRi−Ci−δ

Tj
e. Since this number is never larger than dRi−Ci

Tj
e, it follows that

releasing the task ε time after the start of the interval always maximizes the worst case
response time of τi. Hence, the theorem follows.

Ta
sk

's
 P

ri
or

ity

τ2

τ
3

τ
5

Time
0 4 8 12

τ
4

16 2420 28

τ
1

ta
sk

 u
nd

er

an
al

ys
is

Figure 3.5: Illustrative schedule of multi-interval tasks

3.2.2 Analysis of Multi-Segment Tasks

In this section, we extend the schedulability analysis to cover the case of multi-segment
tasks. Scheduling Rules 1-4 still apply, except that when the DMA is scheduled to load
a task, only the code and data of the next segment of the task is loaded, and in the next
interval, the CPU only executes the code of that segment (rather than the entire task).
Note that while a segment of a task is executed by the CPU, the DMA cannot load the next
segment of the same task, since a latter segment might depend on a previous segment’s
data. As a matter of fact, Rule 2 specifies that the DMA can only load a different task than
the one executed by the CPU in the same interval. As a result, if a task τi is composed
of Ki segments, even without any interference by other tasks it will take 2Ki intervals to
complete the task: one interval to load a segment/unload the previous one and one interval
to execute the segment itself.

A worst case scheduling scenario for a task under analysis τ3 is shown in Figure 3.5,
where the task under analysis τ3 and all higher-priority tasks, τ1 and τ2, arrive at the same
time just after the lower-priority task τ4 is scheduled to load. Our goal is to compute the

53

response time Rτ3 for the last interval of the task under analysis, which is the interval where
the last segment τ 3

3 of τ3 executes ([26, 28] in Figure 3.5). Similarly to the single-interval
case, we compute Rτ3 as the sum of three components: Rτ3 = CK3

3 + B + F . B is the
blocking time caused by the previously scheduled intervals ([0, 2] in the figure), while CK3

3

is the computation time of the last segment of τ3. Finally, F is the interference caused
by all higher-priority intervals and lower-priority intervals or the first Ki − 1 intervals of
τi ([2, 26] in the figure). Notice that in the worst case, whenever a segment other than
the last one of the task under analysis is executed by the CPU ([17, 19] and [22, 24] in the
figure), no higher priority job is active; hence, either no DMA operation is overlapped with
it ([22, 24]), or the DMA load for a lower priority job can be overlapped ([17, 19]). In the
latter case, during the next interval the lower priority job will be executed on the CPU.
In summary, for a task under analysis τi, F is composed by len(Ihp) intervals, where Ihp is
the set of interfering higher-priority segments, plus Ki− 1 intervals for the segments of the
task under analysis (except the last), plus Ki intervals where either a lower priority job
is executing, or a segment of the task under analysis is loaded without being overlapped
with any execution. Note that in the case of Figure 3.5 where K3 = 3, this results in
4 + (3− 1) + 3 = 9 intervals.

Algorithm 3.2 calculates the worst-case response time for task under analysis τi. The
higher-priority intervals, which belongs to higher-priority jobs, are expressed as hpi(i) and
the lower-priority jobs’ intervals, which belongs to lower-priority jobs, are expressed as
lpi(i). The response time of τi is expressed as Ri = CKi

i + B + F , which is the response
time of the last interval (τKii) of τi. The blocking time B is calculated as in Algorithm 3.1
except it is expressed in terms of intervals. Ihp is the set of all interfering higher-priority
intervals. Since τKii can also be interfered by the lower-priority intervals or by the precedent
intervals of τi, Algorithm 3.2 considers both the higher-priority intervals and the lower-
priority intervals in the steps 9-17. The lists Ehp, LDhp and UDhp contains the execution
times, the DMA load times and the DMA unload times of all interfering higher-priority
intervals respectively. On the other hand, the list E, LD and UD contains the execution
times, the DMA load times and the DMA unload times of the precedent intervals of τi
and the possibly Ki − 1 interfering lower-priority intervals respectively. In general, we do
not know which lower-priority interval will interfere with the interval τKii . Therefore, we
always assume it to be the longest lower-priority interval τBl . τBl is a synthetic interval that
has the longest execution, DMA load and DMA unload times. Algorithm 3.2 calculates
the upper-bound interference F the same way Algorithm 3.1 calculates the upper-bound
interference caused by higher-priority jobs H. F is the summation of the upper-bound
interference caused by len(Ihp) + 2Ki − 1 intervals. F is calculated in steps 9-23. Note
that in step 8, Algorithm 3.2 forms the set Ihp, which is the set of all interfering higher-

54

Algorithm 3.2 Calculating the safe execution bound of the task under analysis τi when
tasks are multi-interval tasks

1: τu ∈ Γ; τl1, τl2 two synthetic tasks ∈ lpi(i) : τl1 6= τl2

2: τBl ∈ lpi(i) is a synthetic longest lower-priority interval

3: B = max(CS
l2, unload

S
u + loadSl1)

4: Ri ← CKi
i + B

5: set PrevRi 6= Ri

6: while (Ri 6= PrevRi) do

7: PrevRi ← Ri

8: Ihp ←
⋃
τj∈hp(i)

⋃
1...

⌈
Ri−C

Ki
i

Tj

⌉⋃
v=1...Kj

τ vj

9: Ehp ← CS
l1

⋃
CIhp

10: E ← (
⋃

1≤v<Ki C
v
i)
⋃

(
⋃

1≤v<Ki C
B
l)

11: Eglobal ← Ehp
⋃
E

12: LDhp ← loadIhp

13: LD ← (
⋃

1≤v≤Ki load
v
i)
⋃

(
⋃

1≤v<Ki load
B
l)

14: LDglobal ← LDhp

⋃
LD

15: UDhp ← unloadSl1
⋃
unloadSl2

⋃
unloadIhp

16: UD ← (
⋃

1≤v<Ki unload
v
i)
⋃

(
⋃

1≤v<Ki unload
B
l)

17: UDglobal ← UDhp

⋃
UD

18: dsort(LDglobal)

19: dsort(UDglobal)

20: DMA←
⋃

1≤j≤len(LDglobal)
(LDglobalj + UDglobalj)

21: M ← Eglobal
⋃
DMA

22: dsort(M)

23: F ←
∑

1≤j≤len(Ehp)+2Ki−1Mj

24: Ri = CKi
i +B + F

priority intervals, by accommodating all the intervals (τ vj) of the released jobs (τj) of all

55

higher-priority tasks (τi), where τj ∈ hp(i).

Lemma 3.2. Let Ihp be the set of segments of higher priority jobs that interfere with the
task under analysis τi. Then the value of F computed by Algorithm 3.2 is a safe upper
bound to the length of interfering intervals with the exclusion of the interval during which
τi arrives.

Proof. As mentioned above, F is composed of the interference caused by higher-priority
intervals and the interference caused by the first Ki − 1 intervals of τi or by the possible
lower-priority intervals. The way we calculate the maximum interference of the higher-
priority intervals is similar to calculating H in Algorithm 3.1, e.g., each segment of a
higher-priority interfering job will contribute one additional interval to the length of F ;
furthermore, DMA load and unload operations can overlap with other executions in other
intervals.

Since we calculate the end-end response time of τi, the last interval τKi is proceeded
by Ki − 1 CPU intervals and Ki DMA intervals. Therefore, in the worst case there will
be 2Ki − 1 scheduled intervals before the execution of τKi (without considering higher-
priority tasks). These scheduled intervals might overlap with lower-priority intervals. As a
result, we have two cases, in the first case, when there are no active lower-priority intervals,
each CPU interval of τi has to be proceeded by the corresponding DMA interval to load
it. Therefore, the CPU intervals of τi suffer the delay caused by the corresponding DMA
intervals. However, this is not the worst case. The second case is when there are long
lower-priority intervals to overlap with the intervals of τi. In this case, the overlapping
lower-priority intervals are selected as the contributing intervals if they are longer than the
corresponding interval of τi; otherwise, it is similar to the first case. Therefore, it is safe
to always consider that there will be a lower-priority interval to overlap with; and that is
τBl , which is the longest lower-priority interval. To conclude the proof, it suffices to notice
that the same reasoning as in in Lemma 3.3 can be used to show that picking the largest
contributing intervals leads to a safe upper bound.

Theorem 3.2. Algorithm 3.2 calculates a safe upper bound to the response time of the
multi-interval task under analysis τi.

Proof. Algorithm 3.2 calculates the upper-bound response time for the task under analysis
τi by summing the three contributing times, the blocking time caused by lower-priority
intervals B, the interference F caused by all interfering intervals in the system, and the
execution time of the last interval of the task under analysis CKi

i . Therefore, the response

56

time of task under analysis τi is Ri = B + F + CKi
i . Similarly to the proof of Theorem

3.1, this is a safe upper bound since it is a sum of upper bounds. In particular, if Ri

is the response time of the task under analysis computed at the previous iteration, then
the maximum number of instances of higher priority task τj that can interfere with τi is

again dRi−C
Ki
i

Tj
e. Hence, by virtue of the computation of Ihp at step 8 of the algorithm and

because of Lemma 3.5, F is a safe upper bound. CKi
i is an upper bound by definition;

finally, the same reasoning as in Theorem 3.1 can be used to show that B is also a safe
upper bound, and that the release time of the task under analysis τi and all higher-priority
tasks, which are arriving at the same time immediately after an interval has started, is
indeed the worst case.

57

3.3 Case (II): Scheduling 3-Phase Tasks with Fixed-

size DMA Operations

Unlike the previous case, where each core is assumed to have a guaranteed memory band-
width, here we explicitly schedule TDMA slots for each core. Several schemes are known
to fairly share a single resource across different consumers. For the scope of our design,
we employ a TDMA scheme to serialize task load/unload operations among m cores. The
main advantage of the TDMA scheme lies in its simplicity of implementation. In order to
perform TDMA-based scheduling of the DMA, time is partitioned into slots of fixed size.
In each slot, only a single DMA operation can be performed, either a task load or unload.
The slot size is chosen to ensure that the task with the largest footprint in the system can
be loaded within the slot time window. Figure 3.6 depicts the sequence of operations in
our TDMA scheme for a system with two cores; note that the schedule of execution phases
on the core, as well as the sequence of intervals, follows the same Rules 1-4 in Section 3.2
that are used in the variable-size DMA case. In particular, Figure 3.6 depicts three tasks
scheduled on one core. Up arrows in blue color represent the arrival times of the considered
tasks; we use colors for two different partitions. A task can only run after its load operation
has been completed and the previous task on the other partition has completed (see τ2 to
τ3 and τ1 to τ2 for example of the two cases). There might be slots where no load/unload
is performed. This happens at time 8: τ1 finishes right after the beginning of the slot, so
both partitions are full at the beginning of the slot and neither load nor unload can be
performed. Effectively, the slot is wasted.

Figure 3.6: Scheduling CPU, DMA and local memory with fixed-size time slots

As depicted in Figure 3.6, the shared system DMA is alternatively assigned to transfer

58

data for a specific core. Within a single slot, either an unload operation for a previously
running task or a load operation for the next scheduled task is performed. The specific
operation to be performed is decided as follows:

Rule 1: If a load operation can be performed, a load operation is programmed on the
application DMA;

Rule 2: If a load cannot be performed and there is a previously running task to be
unloaded, an unload operation is programmed on the application DMA.

Note that Rule 1 can be activated by the following conditions: (i) at least one of the
two SPM partitions is available (i.e. has been previously unloaded), and (ii) a task has
been released and is ready to be loaded. Similarly, Rule 2 can be activated if no load can
be performed, at least one partition is not empty and the task loaded on that partition
has completed.

3.3.1 Schedulability Analysis of The 3-Phase Tasks with Fixed-
Size DMA Operations

Given the scheduling strategy described in Section 3.3, we can calculate a safe bound on
the worst case execution time based on all tasks’ parameters in an approach similar to to
the previous case in Section 3.2.1. Note that we assume that the task’s execution time,
Ci, is actually the adjusted execution time in which all the overheads are included, such as
the context-switch and the DMA setup routines. Also note that for simplicity we discuss
the case with m = 2 cores, since it is used in the implementation with fixed-size DMA
operations described in Section 4.2, but the analysis could be trivially extended to account
for any number of cores.

Figure 3.7 depicts an illustrative example of the worst case scheduling scenario (critical
instant) for an example task set where τ3 is the task under analysis. The schedule depicts
a busy period where τ3 suffers interference from two higher-priority tasks, τ1 and τ2. As
in Section 3.2.1, we consider the busy period as composed by a sequence of scheduling
intervals Interval1, Interval2, Interval3, Interval4 (each bounded by bold vertical lines in
the figure), followed by a final interval IntervalF . During each scheduling interval, only
one blocking or interfering task runs. During the final interval, the task under analysis
runs. Each scheduling interval always starts with a CPU execution and ends either when
the CPU finishes executing the task or when the next task finishes being loaded by the

59

Ta
sk

's
 P

ri
o

rit
y

τ
1

τ
2

τ
3

Time
0 6 11 171 2 3 4 5 7 8 9 10 12 13 14 15 16 18 19 20 21 22 23 24 25 26 27

X X X X X X X X

D
M

A

T
D

M
A

S

lo
ts X X

τ4

τ
5

X X X

Interval1 Interval2 Interval3 Interval4 IntervalF

hi
gh

er
 p

rio
rit

y
ta

sk
s

lo
w

er
 p

rio
rit

y
ta

sk
s

ta
sk

 u
nd

er

an
al

ys
is

B H F

Figure 3.7: Example schedule, intervals are highlighted.

DMA, whichever happen last; at this point, the next interval starts with the execution of
the loaded task. The final interval starts with the execution of the task under analysis and
finishes when the task under analysis is unloaded.

We say that a scheduling interval is CPU-bound when it ends with CPU execution
(ex: Interval1, Interval3 and Interval4 in the figure), and DMA-bound when it ends with
DMA load operation (ex: Interval2). The length of a scheduling interval is the maximum
between the execution time of the task running in the interval and the DMA operations
required to load the next task. We denote the size of the TDMA slot as σ; since in the
worst case a load/unload operation can occupy the entire slot, we upper bound the length
of DMA operations as a multiple of σ.

Building on the above-mentioned definitions, we can use Algorithm 3.1 detailed in
Section 3.2.1 to compute the worst case response time for the task under analysis, by
showing that the problem is equivalent to the one in Section 3.2.1. Algorithm 3.1 computes
the response time by adding three components: (1) the blocking time B caused by a lower
priority task that starts executing before the beginning of the busy period; this is Interval1
executing task τ5 in the figure; (2) the interference H comprising the remaining scheduling

60

intervals in the busy period, which are Interval2, Interval3 and Interval4 in the figure.
The number of such intervals is equal to the number of interfering higher priority jobs plus
one, since an extra lower priority job that starts loading before the beginning of the busy
period (τ4 in the figure) can execute within the busy period itself; (3) the computation of
the task under analysis (Ci). The algorithm builds a list of DMA times and computation
times for tasks executed in H, then it derives a provably safe bound on the length of H
using standard response time iteration.

Compared to the analysis in Section 3.2.1, the presented analysis in this section differs
in three aspects. First, in this section we use fixed-size DMA operations, while Section 3.2.1
employs dynamic-size DMA operations. Therefore, we need to discuss how to compute the
length of the DMA operations that are inserted in the list of DMA times. Second, we
need to recompute the length of the blocking time B since the next task to be loaded
is determined at a different time. Finally, unlike the analysis in Section 3.2.1, here we
consider the task under analysis finished when the task is unloaded, at the end of IntervalF .
Consequently, we can use the same algorithm to compute the worst case response by
replacing Ci with the length of IntervalF . We address each point in sequence.

Scheduling Intervals in The Busy Period (H)

When the system is busy with both SPM partitions occupied and at least one pending
task, within each interval we need to first unload the previous partition and then load it
with the next task. Therefore, for any scheduling interval, it will require four TDMA slots
(4 · σ) to load the next task if the interval was preceded by another DMA-bound interval,
such as for Interval3 in the figure. On the other hand, if the interval is preceded by a
CPU-bound interval, it might require up to five TDMA slots (5 · σ) to finish loading the
next task in the worst case, as for Interval2. This is because the CPU-bound interval can
induce an unused empty TDMA slot in the next interval (slot [4:5] in the figure).

As a result, the length of any scheduling interval can be computed as either max(Ci, 4·σ)
or max(Ci, 5 · σ). We now formally prove that for any CPU-bound interval to cause the
worst case scenario, with the exception of the first interval Interval1, the CPU execution
has to be strictly longer than four TDMA slots (4 · σ).

Lemma 3.3. For any scheduling interval in H, no extra empty slot will be induced in the
next interval unless the length of the CPU execution is strictly greater than four TDMA
slots (4 · σ).

61

X X X X X
τ
x

Proof. We show that any scheduling interval in H with CPU execution less than 4 · σ
cannot induce an empty slot in the next interval. By considering the figure above, the
execution of τx in the middle interval is greater than 4 · σ, and it induces an empty slot in
the next interval. Since both partitions must be full during the execution of intervals in
H, it follows that the interval to which τx belongs must include both a load and an unload
operation; in the worst case showed in the figure, the interval could start with the unload
operation. Still, clearly if the execution time of τx is reduced to less than 4 ·σ, the interval
will finish before the next slot assigned to the core under analysis is reached, and hence
no empty slot will be induced. Note that if the execution of τx is reduced further, it could
make the interval into an DMA-bound interval, which would end right after finishing the
load of the next task; thus, the next interval would not suffer from an empty induced slot
either.

Based on Lemma 3.3, we can construct the list of DMA times used by the algorithm
as follows: we insert in the list a number of 5 · σ time values equal to the number of tasks
executed in H with length greater than 4 · σ, plus one task (to account for the task in
Interval1, which can cause an extra empty TDMA slot as in the figure). The remaining
DMA times in the list are equal to 4 · σ.

Critical Instant and Blocking Time (B)

At the beginning of the example schedule in Figure 3.7, the system has two free local SPM
partitions at time zero. In Interval1, the task under analysis τ3 is released along with all
higher-priority tasks after an arbitrarily small time (ε) when all free partitions have been
loaded or have started loading lower-priority tasks (τ5 and τ4); this is ε after time 2 in the
figure. The task under analysis τ3 cannot run until the pre-loaded lower-priority tasks (τ5

and τ4) plus all higher-priority tasks (τ1 and τ2) finish execution. We now prove that the
discussed scenario is indeed the critical instant for our system, leading to the worst case
response time for the task under analysis.

Lemma 3.4. The critical instant is produced when the task under analysis τi and all
higher priority tasks arrive immediately after a lower priority task has started loading into
a partition, and the other partition was loaded with another lower priority task as late as
possible (i.e., two slots before).

62

Proof. We first show that in the worst case, both τi and all higher priority tasks must
arrive ε time after the beginning of a slot where a lower priority task is loaded. If either
τi or a higher priority task would arrive at or before the beginning of the slot, then such
task would be loaded and executed in place of the lower priority task. Hence, the length
of the busy period would decrease by one scheduling interval, which cannot produce the
worst case response time for τi. If instead τi arrives some δ time later during the busy
period, then the finishing time of τi would not change, but the response time of τi would
decrease by δ. Finally, if a higher priority task arrives later during the busy period, the
number of interfering jobs of the task could only be lower or equal compared to releasing it
immediately after the beginning of the slot. Hence, the described activation pattern must
lead to the critical instant.

For what concerns the lower priority task pre-loaded in the other partition, it suffices
to notice that loading the task as late as possible (i.e., two slots before τi arrives, which
is slot [0:1] in Figure 3.7) maximizes the amount of execution of the task within the busy
period.

Based on Lemma 3.4, the worst case blocking time B can be obtained as the length
of Interval1 minus σ, where the length of Interval1 is bounded by max(Cu, 2 · σ); here,
Cu represents any low priority task executed in Interval1, while the length 2 · σ accounts
for the fact that the next task is loaded in the second slot of the interval (slot [2:3] in the
figure). Similar to Section 3.2.1, since we can make no assumption on which lower priority
tasks execute in Interval1 and Interval2, the algorithm simply considers the two lower
priority tasks with the longest execution times.

Final Interval (F)

The length of the final interval IntervalF can be computed as max(Ci+5 ·σ, 7 ·σ), where τi
is the task under analysis. In the example depicted in Figure 3.7, the length of IntervalF
is C3 +5 ·σ. The other case can happen when C3 is short enough and slot [22:33] is utilized,
in the worst case, to load the next task. In this situation, up to seven TDMA slots are
required to finish unloading τ3, as formally proven below.

Lemma 3.5. The length of IntervalF is upper bounded by max(Ci + 5 · σ, 7 · σ).

Proof. Similar to scheduling intervals in H, we need to consider two cases: (1) the length
of the interval is bounded by Ci plus the time required to unload the task; (2) the length
of the interval is bounded by the time required to unload/load the other partition before

63

unloading Ci. For the first case, note that differently from scheduling intervals in H, there
might be no pending task at the start of IntervalF , since the last task in the busy period
(task under analysis) is running. Therefore, a new job of any task could be release later
during IntervalF and start a load operation. In particular, the new job could arrive just
before the unload of the task under analysis (τi), as shown in Figure 3.7. In this case, since
there is one free partition and load operations have priority over unload operations (Rules
1,2), the new job has to be loaded first; thus, the unload of τi is delayed by up to 5 · σ
in the worst case (one empty slot plus four other slots, as shown in Figure 3.7 for slots
[22:27]; no more than 5 slots are possible since after the load at [24:25], both partitions are
full and thus an unload must happen next). In this case the length of IntervalF is upper
bounded by Ci + 5 · σ.

The following figure shows the other case where the length of IntervalF is 7 · σ in the
worst case. This case happens when the execution of the task under analysis is very small
to the point that Ci + 5 · σ is smaller than the required number of TDMA slots to actually
unload τi. When CPU execution of τi is sufficiently small, the load of the next task has
to be after 5 · σ at most regardless of the release time of the next task, otherwise τi would
be unloaded by the fifth slot. If the next task is indeed loaded before the unload of τi as
shown in the figure, then in the worst case it takes two more slots to unload τi (given that
both partitions are full after loading the next task), hence resulting in a bound of 7 · σ.
To conclude, by taking the maximum of the two cases we guarantee to capture the worst
case.

X X X X X X X
τ
i

Theorem 3.3. The worst-case response time of the task under analysis (Ri) is Ri =
B +H + F .

Proof. Based on the proofed lemmas (lemmas: 3.3, 3.4, and 3.5), the theorem directly
follows.

64

3.4 Fault-Tolerant Scheduling of 3-Phase Tasks

The ability to recover from soft errors and effectively extend the Mean Time To Failure
(MTTF) is particularly relevant when considering safety-critical systems. This is because
real time embedded devices are often deployed in hostile environments such as production
plants, aircraft, and satellites. In such environments, extended exposure to various kind
of radiations, such as alpha particles, high and low energy cosmic rays, as well as strong
electromagnetic fields, can increase the probability of temporary “bit flips”, i.e. soft errors,
in the circuitry. The rate at which soft errors occur is called the Soft Error Rate (SER).
The commonly used unit of measure for SER is the Failure In Time (FIT). One FIT is
equivalent to one failure in 109 device hours.

In the previous sections, the proposed system attains the goal of achieving predictabil-
ity in a multi-core environment. However, in the event of a memory error, it does not
provide any recovery countermeasure. In order to augment the predictable SPM-centric
management to recover from a memory error, we leverage the existing redundancy that is
built-in by design in multi-phase task system. In our original system, a running task has
two copies, one in the SPM and one in the main memory. Only the read-only data is con-
sidered as a replica, since the R/W data in the SPM might be altered during the execution
of the task. In the proposed fault-tolerant system, two copies of the task are kept inside the
main memory to recover from memory errors. The proposed recovery mechanism assumes
that only one memory error could occur in every two periods of any task in any memory
module. Since the period of a real-time task is typically tens or hundreds of milliseconds
long, we deem this assumption to be satisfied in the vast majority of embedded systems.
In addition, we assume the existence of Error-Correcting Code (ECC) unit that is capable
of detecting memory bit flip errors that cannot be automatically corrected in hardware,
such as double-bit errors. First, we describe how the overall system with redundant task
copies works, then we explain how a fault in each is handled.

Note that, the recovery mechanism can be applied to both variable-size DMA operations
and fixed-size DMA operations. For simplicity, in what follows we describe the recovery
mechanism for the fixed-size DMA operations, since this is the case for the fault-tolerant
implementation discussed in Section 4.2.

Conceptually, there are two identical copies of a task in main memory during regular
operation, one is considered as a working copy and the other is a backup copy. The task is
usually loaded to the SPM from the working copy. After the task completes its execution
from the SPM, it is first unloaded to update the working copy in the main memory. And
then, upon the successful unload, another unload is initiated to update the backup copy.

65

Memory errors are detected either while the CPU is executing a task from the local SPM, or
while the DMA is loading or unloading a task. In the former case, the execution is aborted,
the current SPM partition is marked empty, and the task is considered for rescheduling.
If an error is reported when the DMA was loading a task, the corrupted word is recopied
from the redundant backup copy. If the error is reported while the DMA was unloading a
task to the working copy (first unload), the corresponding SPM partition is marked empty,
and the task is considered for rescheduling from the backup copy. If the error is reported
while the DMA was unloading the task to the backup copy (second unload), the task is
considered successfully finished and no need for rescheduling. The faulty backup copy will
be corrected in the next task unload. Note that no other error is assumed to occur during
the operation of the recovery as long as the task meets its constrained deadline and the
error only occurs once in every two periods. Based on this, any faulty copy of a task in
main memory (working or backup) will get corrected after the recovery operation is done.
Anytime a faulty task is considered for rescheduling, it is considered as the highest-priority
task in the system to bound its recovery time.

Ta
sk

's
 P

ri
or

ity

τ1

τ
2

τ3

Time
0 6 11 171 2 3 4 5 7 8 9 10 12 13 14 15 16 18 19 20

X X X X X X

D
M

A

T
D

M
A

S

lo
ts X X X X

E

Partially Wasted Interval

R
X X

21 22 23 24

Extra
: DMA Unload

: DMA Load

: CPU Execution

 : Empty Slot

X : Don't Care

Partition #1

Colour CodesPartition #2

Other Core

E : Memory Error

R : Task Reload

Figure 3.8: Scheduling example with the proposed error recovery mechanism

Unlike the normal system operation as depicted in Figure 3.6, in case of memory errors,
Figure 3.8 shows an example of the additional operations needed to recover of an error
occurs during the execution of τ2. Basically, the execution of τ2 is aborted and the task
is reloaded to the same partition right in the next TDMA slot of the corresponding core
since it becomes the highest priority task.

66

3.4.1 Extending Schedulability Analysis for Error Recovery

Based on the description mentioned above, in this section we derive a safe bound on the
worst case response time for the task under analysis τi. Since we follow a similar execution
model, we employ the same analysis framework introduced in Section 3.3.1. However, we
need to account for the recovery overhead in the analysis. During the analysis we assume
that Ci is the adjusted worst-case execution time of τi which includes all overheads, such
as the context-switch and any needed recovery operation done on the core.

For simplicity, we discuss the case in which only one memory error can occur in two
consecutive period of any task in a two cores system. However, the analysis could be easily
extended to account for more frequent errors and with more than m = 2 cores.

Ta
sk

's
 P

rio
rit

y

τ1

τ2

τ3

Time
0 6 11 171 2 3 4 5 7 8 9 10 12 13 14 15 16 18 19 20 21 22 23 24 25 26 27

X X X X X X X X

D
M

A

T
D

M
A

S

lo
ts X X

τ4

τ
5

X X X

Interval
1

Interval
2

Interval
3

Interval
4

Interval
F

hi
gh

er
 p

rio
rit

y
ta

sk
s

lo
w

er
 p

rio
rit

y
ta

sk
s

ta
sk

 u
nd

er

an
al

ys
is

B H

E
X X

28 3429 30 31 32 33 35 36 37 38

X XX

F

R

Sub Interval
U

Sub Interval
1

Sub Interval
2

Figure 3.9: Task scheduling with illustration of error recovery mechanism

Figure 3.9 depicts an illustrative example of the worst case scheduling scenario (critical
instant at time t = 2 and following busy interval) for an example task set where τ3 is the
task under analysis. The schedule depicts a busy period where τ3 suffers interference from
two higher-priority tasks, τ1 and τ2.

As in Section 3.3.1, we consider the busy period as composed by a sequence of scheduling
intervals Interval2, Interval3, Interval4 (each bounded by bold vertical lines in the figure),
followed by a final interval IntervalF . During each scheduling interval, only one blocking
or interfering task runs. During the final interval, the task under analysis runs. Similar to

67

Section 3.3.1, the size of the TDMA time slot is σ, which is assumed to be long enough
to load or unload any task including any extra overhead due to managing the recovery
mechanism.

3.4.2 Response Time Calculation

Building on the above-mentioned definitions, we can follow the same technique detailed
in Section 3.3.1 to compute the worst case response time for a task under analysis τi (τ3

in Figure 3.9). In Section 3.3.1, the response time of τi is computed by adding three
components: (1) the blocking time B caused by a lower priority task that starts executing
before the beginning of the busy interval; this is Interval1 executing task τ5 in the figure;
(2) the interference H comprising the remaining scheduling intervals in the busy period,
which are Interval2, Interval3 and Interval4 in the figure. The number of such intervals is
equal to the number of interfering higher priority jobs plus one, since an extra lower priority
job that starts loading before the beginning of the busy period (τ4 in the figure) can execute
within the busy period itself; (3) the worst case length F for the final interval IntervalF
during which the task under analysis is executed, up to the finish time for the unload
operation of τi. Therefore, the response time of the task under analysis is Ri = B+H+F ;
since the length H of the interfering intervals depends on Ri, this is computed using a
standard iterative method. In particular, notice that the number of interfering higher
priority jobs is computed based on Ri − F rather than Ri: once τi starts executing in
IntervalF , newly arriving higher priority jobs cannot delay its execution anymore.

As proved in Lemma 3.4, the critical instant is produced when the task under analysis
τi and all higher priority tasks arrive immediately after a lower priority task has started
loading into a partition, and the other partition was loaded with another lower priority
task as late as possible (i.e., two slots before). Based on the critical instant, we then obtain
B = max(Cl, 2 ·σ)−σ, where τl is the lower priority task with the largest execution time.
Finally, based on Lemma 3.5 in Section 3.3.1, the maximum length of the final interval is
F = max(Ci + 5 · σ, 7 · σ).

Compared to the analysis in Section 3.3.1, here the analysis accounts for the possible
memory error/recovery that might lead to a task reschedule. We show that we can use
the same response time iteration as in Section 3.3.1 to calculate the response time of the
task under analysis after extending H or F depending on when the memory error/recovery
takes place.

68

3.4.3 Accounting for Error Recovery

Since we assume that no more than one error can occur for any two consecutive periods of
any task, it follows that during the busy interval of the task under analysis τi there can be
at most one task that suffers one error. A failed task is then rescheduled within bounded
time.

Lemma 3.6. A failed task that is rescheduled with highest priority will be reloaded after
at most m TDMA slots.

Proof. Since the failed task will be raised to be the highest priority task in the system and
the load has priority over unload, it is guaranteed to reload the failed task in the same
partition during next TDMA slot of the corresponding core, which is once every m slots.
Therefore, the failed task is guaranteed to be reloaded after m TDMA slots, 2 in the case
of 2 cores as shown in Figure 3.9.

At the task level, the error might occur during the load, execute, or the unload of the
task. However, to produce the worst-case workload induced by a task to the schedule, the
memory error must happen as late as possible during the unload of the task.

Lemma 3.7. A task generates the worst-case workload induced into the busy interval when
the memory error occurs as late as possible, i.e. during the unload phase.

Proof. There are three cases in which the error can occur, (1) during the load, (2) during
the execution, and (3) during the unload. Case (1) does not incur a rescheduling overhead.
This is because the error is recovered during the load of the task. The associated overhead is
already included in the TDMA slot size by accounting for the time of copying the corrupted
word from the relevant redundant memory. However, in case (2), the execution of the task
is aborted (hence partially wasted) and the task has to be rescheduled to load again after
m TDMA slots. Finally, in case (3) the task is fully executed and unloaded before being
rescheduled and reloaded after m TDMA slots; since this case results in the most (wasted)
time added to the busy interval, it is the worst case.

Based on Lemma 3.7, we assume that a memory error always occurs as late as possible
during the unload phase of a task to capture the worst case.

At the schedule level, we classify the memory error/recovery based on when it occurs
with respect to the task under analysis, (1) prior to the final interval in which the task
under analysis runs or (2) during the final interval.

69

Error Recovery Prior to The Final Interval (IntervalF)

Lemma 3.8. For an error that occurs prior to F , adding an extra interfering interval to
H executing the task in the system with the largest execution time other than τi leads to
the worst case response time for the task under analysis.

Proof. By definition, the error has to be in H or B to affect the response time of the
task under analysis. Based on Lemma 3.7, the error should occur during the unload of
a task; hence, the recovery mechanism forces the failed task to be rescheduled, i.e., a
new scheduling interval is added to the schedule. The rescheduling of the failed task will
account for the execution and the load/unload operations of the failed task. Furthermore,
regardless of the tasks priority, the rescheduled (failed) task always runs as the highest
priority in the system, thus this additional scheduling interval causes interference to the
task under analysis.

Since we cannot make any assumption on which task might fail, lower-priority task
or higher-priority task, it is safe to assume that the longest executing task in the system
other than the task under analysis will be scheduled to run in the induced interval. Finally,
note that even if the task that fails is the one executed in B, the rescheduled task will
execute during H including its load/unload memory operations. Since Algorithm 3.1 is
able to correctly upper bound the interference in H caused by any task without making
any assumption regarding their order, we then simply add the induced interval to H to
capture the worst-case response time for τi.

Based on Lemma 3.8, let Hrec be the computed length of interfering intervals including
one restarted task. To give a concrete example on how an error happening prior to the
final interval (IntervalF) extends H, refer to Figure 3.10. In this example, τ5 fails during
unload; it is reloaded at time 8-9 and executes in a new third interval in place of τ1; τ1

then executes in the fourth interval and τ2 in a fifth interval. Since our analysis bounds
the length of the intervals in H without making any assumption on the order of the tasks,
this is safe. Note that the analysis is based on H always having tasks ready to load by
definition, which is not the case for IntervalF , thus requiring a separate analysis in Lemma
3.9.

Error Recovery in The Final Interval (IntervalF)

Lemma 3.9. For an error that occurs within IntervalF , the maximum length of the in-
terval with M = 2 is Frec = 2 ·max(Ci + 5 · σ, 7 · σ) + max(Cu, 4 · σ)− 2 · σ, where τu is
the task in the system with the largest execution time other than τi.

70

Ta
sk

's
 P

rio
rit

y

τ1

τ2

τ3

Time
0 6 11 171 2 3 4 5 7 8 9 10 12 13 14 15 16 18 19 20 21 22 23 24 25 26 27

X X X X X X X X

D
M

A

T
D

M
A

S

lo
ts X X

τ4

τ
5

X X X

Interval
1

Interval
2

Interval
3

Interval
4

Interval
F

hi
gh

er
 p

rio
rit

y
ta

sk
s

lo
w

er
 p

rio
rit

y
ta

sk
s

ta
sk

 u
nd

er

an
al

ys
is

B H

E
X X

28 29 30

F

R

Interval
5

Figure 3.10: Example showing how H is extended by an induced interval due to error
recovery prior to IntervalF

Proof. As defined earlier, IntervalF starts with the execution of the task under analysis
τi and finishes with the end of the unload phase of τi. Based on Lemma 3.7, in the worst
case, the error occurs during the unload phase. Therefore, the error must occurs in the
unload phase of τi, otherwise τi will unload successfully and the interval finishes.

Based on Lemma 3.5, in the normal case, the unload operation for τi completes after at
most max(Ci+5 ·σ, 7 ·σ) time units from the beginning of the interval; in Figure 3.9, this
occurs at time 27. However, in the case of memory error during the unload operation and
task recovery, IntervalF is extended. To simplify the computation of the worst-case length
Frec of IntervalF accounting for recovery, we divide the interval in three sub intervals. The
first execution of τi is contained in the first sub interval SubInterval1, which finishes with
the first (failed) unload of τi. The last sub interval SubInterval2 starts with the second
execution of τi after the reload and ends with the (successful) second unload, time 37 in
Figure 3.9. In the worst case, there can be a middle interval SubIntervalu in which another
task τu is loaded into the other partition and executed.

Based on Lemma 3.6, τi will be reloaded afterm TDMA slots (2 in our case). SubIntervalu
finishes and SubInterval2 starts either when the reload operation is complete (case shown in
the figure) or when τu finishes, whichever happens last. Since in the worst case SubIntervalu
starts after τu has been loaded, and we need m TDMA slots for the failed unload and

71

m TDMA slots for the reload of τi, the length of SubIntervalu can be upper bounded
as max(Cu, 4 · σ) when m = 2. The lengths of the sub intervals SubInterval1 and
SubInterval2 are calculated the same way as in Lemma 3.5 as discussed above. However,
as shown in Figure 3.9, SubInterval1 and SubIntervalU overlap by two TDMA slots (time
25 to 27 in the figure). This is because the length of SubInterval1, as in Lemma 3.5, is
calculated up to the end of the unload phase, while SubIntervalU starts m = 2 slots before.
To overcome this overlap, we subtract the overlapped time which is 2 · σ when m = 2.

As a result, the length of IntervalF is computed as:

Frec = SubInterval1 + SubIntervalU

+ SubInterval2 − 2 · σ
= max(Ci + 5 · σ, 7 · σ) + max(Cu, 4 · σ)

+ max(Ci + 5 · σ, 7 · σ)− 2 · σ,

which is the same as the value in the hypothesis.

In general, we do not know which case will lead to the worst response time calculation
for τi, when the error occurs before IntervalF (case 1) or within IntervalF (case 2). As a
result, we independently calculate both iterations:

R1
i = B +Hrec + F, (3.1)

R2
i = B +H + Frec, (3.2)

and take the maximum response time among R1
i , R

2
i . In particular, note that it is easy

to see that Frec − F is larger than the size of the additional interval added for case 2.
This is the main reason why we chose to reschedule failed tasks at the highest priority:
it minimizes the worst case length of IntervalF in case the task under analysis fails. On
the other hand, rescheduling the task at higher priority means that we have to consider
any task, rather than just higher priority tasks, for the extra interval in case 2, but as
discussed this is generally not the worst case. However, note that we cannot formally
avoid computing the iteration in Equation 3.1 because the interfering window for higher
priority jobs is based on R1

i − F = B +Hrec, which is larger than R2
i − Frec = B +H.

3.5 Summary

In this chapter, we have discussed our strategy for executing real-time tasks according to
the 3-phase model. We assume a partitioned system where tasks are statically pinned to

72

cores. Each core is augmented with a dual-ported SPM divided in two partitions: this
allows us to execute the current task out of one partition, while the DMA engine unloads
the previous task and loads the next one in the other partition. As long as the length of
DMA operations is less than the execution time of the task, the memory transfer time is
completely hidden. Furthermore, since the task accesses local memory only, its execution
time is not affected by contention to shared memory resources.

Isolation among cores is guaranteed through DMA scheduling. In particular, we con-
sider two different scenarios: in the first case, the schedule happens at the hardware level,
so that each DMA operations initiated by each core are guaranteed to receive a fixed por-
tion of memory bandwidth. In the second case, we explicitly enforce a TDMA arbitration
between DMA operations of different cores by programming the DMA engine in software.
We formally described a set of rules to co-schedule core execution and DMA transfers
in both cases, and developed corresponding sufficient schedulability analyses for sporadic
task sets based on fixed-priorities. To avoid wasting time loading tasks that are only par-
tially executed, we consider non-preemptive task scheduling. However, we also extend the
analysis to a limited-preemption model where each task is divided into a set of sequential
intervals, and preemption is possible between intervals. Finally, we demonstrated how our
strategy can improve fault-tolerance by restarting faulty tasks from the copy stored in main
memory.

In the next chapter, we will show how the discussed techniques can be practically
implemented based on the case study of two different embedded platforms. We also provide
an evaluation of the presented scheduling schemes against previous work based on measured
benchmarks running on the platforms.

73

Chapter 4

System Implementation

In Chapter 3, we introduced a set of scheduling mechanisms and associated schedulability
analyses for 3-phase tasks in a partitioned real-time multi-core system. To prove the appli-
cability of the discussed techniques, in this chapter we discuss the system realization of the
proposed execution and scheduling methodologies on two different embedded platforms. In
particular, in Section 4.1, we describe the system realization on an Xilinx FPGA platform
using soft-core processors; since we have complete control over the hardware, this imple-
mentation relies on the variable-size DMA operation scheme detailed in Section 3.2. Then,
in Section 4.2, we describe the system realization on a commercial embedded platform,
the Freescale MPC5777M micro-controller unit (MCU)[12]. Since this platform does not
support per-core DMA engines nor a predictable memory arbiter, we rely on the fixed-size
DMA operation scheme based on a TDMA schedule of the DMA engine, as discussed in
Section 3.3. The COTS platform also satisfies the requirement for the implementation of
the fault-tolerant scheme described in Section 3.4. We evaluate the proposed systems with
a set of both synthetic and embedded automotive benchmarks from the EEMBC suite
[134].

4.1 Implementation on an FPGA Platform

Since we consider a partitioned task system where each core gets a specific set of tasks, in
this implementation, we discuss the details of one core system. We assume that the system
can be scaled to multiple cores by duplicating the architecture. Note that, when more than
one core are realized, the memory bandwidth must be controlled and divided between the

74

cores in a predicable manner [96]. Each core runs a full software stack (including the OS),
and is fully isolated from other cores.

4.1.1 Hardware Architecture

To recap our assumptions about the hardware mode, we consider a system where each
processor is augmented with a dual-ported local memory (SPM) and a DMA component.
We further assume that the CPU and the DMA can access different portions of the local
memory concurrently without causing mutual interference. We utilized the MicroBlaze [10]
soft-core processor in our implementation. We disabled the use of cache and replaced
that with on-chip block RAM to implement the SPMs. Since MicroBlaze has separate
instruction and data interfaces, we implemented two local SPMs, I-SPM and D-SPM.
The size of the SPM is limited by the available on-chip RAM. In our implementation,
each SPM was 64-KB. This was to match the maximum cache size that MicroBlaze can
be configured with using its configuration tool. Later in Section 4.1.4, we compare the
hardware resource utilization for our proposed SPM hardware architecture against similar
implementation using caches instead of SPMs.

As shown in Figure 4.1, The CPU accesses memory through the Real-time Scratchpad
Memory Units (RSMUs). The RSMUs are connected to the CPU using the Local Memory
Bus that provides single-cycle access latency. The RSMUs direct the memory access either
to the local SPM or to the system bus based on the virtual address provided by the CPU.
In addition, the RSMU provides internal memory-mapped control registers to allow for
software management. Specifically, the RSMU provides address translation for the loaded
tasks in the SPM. According to our design methodology that relies on the knowledge
from the scheduling level, we were able to simplify the address translation mechanism.
The RSMU translate addresses in constant time without access any lookup tables as in
conventional MMU. For this reason, unlike other SPM management units [174, 175, 176],
the RSMU hardware is scalable without any dependence on the number of translated tasks
or memory blocks. The access latency to the local SPM through the RSMU is one cycle.

4.1.2 Address Translation

As depicted in Figure 4.2-(a), each RSMU exposes a range of memory addresses. If the
CPU generate and address outside the RSMU address range, the RSMU forwards the
access to the system bus. This allows the CPU to access main memory and other memory-
mapped devices, such as I/O peripherals. On the other hand, if the CPU-generated address

75

OS + sharedlib

General-Purpose

Partition #2

General-Purpose

Partition #1

I-SPM

OS + sharedlib

General-Purpose

Partition #2

General-Purpose

Partition #1

D-SPM

CPU

Figure 4.1: System-Level Block Diagram

corresponds to the RSMU address range, it falls into two categories, 1) the RSMU Physical
space and 2) the RSMU virtual space. The physical space corresponds to the locally
connected SPM, as shown in Figure 4.1. In other words, the RSMU’s physical address
range is directly mapped to the local SPM. For example the address range from 0x05000000
to 0x05010000 (64-KB) is directly mapped to the SPM address range from 0x00000 to
0x10000 (64-KB). This address range is suitable for permanent residing software that
get loaded at boot time, such as important OS functions and shared libraries. Whereas,
accessing the RSMU virtual address space needs translation to the physical address space.
This address space is suitable for real-time task that needs to be loaded into the SPM
at runtime. Basically, real-time tasks are compiled and then linked to a non-overlapping
address ranges withing the RSMU virtual address space, as show in Figure 4.2-(b). At
boot time, the tasks are loaded into main memory based on their load addresses as defined
in the linkage stage, Figure 4.2-(c). Finally, when a task is loaded into the SPM, at the
context switch, the RSMU is configured to perform address translation for the executing
task. Based on how the RSMU is configured at runtime, the RSMU performs address
translation according to the following simple function:

SPMphysical = (CPUvirtual > TER)? CPUvirtual − ATOR : CPUvirtual

Where TER is the translation-edge register, e.g., 0x05010000 in our case, and the ATOR is

76

the active task offset register. For example, if the value stored in the ATOR is 0x06020000
and the value stored in TER is 0x06010000, then the CPU-generated address, such as
0x060200AA, will be translated into 0x000AA. The value of the ATOR register is determined
by the scheduler based on where in the SPM the task is loaded. Note that, given the fact
that only one task is executing out of the SPMs at any given time, the RSMU design is
significantly simplified to translate only one task at a time.

In this implementation, the RSMU address space covers 1 MB range, which is sufficient
to link all critical tasks in our evaluation to the virtual space of the RSMU. Note that, the
RSMU only needs 20-bits comparators to perform the translation form its virtual address
space to the physical address space, which leads to a faster hardware.

0x00000000

0x03FFFFFF

Main
Memory

D-RSMU
Virtual Space

D-RSMU
Physical Space

I-RSMU
Virtual Space

I-RSMU
Physical Space

Main
Memory

D-RSMU
Virtual Space

D-RSMU
Physical Space

I-RSMU
Virtual Space

I-RSMU
Physical Space

Data

Code

Main
Memory

D-RSMU
Virtual Space

D-RSMU
Physical Space

I-RSMU
Virtual Space

I-RSMU
Physical Space

Data

Code

Main
Memory

D-RSMU
Virtual Space

D-RSMU
Physical Space

I-RSMU
Virtual Space

I-RSMU
Physical Space

Data

Code

Data

Code

(a) Address Map (b) Linkage (c) System Boot (d) Run-time
 execution

0x05000000

0x05010000

0x050FFFFF

0x06000000

0x06010000

0x060FFFFF

Figure 4.2: RSMU Memory Translation

4.1.3 Software Implementation

To support the proposed scheduling and execution models, we extended FreeRTOS to
manage the SPM space, DMA transfers, and RSMUs operations. All software components
including the OS are compiled together to produce a single system binary image. The
SPM is partitioned in software to three partitions. As shown in Figure 4.1, the SPM has

77

two general purpose partitions mainly to load tasks into. The third partition is to load
OS-level critical functions, such as the task scheduler and a small system heap.

To simplify task loading and unloading to and from the SPM, we developed a linker
script to combine all task’s related code sections in one location (adjacent memory blocks).
Similarly, we combine all task’s related data sections in one location. This two memory
blocks makes up what we call the task image. The space required for the execution stack of
the task is also included in the image, hence get loaded and unloaded with the task image.
Note that, the software system is compiler independent, and only needs some inputs via
the linker script to setup tasks images and their load addresses in main memory. At boot
time, the boot loader loads each task to its load address in main memory. Note that, since
tasks virtual addresses are linked to the RSMU virtual space, they must be loaded into the
SPM before they can run.

Since we mainly consider Fixed-priority non-preemptive scheduling, the scheduler is
invoked either by the DMA finish interrupt, or when a task yield the execution (finish). To
support task preemption and limited preemption schemes, the scheduler can be invoked by
other devices interrupt, such as I/O peripherals and the system timer. At every context
switch, the scheduler can make tow scheduling decisions. First, the scheduler programs
the DMA to load the top priority pending task into one SPM partition. If the partition
is empty, e.g., the previously loaded task finished but not unloaded yet, the scheduler
program the DMA to unload the previous task before loading the next one. Second, the
scheduler configure the RSMU translation registers for the already loaded task on the other
partition if any. Lastly, the scheduler context switches to the scheduled task if any. Not
that, the scheduler does not block waiting for the DMA to finish as the DMA operations
will run in parallel and will be overlapped with the CPU execution of the newly scheduled
task. Therefore, on the DMA setup time is incurs during the context switch routine. The
overhead of the OS context switch routine is accounted for in the schedulability analysis.

The proposed system is transparent to application, just like in a cache, as the man-
agement of the hardware resources (SPM space, DMA, and RSMU) and task execution
mechanism is all done at the OS level. This ensures that porting applications to our system
is straightforward; software does not need code annotation, special machine-instructions
or special compilers to take advantage of the described management technique. The main
trade-off is that our scheme requires the task image to fully contained in one SPM parti-
tion. However, as discussed earlier in Section 3.1, known methodologies exist [128, 145, 94]
to split a large application into smaller segments that are individually compliant with the
imposed constraint.

78

4.1.4 Evaluation

The evaluation is divided into three subsections, hardware architecture, performance, and
system schedulability. In addition, in this evaluation, we adopt the scheduling scheme
discussed in Section 3.2, in which the DMA time is dynamic base on the tasks sizes.

Hardware Architecture

To evaluate the hardware, we compare the proposed hardware architecture, shown in Fig-
ure 4.1, to the baseline hardware architecture, shown in Figure 4.3. The realization of
both systems has the same amount of software-usable on-chip memory, 128KB: 64KB for
instructions and 64KB for data. The hardware prototyping is done on Xilinx ZC706 FPGA
evaluation board [6]. The CPU is a Microblaze 32-bit soft-core processor [10]. In addi-
tion, the platform has an external 1-GB DDR3-SDRAM, which serves as main memory.
The FPGA chip on the ZC706 board has much more on-chip memory than the 128KB.
However, the configurable caches (I-cache and D-cache) on the Microblaze are limited to
maximum of 64KB each. Therefore, for the sake of fair comparison we have limited the
SPMs to the same sizes.

CPU
D-Cache I-Cache

Figure 4.3: The baseline hardware architecture with cache memory

Tables 4.1 and 4.2 show that the architecture with SPM only is more resource saving
and can run on higher operating frequency than the architecture with caches only. The
saving in the hardware resources (area) can be re-utilized. For example, it can be used to

79

have more on-chip memory, which can lead to more performance of the system or can be
used to implement any extra functionality. To depict the effect of design complexity on the
operating frequency as pure as possible, we conducted the hardware synthesis on minimal
design that has a Microblaze CPU and the on-chip memory (caches or SPMs). This way,
we can closely capture the complexity of the implemented, direct-map-8-words-per-line,
cache memory of the Microblaze without interference of the other components that can
reduce the frequency either for their complex designs or due to suboptimal place and rout.

Table 4.1: Maximum operating frequency comparison

Hardware Resource Cache SPM Gain Ratio
maximum operating frequency 200.3 MHz 243.7 MHz 1.22 X

Table 4.2: Hardware resource comparison:
in this specific implementation, each block RAM is 36 Kilobits (Kb).

Hardware Resource Cache SPM Saving Ratio
flip-flops (FF) 5478 3071 2407 1.78

lookup tables (LUT) 5729 3436 2293 1.67
memory LUT (MLUT) 410 169 241 2.43
block RAM (BRAM) 37 33 4 1.12

The performance of the DMA is entirely predictable as the DMA does not interfere with
the CPU to access the main memory. The DMA timing is evaluated by, first, measuring
the amount of time required to transfer some fixed amount of data from main memory to
scratchpad and vice-versa. After that, the estimated timing for a transfer of any size is
derived based on linear regression. The estimated timing for a transfer of any size is:

DMA(b) = 215 + 0.303 ∗ b,

where DMA(b) is in cycles and b is in bytes.

The above equation does not include the DMA setup overhead required to prepare the
DMA transfer. The DMA setup overhead along with other OS overheads are shown in
Table 4.3.

80

Table 4.3: Software Overheads

Cycles
Context Switch Cs 450

DMA Set-up Overhead DMAsetup 53
Timer Overhead ts 226

Software Performance

About 1050 lines of code were added to the FreeRTOS kernel to support our scratchpad
management scheme. Overall, the compiled size of the OS is small (' 18.5KB) and,
depending on the required features and libraries needed by the real-time tasks scheduling
and resource management, only tiny part of the OS is required to be stored in the SPM,
starting from 4.5 KB for code and 324 B for data.

A set of both synthetic and real benchmarks is executed on the platform in order to
obtain data towards performance and schedulability analysis. The a set of the well-known
automotive EEMBC benchmark suite [134] is selected to represent real applications used
in the automotive real-time domain. The benchmarks are configured to consume all input
data based on the number of iterations. Thus, the execution time is related to the size of
the input data. Benchmarks larger than the size of the local SPM partition are broken up
into smaller chunks, e.g., we have configured each benchmark so that it does not consume
more than half of the SPM size (32KB). In addition, benchmarks are configured not to
run for very long time to resemble real-life embedded real-time applications; we limited the
benchmarks to run up to 1ms maximum. Table 4.4 reports, for each benchmark, the size
of code and data, the execution time out of the local memory (cold cache, hot cache and
SPM), the execution time ratio between the SPM case and the cold cache case, and the
time taken to load code and data, using DMA, into the SPM and the time taken to unload
only data from the SPM. All times are reported in cycles (cyc) and the sizes are reported
in bytes (B). Note that, in this evaluation we considered variable DMA load and unload
times. Therefore, we reported these times for each application as shown in the table.

We evaluate the performance of the reported application, Table 4.4, on both systems.
The evaluation is based on simulations and uses measures extracted from the running
hardware, as reported in Table 4.4. In the case of the cache system, building an accurate
analytical model of the complex cache is difficult. Therefore, a very abstract and optimistic
cache model is considered. Although the hardware reported in Table 4.1 and Table 4.2 are
for simple direct-mapped cache, a fully-associative cache is modeled with LRU replacement
policy. The degraded search performance usually associated with fully-associative cache

81

Table 4.4: Benchmarks Results

Benchmark Code size(B) Data size(B) Cold(cyc) Hot(cyc) SPM(cyc) Difference(cyc) Ratio(%) load(cyc) unload(cyc)
a2time 3640 5340 100811 97672 97276 3535 3.51 3152 1834
aifftr 5040 4956 108885 107003 106405 2480 2.28 3460 1717
aifirf 3204 3024 110192 109434 109180 1012 0.92 2318 1132
aiifft 4592 4940 96596 94102 94065 2531 2.62 3319 1712

basefp 2636 2320 102822 101275 101099 1723 1.68 1932 918
bitmnp 19716 2968 95917 92219 91888 4029 4.20 7408 1219
cacheb 4236 6524 99100 97719 97644 1456 1.47 3691 2192
canrdr 3080 9892 113842 111692 104833 9009 7.91 4362 3213
idctrn 10908 3402 123548 120881 106959 16589 13.43 4767 1246
iirflt 6648 2144 106889 103545 97278 9611 8.99 3095 865

pntrch 3256 6356 87147 86067 80781 6366 7.30 3343 2141
puwmod 3896 1936 122314 120160 103177 19137 15.65 2198 802
rspeed 1956 5732 99406 98678 94326 5080 5.11 2760 1952
tblook 4228 1672 102847 97984 97645 5202 5.06 2251 754
ttsprk 10764 5704 101760 99780 97272 4488 4.41 5421 1944

synthetic 128 63496 73290 7421 7409 65881 89.87 19709 19455

is not considered here, and the same access latency of the SPM is assumed, which is one
clock cycle. Despite the access latency of the cache, the complicated circuit of the fully-
associative cache can negatively affect the operating frequency of the system as it is part of
the critical data path, and this is not considered in the model as well. This very optimistic
model of the cache is aimed to favor the cache system so that the comparison results will
be more authentic toward the SPM system. It is highly expected that in real hardware the
cache system will do worse than in this evaluation.

The total execution time of an arbitrary fixed schedule on both systems is captured.
This will depict the difference in the software execution performance on both systems
regardless the fact that the SPM system provides predictable execution. The experiment
was to execute the applications in Table 4.4 sequentially (one after another) and report the
total execution time for each application. Then the experiment is repeated few millions
times but with different application order in each time. The order is picked randomly with
no repetition. Finally, to favor the cache system, we reported the average execution time of
each application instead of the worst case execution time. In the case of the SPM system,
the execution time of an application is always fixed (predictable). Figure 4.4 compares
the two systems in terms of applications execution time. Note that, our execution model
exploits the overlap between CPU execution and DMA loading to hide access latency to
main memory.

From Table 4.1, we notice that the SPM system can operate at higher frequency. There-
fore, Figure 4.4 compares three systems: the cache system, the SPM system running at
the same frequency as the cache system, and the SPM2 system running at 22% higher fre-

82

quency. This figure depicts that the SPM system, with the all associated overhead (Table
4.3), can be a strong candidate to replace the traditional hardware-managed cache. Figure
4.5 shows the applications speedup if they run on the SPM system instead of the cache
system. Among the reported benchmarks, idctrn and puwmod run about 1.5 faster on
the SPM system than the average case on the cache system, which reflects their memory
intensive behaviors.

Figure 4.4: Execution time comparison between Cache and SPM:
SPM1 runs at the same frequency as cache, SPM2 runs at 22% higher frequency

83

Figure 4.5: Application execution speedup:
SPM1 runs at the same frequency as cache, SPM2 runs at 22% higher frequency

Schedulability

The introduced fixed-priority scheduling scheme, as in Section 3.2, is evaluated against
other scheduling schemes, either based on caches such as PREM [178] or based on SPM
such as Carousel [176]. As discussed in Section 2.1, PREM uses the CPU to prefetch the
task into the local cache, while Carousel stalls the CPU until the DMA loading is finished.
While both approaches effective wasting the CPU time while loading a task, we pipeline
the CPU execution and the DMA transfer to hide memory access latency.

Applications in Table 4.4 are used to generate sets of random tasks. Given a system
utilization, each application is randomly selected and assigned a random period in the
range between 5 ms to 100 ms. The task’s utilization is then computed based on the
application’s execution time out of the SPM and the selected period. At every iteration
a new task is randomly generated. The generation stops when the sum of the individual
tasks’ utilizations reaches the required system utilization. After that, the overhead is
added, such as context-switch and DMA setup.

In the case of multi-intervals tasks, similarly to the case of single-interval, each applica-
tion is randomly selected but assigned a random period in the range between 15 ms to 300
ms. Then, each generated task is randomly assigned a number of intervals between one
and five. Task’s intervals are equally sized; the interval size is the size reported in Table
4.4. We increased the random periods proportionally to the average increase in the size of
a task, which is 3X, to maintain the same average number of tasks and per-task utilization
across all cases. Carousel and PREM schedulability is verified by applying response-time

84

analysis as described in [176] and [178] respectively; the analysis incorporates the overhead
of context-switch as well as the blocking time due to non-preemptive DMA operations.

0.50 0.53 0.56 0.58 0.61 0.64 0.67 0.70 0.73 0.75 0.78 0.81 0.84 0.87 0.89 0.92 0.95 1.00

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

carousel RSMU

Utilization

S
c
h
e
d
u
la
b
il
it
y

Figure 4.6: Single-core schedulability comparison between carousel and our approach

Figure 4.6 shows the single-core case. The comparison, in this case, is only valid
between Carousel and our approach (RSMU) as PREM targets multi-core systems. The
figure shows the results in terms of proportion of schedulable task sets for Carousel and
our proposed approach. Each point in the graph, as for all other graphs presented in the
following figures, represents 200 task sets. As shown in the figure, our approach is able to
schedule a significantly higher number of task sets compared to Carousel. We believe that
such result shows that hiding the latency of memory accesses can have a very significant
impact on schedulability, even for systems such as the one in Table 4.4, where the time
required to load data from main memory can be relatively small compared to execution
time. The price we pay for such improvement is additional scratchpad memory: under
Carousel, only the currently executing task must be loaded in SPM. In our approach, an
additional partition must be reserved in SPM to pre-load the next scheduled task. Figure
4.7 compares Carousel and our system for the multi-interval case. The graph shows similar
results to the single-interval case where our approach is still able to schedule more task
sets compared to Carousel as expected.

For the partitioned multi-core systems, we simulate the number of cores by slowing
the memory by a factor of 4X for a four-cores system and by 8X for a eight-cores system.
This is applied to both Carousel and our approach. The following four figures compares the
three systems, Carousel, PREM and our system (RSMU). Figures 5.10 and 4.9 compare the
three systems, in the case of four-cores, for both single-interval and multi-interval systems

85

0.50 0.53 0.56 0.58 0.61 0.64 0.67 0.70 0.73 0.75 0.78 0.81 0.84 0.87 0.89 0.92 0.95 1.00

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

carousel RSMU

Utilization

S
c
h
e
d
u
la
b
il
it
y

Figure 4.7: Multi-interval single-core schedulability comparison between Carousel and
our approach

respectively. Similarly, Figures 5.11 and 4.11 compare the three systems, in the case of
eight-cores, for both single-interval and multi-interval systems respectively. The obvious
observation is that as the number of cores increases the schedulability of the three systems
decreases due to the longer time needed to load tasks into the local memory. However,
RSMU is negligibly affected by the increase in number of cores because RSMU successfully
hides the latency of the loading process of a task by overlapping it with the execution of
another task. In the single-core case the tasks’ execution times are dominating over the
DMA times due to the fact that the selected application reported in Table 4.4 have small
load and unload times compared to their execution times. Therefore, the schedulability
is not really affected by the memory performance. However, in the multi-core cases the
memory performance is degraded and the load and unload times take longer to finish.

In terms of single-interval versus multi-interval comparison, Carousel and PREM show
similar results in the multi-interval case to the single-interval case. On the other hand,
RSMU schedulability is slightly affected in the multi-interval case compared to the single-
interval case. This is mainly because of the increased number of intervals where a long
lower priority task can interfere with the task under analysis. However, RSMU is still able
to schedule significantly higher number of task sets compared to the Carousel and PREM.
Finally, in Figure 4.12 we show the effect of memory performance on schedulability of
each system. The figure shows that RSMU is more resistant against memory performance
degradation than the other two systems. The graph is plotted at 70% utilization in order
to show the three systems in the same graph from 100% to 0% schedulability. Based on
this graph, the experimented tasks set with 70% utilization can be scheduled in our system
with up to 20 cores sharing the bandwidth of the main memory, seven cores in PREM case,

86

and only two cores in Carousel case.

0.50 0.53 0.56 0.58 0.61 0.64 0.67 0.70 0.73 0.75 0.78 0.81 0.84 0.87 0.89 0.92 0.95 1.00

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

carousel PREM RSMU

Utilization

S
c
h
e
d
u
la
b
il
it
y

Figure 4.8: Single-interval 4-cores schedulability comparison between the three systems

0.5 0.53 0.56 0.58 0.61 0.64 0.67 0.7 0.73 0.75 0.78 0.81 0.84 0.87 0.89 0.92 0.95 1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

carousel PREM RSMU

Utilization

S
c
h
e
d
u
la
b
il
it
y

Figure 4.9: Multi-interval 4-cores schedulability comparison between the three systems

87

0.50 0.53 0.56 0.58 0.61 0.64 0.67 0.70 0.73 0.75 0.78 0.81 0.84 0.87 0.89 0.92 0.95 1.00

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

carousel PREM RSMU

Utilization

S
c

h
e

d
u

la
b

il
it

y

Figure 4.10: Single-interval 8-cores schedulability comparison between the three systems

0.5 0.53 0.56 0.58 0.61 0.64 0.67 0.7 0.73 0.75 0.78 0.81 0.84 0.87 0.89 0.92 0.95 1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

carousel PREM RSMU

Utilization

S
c
h
e
d
u
la
b
il
it
y

Figure 4.11: Multi-interval 8-cores schedulability comparison between the three systems

88

Figure 4.12: Each system’s tolerance to the degradation in memory speed @ 70% uti-
lization with multi-interval tasks

89

Figure 4.13: MPC5777M Block Diagram.

4.2 Implementation on a COTS Platform

In this section, we present a full system implementation of the proposed predictable execu-
tion and scheduling methodologies on a COTS embedded multi-core platform, the Freescale
MPC5777M MCU. OS support was implemented using Evidence Erika Enterprise1. Erika
Enterprise is an open-source RTOS that is compliant with the AUTOSAR2 (Automotive
Open System Architecture) standard. AUTOSAR is an open standard for automotive
architectures providing a basic infrastructure for vehicular software. Erika Enterprise fea-
tures a small memory footprint, supports multi-core platforms and implements common
scheduling policies for periodic tasks. Our implementation enhances predictability and
simplifies the OS design by exploiting hardware features that vendors are now including in
some modern families of multi-core platforms designed for the embedded market, such as:
separate I/O and memory buses, the presence of dual-port memories with DMA support,
and core specialization. We discuss the platform features in Section 4.2.1, followed by the
OS design in Section 4.2.2 and the evaluation in Section 4.2.3.

4.2.1 Platform Description

A brief summary of the architectural features of the MPC5777M MCU is provided in
Table 4.5, while a block diagram is reported in Figure 4.13. The SoC platform includes

1http://erika.tuxfamily.org/drupal/
2http://www.autosar.org/

90

http://erika.tuxfamily.org/drupal/

Table 4.5: Characteristics of Freescale MPC5777M SoC

Chip Name MPC5777M (Matterhorn)
Manufacturer Freescale
Architecture Power-PC, 32-bit

CPU Unit
2x E200-Z710 + 1x E200-Z709 +

1x E200-Z425 (I/O)
CPU Frequency Application Cores (300 Mhz)

I/O Core (200 Mhz)
Processing Unit CPUs, DMA, Interrupt Controller, NIC
Operational Modes Parallel + Lockstep (on one applicative core)

ECC Protection Cache, RAM, Flash Storage

Cache Hierarchy
L1 (Private Instructions + Data) +

Local Memory
Local Memory (SPMs) Instructions (16 KB) + Data (64 KB)

L1 Cache Size Instructions (16 KB) + Data (4 KB)
SPM Size 80 KB
SRAM Size 404 KB
Flash Size 8 MB
Main Peripherals Ethernet, FlexRay, CAN, I2C, SIUL
MEMU MEMU For SRAM, Peripheral RAM and Flash

two application cores, which we use to execute 3-phase real-time tasks, and an I/O core,
which we use to run the OS and all device drivers. Each core has a dedicated scratchpad
memory, whose size (80 KB) is smaller, but comparable to SRAM main memory (404 KB).

The platform includes a separate I/O bus, which allows the designer to route I/O
traffic without directly interfering with CPU-originated memory requests. The idea of
co-scheduling CPU activity and I/O traffic is not new and specific solutions have been
proposed in [41, 129]. However, traffic transmitted over the dedicated I/O bus needs to be
handled, pre-processed and scheduled before reaching the application cores; the I/O core
performs such operations. Just like the application cores, the I/O core features a scratchpad
memory that is used to buffer I/O data before they are delivered to applications.

Typically, devices that support high-bandwidth operations are DMA-capable. Instead,
slower devices expose memory-mapped input/output buffers that can be read/written using
generic platform DMA engines. Without loss of generality, we assume I/O data transfers
from/to the I/O core are performed by DMA engines and that data from I/O devices
can directly be transferred into the I/O core’s scratchpad memory. In other words, I/O
devices are not allowed to initiate asynchronous transfers directly towards main memory.

91

Figure 4.14: Block diagram of error handling circuitry.

This design choice allows us to perform co-scheduling of CPU and I/O activities to achieve
higher system predictability.

Note that no MMU is available on this platform. Hence, there is no support for virtual
memory. Instead, we use compiler techniques to generate position independent code that
can be loaded in either partition of an application scratchpad, as we discuss in Section 4.2.2.
In order to test and verify the safety features of the SoC, the chip also implements fake
error injection mechanisms that are helpful to verify the reaction to various faults. We use
these fault injection mechanisms to evaluate our system.

In the considered MPC5777M platform, there is a memory error management unit
(MEMU) that is responsible for collecting and detecting the faults in different memory
subsystems such as SRAM, SPM and Flash. In particular, the platform implements Hsaio
codes that provide single bit error correction and double bit error detection (SEC-DED).
Hsiao Code [73] for correction and detection is popular in modern embedded platforms.
The MEMU implements separate tables for reporting correctable and uncorrectable errors.
There are separate tables for each kind of memories. These tables contain the address of
the fault that caused error, moreover, there is a register inside the MEMU that tells if
the fault that occurred is a correctable or uncorrectable fault. On MPC5777M, there is
no way for the MEMU to send an interrupt to the CPU in case of a fault. There is a
separate FCCU module present on the chip that collects all the errors that are forwarded
to it from the MEMU. The FCCU module can be preprogrammed to take certain actions
based on a particular error. Moreover, it is also responsible of generating interrupt to the
processor to notify it in case any kind of errors that are being reported to it from the

92

MEMU. Figure 4.14 shows how different modules are connected to each other. In order to
detect the faults in the SPM, we registered a FCCU interrupt with application cores. This
interrupt gets generated and sent to all cores when an error is reported by the MEMU to
the FCCU in one of the memory subsystem.

As discussed in Section 3.4, the proposed recovery mechanism are effective as long as
no more than one bit error occurs in any of the memory subsystems (SRAM, SPM, Flash)
every two periods of any task. It is estimated that the FIT of SRAM memories is about
0.001, i.e. on average one bit upset is observed every 1011 hours of operation [151]. Flash
memory, on the other hand, shows low SER susceptibility [146]. Since the period of a
real-time task is typically tens or hundreds of milliseconds long, we deem this assumption
to be satisfied in the vast majority of embedded systems.

Error correction techniques to recover from faults that affect OS memory require special
attention and are not within the scope of this work. A promising approach in this context
is system check-pointing, i.e. periodically saving the system state of OS and copying it
into a more reliable piece of memory. Further research is required to seamlessly integrate
check-points into our SPM management scheme.

4.2.2 OS Design

We performed a porting of Erika Enterprise on the MPC5777M MCU, adding support
for UART communication interface, interrupt controller, caches, memory protection unit
(MPU), data engines (DMA), and Ethernet controller. The following subsections discuss
the design of individual OS components, including task configuration, task and DMA
scheduling, I/O management, and error recovery.

Task Configuration

In order to implement our SPM-centric OS, we have augmented Erika Enterprise to support
position-independent (relocatable) tasks. We rely on the compiler3 support for far-data
and far-code addressing modes. In this way, tasks are compiled to perform program-
counter-relative jumps and indirect data addressing with respect to an OS-managed base
register. We have extended the default task loader to exploit DMAs for transferring task
images from SRAM to local memories and vice-versa.

3Applications and OS are compiled using the WindRiver Diab Compiler version 5.9.4 - http://www.
windriver.com/products/development-tools/

93

http://www.windriver.com/products/development-tools/
http://www.windriver.com/products/development-tools/

In Erika Enterprise, tasks are compiled and linked directly inside the image of the OS.
For each task in the system, Erika-specific meta-data need to be defined. Additionally,
meta-data that extend the task descriptors for SPM-centric operations are required. Man-
ually configuring these parameters is tedious and error-prone; hence, we developed an OS
configurator. The tool uses high-level task definitions and generates the final configuration
for our SPM-centric OS. Specifically, each core is associated with a set of configuration
files that describe: number of tasks, their priority, task entry points, initial status and so
on. When a task is added, these files need to be configured accordingly.

First, the body of all the tasks is placed in an ad-hoc file. Similarly, task-specific data
that need to be preserved across activations are defined in different files and surrounded
with appropriate compiler-specific PRAGMA. This is fundamental to ensure that: (A) specific
linker section is used to store task code and data images; and (B) position-independent
data and instructions are generated. A separate file also defines the relocatable task table,
which stores the status of each relocatable task. This structure includes: (A) position in
SRAM of the task code and data images; (B) position of the task’s I/O data buffers; (C)
current status of the task (e.g. loaded, completed, unloaded); (D) SPM partition of last
relocation.

Task and DMA scheduling

The central idea of the proposed OS design is resource specialization. As previously men-
tioned, a specialized I/O core and I/O bus are used to handle peripheral traffic. Similarly,
a specific role is assigned to different memory resources in the system. Specifically, three
types of memory resources exist in our system, as depicted in Figure 4.13. First, flash
memories are used to persistently store application/OS code, read-only data, as well as
initialization values of read-write portions of main memory. Next, the SRAM (main)
memory contains writable application and system data that represent the time-variant
state of the system. Finally, scratchpad memories temporarily store a copy of code and
data images for those tasks that are currently being scheduled for execution.

In our solution, applications are never executed directly from main memory, thus we
adopt the following strategy: (1) task images are permanently stored in flash and loaded
into main memory at system boot; (2) a dedicated DMA engine is used to move task images
to/from SPM upon task activation; (3) a secondary DMA engine is used to perform I/O
data transfers between devices and I/O core; (4) tasks always execute from SPM; (5) only
task-relevant I/O data are transferred upon task load from the I/O subsystem. In the
implemented system, a DMA engine is used to position the image of a relocatable task

94

inside a SPM for execution. We refer to this DMA engine as application DMA. Similarly,
we refer to the platform DMA used for I/O transfers as peripheral DMA.

Figure 4.15: Interaction between I/O Core and Core 1 for task scheduling.

The work-flow followed by an applicative core and the I/O core at the boundary of
each TDMA slot is depicted in Figure 4.15; this work-flow implements the scheduling rules
for a fixed-size DMA operation system described in Section 3.3. Specifically, at each time
slot, the I/O core checks the status of the queue of active tasks belonging to the considered
core. If a task that is active for execution but not ready (i.e. not relocated in scratchpad)
is found, the I/O core checks which SPM partition (P1 or P2) is empty on the application
core. If any partition is found to be empty (Slot #1), the I/O core programs the application
DMA to load the topmost active task to the empty partition. Once the load is complete,

95

the I/O core updates the active and ready queues of the considered application core. The
latter operation allows the application core to begin the execution of the task (Slot #2).
Note that since only one task can be in running state on the CPU, there is always a SPM
partition that is available for load/unload operations.

I/O Subsystem Design

Together with memory resources, applications typically need to communicate with periph-
erals and thus require I/O data to operate. We propose an I/O subsystem design that
enforces a complete separation between task execution and the asynchronous activity of
I/O peripherals: this goal is achieved by offering to application tasks a synchronous view
of I/O data. It is achieved by distinguishing between data production and their dispatch
to/from tasks. In fact, we allow I/O data to flow from/to I/O subsystem to tasks only at
the boundary of load/unload operations.

As previously mentioned, a dedicated bus connects the SPM of I/O core with peripher-
als. Hence, asynchronous peripheral traffic can reach the I/O subsystem without interfering
with task execution. For each device used in the proposed system, the OS defines a stati-
cally positioned device buffer on the I/O core scratchpad. A device buffer is further divided
into a input device buffer and a output device buffer. The input and output device buffers
represent the positions in memory where data produced by devices and tasks (respectively)
is accumulated before being dispatched to tasks or devices.

In our design, peripheral drivers can operate with an interrupt-driven or polling mech-
anism. For DMA-capable peripherals supporting interrupt-driven interaction, the driver
only needs to specify the address in SPM of the device buffer from/to where data are
transferred. The driver is also responsible for updating device-specific buffer pointers to
prevent a subsequent data event from overwriting unprocessed data. For interrupt-driven
interaction with non-DMA-capable devices, the driver uses the platform peripheral DMA
to perform data movement. Similarly, the device driver is periodically activated and the
peripheral DMA is used to perform data transfer for polling-based interaction with devices.

In general, device-originated interrupts as well as timer interrupts for device driver
activations are prioritized according to how critical is the interaction with the considered
device. Nonetheless, all the device-related events are served with priority levels that are
lower than task-scheduling events, such as: (i) TDMA slot timer events and (ii) completion
of application DMA loads/unloads.

In order to interface with a peripheral, application tasks define subscriptions to I/O
flows. A subscription represents an association between a task and a stream of data at

96

the I/O device. For instance, a given task could subscribe for all the packets arriving at
a network interface with a specific source address prefix. Task subscriptions are metadata
that are stored within the task descriptor.

For each task in the system, a pair of buffers (for input and output respectively) is
defined on the SPM of the I/O core to temporarily store data belonging to subscribed
streams. Since the content of these buffers will be copied to/from the application cores
upon task load/unload, we refer to them as task mirror buffers. Consider the arrival of I/O
data from a device. As soon as the interaction with the driver is completed, the arrived
data is present in the corresponding device buffer. According to task subscriptions, the OS
is responsible for copying the input data to all the mirror buffers of those tasks subscribed
to the flow.

The advantage of defining mirror buffers lies in the fact that when a task needs to be
loaded, all the peripheral data that need to be provided are clustered in a single memory
range. Consequently, during the loading phase of a task, the application DMA is pro-
grammed to copy the content of the mirror input buffer together with task code and data
images to the application core. The reverse path is followed by task-produced output data
during the task unload phase.

Since I/O data are delivered to applicative tasks at the boundary of load/unload op-
erations, the approach presented in Section 3.3 for the calculation of tasks’ response time
can be reused to reason about end-to-end delay of I/O-related events.

Error Recovery

The design proposed so far attains the goal of achieving predictability in a multi-core
environment. However, in the event of a memory error, it does not provide any recovery
countermeasure. In order to augment the OS to recover from a memory error, we leverage
on the existing redundancy that is built-in by design in multi-phase task system.

In fact, in our system any read-only data of a running task (in SPM) is duplicated in
SRAM. On top of that, two copies of the R/W portion of the task are kept inside the
SRAM. Although one can also keep two copies of the read-only data of the task inside
the SRAM, this is not required because an additional copy of the read-only data is always
available in flash.

The redundant copies of a task inside the SRAM are used to recover the system from
a faulty state and allow to correclty handle one error every two periods of the same task
in any of the memory modules. First, we describe how the overall system with redundant

97

task copies works, then we explain how a fault in each of the memory modules (i.e. SRAM,
SPM and flash) is handled.

During normal operation of the OS, both the two copies of R/W data and one read-
only copy of the task in the system are the working copies. The OS data structures are
initialized with proper information about both copies as working copies and one of them
is marked as currently being used. When a task becomes active on an applicative core and
the TDMA slot for this core arrives on the I/O core, the I/O core first checks if there is
an empty partition available in one of the partition of the SPM. If an empty partition is
available, the I/O core programs the DMA to move the task from the SRAM copy marked
as currently being utilized into the SPM. Upon DMA completion interrupt, the I/O core
sends an interrupt to the applicative core for which a load is being performed. If both
of the partition are found to be full and none of the task on these partition is marked as
completed, then the I/O core does nothing during this slot. However, if any of the SPM
partition has a task that is marked as completed. The I/O core programs the DMA to
unload the task from the SPM into the SRAM. Once this operation is successful, the I/O
programs another unload DMA operation to download task from SPM into the SRAM to
update the second copy of the task in the SRAM. An overview of the scheduling approach
in case of normal operation is depicted in Figure 4.15.

As described in Section 3.4, In case of memory errors, additional operations need to be
performed as shown in Figure 3.8. In this case, the on-chip ECC modules detect memory
errors only when a read is performed on block affected by the bit flip. Upon detection of
an error, the ECC modules are programmed to (i) generate an interrupt to the application
cores and to (ii) report the memory address where the error occurred. In our system, we
consider the occurrence of memory errors in three different kinds of memories: SRAM,
SPM and flash. We now describe the proposed error recovery strategies.

Fault happens inside the SPM: Based on when a fault can be detected, the fault
inside the SPM can be categorized into two types: the first case corresponds to a fault
that happens in the read-only or read/write memory of the task during its execution; in
the second case, a fault in read/write memory is detected during unload.

Whenever a fault is detected, all the applicative cores receive an interrupt from the error
detection logic. Upon receiving the interrupt, all the applicative cores execute ISR 4.1 and
check if the memory location that caused the error lies within their SPM memory range.
Only the applicative core whose SPM was affected by the fault further executes the ISR 4.1.
The affected core further checks if the error happened during the execution of the task or
during the unload phase. This can be determined based on the SPM partition affected by
the fault, since the OS keeps track of the state and location of each task.

98

ISR 4.1 ISR on Application Cores From Error Detecting Logic
1 MEMU ISR on Applicative Cores()
2 if ErrorAddress within local core SPM Range then
3 if Error during execution then
4 Mark the SPM partition as empty
5 Reschedule task with highest priority
6 else if Error during unload then
7 if Error at first unload then
8 Update descriptor to use second copy of R/W data for next task

load
9 Mark SPM partition as empty

10 Reschedule task with highest priority
11 else if Error at second unload then
12 Mark second copy of R/W data as faulty
13 Handle task as successfully completed
14 end
15 end
16 end

In case the error is detected during the execution of the task, the applicative core marks
the SPM partition from where the task was executing as empty and reschedules the task
with the highest priority. This guarantees that the task is reloaded at the next TDMA
slot for this particular core, thus improving the worst-case response time of the task as
discussed in Section 3.4.1. This case is captured in ISR 4.1 at lines 3-5.

In the second case, the error is detected during the unload phase of the task. As
previously mentioned, during an unload operation, only read/write data are copied from
SPM to SRAM twice. The error can occur during the first or the second redundant copy.
In the first sub-case (A), the task had correctly terminated its execution phase, and the
error is detected before the first copy of task R/W data from SPM to SRAM is completed.
In this case, the second copy in SRAM is not updated, so that valid data from the previous
task execution are not overwritten with faulty data. Conversely, the first (faulty) copy in
SRAM is marked as faulty, so that the backup copy will be used at next reload. Next, we
mark the SPM partition from where the task was unloaded as empty and reschedule the
task with highest priority, like in the previous case. This scenario is handled in ISR 4.1 at
lines 7-10. In the second sub-case (B), the error is detected inside the SPM after the first
copy was successfully unloaded, and while the redundant copy was being updated. In this
case, we mark the second copy in SRAM as faulty and update the OS data structures to
use the first copy in the SRAM at next load. Since the task has successfully completed,
no task restart is required. This scenario is captured in ISR 4.1 algorithm at lines 11-14.

Fault happens inside the SRAM: As described earlier, there are two copies of the

99

R/W data inside the SRAM and one copy of the read-only data inside the SRAM, whereas,
a second copy of for the read-only data resides in flash. An error in SRAM can be detected
only when a task is transferred from SRAM to SPM (load). Potentially, the fault could
be directly reported to the I/O core by registering the corresponding interrupt. For faults
in SRAM, however, we do not register and interrupt with the memory error management
unit. Instead, we follow a synchronous approach: at every DMA completion interrupt, the
OS checks if any error was reported by the ECC circuitry. In case of a positive outcome,
the faulty address is derived.

If the faulty address lays within the memory range being loaded from SRAM, two cases
are possible. In case (A) the error affected the copy of R/W data used for the transfer, the
task is not marked as “ready” and its descriptor is updated to repeat another load at the
next TDMA slot using the backup R/W data copy. In the second scenario (B), the fault
affects the read-only data of the task in SRAM. In this case, the I/O core directly copies
the word that was corrupted by the error from flash to both the SRAM and the SPM. No
task re-load needs to be performed. The complete procedure handling cases A and B is
described in ISR 4.2.

ISR 4.2 DMA completion Interrupt
1 DMA Completion Interrupt()
2 if DMA completion interrupt for load then
3 if Unrecoverable error bit is set then
4 if Error in SRAM R/W data region then
5 Directly copy the word that caused error from backup SRAM copy

to faulty SRAM copy as well as to the SPM
6 else if Error in SRAM read-only data region then
7 Directly copy the word that caused error from flash to SRAM as

well as to the SPM
8 end
9 Resume regular operations for DMA completion – such as IPI to application

cores after moving task into ready queue.
10 end

Fault happens inside the Flash: The flash in our system is used during the bootup
process. We keep two copies of the OS image in flash. At bootup, we bring the task
read-only data from flash into SRAM. Moreover, we also allocate the R/W data of each
task in SRAM. At anytime during the bootup, if an error is detected in the first working
copy of the flash, we switch to the second copy of the OS image in flash. Next, we repeat
the bootup procedure from the new location in flash.

100

4.2.3 Evaluation

To validate the proposed design and implementation, we performed a series of experi-
ments, whose results are summarized in this section. First, we investigate the overhead
of SPM management. Next, we consider the performance and predictability benefits of
our approach with synthetic as well as real benchmarks. The achievable I/O bandwidth
supported by our design is also measured. Overhead of Software versus Hardware error
recovery is also evaluated. Finally, we investigate the schedulability results of the proposed
strategies.

SPM-Centric OS Overhead Evaluation

The most important parameter of our proposed system is the size of the TDMA slot. The
slot needs to be long enough to account for the load/unload of any task in the system. In
order to calculate the upper bound, we restrict the slot size to be greater or equal to the
footprint of the task with maximum size among the benchmarks. In addition, in the case
of recovery mechanism, the TDMA slot size must be long enough to allow two unloads of
the completed task. Therefore the TDMA slot size is equal to max(worst task load, 2 ·
worst task unload) + IO core ISR overhead. Table 4.6 shows the system parameters
including DMA times and TDMA slot size.

We have measured the DMA modules configuring overhead. In addition, since the
interrupt from the memory error management unit is delivered to all the application cores,
we have measured the overhead of ISR 4.1. This ISR has minimum and maximum overhead.
The minimum overhead occurs when the ISR only checks if the error address is relevant
or not and concludes by its irrelevance. On the other hand, the maximum overhead is
experienced in the case of a relevant memory fault. We also measured the maximum
overhead of I/O core ISR 4.2 for DMA completion interrupt. All of these results are
reported in Table 4.6.

Results of Achievable I/O Bandwidth

The performance of the proposed I/O subsystem (see Section 4.2.2) depends on the fre-
quency of load/unload operations. In order to measure the achievable I/O bandwidth of
proposed design, we have implemented support for the onboard Fast Ethernet Controller
(FEC). The FEC is capable of transmitting data at the highest bandwidth among all the
devices of the considered MCU. Hence, it represents the best I/O component to stress-test
our design.

101

Table 4.6: Details of OS Parameters

Parameter Time (µs)
DMA Load time (Largest Code, R and R/W Data size) 209

DMA Unload time (Largest R/W Data size) 61.5
DMA setup 3.16

Context switch 0.46
Minimum ISR overhead on Applicative cores 0.70
Maximum ISR overhead on Applicative cores 8

Maximum ISR overhead on I/O core for DMA completion 2
TDMA slot size 215

We have connected the FEC to an external node which generates constant-rate traffic.
Specifically, the traffic source generates a 1 KB packet every 100 µs (1000 Hz, about
82 Mb/s). The payload of each packet contains a flow-ID chosen from 4 different values in
round-robin. On used MCU, each applicative core runs two tasks that have subscribed to
I/O data flows based on packets’ flow-IDs. Device buffers and task (mirror) I/O buffers
have been dimensioned to accommodate a single packet per task, with an overwrite policy.

With this setup, we have derived the raw achievable bandwidth considering two different
values of TDMA slot size. Specifically, we measured the data rate of packets that are
processed and looped back on the network interface using the Wireshark packet analyzer4.
Our experiments revealed an achievable bandwidth for the outgoing traffic of 4 Mb/s
with a TDMA slot of 800 µs, and 8 Mb/s with a TDMA slot of 400 µs. Although this
represents a fraction of the physically available bandwidth (100 Mb/s), being able to sustain
a bandwidth higher than 1 Mb/s constitutes a promising result given that the platform
operates at a clock frequency of few hundred Hz.

4https://www.wireshark.org/

102

https://www.wireshark.org/

Results of Synthetic Benchmarks

Figure 4.16: Experimental execution time for synthetic benchmarks.

We investigate the performance of SPM-based execution as opposed to a traditional ex-
ecution model. For this purpose, we have developed a set of synthetic benchmarks that
exhibit different memory access patterns. Figure 4.16 depicts the runtime for such bench-
marks on one of the two applicative cores. The first cluster of bars refer to the runtime of
the benchmark that exhibits good data locality. Hence, when it is executed from SRAM,
caches are effective at hiding SRAM access latency and significantly reduce task execution
time. The next two clusters of bars show that misses suffered for only instruction fetches
or only data fetches already induce a significant execution slowdown (around 2x). The
need for accessing SRAM data also introduces runtime fluctuation (about 25%) as a result
of inter-core interference. Such effect becomes even more severe with applicative code that
experiences misses while accessing both instructions and data. If the cost of accessing
SRAM memory together with the slowdown due to inter-core interference are considered,
an overall 3.5x slowdown is experienced when compared to what has been observed in the
ideal case (100% cache hits). Finally, notice that if a task is able to entirely execute from
scratchpad, its execution time is comparable to the ideal case and inter-core interference is

103

prevented. These results are a strong motivation to best use available scratchpads in order
to improve performance and avoid inter-core interference.

Results of EEMBC Benchmarks

Figure 4.17: Experimental execution time for EEMBC benchmarks.

Next, we investigate the behavior of EEMBC benchmarks on the selected platform. For this
purpose, we have ported and measured the execution time of the full suite of automotive
EEMBC benchmarks under two scenarios: traditional contention-based execution from
SRAM and proposed SPM-based execution. The results of normalized execution times are
shown in Figure 4.17. From the results, we note that computation intensive benchmarks
do not benefit from SPM-based execution. Conversely, for memory intensive benchmarks
SPM-based execution determines substantial speed-ups (up to 2.1x).

Table 4.7 shows the execution time of the EEMBC automotive benchmarks. Further-
more, Table 4.7 also provides the footprint size of the considered benchmarks. It can be
noted that all the considered benchmarks fit into a single scratchpad partition. These
results validate the applicability of proposed design in real scenarios. Note that, we split

104

Table 4.7: Details of EEMBC Benchmarks.

Benchmark SPM
Time
(µs)

SRAM
Time
(µs)

Relocatable
Code Size
(bytes)

Read only
Data Size
(bytes)

Read/Write
Data Size
(bytes)

tblook 1013 1015 1892 10916 60
matrix 1053 1054 4774 12188 124
a2time 1002 1029 2538 1704 148
pntrch 1036 1145 1398 4800 128
ttsprk 383 425 4772 2592 4848
iirflt 1040 1189 3512 888 248

canrdr 1009 1359 1562 12276 56
bitmnp 990 1389 3282 72 1494
rspeed 1012 1457 1208 13200 40
puwm 1036 1540 2500 2400 180
aifirf 1005 1564 2286 1120 84
aifftr 916 1642 4458 2304 1912
aiifft 1170 2092 3540 3072 1656
idct 1045 2126 4690 244 1788

Total size 42412 67776 27766

the sizes of the read-only data and read-write data of the applications as it is relevant to
our recovery mechanism.

Overhead of Software versus Hardware Recovery

The proposed software-based recovery technique is able to correct errors that can be de-
tected (only) but not corrected by the hardware. If the hardware provides double-bit
error correction (DEC) capabilities, then our approach is redundant and should not be
used. However, if the hardware, as it is often the case, supports only SEC-DED, then
we introduce a timing penalty to recover 2-bit errors that are detected but not corrected
by the hardware. Under SEC-DED, 1-bit errors are still corrected only by the hardware.
Introducing a timing overhead effectively means trading schedulability for reliability. We
quantify this trade-off in Figure 4.18 and 4.19. Clearly, when software-based recovery is
used, the time overhead can be significant. Nonetheless, we believe that it is reasonable
to trade a portion of the CPU utilization to make sure that safety-critical tasks produce

105

correct outputs.

Let us focus on the typical ECC support provided by commercial hardware, i.e. SEC-
DED. We hereby compare the overhead in space introduced by our software-based re-
covery mechanism with an equivalent hardware-based implementation, i.e. DEC support
in hardware. Introducing DEC support in hardware is possible, but its implementation is
complex and costly. In fact, it has been shown [119] that the ASIC area can grow up to
13x. The software approach, conversely, can be deployed on less expensive hardware and
only requires to keep redundant copies of the R/W portion of application memory. The
SEC-DED requires 8 check bits to implement the detection and correction mechanism for
a 64-bit data word, while DEC requires 14 check bits to correct a double bit error [119] in a
64-bit data word. Using this information, we compute the number of extra bits required for
hardware-based (HW) SEC-DED, hardware-based DEC, and our proposed software-based
(SW) recovery mechanism for DEC in Table 4.8. In the table, we assume that our taskset
is comprised of all the benchmarks in Table 4.7. First, note that our technique relies on
SEC-DED and only duplicates R/W data and ECC bits. For read-only (R-only) memory,
only the extra bits required to implement SEC-DED are considered, because a second copy
of read-only data is always available in less expensive flash memory. Moreover, for a fair
comparison, we assume that HW DEC support is only provided for application memory,
instead of the whole main memory. In this setting, the SW overhead is about 10%. We
argue however that (i) not requiring additional ECC check logic in the SW approach par-
tially offsets the cost for the additional memory bits; and that (ii) if extra DEC bits were
considered on the whole main memory, the SW approach is to be preferred in terms of
overhead: in fact, with 512 KB of main memory, DEC would require about 917,504 extra
bits.

Next, we consider the overhead in time for hardware-based recovery and the proposed
software-based technique. According to [119], hardware implementations of SEC-DED
introduce a latency of 1.3 ns, whereas DEC implementations introduce a latency of 2.2 ns
on every memory transaction. Our SW approach on the other hand still requires SEC-DED,
but only introduces a time overhead if a double-bit error occurs. Depending upon which
part of the task is affected by the two-bit error, the recovery overhead differs. For instance,
an error in the read-only data only requires one word to be copied from a redundant copy,
whereas, an error in read/write data of the task in the worst-case may require the entire task
to be re-loaded and re-executed. It is hard to compare the time overhead of software-based
and hardware-based approaches, because it depends on the number of memory accesses
performed by the tasks under analysis. Nonetheless, we expect that hardware-based DEC
implementation can be more efficient in time. As vendors typically only provide SEC-DED
support, however, we believe that offering the choice at design time to recover double-bit

106

Table 4.8: Space Overhead of HW versus SW recovery

HW
SEC-DED

(bits)

HW
DEC
(bits)

SW
DEC
(bits)

Number of extra bits
required for R/W data

(12,766 bytes)
12,766 22,344 127,660

Number of extra bits
required for R-only data
(42,412 + 67,776 bytes)

110,192 192,836 110,192

Total number of
extra bits

80,542 215,180 237,852

errors in software still represents a valuable contribution in the context of safety-critical
systems.

Evaluation of Schedulability Analysis

For the schedulability evaluation, we consider the scheduling approach in Section 3.3 with
fixed-size DMA time slots, and its associated analysis. For the error recovery case, we
consider the analysis in Section 3.4. We first present the schedulability curve of normal
case when there are no errors and compare it with the case when we have errors. We also
show the contention based approach where we have no error recovery. The case referred
as “contention” corresponds to the case where no scratchpad management is implemented
and in which tasks execute directly from SRAM utilizing caches, but contending for bus
access.

We computed the response time of the same workload for the three cases: the traditional
SPM-centric scheduling mechanism with no errors as proposed in Section 3.3; the aug-
mented SPM-centric OS with error recovery mechanisms using the analysis in Section 3.4
and with artificial error injection; and the contention based execution using standard re-
sponse time analysis. For the evaluation, we have considered the EEMBC benchmarks in
Table 4.7 and the overheads in Table 4.6.

For a given system utilization, each application is randomly selected and assigned a
random period in the range between 10 ms to 100 ms. The tasks utilization is then
computed based on the measured execution time of the applications and the selected period.

107

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

Utilization
0.0

0.2

0.4

0.6

0.8

1.0

Sc
he

du
la

bi
lit

y
Contention
Our with no error recoverry
Our with error recoverry

Figure 4.18: Schedulability with SPM-based and traditional scheduling models.

Tasks are randomly generated until the sum of the individual tasks utilizations reaches the
required system utilization.

Figure 4.18 shows the result of the schedulability analysis of our proposed SPM-centric
schemes with and without error recovery and compare them with the case of contention-
based system. The figure shows the results in terms of proportion of schedulable task
sets for both approaches. Each point in the graph represents 1000 task sets. The results
show that our proposed schemes significantly improve the system schedulability compared
to the contention. Hence, the described SPM-centric scheduling not only improves the
predictability of task execution, but it also improves task set schedulability by hiding the
main memory access latency, especially for memory intensive applications.

Based on the figure, we can conclude that there is limited degradation in schedulability
for supporting the recovery mechanism. This degradation can be justified by the fact that
the system is both predictable as well as fault tolerant. Moreover, from the Figure 4.18 we
can also see that our SPM-centric approach with error recovery still performs significantly
better than the contention-based case where no error recovery is performed.

Figure 4.19 shows the system utilization when 50% of the task sets are schedulable.
The X-axis represents the window of periods used to generate the task sets. As expected
in any non-preemptive scheduler, with tight periods all three mechanisms degraded due to

108

5 -
 15

10
 - 2

0

15
 - 2

5

20
 - 3

0

25
 - 3

5

30
 - 4

0

35
 - 4

5

40
 - 5

0

45
 - 5

5

49
 - 6

0

54
 - 6

4

59
 - 6

9

64
 - 7

4

69
 - 7

9

75
 - 8

4

80
 - 9

0

85
 - 9

5

90
 - 1

00

95
 - 1

05

Period range (ms)

0.4

0.5

0.6

0.7

0.8

0.9

1.0
U

til
iz

at
io

n
Contention
Our with no error recoverry
Our with error recoverry

Figure 4.19: Utilization degradation as a function of tasks periods

the blocking time. However, with error recovery the degradation is more severe in the case
of very small periods due to the extra overhead paid for recovery. In most cases, with error
recovery, the proposed strategy achieves better utilization compared to the contention-
based approach. Additionally, the loss in utilization arising from additional error recovery
overhead remains within an acceptable range, and marginally decreases for larger task
periods.

4.3 Summary

In this chapter, we have demonstrated how our proposed 3-phase task execution model
can be realized on actual embedded platforms. The FPGA-based platform detailed in
Section 4.1 allows us full control over the hardware implementation; we took advantage of it
by implementing a simple and efficient address translation scheme which simplifies the task
of relocating programs between scratchpad partitions. As such, only small modifications
are required to support the proposed scheduling scheme in the FreeRTOS kernel. On the

109

Table 4.9: Suitable Commercial Multicore COTS platforms

Features MPC5777M MPC5746M TMS320C6678
Scratchpad 3 3 3

DMA engines 3 3 3

Dedicated I/O bus 3 3 7

other hand, the platform does not integrate I/O with the proposed 3-phase model, and
does not support fault-tolerant task execution.

The Freescale MPC5777M COTS platform described in Section 4.2 represents a more
complete implementation, including I/O management and ECC memory support. It is also
provides higher performance thanks to the use of hard, rather than soft cores. However,
limitations on the availability of DMA engines and arbitration for main memory forced the
implementation of a more complex DMA scheduling mechanisms, which results in a slightly
less efficient, fixed-size DMA operation scheme. In this case, program relocation is achieved
through compiler, rather than hardware support. While the described implementation is
specific to the analyzed MPC5777M SoC, we would like to stress that the required hardware
features for COTS implementation are becoming increasingly common in micro-controllers
used for safety-critical applications. Table 4.9 provides a list of some of the available COTS
platforms that provide relevant features.

Finally, in order to validate the proposed execution model and implemented platforms,
we have combined experimental results from synthetic and automotive EEMBC bench-
marks. In addition to the strong temporal predictability achieved by enhancing inter-core
isolation, we are able to exploit the performance benefits of scratchpad memories. This
results in improved schedulability compared to both the traditional contention case, where
cores contend for access to main memory, as well as compared to previous approaches based
on the 3-phase model.

110

Chapter 5

Global Scratchpad-Centric
Scheduling of 3-Phase Real-time
Tasks

In Chapter 3, we showed how to execute 3-phase tasks based on a fixed-priority, partitioned
scheduling scheme. Although the proposed partitioned approaches showed good results in
terms of hiding access latency to main memory, a partitioned system is not always prefer-
able as it requires design-time decisions to statically assign tasks to cores. Furthermore,
for systems with dynamic task admission, the whole system needs to be re-partitioned,
making the system inflexible. On the other hand, global scheduling is often preferable for
systems comprising both hard and soft tasks, and parallel tasks with utilization greater
than one. Therefore, in this chapter we consider a global scheduling scheme to overlap
task execution with memory access. Compared to the approaches in Chapter 3, our global
scheme directly handles contention among cores for access to main memory without relying
on either a fair hardware arbiter, or software-based TDMA arbitration.

The main contributions of this chapter are (1) a global scheduling algorithm for a
set of sporadic, sequential real-time tasks that efficiently co-schedules the cores and the
DMA to hide the memory access latency and provide a predictable system behavior. In
particular, since main memory is the unique shared resource in the system, we show that
global scheduling decisions must be driven by DMA operations. We also derive (2) a novel
schedulability analysis for our proposed algorithm. The nature of co-scheduling DMA and
cores requires us to largely re-define the existing concepts of workload and interference in
global real-time scheduling. We show that a new concept of scheduling interval is required

111

to account for the workload generated by both computation and memory activities. (3) We
demonstrate the performance of our system by intensive simulations based on measured
benchmark characteristics.

The rest of the chapter is organized as follows. In Section 5.1, we introduce our task
model. Note that the model is similar to the one employed in Chapter 3, and furthermore
we make the same assumptions regarding the hardware platform (that is, the system pro-
vides a DMA engine in conjunction with per-core, dual-ported SPM). Section 5.2 describes
our scheduling algorithm, and Section 7.2 details its associated schedulability analysis. We
evaluate our approach in Section 7.3, and summarize our results in Section 7.5.

5.1 Task Model and Notations

We consider the global fixed-priority scheduling of a system consisting of n sporadic tasks
Γ = {τ1, . . . , τn}, sorted by decreasing priorities such that τi has greater priority than τj if
and only if i < j. We use Ji to denote any system job. The time of computation phases is
denoted by xi. Similarly, the time of load phases is denoted by loadi and the unload phases
by unloadi. The relative deadlines Di are assumed to be less than or equal to the periods
pi (i.e., constrained deadlines). The absolute deadline for a job Ji is di = ri +Di, where ri
is the release time of Ji. We use hep(k) to indicate the set of all tasks with priority higher
or equal to τk, and we use lp(k) to indicate the set of all tasks with priority lower than τk.
Finally, we define the total CPU utilization as U cpu = (

∑n
i=1 xi/pi).

We use Ja → Jb to denote that Jb is the next job to run immediately after Ja on
the same core. We use ts(Ja) to denote the start time of the computation phase of Ja,
and proc(Ja) to denote the core where Ja is executed. In addition, we use top(Y, x) to
return the summation of the largest x items of set Y . All time values are assumed to be
non-negative integers and expressed as cycles of the most precise clock in the system.

5.2 Scheduling Algorithm

In this section, we first start with a description of our scheduling algorithm followed by a
working example; we then move in Section 5.2.1 to discuss the design of our scheduler.

We note that in our execution model, each task must execute its load phase on the
DMA before its computation phase on a core. After the computation phase, modified data
has to be unloaded to main memory. However, having to schedule two DMA operations

112

time

J1

DMA

c2

c1

J2

J3

J4

J5

4 8 12 16 20 24

$1,1 $2,1

$1,2 $2,2

Partitions
Colour
Code

Load

Unload

Hole

J6

Jx J1 Jx J2 Jx J3 Jx J4 J1 J5 J2 J6

Figure 5.1: An example of scheduling 6 jobs on 2 cores.

(load and unload) complicates the schedulability analysis for dynamically scheduled tasks.
Thus, we propose to combine the unload of one job to the load of the next job executed
out of the same partition. Suppose that Ja → Jb → Jc. We note at this point that
the consecutive execution of jobs on the same core alternate between its local memory
partitions. Hence, Jc is the next job to execute after Ja out of the same partition. Then,
when Jc is scheduled to be executed on the DMA, the DMA executes the unload phase of Ja
non-preemptively with the load phase of Jc. For simplicity, we refer to the combined unload
and load phases as the memory phase for the loaded job Jc. In addition, both memory
phases and computation phases are executed non-preemptively. We note that the memory
phase and the computation phase of one task are not necessarily executed continuously
because after loading a task, the core might be busy executing non-preemptively another
task out of the other partition. In other words, after loading a job into a local memory
partition, its content is locked until the finish of its computation phase.

Example 1. Figure 5.1 depicts a working example for scheduling 6 jobs, generated by 6
different tasks, on 2 cores assuming all jobs are released at the same time. Since this is a
fixed-priority schedule, the highest priority job J1 is chosen first. The scheduler chooses
c1 to execute J1. The DMA is instructed to unload the previous task from $1,1 back to
main memory. Then, the DMA is instructed to load J1 into $1,1. After that, J1 is able
to run on c1 with no memory stalls. While c1 is executing J1 out of $1,1, the scheduler at
time 3 chooses J2 to be executed on c2. Here, the DMA is running in parallel with J1 by
unloading $1,2 and loading it with J2. At time 6, the scheduler chooses the free partition
of c1 to execute J3. Similarly, J4 is chosen at time 10 to execute on the free partition of c2.

At time 13, all four partitions are loaded. Hence, the memory phase of J5 has to wait
until time 15, the finish time of the computation phase of J1 which indicates that c1 has
again a free partition. Thus, the scheduler at time 15 chooses J5 to be executed on c1.

113

time

J2

J1

DMA

c2

c1

J1

J2

s1

s2

t

J3

J3

f1

f2

J4

J4

Memory Computation

Figure 5.2: The cores are chosen based on the minimum sk.

Finally, J6 is scheduled at time 18 to execute on c2. We note that even though c2 has
finished execution at time 20, J6 has to wait until time 22 because its memory phase is
delayed. This delay induced a schedule hole between J4 and J6. We define a schedule hole
as the time at which the core is idle waiting for a task to be loaded.

As you can see, the memory phases in the example schedule are largely overlapped with
computation phases with a few induced schedule holes. This hiding of memory phases, gives
our system a better schedulability over other state-of-the-art global scheduling techniques
as shown in Section 7.3.

In what follows, we discuss how our scheduler chooses cores to schedule tasks. In
Figure 5.2, we show a schedule of 4 jobs and 2 cores. The time pointers s1 and s2 indicate
the start time of last scheduled jobs on c1 and c2, respectively. Similarly, the time pointers
f1 and f2 indicate the finish time of last scheduled job on each core. Consider the time
t at which each core has a free partition. Our scheduler chooses c1 to schedule J3 rather
than c2 because c1 has earlier start time of last scheduled job i.e., s1 < s2. We design our
scheduler to choose cores based on start time of their last scheduled jobs rather than the
finish time to avoid the pessimism in the analysis. In particular, it gives us the guarantee
to bound the amount of holes between computation phases as we discuss in Section 5.3.2.

5.2.1 Scheduler Design

Our scheduler maintains a global queue Qr in which ready tasks are ordered according
to fixed priorities. Whenever a task is released, it is inserted in this global queue. The
dispatcher extracts from the top of the queue the highest priority task and execute it on the
DMA, given that the DMA is idle and there is at least one available partition; otherwise,

114

the job remains inside the global queue. Furthermore, the scheduler is usually implemented
as an interrupt service routine (ISR) triggered by certain events. In our system, we have the
following three events: (1) task release, (2) memory phase completion and (3) computation
phase completion. DMA-Dispatcher procedure below is triggered at time t, corresponding
to one of these three events, to schedule a new task on the DMA. In addition, after events
(2) and (3), if a new task has already been loaded, the core will do a context switch and
execute this task.

For example, consider Figure 5.1 again. At time 3, the completion time of the memory
phase of J1, c1 will do a context switch to execute J1 and at the same time J2 will be
scheduled to execute on the DMA. At time 15, the completion time of the computation
phase of J1, c1 will do a context switch to execute J3 since it has already been loaded in $2,1

and at the same time J5 will be scheduled to execute on the DMA because the completion
of J1 computation phase indicates a free partition.

1: procedure DMA-Dispatcher:
2: i = Select-Task(Qr)
3: i = Select-Task(Qr)
4: (l, j) = Select-Core({sk})
5: tdma = t+ unloadj + loadi
6: sl = max(tdma, fl)
7: fl = sl + xi

For simplicity, we assume at time t when DMA-Dispatcher procedure is invoked that
(1) the DMA is idle, (2) at least one partition is available and (3) there is at least one
ready task. Otherwise, the procedure will exit, as we assume a non-preemptive execution,
and will be triggered again by a later event. Basically, we have: {sk} and {fk}, two sets of
m time pointers to indicate the start and finish time, respectively, for the last scheduled
job on each core, and tdma to indicate the end time of a DMA operation. Select-Task
procedure in Line 3 returns the index (i) of the highest priority task out of Qr. Similarly,
Select-Core procedure in Line 4 returns the index (l) of the core that has the minimum
sj, with ties broken arbitrarily, among all cores with free partition, and the index (j) of
the last scheduled job on the selected partition. We need this j to add the unload time of
previous job as in Line 5. Note that sl is updated in Line 6 to be the maximum between
tdma and fl because Ji can start its computation phase if its memory phase is completed
and core cl is idle.

115

5.3 Schedulability Analysis

Our schedulability analysis relies on the proof technique introduced in [27]. This technique
is based on the argument that if the execution time of a job Jk plus its interference from
other tasks in [rk, dk) is less than or equal to Dk, then Jk will meet its deadline because
the scheduler is work-conserving. Jk is called a problem job and the time window [rk, dk) is
called a problem window. We note that the interference is an important concept that can
be defined as the time at which the problem job is not able to execute inside its problem
window despite being released, due to other tasks.

Since each job in our system executes on both the DMA and a CPU core, one has to
consider both in computing the interference for a given job. However, our analysis in this
section works constructively by considering only the computation phases on CPU cores.
We use Ik(Ji) to denote the workload of individual job Ji including both the computation
time and the induced hole as shown in Figure 5.1. We use Ik(Γ) to denote the workload
of all tasks inside the problem window of Jk. Furthermore, the interference is denoted by
δk and is computed based on Ik(Γ). Since we only consider the computation phases, we
define the time window [rk, tl] where tl = dk − xk as our new problem window, and we use
Lk = tl − rk + 1 to denote its length; if the problem job starts its computation phase by
time tl, then it completes before its deadline as we assume a non-preemptive computation
phases.

In multiprocessor scheduling, finding the maximum interference of a task system over
an interval of time is an NP-hard problem [102, 33]. Thus, a widely used technique in
real-time literature is to assume that each task cannot interfere with more than its worst
case activation of jobs [40]. The interfering jobs of task τi in a problem window of task τk
is composed of three parts. (1) Carry-in: the contribution of at most one job with release
time ri before rk and ri + pi after rk. (2) Body : the contribution of jobs with both ri and
ri + pi inside the problem window. (3) Carry-out : the contribution of at most one job
with release time ri inside the window and ri + pi outside the window. To account for the
worst-case activation, we should assume that jobs are packed as much as possible within
the problem window. That is, carry-in jobs start as late as possible and carry-out jobs
start as early as possible.

Compared to classic global scheduling theory, there are two main differences in our
system for bounding the interference: (1) long memory phases can induce a “hole” between
successive computation phases on the same core; hence, the interference must include such
holes. (2) In a classic fixed-priority global scheduling system, a problem job Jk would start
on the earliest processor that becomes idle. Hence, the worst case interference for Jk can

116

be bounded by Ik(Γ)/m. Since in our system we have to bind a job to a core partition
once we start its memory phase, such bound does not hold anymore.

The rest of this section proceeds as follows. In Section 5.3.1, we show how to bound
the interfering jobs inside the problem window of Jk, for a given task system Γ. The
bound on the workload of individual jobs Ik(Ji) is discussed in Section 5.3.2. We then
show in Section 5.3.3 how to derive a global bound on Ik(Γ), the workload of all tasks.
In Section 5.3.4, we compute the bound on the interference based on Ik(Γ). Finally, we
present the schedulability condition for our scheduling algorithm in Section 5.3.5.

5.3.1 Bounding the Interfering Jobs

In this section, we first bound the interfering jobs inside the problem window including
carry-in, body and carry-out jobs. Then, we populate out of these jobs three sets: X, LD
and UD, the set of computation, load and unload phases, respectively. We will use these
sets in Section 5.3.3 to derive a global bound on Ik(Γ).

A job Ji can interfere inside the problem window of Jk in two different ways: (1) inter-
ference caused by non-preemptive scheduling, and (2) interference caused by priority order.
Tasks in lp(k) can only have carry-in interference because they cannot start executing after
the beginning of the problem window. In contrast, tasks in hep(k) can be activated inside
the problem window. Thus, they can have carry-in, body and carry-out jobs. However,
assuming all tasks in hep(k) can have carry-in jobs is quite pessimistic. Hence, we start
this section by redefining the problem window in order to bound the number of carry-in
jobs from hep(k). Then, we show how to bound the interfering jobs that can execute inside
the problem window.

Carry-in Limit

We propose to extend the problem window such that it has an earlier starting point to and
has the same end point tl. Now, we define a pending job and to as follows.

Definition 1. We say that a job is pending if it has been released but it has not started
its DMA.

Definition 2. We let to to denote the last time instant before rk such that for any t ∈ [to, rk)
there is at least one pending task from hep(k). If such time does not exist, we let to = rk.

The following lemma bounds the number of tasks that can have carry-in inside the
problem window that starts at to.

117

Lemma 1. There are at most 2m tasks from hep(k) ∪ lp(k) that can have carry-in jobs.

Proof. We use to− 1 to denote the time instant before to. The complement of Definition 2
states that at to−1 there is no pending task from hep(k); otherwise, we could have extended
the window. Based on this and the fact that Jk is released at rk, to always corresponds to a
release of a task in hep(k). Since we have 2m partitions for each core, only 2m tasks from
hep(k) could have been released at or before to without being pending or having completed.
It follows that only these tasks can have carry-in jobs. Similarly, no task in lp(k) can start
on the DMA at or after to because there is always a pending job from hep(k) in [to, tl].
Thus, only 2m tasks executing at least one time unit before to can have carry-in jobs. Since
it is not possible to load more than 2m partitions at one time, the lemma follows.

Since we assume tasks have constrained deadlines, i.e., no two releases of one task can
be active at the same time, these 2m jobs must be from different tasks. In what follows we
distinguish two types of carry-in: memory and computation in which computation carry-in
means a job that has only computation phase, and memory carry-in means a job that has
both memory and computation phases.

Lemma 2. Only one task from hep(k) ∪ lp(k) can have memory carry-in.

Proof. Tasks in lp(k) cannot start on the DMA at or after to; hence, they can only have
one memory carry-in. On the other hand, tasks in hep(k) that have not started its DMA at
or before to cannot have memory carry-in because they would be pending and the window
would be extended. Since we have a single DMA, only one memory phase can be active at
any time either from hep(k) or lp(k).

We illustrate in Figure 5.3 the worst case carry-in situation for our scheduling algorithm
in which to aligns with a beginning of a memory phase and 2m − 1 partitions have been
loaded beforehand. We note that a memory phase of a task in lp(k) has to start one time
unit before to in order to have a memory carry-in. Since memory carry-in is always greater
than computation carry-in, we know based on Lemma 1 and Lemma 2 that the worst case
situation is to have 2m − 1 tasks with computation carry-in and one task with memory
carry-in.

Bounding Jobs for hep(k)

In Figure 5.4, we show the worst case activation for a task in hep(k) with three different
scenarios. We note that since unload phases are determined at run-time by the scheduler,

118

J2

 J2

J3

J1

Problem Window

time

J4

Only one task can have
memory carry-in

to

J1

J3

J4
Maximum of 2m-1

computation carry-in

Memory phase

Computation phase tl

Task release

Figure 5.3: Carry-in limit for m=2.

we only consider load and computation phases when bounding the interfering jobs of each
task, and we use ei = loadi+xi to denote the length of each job. We can then safely assume
each computation phase will introduce an unload phase. We construct memory phases out
of these load and unload phases in Section 5.3.3. In addition, the unload phases of the
first 2m jobs to be executed inside the problem window are carried-in from outside the
window. Thus, we need to include the largest 2m unload phases of tasks in hep(k)∪ lp(k)
to account for these unload phases.

For the case where there is no carry-in, the worst activation is to release the task at
to. On the other hand, for the case where there is a carry-in job, the worst activation is to
execute the carry-in job as late as possible such that its computation phase aligns with to
for tasks with computation carry-in, and the memory phase aligns with to for tasks with
memory carry-in. We observe that the amount of memory and computation are always
greater for a task with memory carry-in than the same task with no carry-in. However, the
amount of memory and computation can be less for a task with computation carry-in than
the same task with no carry-in. To understand how this could happen, see Figure 5.4. The
computation carry-in (the middle one) is obtained by introducing a computation phase
of a job executed just before the deadline. This introduced computation pushed out a
memory phase from the other end. Even though the computation phase has increased,
the memory phase has decreased. Unfortunately, this observation complicates the analysis
because it is very hard to determine which case will lead to the worst interference because
tasks interact differently as we show in Section 5.3.3. As a result, we will consider the task
with no carry-in plus an extra computation phase to account for tasks with computation
carry-in since a task with carry-in can have at most one extra job compared to no carry-in
case.

We note that the execution of jobs after the end of the problem window has no effect
to the analysis; hence, we use min below to only account for jobs within the window. Now,

119

time

time

time

(no carry-in)

(computation carry-in)

(memory carry-in)

Load phase Computatio phase

Figure 5.4: The interfering jobs of tasks ∈ hep(k) with no carry-in, computation carry-in
and memory carry-in.

we bound the interfering jobs for a task with no carry-in inside a problem window of Jk
as:

• bLk
pi
c body jobs of size ei.

• The size min(ei, Lk mod pi) of one carry-out job.

Similarly, we compute the interfering jobs for a task with memory carry-in as:

• bLk+(Di−ei)
pi

c body jobs of size ei.

• The size min(ei, Lk + (Di − ei) mod pi) of one carry-out job.

The body jobs are then split into load, computation and unload phases. In contrast,
carry-out jobs may include only a load phase, see Figure 5.4 (the top one). Similarly, the
computation carry-in jobs include only computation and unload phases.

In summary, we populate X, LD and UD to include computation, load and unloaded
phases, respectively, from:

• One task in hep(k) ∪ lp(k) with memory carry-in.

• |hep(k)| − 1 tasks in hep(k) with no carry-in.

• An extra 2m−1 largest computation phases computed as min(Lk, xi) for τi ∈ hep(k)∪
lp(k).

120

time

DMA

ck

JbJa

Ja Jb

...

ts(Ja) ts(Jb)

(A) A scheduling interval with holes.

time

ck

Ja

Ja Jb

Jb...DMA

ts(Ja) ts(Jb)

...

(B) A scheduling interval with no holes.

Figure 5.5: Scheduling interval examples.

Since it is difficult to choose which task with memory carry-in will lead to the worst
case as tasks have different ratios of computation and memory, we propose to re-calculate
the total interference n times (for each task with memory carry-in) and then take the
maximum interference. Finally, we need to include the load phase of the problem job as
we only consider the computation phases in our analysis.

5.3.2 Bounding the Individual Workload Ik(Ji)

We capture the workload of a job on any core, including both computation and holes, by
introducing the concept of a scheduling interval.

Definition 3 (Scheduling Interval). Assume Ja is running inside the problem window of
Jk and Ja → Jb. We call [ts(Ja), ts(Jb)) the scheduling interval for Ja, and we let Ik(Ja) to
denote its length.

Figure 5.5 shows two examples of scheduling intervals. In (a), the scheduling interval of
Ja contains a hole because the memory phase of Jb is delayed by memory phases from other
tasks and therefore ts(Jb) is also delayed. In contrast, the scheduling interval of Ja in (b)
is followed immediately by the scheduling interval of Jb with no holes because the memory

121

phase of Jb has finished (completely overlapped) within the scheduling interval of Ja. As
we can see, the hole size for each scheduling interval is variable and is dependent on the
execution ordering of other tasks. A key idea behind our proof scheme is that we ignore the
relative ordering of memory and computation phases within the problem window. Instead,
we create a bound on the length of each scheduling interval by determining the maximum
number of memory phases that can execute within a scheduling interval, a concept we call
a memory sequence. We will show how to create an ordering of memory and computation
phases that maximizes the total length of scheduling intervals in Section 5.3.3.

Definition 4 (Memory Sequence). A memory sequence is the consecutive execution of any
m memory phases on the DMA. The length ρ of the memory sequence is the sum of the
length of the m memory phases.

The following two lemmas will help us in proving Lemma 5 and Theorem 1.

Lemma 3. At ts(Ja), there is always a free partition in proc(Ja).

Proof. Let tf be the finish time of the memory phase of Ja, and assume Ja is loaded into
$1,k where k = proc(Ja). Since we assume non-preemptive memory phases, we have the
following two cases at time tf . (1) The partition $2,k is free. In this case, ts(Ja) = tf
because there is no job executing out of $2,k. (2) $2,k is already loaded before the memory
phase of Ja, i.e., both partitions are full at tf . As we assume a non-preemptive computation
phases, the computation phase of $2,k should end at ts(Ja). The end of a computation phase
indicates a free partition which concludes the proof.

Lemma 4. Assume Ja → Jb → Jc. Let tf be the end time of the memory phase of Jb and
ts be the start time of the memory phase of Jc. Then, the computation phase of Jb must
start in the interval [tf , ts].

Proof. We consider two cases. (1) If the computation phase of Ja finishes by tf , then Jb
starts immediately at tf because its memory phase is already loaded. (2) If Ja is still
running at tf , it follows that both partitions must be full at tf as Jb is also loaded. Since
the memory phase of Jc starts at ts, at least one partition must be freed by ts. Hence, the
computation phase of Ja must finish by ts and Jb immediately starts because its memory
phase is already loaded at tf . In either case, Jb starts computing in [tf , ts], proving the
lemma.

The following Lemma explains why we design our scheduler to select a core with earlier
start time rather than finish time. It basically gives us the guarantee in which our analysis
relies on.

122

Lemma 5. Our scheduler will never schedule more than m memory phases inside any
scheduling interval with holes.

Proof. It suffices to proof that no two memory phases targeting a same core can execute
inside any scheduling interval with holes; this implies that the maximum number of memory
phases inside any scheduling interval with holes is m.

Let Ja → Jb and they run on cl. Consider another core cp and assume by contra-
diction that two memory phases targeting cp are executed inside the scheduling interval
[ts(Ja), ts(Jb)) in which the memory phase of Jb executed last as we assume a scheduling
interval with hole. Let tf and ts be the finish and the start time of these two memory
phases, respectively. By Lemma 4, a computation phase must have started on cp in the
interval [tf , ts]. The core cl has a free partition at ts(Ja) as per Lemma 3, and this par-
tition remains free at ts because the memory phase of next job Jb is executed last. Since
ts(Ja) < tf ≤ ts < ts(Jb), our scheduler at time ts would target cl rather than cp. This
creates a contradiction, hence the lemma holds.

The following theorem states the bound of each scheduling interval.

Theorem 1. The length of Ik(Ja), the scheduling interval of Ja in the problem window of
Jk, is upper bounded by the maximum between xa and the length of any memory sequence.

Proof. Before we start the proof, we note that within the problem window of Jk, there
is always at least one pending task. This is by the definition of to in the interval [to, rk)
and the fact that Jk is pending after rk. Now, consider two jobs such that Ja → Jb and
both run on cl. Since computation phases are run non-preemptively, the next computation
job Jb on the same core cannot start before ts(Ja) + xa. Hence, xa is a bound to the
length of the scheduling interval of Ja. Now, let us assume that ts(Jb) is strictly greater
than the finishing time of Ja, i.e., there is a schedule hole between Ja and Jb. Since ts(Jb)
is by definition the earliest time that the next job on cl can start computing, and cl is
idle immediately before ts(Jb), it holds that the memory phase of Jb must finish exactly
at ts(Jb). From Lemma 3, we know that cl must have a free partition starting at ts(Ja).
Hence, it follows that the memory phase of Jb would be started at time ts(Ja), unless the
DMA is continuously busy executing other memory phases. In this case, there must be a
continuous memory phases executing on the DMA in the interval [ts(Ja), ts(Jb)) and we
know from Lemma 5 that at most m memory phases, a memory sequence, can execute
inside any scheduling interval with holes which conclude the proof.

As an example, consider again Figure 5.5. It is easy to see that Ik(Ja) in (b) is equal
to the computation phase xa while Ik(Ja) in (a) is equal to the memory sequence.

123

5.3.3 Bounding the Total Workload Ik(Γ)

In the previous section, we showed how to bound Ik(Ji), the workload of an individual job.
However, we only characterized the workload as the maximum between a computation
phase and a memory sequence as in Theorem 1. It is clear that Ik(Ji) depends on the
computation phase of Ji and a possible hole induced by a memory sequence from other
jobs. Therefore, Ik(Ji) should be considered globally to determine a safe bound on Ik(Γ).

For a given set of computation phases and memory sequences, we can derive a bound
on Ik(Γ) as in the following lemma.

Lemma 6. After sorting computation phases X = {θ1, . . . , θ|X|} such that θi ≤ θi+1 and
memory sequences such that ρi ≥ ρi+1, the following is a valid bound on Ik(Γ):

|X|∑
i=1

max(θi, ρi).

Proof. Based on Theorem 1, the length of each scheduling interval is upper bounded by
the length of the corresponding computation phase or a memory sequence; hence, we take
max(θi, ρi).

By contradiction, assume that there exists a hypothetical configuration of pairs different
than the one in the hypothesis that leads to a strictly higher bound. Since computation and
memory sequence lengths are ordered in opposite directions in the hypothesis, it follows
that in the hypothetical configuration there must instead exist two pairs (θs, ρs) and (θl, ρl),
such that θs < θl and ρs < ρl (i.e., ordered in the same direction). We now show that
“swapping” θs with θl leads to a new configuration with a Ik(Γ) bound no less than the
previous one. Since we can always obtain the configuration in the hypothesis with a finite
number of such “swaps” (for example, using bubble sort), this creates a contradiction.

We let a = max(θs, ρs) and b = max(θl, ρl), and the bound is a+ b. We have four cases
after swapping θs with θl based on the two terms a and b and given that θs < θl: (1) both
remain the same. (2) a increases and b remains the same. (3) a remains the same and b
decreases. (4) a increases and b decreases. Clearly, (1) and (2) will not decrease the bound.
Thus, we only need to consider (3) and (4).

Case(3): To satisfy this case, we should have ρs > θl (a remains the same) and ρl < θl
(b decreases), but we obtain ρs > ρl which is a contradiction.

Case(4): This case is more elaborate than the previous one. In order to satisfy this
case, we should have θl > ρs (a increases) and θl > ρl (b decreases). Now, we consider two

124

sub-cases. (i) θs ≥ ρs: based on these assumptions, the bound before the exchange is θs+θl
and after the exchange is θl + max(θs, ρl) which is larger or equal. (ii) θs < ρs: the bound
before the exchange is ρs + θl and after the exchange is θl + max(θs, ρl) = θl + ρl, which is
larger. After we examine all possible cases, we can conclude that our initial argument is
true.

Lemma 6 assumes a given set of memory sequences. However, we only have from
interfering jobs a set of load LD and unload UD phases. As per Definition 4, a memory
sequence contains m memory phases. Thus, we first discuss how to construct memory
phases out of LD and UD. Then, we show how to construct memory sequences out of
these memory phases.

Since the scheduler dynamically combines unload and load phases into one non-preemptive
memory phase, the merged unload phase is generally unknown. We could safely assume
for each job that its load phase is merged with the longest unload phase in the system,
but this is highly pessimistic. Therefore, we instead propose to construct memory phases
as in the following lemma.

Lemma 7. The set of memory phases Ψ = {µ1, . . . , µ|Ψ|} can be constructed by combining
the longest load phases from LD with longest unload phases from UD to increase holes as
much as possible.

Proof. Based on the ordering used in Lemma 6, there must exist a worst case configuration
for some value 1 ≤ j ≤ |X|, where in the first j pairs the length of memory sequences is
larger or equal, and in the remaining |X| − j pairs the length of the computation phases
is larger or equal. Hence, the bound on Ik(Γ) can be obtained by summing the largest j
memory sequences and the largest |X| − j computation phases. By adding largest unload
phases to largest load phases, we maximize the first j memory sequences. As a consequence,
Ik(Γ) is also maximized.

The longest memory sequence is clearly ρmax = top(Ψ,m) as each memory sequence
contains m memory phases. We could again safely assume that all computation phases
overlap with the longest memory sequence. However, the following lemma adds a constraint
that improves the bound on Ik(Γ).

Lemma 8. Let Ja → Jb and they both run on cl. In addition, assume Ik(Ja) and Ik(Jb)
are two scheduling intervals with holes. Then, any memory phase executing in the problem
window can contribute to either Ik(Ja) or Ik(Jb).

125

Proof. Since the scheduling interval [ts(Ja), ts(Jb)) of Ja contains holes, i.e., it equals to a
memory sequence, a memory phase targeting core cl must finish exactly at ts(Jb). Hence,
such memory phase and all previous memory phases can contribute only to Ik(Ja). On the
other hand, all following memory phases can contribute only to Ik(Jb).

Based on Lemma 8, each memory phase can contribute to at most one memory sequence
on each core, i.e., mmemory sequences in total. Therefore, we propose to construct memory
sequences ρi out of memory phases µi as follows: ρi = m× µi. This guarantees that each
memory phase appears at most m times in Ik(Γ). Furthermore, following the proof of
Lemma 7, by combining the largest memory sequences together, we maximize the the sum
of the first j memory sequences as computed in Lemma 6; hence, the bound on Ik(Γ) is
also maximized.

5.3.4 Bounding the Interference on a Problem Job

In traditional global scheduling, the interference on the problem job Jk can be bounded
by Ik(Γ)/m assuming the scheduler is work-conserving. In our system however, Jk can be
scheduled on a core with later time even though there is an earlier time available on another
core, see how J3 is scheduled in Figure 5.2. The following lemma further characterize the
interference on Jk.

Lemma 9. Let Ja → Jk where Jk is the problem job. In addition, let Jb be the last scheduled
job on any core such that proc(Jb) 6= proc(Jk). Then, it must hold that ts(Ja) ≤ ts(Jb).

Proof. Let t be the time at which DMA-Dispatcher is invoked to schedule Jk. In order for
Jk to be scheduled on proc(Ja), sproc(Ja) has to be at time t the minimum (or at least equal
since we assume that ties are broken arbitrarily) among all cores that have a free partition
according to our scheduler rules. In other words, all other cores should have scheduled
jobs with start times greater than or equal to sproc(Ja) before Jk can be scheduled on
proc(Ja).

We let Imaxk (Imink) be an upper bound on the maximum (respectively, lower bound
on the minimum) length of any scheduling intervals in the problem window of Jk, and
Idiffk = Imaxk − Imink . In Figure 5.6, we show the worst case pattern in which each core
runs a sequence of scheduling intervals, and Jk is scheduled after the maximum scheduling
interval. Based on Lemma 9, the maximum scheduling interval can finish at most Idiffk

time units after the earliest finishing time of last scheduling interval on any other core.

126

time

Imax

c3

c2

c1

Imin

xk

...

...

...

k

kk

Figure 5.6: The computation phase of the problem job executes after Imaxk .

The sum of all scheduling intervals on all cores is upper bounded by Ik(Γ), and a bound
on the earliest finishing time of other cores can be derived as:

Ik(Γ)− Idiffk

m
. (5.1)

By adding Idiffk as in Figure 5.6 and rephrasing the terms, we obtain the upper bound on
δk, the interference on Jk, as:

Ik(Γ)

m
+ (

m− 1

m
)Idiffk . (5.2)

We compute Imaxk as max(ρmax, θα) and Imink as θ1. We note that tasks execute non-
preemptively on each core; hence, the length of each scheduling interval must be at least
equal to the length of a computation phase, and taking the shortest computation phase
within the problem window constitutes a safe lower bound on Imink . We note that decreasing
Imink could render a task unschedulable. Hence, we can assume for sustainability tasks idle
until their worst-case execution time; otherwise, we consider a lower bound of 0 on Imink .
In the evaluation, we assumed the former case.

5.3.5 Schedulability Condition

Since the bound on Ik(Γ) requires the knowledge of all interfering jobs, it follows that the
bound on interference of the problem job derived in Equation 5.2 depends on the size of the
problem window. We note that even though the extended problem window that starts at
to has the advantage of limiting the amount of carry-in, finding to is of pseudo-polynomial
time complexity, given that the total utilization is strictly less than m [30]. However, the
authors of [68] observed that choosing a window of length Lk and starting at to is sufficient
for the schedulability analysis. Since to ≤ rk, the length of [to, tl] ≥ [rk, tl]. Intuitively,
computing bounds on the amount of work inside a small time interval is tighter than a

127

large interval as the amount of work gets amortized over larger intervals [30]. Based on
such intuition, we prove our schedulability condition as follows.

Lemma 10. If Jk misses its deadline, then δk ≥ Lk.

Proof. Assume Jk misses its deadline and δk < Lk. Since we assume a work-conserving
scheduler, the time interval [rk, tl] has to be busy in order for Jk to miss its deadline.
Otherwise, Jk could have executed and finished before the deadline. In addition, [to, rk)
has to be busy as per Definition 2. As a result, the time interval [to, tl] has to be busy for Jk
to miss its deadline. Equation 5.2 gives a bound on δk, the interval of time where all cores
are busy including both computation and holes. Since δk < Lk, there must exist a time in
[to, tl] which is not busy. This creates a contradiction; hence, the lemma follows.

Theorem 2. If ∀τk ∈ Γ : δk < Lk then the system is schedulable.

Proof. It follows from the contrapositive of Lemma 10 that Jk will meet its deadline if
δk < Lk. If this hold for all tasks in Γ, the system is schedulable.

5.4 Evaluation

Due to the complexity in estimating the cache preemption and migration delay (CPMD) [43,
34], we compare our scheduling algorithm with contention-based global non-preemptive
fixed-priority scheduling [69].

In the contention-based system, we assume that cores access main memory in round-
robin order, with no overhead for arbitrating to access main memory. Therefore, if all
cores simultaneously contend for access main memory, each core receives 1

m
from the total

bandwidth of the memory subsystem. In our system, we load tasks before execution.
Therefore, tasks have no memory stalls during execution. For the sake of a fair comparison,
we favor the contention-based system by assuming ideal caches that are managed to have no
conflict or capacity misses. Furthermore, since we utilize a DMA component in our system
which is an extra hardware resource, we compare against a contention-based system with
the same number of cores and with one extra core. In this case, we favor the contention-
based schedule as a DMA peripheral is much smaller than an extra core.

We first intuitively show how our system is able to utilize the CPU cores better than
the contention-based system, then we compare the schedulability for both systems based
on simulations. Assume a system loaded with a large number of tasks. Each task takes four

128

time

J1DMA

c4

c3

J2 J3 J4 J5 J6 J7 J8 J9 J10

2 4 6 8 10 12

J11 J12

J1

c2

c1 J5

J2

J3

J4

J6

J7

J8

J9

J10

J11

J12
..
.

...

...

...

...

14 160

Partition 1 Partition 2

Figure 5.7: Our schedule on 4 cores showing 100% utilization.

time

c4

c3

2 4 6 8 10 12

c2

c1 J1

J2

J3

J4 ...

...

...

...

14 160

J5

J6

J7

J8

J9

J10

J11

J12

18 20 22 24

Inflated memory Computation

Figure 5.8: Contention-based schedule on 4 cores showing 50% utilization.

time units to compute on a core and requires one time unit for the DMA to unload/load
into a local partition. Our approach is able to utilize the cores 100% by overlapping
tasks’ execution over the cores as long as the DMA operations are small compared to cores
execution, this is shown in Figure 5.7. On the other hand, in the contention-based system,
cores utilization is affected by the portion of time that a core needs to load a task. In the
worst case, all cores could access main memory at the same time. In this case, each core
takes 1 ×m time units to load the required data instead of one time unit. In particular,
with m = 4, each core takes 1 × 4 time units to load a task. As shown in Figure 5.8, the
cores utilization is computation

computation+memory
= 4×m

(4×m)+(4×m)
= 50%. Based on this intuition, our

approach should perform significantly better. However, due to the requirement to schedule
both memory and computation, our schedule exhibits more priority inversion than the
contention-based system, which can worsen the Worst Case Response Time (WCRT) for
high priority tasks.

The Evaluation of our system is performed on an FPGA platform similar to the one
discussed in 4.1. Here, we report some of the important differences. The hardware platform
is based on Altera’s Cyclone II FPGA instead of Xilinx. The platform uses the Nios-II/f
soft-core processor [3] with instruction and data SPMs of 16-KB each. The platform
provides 64MB of off-chip SDRAM as main memory, running at 100 MHz, and a standard

129

DMA core. The operating frequency of the Nios-II processor was 100 MHz.

We evaluate our system on a set of real benchmarks that are executed and measured
on the platform in order to obtain data towards our schedulability analysis. The selected
real benchmarks are from existing embedded benchmark suites. The selection is aimed to
represent several applications used in the embedded real-time domain. Memory intensive
applications are chosen to better stress the platform’s memory subsystem. Three bench-
marks from the well-known automotive EEMBC benchmark suite [134] are selected, a2time
(angle to time conversion), canrdr (response to remote CAN request), and rspeed (road
speed calculation). Two benchmarks from the DIS (Data Intensive System) benchmark
suite [118] are selected, transitive and corner-turn. We limited each benchmark to either
run up to 1 ms, or by its size so that it does not consume more than half of a SPM size (the
size of a partition). Table 4.4 reports, for each benchmark, the size of code and data in the
local memory, the time taken to run out of the local memory (scratchpad) and the DMA
load and unload times. All times are reported in cycles (cyc) and the sizes are reported in
bytes (B).

Table 5.1: Benchmarks

Benchmark Code size(B) Data size(B) SPM(cyc) load(cyc) unload(cyc)
a2time 3108 5420 100497 4560 2578
rspeed 1956 6864 55688 4635 2950
canrdr 2724 8030 47280 5134 3251

corner-turn 2032 8192 16728 4996 3292
transitive 2080 3024 102898 3677 1960

The applications in Table 5.1 are used to generate sets of random tasks. The task sets
are generated similarly to Section 4.1.4 and Section 4.2.3. Note that the utilization in %
reported in the figures below is the total CPU utilization normalized by the number of
cores m. Finally, each schedulability graph in this section is made of 4,000 experiments.

Figures 5.9-5.11 show results in term of ratio of schedulable task sets. As shown in
Figure 5.9, in the case of dual-core system, our bound is better than the contention-based
bound with equivalent number of cores (m). However, the contention-based system with
one extra core (m + 1) was able to schedule all generated task sets. The reason for this
is that the generation of task sets targeted an m-core system and then scheduled on an
m + 1-core system. In addition, when targeting a small number of cores, the generated
tasks set is relatively small. As a result, tasks execution takes advantage of the extra core
so they finish sooner.

130

55 60 65 70 75 80 85 90 95 100

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

our system m m +1

Util ization in %

S
c

h
e

d
u

la
b

il
it

y

Figure 5.9: 2-cores schedulability comparison.

55 60 65 70 75 80 85 90 95 100

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

our system m m +1

Util ization in %

S
c

h
e

d
u

la
b

il
it

y

Figure 5.10: 4-cores schedulability comparison.

131

55 60 65 70 75 80 85 90 95 100

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

our system m m +1

Util ization in %

S
c

h
e

d
u

la
b

il
it

y

Figure 5.11: 8-cores schedulability comparison.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

22

24

26

28

30

32

34

36

38

our system m

Number of Cores

To
ta

l
W

o
rs

t
C

a
lc

u
la

te
d

 B
o

u
n

d
 (

m
s

)

Figure 5.12: The scalability comparison of the WCRT bound.

In Figure 5.10, we compare the four-core case. As shown in the figure, we still perform
worse than m + 1 cores. This is mainly due to the pessimistic bound in our approach
as discussed in Section 7.2. However, the schedulability of the contention-based systems
dropped significantly. For example, the m+ 1 system dropped from 100% to around 89%.

As we increase the number of cores, as in Figure 5.11 for an eight-core system, the
memory phases in the contention-based system becomes longer and affects the schedula-
bility. In addition, the generated tasks set is larger than before. Therefore, the advantage
of one extra core becomes less effective as access to main memory becomes a bottleneck.
As you can notice, our approach is much less affected by the increase in number of cores
due to advantage of overlapping DMA operations with execution on the cores.

132

Figure 5.12 compares the WCRT obtained through the analysis on both systems for
the lowest-priority task as the number of cores increases. It is clear that the contention-
based bound rises much quicker with the number of cores compared to our bound. This
mainly because as the number of cores increases the contention on main memory, in the
contention-base system, becomes a bottleneck. The figure also explains why we do even
better than m+ 1 cores with higher number of cores.

5.5 Summary

In this chapter, we extended the 3-phase task scheduling model introduced in Chapter 3 to
handle global, rather than partitioned scheduling. We again consider a set of sporadic real-
time tasks scheduled non-preemptively according to fixed-priorities, and we make similar
hardware assumptions: each core is provided with a dual-ported SPM, divided in two
partitions, so that we can execute a task out of one partition while reloading the other one.

Compared to the partitioned case, a key difference in the global case is that we assume
knowledge of all tasks in the system. Hence, we do not need to enforce a fair DMA
arbitration among cores either in software or hardware. Instead, we can directly schedule
tasks’ accesses to main memory through a global queue of DMA operations; effectively,
this implies that core execution is driven by DMA scheduling, rather than vice-versa.

We then derive a schedulability analysis based on the well-known technique of the
problem window. The key intuitions behind the analysis are: 1) we can still construct the
interference on the task under analysis by considering the workload of tasks executing on
the m cores in the system; however, to account for the overhead of DMA operations, we
need to add extra workload in the form of scheduling holes, where the cores are stalled
waiting for the completion of DMA operations; 2) in the worst case where holes are present,
the DMA schedule is equivalent to a round-robin among the m cores. Hence, we can bound
the length of holes by considering the maximum length ofm consecutive task unloads/loads.

Finally, we compared our technique against standard global scheduling, where tasks
are preemptive but contend for main memory, using a modified version of the platform
introduced in Section 4.1. In particular, we show that as the number of cores increases,
our solution provides higher schedulability even compared to a contention-based system
with m+ 1 cores (to account for the hardware overhead of the DMA engine).

133

Part II

Task Communication For Hard
Real-time Applications

134

Chapter 6

Inter-Task Communication with
3-Phase Task Model

In this chapter, we discuss how the proposed 3-phase execution model can be extended to
support asynchronous communication between tasks. In our model, the communication
data is written to main memory during the DMA unload phase of a sender task, and then
read back from main memory during the DMA load phase of a receiver task. Section 6.1
discusses the communication model in more details, while Section 6.2 presents the imple-
mentation requirements. Section 6.3 shows how to bound the communication latency for
the partitioned scheduling scheme with fixed-size DMA operations presented in Section 3.3,
and finally Section 6.4 presents evaluation results.

6.1 The Proposed Inter-Task Communication Model

We assume an asynchronous communication model that regulates data exchange between
tasks, whether they run on the same core or on different cores. In this asynchronous model
the previously produced data, by a sender task, can be overwritten if it was not read
by the receiver task before. In detail, a sender task’s communication data is written to
main memory during its unload phase. Similarly, any communication data required by a
receiver task is loaded into the SPM during its load phase. Therefore, this model does not
require inter-core communication in our proposed SPM-centric system: the communication
is performed via main memory during the load and unload phases of the tasks. This
model of communication can be applied to both sequential and parallel tasks, since the

135

communication is scheduled and performed by the DMA during the load/unload of the
tasks.

This asynchronous communication model is more suitable to state-based communica-
tion. Unlike the event-based communication in which the receiver task might receive a
sequence of massages, in state-based communication the receiver task is only interested
in the latest up-to-date data or state. Packets arriving on a network card is an example
of event-based data, while state ports of a temperature sensor or proximity sensor are
examples of state-based data.

We consider a DAG of communicating tasks, from which we extract every possible
chain of communicating tasks. Each chain, λk is a set of n communicating tasks. Thus, we
denote the chain λk as λk = {τ1, τ2, ..., τn}, which we call a flow. A task τi in the flow λk
receives data from τi−1 and sends data to τi+1. In other words, the communication data
in the flow passes through all the tasks in the flow in sequence; We assume that task-local
data, code, and communication buffers can be accommodated within one partition of the
scratchpad memory.

6.2 Implementation

To explain how the communication model works, consider for example two tasks, τ1 and
τ2, that need to send data to a task τ3. Based on the statically defined communication
graph, we need to assign communication buffers to each communicating task. For instance,
consider a communicating task τ1. We need to allocate one send buffer and one receive
buffer for each task τ1 is sending to or receiving from respectively. In this example, for τ1

and τ2, we need to allocate one send buffer each, dedicated for communication with τ3. On
the other hand, τ3 needs two receive buffers, one to store data from τ1, and the other to
store data from τ2.

At task definition, τ1 and τ2 need to know the size of each message sent to τ3. This size
information is used to create the temporary send buffer inside scratchpad memory of the
core where τ1 and τ2 will be loaded and executed. On the other hand, the defined receive
buffers of τ3 is in main memory, two in this example.

During execution of sender tasks from the SPM, data to be sent to the receiver tasks
are written inside temporary buffers. These buffers are unloaded using the DMA from
scratchpad to main memory, and specifically into the corresponding receive buffers of the
receiver tasks. Finally, when τ3 is activated, all of its local code, data, and communication

136

data received by the time it is scheduled to load, is loaded from main memory into the
corresponding core’s SPM.

6.3 Bounding Communication Latency

As discussed in the previous sections, tasks communicate asynchronously without any
precedence constraint between them. In other words, when a job of a higher-priority
task τ1 is ready, it will be scheduled and start loading as soon as there is a free partition
regardless of any other running task that sends data to it. Since the access to main memory
is serialized using DMA, integrity of the communication data is assured as there will be no
data race condition (lock-less data sharing). Suppose τ1 is a receiver task for data sent by
τ2. Then τ1 will access the previous (old) communication data from τ2 if τ1 is loaded while
τ2 is still running or not yet unloaded from the SPM partition to main memory.

From a schedulability point of view, this communication model does not affect task
scheduling. However, we still need to bound the worst-case end-to-end communication
latency. As an example, we show how to determine the communication latency under the
same DMA scheduling and response time model used in Section 3.3; as a reminder, this
means that we consider fixed-size DMA operations, and the computed response time of
a task is the time that elapsed from when a task becomes ready (released) to the time
it finishes and is fully unloaded. Therefore, communication data sent by a sender task τi
will be available to a receiver task after Ri, which is the worst-case response time of τi,
accounting for interference and overheads.

As mentioned earlier, we consider sets of communicating tasks; each set, which we call
a flow λk, is a chain of n tasks: λk = {τ1, τ2, ..., τn}, such that a task τi in the flow receives
data from τi−1 and sends data to τi+1. In other words, the communication data in the
flow passes through all the tasks in the flow in sequence; consequently, the end-to-end
communication latency (Lλk) is the time it takes for the data to be consumed (loaded)
by the first task in the flow, i.e, τ1, until the last task in the flow, i.e., τn, writes the
data to main memory (unload). The end-to-end latency of a flow λk is computed as in
Equation 6.1.

Lλk =


R1 +

n∑
i=2

(Ti − 2 · σ +Ri) Different Cores

R1 +
n∑
i=2

(Ti − (2 +m− 1) · σ +Ri) Same Core
(6.1)

137

Theorem 6.1. The worst-case total end-to-end latency of a communication flow λk is

Lλk = R1 +
n∑
i=2

(Ti − 2 · σ +Ri)

Proof. As shown in Figure 6.1, the worst-case alignment (critical instant) between any two
different jobs that communicate is when the receiving job (τ2) starts loading right before
the unload phase of the producer job (τ1). This behavior prevents τ2 from loading the
fresh communication data until the next invocation. In addition, in the worst-case, τ2

starts loading right after its release to maximize latency by minimizing the overlapping
region (see Figure 6.1) between τ2 and τ1. Note that, in our system, this only happens if
the two tasks are on different cores. If they are on the same core, that core has to wait
for (m − 1) TDMA slots to perform the unload of τ1, which will increase the overlapping
region between the two tasks, thus reducing the latency.

Therefore, to compute the communication latency between τ1 and τ2, we add one period
and the worst-case response time (as detailed in the previous section) of τ2, and subtract
the overlapping region between τ1 and τ2. In the worst-case, the minimum overlapping
region is always made of the loading slot of τ2 and the unloading slot of τ1 which is 2 · σ.
To compute the total end-to-end latency between a chain of tasks in a flow, we simply
apply the same method between any two successive tasks in the flow. For the first task in
the flow (τ1), we only consider the response time.

τ
1

Time

τ
2

0 6 11 171 2 3 4 5 7 8 9 10 12 13 14 15 16 18 19 20 21 22 23 24

Latency

Figure 6.1: Worst-case communication latency between two tasks
.

6.4 Evaluation

We evaluate the communication latency by generating random set of tasks as discussed in
Section 4.2.3. From a generated task set, we compute the response time of each task using

138

the analysis in Section 3.3. After that, we generate four random communication flows
with 5, 10, 15, and 20 tasks and compute the communication latencies of each flow. Each
synthetic evaluation is repeated 1,000 times and the average worst-case communication
latency is reported. Figure 6.2 shows the estimated worst-case communication latencies
for the generated flows comprised of a mix of applications provided in Table 4.7. As one
can observe, there is a slight improvement when the communication tasks are scheduled
on the same core. In this specific evaluation, the system comprises two application cores,
as this is the setting of the implemented COTS platform in Section 4.2.

In addition, the yellow line in the figure represents the average communication band-
width, that is, the total amount of data transferred divided by the end-to-end communi-
cation latency. For the sake of this evaluation, we assumed that each task in a flow will
send data equal to the size of its data section as reported in Table 4.7; hence, the amount
of data transferred between any two successive tasks in a flow might be different, which
resemble real-life scenarios. Each point in the line is generated by randomly picking 5, 10,
15, or 20 tasks based on the number of tasks in the flow. Then, we compute the total
amount of data transferred withing the end-to-end latency window. We repeat the test
1,000 times and take the average to capture all the application benchmark in Table 4.7.

Figure 6.2: End-To-End communication Latency.

139

6.5 Summary

We showed how to incorporate inter-task communication in the proposed 3-phase task
model. We consider an asynchronous communication model, where pairs of sender and
receiver tasks exchange data. In particular, communication data is written by the sender
task to main memory during its unload phase, and read from main memory by the receiver
task during its load phase. Since there are no precedence constraints among communicating
tasks, the schedulability analyses presented in previous chapters do not need to be changed.

We computed bounds on the end-to-end latency for a chain of task based on the analysis
for partitioned systems in Section 3.3, and evaluated the obtain latency on the platform
introduced in Section 4.2.

140

Chapter 7

Bundled Scheduling of Parallel
Real-time Tasks

After discussing inter-task communication in Chapter 6, in this chapter and the next one we
focus on intra-task communication for parallel real-time tasks. In particular, in this chapter
we focus on how to schedule parallel tasks to simplify synchronization among parallel
threads of the same task; while in Chapter 8 we introduce a predictable interconnection
design and derive latency bounds for messages exchanged between communicating threads.

With the increased demand for high-performance applications such as autonomous
driving and computer vision [158], parallel processing is becoming relevant to the real-time
community. However, most related works on scheduling of real-time parallel tasks [142,
89, 92, 109] assume that application threads are scheduled independently. In practice,
there is large evidence [123, 60, 77, 150] that parallel threads often needs to be executed
concurrently. This is especially true for threads that are tightly synchronized through
the use of either shared resources or message passing primitives. Some synchronization
primitives, such as intra-threads locks, cannot be modelled by most related work [39, 109].
Many primitives can cause an unnecessary number of context-switches and increase thread
execution time due to blocking when threads are not executed together. Furthermore, the
need to account for such synchronization mechanisms greatly increases the complexity of
the task model.

For instance, consider the synchronizing Thread#1 and Thread#2 in Figure 7.1. If
the scheduling policy does not provide guarantees to schedule them in parallel at the same
time, their WCET are prone to inflation. In a preemptive policy they might suffer exces-
sive amount of preemptions, while in a non-preemptive policy a thread might spin-wait for

141

Time

C2

preemptive

C1

other workloads

Thread #1 Thread #2

Time

C2

non-preemptive

C1

other workloads

Thread #1 Thread #2

Time

C2

co-scheduled

C1

other workloads

Thread #1 Thread #2

Figure 7.1: Illustrations of the negative impact on synchronized parallel threads if not
co-scheduled at the same time

the other thread. Even in the best-case, depending on the synchronization primitives and
the scheduling policy, the WCET might not be prone to inflation, but it still complicates
accounting for their communication time. Therefore, we argue that parallel threads need
to be co-scheduled to reduce the synchronization overheads and to simplify their communi-
cation analysis. As will be detailed in Section 8.6, we can compose the total WCET as the
WCET on CPUs plus the worst-case communication time between the parallel threads. In
particular, all parallel threads of a tasks are scheduled concurrently, hence their commu-
nication time can be simply accounted for as long as the inter-core interconnect provides
provable real-time bounds.

To address this issue, gang scheduling [123] has been extensively studied in the HPC
and general purpose domains [60, 77, 150]. Under gang scheduling, an application is
scheduled only if there are sufficient cores to executed all the application’s threads in
parallel. Gang scheduling of real-time tasks has been investigated in [81, 55, 64, 38, 47]. In
particular, [81, 55, 64] consider a rigid task model, where in the worst case the number of
threads required by an application is assumed to remain constant over its entire execution
time. While the rigid model has the benefit of simplicity, it can incur a significant loss of
performance by overestimating the computational demand of an application: many parallel
applications change their required number of threads during execution. For example, in
the common fork-join model 1, the application progresses through a set of phases, where
each phase can require a different number of threads. In the similarly common Directed
Acyclic Graph (DAG) model, the application comprises a set of precedence-constrained
subtasks, and the number of threads used by the application at any one time depends on
the subtask scheduling.

Hence, in this chapter we introduce a novel task model, which we call the bundled model,
which supports gang scheduling of parallel threads without incurring undue pessimism in

1Note that we use the term fork-join to refer to the model that is also known as a multi-threaded task
in the literature.

142

modelling the application’s demand. In this model, a real-time task is composed of a
sequence of bundles, where each bundle is characterized by a known worst-case execution
time (WCET) and number of required cores. All threads within a bundle are then gang
scheduled. Our model thus represents a generalization of the traditional real-time gang
model, in the sense that a traditional gang task is equivalent to a bundled task with a
single bundle.

0

4

3

2

1

0
1 2 3 4 5 6

Time

thread 1

thread 2 thread 4

thread 3 thread 1 thread 1

thread 2C
o
re
s

7 8 9

Federated

0

4

3

2

1

0
1 2 3 4 5 6

Time

thread 1

thread 2

thread 4

thread 3 thread 1 thread 1 thread 2

C
o
re
s

7 8 9

Global

0

4

3

2

1

0
1 2 3 4 5 6

Time

thread 1

thread 2

thread 4

thread 3 thread 1

thread 1

thread 2

7 8 9

Gang

0

4

3

2

1

0
1 2 3 4 5 6

Time

thread 1

thread 2

thread 4

thread 3 thread 1

thread 1

thread 2

7 8 9

Bundled

other workloads
thread 1

thread 4

thread 3

thread 2

thread 1

Phase 1 Phase 2 Phase 3

thread 2

thread 1

Figure 7.2: Illustrations of how a fork-join parallel task can be scheduled according to
different scheduling strategies

Figure 7.2 shows an illustrative example of a parallel fork-join task and how parallel
threads might be scheduled with different scheduling strategies. The important point to
note here is that our objective is to guarantee that parallel threads are scheduled concur-
rently 1) to reduce the synchronization overheads and 2) to simplify accounting for their
communication. On the left side of the figure, global thread scheduling [109] and feder-
ated scheduling [93] are shown. As can be seen, both scheduling schemes do not provide
guarantee to schedule the parallel threads in the same phase concurrently. Consequently,
these scheduling schemes do not meet our objectives. As illustrated in the figure, federated

143

scheduling allocates a dedicated cluster of cores for the parallel task based on a metric rel-
evant to the parallel task utilization. However, federated scheduling might suffer from core
overprovisioning compared to the greedy global thread scheduling.

On the right side of the figure, gang scheduling of the rigid model [81] and the proposed
bundled scheduling are shown. Indeed, gang scheduling meets our objectives. However, as
mentioned earlier, gang scheduling of the rigid model suffers significant loss of performance
due to core overprovisioning. As illustrated in the figure of the gang case, four cores are
reserved for the entire execution time of the task, even when there are times where only one
or two cores are actually needed. In the proposed bundled scheduling, we segmented the
shown fork-join task into three different bundles based on the number of required cores in
each phase. All threads in each bundle are guaranteed to be scheduled in parallel, similar
to the gang case. However, since bundles can be independently scheduled, we only reserve
the required number of cores in each bundle, which leads to improved CPU utilization.
Note that, we improve over the gang scheduling of the rigid model at the cost of a more
complex schedulability analysis due to induced complexity to deal with the precedence
constraints between bundles.

More in details, we provide the following contributions: (A) We introduce the bundled
task model, and discuss how bundles are scheduled on an identical multiprocessor according
to a preemptive, fixed priority gang scheme. (B) We show how applications coded according
to different programming models can be executed within bundles. (C) We derive a sufficient
schedulability analysis for sporadic bundled task sets. (D) We evaluate the performance of
the derived analysis and compare it against the rigid gang model, as well as a state-of-the-
art analysis for global (non-gang) scheduled parallel tasks [109]. (E) Finally, we discuss
how to integrate bundled scheduling with the 3-phase task model to ensure predictable
access to memory resources and reduce the overhead of preemptions.

The rest of the chapter is organized as follows. We first introduce the proposed system
model in Section 7.1. In Section 7.2, we detail the schedulability analysis for the proposed
system. The evaluation results are reported in Section 7.3. In Section 7.4, we discuss how
bundled scheduling could be integrated with the 3-phase execution model. Finally, we
conclude with some remarks in Section 7.5.

7.1 System Model

We consider an identical multiprocessor platform consisting of m processors; we use the
terms processor and core interchangeably. We focus on scheduling n sporadic bundled

144

parallel tasks denoted by τ = {τ1, τ2, ..., τn}. Each task τi comprises a sequence of bi
bundles 2, represented as τi = {τi,1, τi,2, ..., τi,bi}. Each bundle τi,j ∈ τi is characterized
by 〈hi,j, li,j〉, where hi,j ≤ m is the number of cores required to execute the bundle, and
li,j is the WCET of the bundle. We call hi,j the height of the bundle and li,j the length
of the bundle; we also call vi = hi,j × li,j the volume of the bundle. We denote the

total WCET of τi as Li =
∑bi

j=1 li,j and the total volume of τi as Vi =
∑bi

j=1 vi,j. Each
task τi is further characterized by a period Ti and a relative deadline Di, with Di ≤ Ti
(constrained deadline). τi generates a (potentially) infinite sequence of jobs, with arrival
times of successive jobs separated by at least Ti time units; when referring to a bundle τi,j
of τi, we also use the term job to denote the instance of τi,j executing as part of a job of τi.

Tasks are scheduled according to a global, preemptive fixed-priority gang scheduling
scheme, as detailed in Section 7.1.1. We say that task τi is active at time t if a job of τi
has arrived before or at t but has not yet finished executing. Since bundles are always
processed as a sequence, at any time t when the task is active, exactly one bundle of the
task is active; bundle τi,1 becomes active when a job of τi arrives, while each other bundle
τi,j+1 becomes active once the previous bundle τi,j finishes. The system scheduler selects
which tasks to execute based on the currently active bundles. We say that a task/bundle
is ready if it is active but not executing. We consider two priority schemes. In the fixed
per-task scheme, each task τi is assigned a priority Pi, where higher number implies higher
priority. In the fixed per-bundle case, each bundle of τi is assigned an individual priority
Pi,j. Note that the former can be seen as a restriction of the latter, where Pi,j = Pi for
all bundles of τi. A task set if schedulable with respect to a priority assignment if all jobs
are guaranteed to complete by their deadline. We assume that all time values and task
parameters are natural numbers.

Similarly to related work on gang scheduling [81], throughout Sections 7.1-7.3 we do
not directly model preemption overheads, but assume that they can be accounted for by
extending the length of the task. In the case where concurrent execution of multiple tasks
can cause interference on shared resources such as cache or main memory, we assume a
resource sharing mechanism with provable delay bounds [106, 126]. Clearly, as discussed
throughout this dissertation, such preemption overheads and delay bounds can be signif-
icant for memory-intensive tasks. Therefore, in Section 7.4 we remove such assumptions,
and instead show how to integrate the proposed bundled scheduling with the 3-phase exe-
cution model, assuming the availability of a DMA engine and private per-core SPM.

2also referred to as segments or phases in related task models. We use the different term bundles to
stress that they are gang scheduled.

145

7.1.1 The Scheduling Algorithm

The gang system scheduler is conceptually represented in Algorithm 7.1 3. The scheduler
iterates over each active bundle τi,j in decreasing priority order, and executes the bundle
if the number of remaining available cores is greater than or equal to its height hi,j. Note
that the scheduler is work-conserving, in the sense that it always schedules a bundle if
there are enough available cores. The scheduler also always reserves hi,j cores for bundle
τi,j while executing it. Since furthermore the priority of each bundle is constant, it follows
that context-switches can only happen when a new bundle becomes active, and the system
scheduler is invoked when a job arrives or finishes, and when a bundle finishes and the
next one is activated.

We assume that an application scheduler uses the reserved hi,j cores to execute the
functional components of the parallel application associated with task τi; an example of
such application scheduler is the OpenMP runtime [49]. If all computation assigned to
a bundle finishes early, then the application scheduler can yield to the system scheduler,
causing the current bundle to finish; otherwise, the system scheduler executes an active
bundle for its assigned duration li,j. In general, the way the application scheduler behaves
depends on the programming model of the parallel application; hence, we briefly discuss
how to handle different parallel programming models in the next section.

Algorithm 7.1 Bundled Fixed-Priority Scheduling Policy

Let Qactive be the set of active bundles.
Let Qexec be the set of executing bundles.
Let hrem be the number of remaining cores.

1: Qexec ← ∅;
2: hrem ← m;
3: for each τi,j ∈ Qactive in decreasing Pi,j order do
4: if hi,j ≤ hrem then
5: Qexec ← Qexec ∪ {τi,j};
6: hrem ← hrem − hi,j;
7: execute the bundles in Qexec;

146

Time
8 9 10 11

4

3

2

1

0

C

o
re

s
subtask 1

subtask 4

subtask 3

subtask 2

subtask 1

subtask 3

subtask 1

subtask 2

subtask 1

subtask 2

Phase 1 Phase 2 Phase 3 Phase 4

Bundle 1

Bundle 2 Bundle 4

Bundle 5

Bundle 3

subtask 1
subtask 2
subtask 1

subtask 2

subtask 4
subtask 3
subtask 2
subtask 1 subtask 1

subtask 2
subtask 3

subtask 1

Figure 7.3: Fork-join application and resulting bundled task.

7.1.2 Programming Model

We next show how the proposed bundled model can be used to schedule parallel applica-
tions coded according to different programming models. In particular, bundled scheduling
is a natural fit for the fork-join model. In the fork-join model, the program is made of a
sequence of synchronous phases, as shown in Figure 7.3. Each phase is composed of one
or more parallel threads, which are also known as subtasks. To schedule a fork-join appli-
cation within a bundled task, we allocate one or more bundles per phase. If all subtasks
within a phase have the same WCET, then we allocate a single bundle with a height equal
to the number of subtasks in the phase, and a length equal to the WCET of the subtasks.
If the subtasks have different WCET, then we allocate multiple bundles, one for each
WCET value, as shown for Phase 3 in Figure 7.3: the first bundle has length equal to the
shortest WCET and includes all subtasks, while successive bundles include only subtasks
with higher WCET. In either case, at run-time the application scheduler can yield once
all subtasks in the phase have finished, possibly before their WCETs. The key advantage
of bundled scheduling the application, compared to independent thread scheduling, is that
all subtasks are gang scheduled to minimize the synchronization overhead, thus potentially
reducing their WCET estimate.

The bundled model can also be applied to the more general case where the internal
structure of the program is unknown. Assume that the logic of the application scheduler

3Note that the algorithm could be optimized by using multiple priority queues for active bundles based
on their heights.

147

1
st-1

3
st-3

3
st-2 1

st-7

1
st-5

1
st-6

1
st-4

0

4

3

2

1

0
1 2 3 4 5 6

Time

Bundle-2

Bundle-4Bundle-1

Bundle-3

st-2

st-3

st-4

st-5

st-6st-1 st-7

B

DC

A

0

4

3

2

1

0
1 2 3 4 5 6

Time

st-2

st-1 st-7

Bundle-2

Bundle-4Bundle-1

Bundle-3

st-3 st-3

st-4

st-5

st-6

0

4

3

2

1

0
1 2 3 4 5 6

Time

st-2

st-3st-1 st-7

Bundle-2

Bundle-4Bundle-1

Bundle-3

Yield

st-4

st-5

st-6

Figure 7.4: DAG application and possible schedules.

does not depend on when bundles are executed, which is decided by the system scheduler.
Then we can guarantee that the application safely completes when assigned to a (schedu-
lable) bundled task by following this procedure: by either measurement or analysis, we
determine the execution shape of the application when running in isolation on m cores,
that is, the number of cores used by the application at every point of time. If the exe-
cution shape of the application changes between different runs, for example based on its
inputs, then for any point of time we consider the largest number of cores used by the ap-
plication in any possible run (assuming complete coverage). Bundles can then be allocated
based on the obtained shape; this guarantees that when the task is scheduled by the sys-
tems scheduler, the application scheduler is always provided with a number of cores equal
to or higher than the number of cores it can use at that time. While this procedure can
lead to overprovisioning CPU resources, it cannot result in a larger reservation compared
to the rigid model.

If more information is known about the internal structure of the application, then we
can avoid core overprovisioning. For example, consider a DAG application, where the
WCET of each subtask is known, as shown in Figure 7.4(A). Figure 7.4(B) shows the
execution shape generated by simulating the application on a system with at least 3 cores,
based on any work-conserving application scheduler and where each subtask executes for
its WCET. As shown in the figure, based on the obtained shape we can generate a task with

148

4 bundles. However, if subtasks do not execute for their WCET, then the resulting shape
might not be safe, in the sense that the application might require more cores at some point
in time. For example, in Figure 7.4(C) we show the case where subtask2 executes for 1 unit
of time, and subtask3 executes for 2 units of time; this results in the application using 4
cores at time 2. We can solve the issue by employing a time-triggered, non-work conserving
application scheduler that activates each subtask based on its start time with respect to a
bundle in the original shape; the corresponding schedule is shown in Figure 7.4(D). Note
that in this example, the scheduler yields at time 3 once all subtasks in Bundle-2 have
finished; subtasks3-5-6 are activated once Bundle-3 starts. Finally, note that the scheduler
implementation in [168] already relies on a static table of subtasks, so it could be easily
extended to implement the described time-triggered scheme. As an added advantage, the
described scheduler can guarantee that specific subtasks are executed concurrently, again
minimizing synchronization overheads.

7.2 Schedulability Analysis

In this section, we derive a sufficient schedulability analysis for a bundled task set. We
use a similar response time approach as the one in [39, 109], but we specialize it for gang
scheduling based on fixed priorities. We derive a response time upper bound Rk for each
task under analysis τk, and we deem the task set schedulable if for every task it holds
Rk ≤ Dk. For clarity of exposition, we begin by detailing the analysis for the special
case of the rigid model, that is each task τi has only one bundle. Hence, without loss of
generality we use hi = hi,1 to denote the height of the single task-bundle; also note that
li,1 = Li. Then in Section 7.2.2 we extend the analysis to tasks with multiple bundles.

As in all related work on global scheduling, the analysis is based on the concept of
interference, which is defined as the amount of time during which τk is active, but cannot
execute because all cores are busy executing other tasks (i.e., the task remains in the ready
queue).

Definition 7.1. The interference Ik on task τk is the cumulative time during which some
job of τk is ready (active but not executing).

While the definition of interference remains unchanged, note an important difference
compared to the case of sequential tasks: in the context of parallel tasks scheduled as a
gang, an active task can remain ready even when some cores are idle, due to the number
hk of cores required to run the gang.

149

Theorem 7.1. Let Ik(t) be a monotonic 4 upper bound on the interference on τk in any
window of time of length t ≤ Dk starting with the arrival of a job of τk. Then for any
work-conserving scheduling algorithm, an upper bound Rk to the response time of τk can
be found with the following fixed-point iteration, starting with Rk = Lk:

Rk ← Lk + Ik(Rk). (7.1)

Proof. Since Ik(t) is monotonic and due to the natural number time convention, it follows
that the iteration either converges to a fixed point Rk = Lk + Ik(Rk) ≤ Dk in a finite
number of steps, or it becomes Rk > Dk in a finite number of steps, in which case we fail
to prove the task schedulable. It remains to show that if Rk ≤ Dk is a fixed point, then it
is an upper bound to the response time of τk.

Consider a window of time of length Rk starting with the arrival of any job of τk.
Since we assume constrained deadlines, it follows that only one job of τk can be active in
the window, and that job remains active from the beginning of the window until it either
finishes executing for Lk time or the window is over. Given that we know that the amount
of time that τk is ready is no more than Ik(Rk), it follows that the amount of time that
τk can execute in the window is at least Rk − Ik(Rk) = Lk. Hence, since the schedule is
work-conserving, the job must finish executing in the time window, meaning that Rk is
indeed an upper bound to the response time of any job of τk.

Theorem 7.1 is the same as 6 in [39] and 5.1 in [109]. The monotonicity condition is
required to ensure that the iteration terminates in a finite number of steps by either finding
a response time upper bound or obtaining Rk > Dk, in which case we fail to prove the task
schedulable.

The challenge is then to derive the bound on Ik for a window of length t based on
the volume of interfering higher priority bundles. The height of the task under analysis
determines the sensitivity to interference: since the task requires hk available cores to run, it
follows that for the task to suffer interference, at least m−hk+1 cores must be occupied by
higher priority tasks. Similarly to [81], we can thus depict the interference as a rectangle in
time × processor space, with a height of m−hk+1, which we call the interference rectangle.
Figure 7.5 shows the worst case interference for three cases on a system of 4 cores. Note
that, for simplicity of illustration all interfering tasks are lumped and drawn before the task

4For convenience and since we are interested in upper bounding the interference and response time, we
use the term monotonic to denote a non-decreasing function.

150

under analysis. However, in preemptive systems, the interference can occur anytime while
the task is active. Case (A) is similar to sequential tasks and the interference rectangle
is of height m − 1 + 1 = 4, and the volume of interfering tasks is lumped together and
divided over the number of cores. As the height of the task under analysis increases, the
height of the interfering rectangle decreases. This can extend its horizontal length as the
volume of interfering tasks is divided over less cores. However, note that interfering tasks
with heights greater than the height of the interfering rectangle cannot contribute to the
interference by more than the height of the rectangle itself. To formalize the derivation of
the interfering rectangle length, we next introduce some definitions.

 TaskUnder Analysis Interfering Tasks Interference Rectangle

(C)(A) (B)

0

4

3

2

1

0
1 2 3 4

Time

C
o
re
s

0

4

3

2

1

0
1 2 3 4 5

Time

C
o
re
s

0

4

3

2

1

0
1 2 3 4 5 6

Time

C
o
re
s

Figure 7.5: Interfering caused by higher priority tasks. The up arrow denotes the arrival
time of the task under analysis.

Definition 7.2. The contribution Ci
k of a task τi to the interference Ik, with i 6= k, is the

cumulative amount of time that τi is executed while τk is active.

Definition 7.3. For a set of rigid tasks, the interference factor I ik of task τi on τk is defined
as:

I ik =

{
min(hi,m−hk+1)

m−hk+1
, if Pi ≥ Pk;

0, otherwise.
(7.2)

Lemma 7.1. For gang scheduling of rigid tasks with fixed priorities, the following is a
bound on the interference on task τk:

Ik ≤
⌊∑
∀i 6=k

(I ik × Ci
k)
⌋
. (7.3)

Proof. We seek to bound the cumulative amount of time Ik that τk is ready. Since we are
using gang scheduling with fixed priorities, it follows that tasks with higher priority than
τk must occupy at least m−hk + 1 processors for Ik time. (A) As illustrated in Figure 7.5,

151

this implies that the cumulative volume of interfering higher priority tasks, bounded by a
height of m− hk + 1, must be equal to at least Ik × (m− hk + 1). (B) Given contribution
Ci
k, by definition the cumulative time that τi executes while τk is ready is no more than

Ci
k, and thus the interfering volume of τi is at most Ci

k × min(hi,m − hk + 1). Based on
(A) and (B), we obtain:∑

∀i:i 6=k∧Pi≥Pk

(
Ci
k ×min(hi,m− hk + 1)

)
≥ Ik × (m− hk + 1), (7.4)

which is equivalent to:

Ik ≤
∑

∀i:i 6=k∧Pi≥Pk

(
Ci
k(t)×

min(hi,m− hk + 1)

m− hk + 1

)
=
∑
∀i 6=k

(
I ik × Ci

k

)
. (7.5)

Now due to the natural number time convention, Ik ≤
∑
∀i 6=k(I

i
k × Ci

k) implies Ik ≤⌊∑
∀i 6=k(I

i
k × Ci

k)
⌋
, completing the proof.

7.2.1 Bounding the Contribution

It remains to compute an upper bound to the contribution Ci
k of τi on τk in a window of

length t; we can then set t = Rk and use the iteration in Equation 7.1 to compute the
response time. We rely on the common concept of workload.

Definition 7.4. The workload of task τi is the maximum cumulative time that τi is executed
in a window of length t.

Observation 7.1. By definition, the contribution Ci
k of a bundle τi is upper bounded by

its workload.

As in the case of sequential tasks [39], the workload is maximized when the first job of
τi starts executing as late as possible (with a starting time aligned with the beginning of
the window) and later jobs are executed as soon as possible. The corresponding scenario
is represented at the bottom of Figure 7.6, where the first job of τi starts executing Ti−∆i

time units after its arrival, with ∆i = Ti − Ri + Li. The corresponding workload bound
W i(t) is represented at the top of Figure 7.6, and can be formally derived as:

W i(t) =


min(t, Li), if t ≤ ∆i;

Li + Li × b t−∆i

Ti
c+

min(Li, (t−∆i) mod Ti), otherwise.

(7.6)

152

Ti
Ri

time

t

time

Figure 7.6: The maximum workload of task τi within a window of time t

Based on Observation 7.1 and Equation 7.6 we thus have:

Ci
k ≤ W i(t). (7.7)

We are now ready to derive the response time Rk. Note that Equation 7.3 is monotonic
in Ci

k, and Equation 7.6 is monotonic in t. Hence, based on Theorem 7.1, Lemma 7.1 and
Equation 7.7, we can obtain the response time for gang scheduling with fixed priorities
based on the following iteration:

Rk ← Lk +
⌊∑
∀i 6=k

(
I ik ×W i(Rk)

)⌋
. (7.8)

7.2.2 Analysis for Multiple Bundles

We now consider the general case where tasks comprise multiple bundles. We employ the
same analysis scheme: in particular, note that Definition 7.1 and Theorem 7.1 remain
true, albeit the number of required available cores changes based on the height hk,p of the
current active bundle. Similarly, the definition of contributions Ci

k and workload W i(t)
remain valid, since they do not depend on the height of individual bundles. However,
Definition 7.3 and Lemma 7.1, which allow us to bound the interference, cannot be used
as they assume constant height. To bound the interference for the bundled case, we thus
extend our definitions to account for the contribution and interference of individual bundles.

153

Definition 7.5. The interference Ik,p on bundle τk,p is the cumulative time during which
τk,p is ready.

Observation 7.2. Since at most one bundle of τk can be ready at any time, by definition
it holds: Ik =

∑bk
p=1 Ik,p.

Definition 7.6. The contribution Ci,j
k of a bundle τi,j to the interference Ik, with i 6= k,

is the cumulative amount of time that τi,j is executed while τk is active. Similarly, the
contribution Ci,j

k,p of τi,j to the interference Ik,p, with i 6= k, is the cumulative amount of
time that τi,j is executed while τk,p is active.

Definition 7.7. The interference factor I i,jk,p of bundle τi,j on τk,p is defined as:

I i,jk,p =

{
min(hi,j ,m−hk,p+1)

m−hk,p+1
, if Pi,j ≥ Pk,p;

0, otherwise.
(7.9)

Lemma 7.2. For gang scheduling with fixed priorities, the following is a bound on the
interference on bundle τk,p:

Ik,p ≤
⌊∑
∀i 6=k

bi∑
j=1

(I i,jk,p × C
i,j
k,p)
⌋
. (7.10)

Proof. We seek to bound the cumulative amount of time Ik,p that τk,p is ready. Since we are
using gang scheduling with fixed priorities, it follows that bundles with higher priority than
τk,p must occupy at leastm−hk,p+1 processors for Ik,p time. (A) As illustrated in Figure 7.5,
this implies that the cumulative volume of interfering higher priority bundles, bounded by
a height of m−hk,p+1, must be equal to at least Ik×(m−hk,p+1). (B) Given contribution
Ci,j
k,p, by definition the cumulative time that τi,j executes while τk,p is ready is no more than

Ci,j
k,p, and thus the interfering volume of τi,j is at most Ci,j

k,p×min(hi,j,m−hk,p + 1). Based
on (A) and (B), we obtain:

∑
∀i:i 6=k∧Pi,j≥Pk,p

bi∑
j=1

(
Ci,j
k,p ×min(hi,j,m− hk,p + 1)

)
≥

Ik,p × (m− hk,p + 1), (7.11)

154

which is equivalent to:

Ik,p ≤
∑

∀i:i 6=k∧Pi,j≥Pk,p

bi∑
j=1

(
Ci,j
k,p(t)×

min(hi,j,m− hk,p + 1)

m− hk,p + 1

)

=
∑
∀i 6=k

bi∑
j=1

(
I i,jk,p × C

i,j
k,p

)
. (7.12)

Now due to the natural number time convention, Ik,p ≤
∑
∀i 6=k

∑bi
j=1

(
I i,jk,p × C

i,j
k,p

)
implies

Ik,p ≤
⌊∑

∀i 6=k
∑bi

j=1

(
I i,jk,p × C

i,j
k,p

)⌋
, completing the proof.

Next, we extend the definition of workload.

Definition 7.8. The workload of bundle τi,j is the maximum cumulative time that τi,j is
executed in a window of length t.

Observation 7.3. By definition, both the contribution Ci,j
k and Ci,j

k,p of a bundle τi,j is
upper bounded by its workload.

We can determine an upper boundW i,j(t) to the workload of τi,j using the same scenario
as in Section 7.2.1: the first job of τi,j starts executing as late as possible and later jobs are
executed as soon as possible. Since we make no assumption on the minimum execution time
of bundles of τi executed before τi,j, in the worst case τi,j can start executing immediately
when the corresponding job of τi arrives. On the other hand, the following lemma bounds
the latest time Ti −∆j

i that τi,j can start executing after the arrival of τi.

Lemma 7.3. Let Ri ≤ Di be an upper bound to the response time of task τi. Then each
bundle τi,j must start executing no later than Ri −

∑bi
q=j li,q time units after the arrival of

the corresponding job of τi.

Proof. Consider any window of time Ri starting with the arrival time of a job of τi; since
Ri ≤ Di and deadlines are constrained, only one job of τi can execute in the window.
Since furthermore in the worst case the job must execute for Li time units, the interference
Ik in the time window cannot be greater than Ri − Li. Now consider bundle τi,j. Since
the scheduler is work conserving and bundles are always executed in order, it follows that
bundle τi,j must start executing no later than Ik +

∑j−1
q=1 li,j from the beginning of the

155

window; note that
∑j−1

q=1 li,j represents the worst case execution time of the bundles before
τi,j. This yields:

Ik +

j−1∑
q=1

li,j ≤ Ri − Li +

j−1∑
q=1

li,j = Ri −
bj∑
q=j

li,j, (7.13)

concluding the proof.

Based on Lemma 7.3, we thus have ∆j
i = Ti − Ri +

∑bi
q=j li,q. Again referring to

Figure 7.6, we obtain:

W i,j(t) =


min(t, li,j), if t ≤ ∆j

i ;

li,j + li,j × b t−∆j
i

Ti
c+

min(li,j, (t−∆j
i) mod Ti), otherwise.

(7.14)

Finally, later in the section it will become useful to compute a linear approximation W i,j(t)

to the workload. Based on Figure 7.6, the resulting line has a slope of
li,j
Ti

and has a value

W i,j(∆ + li,j) = W i,j(∆ + li,j) = 2li,j, which yields:

W i,j(t) =
li,j
Ti
× (Ti +Ri − 2li,j + t). (7.15)

Note that similarly to W i,j(t), W i,j(t) is also monotonic in t. Furthermore, to tighten the
linear bound, we also notice that by definition it must hold Ci,j

k,p ≤ t for any window of
length t. In summary, all the following bounds (which will be later used as part of the
proofs) hold for a window of length t:

Ci,j
k ≤ W i,j(t), (7.16)

Ci,j
k,p ≤ W i,j(t), (7.17)

Ci,j
k,p ≤ t. (7.18)

Finally, using the same strategy as in Equation 7.8 and based on Observation 7.2, we
could now determine I(Rk) by summing the interference bounds in Equation 7.10, thus
obtaining:

Rk ← Lk +

bk∑
p=1

⌊∑
∀i 6=k

bi∑
j=1

(
I i,jk,p ×W

i,j(Rk)
)⌋
. (7.19)

156

7.2.3 Tightening the Analysis

Unfortunately, the bound resulting from Equation 7.19 is extremely pessimistic: when
considering a higher priority bundle τi,j, a single window of time of length Rk is used
to determine its contribution on each bundle τk,p of the task under analysis. Hence, we
are effectively “multiple counting” by having the same job of τi,j interfering with all the
bundles of τk,p at the same time. However, in reality this is not possible as the following
observation notices:

Observation 7.4. Since at most one bundle of τk can be active at any time, by definition
it holds: Ci,j

k =
∑bk

p=1 C
i,j
k,p.

A B

0

4

3

2

1

0

C
o
re
s

0

4

3

2

1

0
1 2 3 4
Time

τk,1

τk,2

0

4

3

2

1

0

C
o
re
s

0

4

3

2

1

0
1 2 3 4 5 6

Time
7

τk,2

τk,1

 Bundles Under Analysis

Interfering Bundles

Interference Rectangle

Figure 7.7: Worst-case contributions of interfering workloads. A: contributing to the
first bundle. B: contributing to the second bundle.

To obtain a tighter analysis, we thus seek to determine the contributions Ci,j
k,p on each

bundle τk,p that maximize the total interference Ik. To give a concrete example, Figure 7.7
shows two cases of the same workloads. In case (A), the higher-priority bundles are as-
sumed to contribute to the interference of the first bundle (τk,1), whereas in case (B) they
contribute to the second bundle (τk,2). It is clear from the figure, that the contributions
Ci,j
k,1 and Ci,j

k,2 are important to determine the total interference suffered by τk. In partic-
ular, in this specific example, the worst-case response time of τk is obtained by setting
∀ i, j : Ci,j

k,1 = 0 and ∀ i, j : Ci,j
k,2 = li,j, which conforms to case (B).

157

Listing 7.1 LP Problem formulation for Interference Ik(t)

Input: window length t, task parameters

Output: Ik = b
bk∑
p=1

Ik,pc

Free Variables: ∀ i 6= k, j, p Ci,j
k,p ∈ R≥0

Objective: maximize
bk∑
p=1

Ik,p

Subject to:

1a. ∀ i 6= k, j

bk∑
p=1

Ci,j
k,p ≤ W i,j(t)

1b. ∀ i 6= k, j

bi∑
j=1

bk∑
p=1

Ci,j
k,p ≤ W i(t)

↑ workload constraints on τk

2a. ∀ i 6= k, j, p Ci,j
k,p ≤ W i,j(lk,p + Ik,p)

2b. ∀ i 6= k, j, p Ci,j
k,p ≤ lk,p + Ik,p

↑ workload constraints on τk,p

3. ∀ i 6= k, j, p Ci,j
k,p ≤ li,j if ∃q 6= j, SF i,q

k,p = true

↑ bundle-priority constraints

Where:

Ik,p =
∑
∀i 6=k

bi∑
j=1

(
I i,jk,p × C

i,j
k,p

)
SF i,q

k,p = (Pi,q < Pk,p) ∧ (hi,q + hk,p > m)∧(
(hi,q +m− hk,p + 1 > m)∨

(∀τy,z, y 6= k ∧ Py,z ≥ Pk,p : hi,q + hy,z > m)
)

158

We next introduce a linear programming formulation that computes the required upper
bound Ik(t) by finding contributions Ci,j

k,p that maximize the interference. The interference

bound is obtained by summing individual interference upper bounds Ik,p for each bun-
dle of τk,p. The contributions are subject to five constraints. Constraint 1a bounds the

overall contribution Ci,j
k =

∑bk
p=1 C

i,j
k,p on task τk using Equation 7.16, thus satisfying Ob-

servation 7.4. However, as noticed in Section 7.2.2, W i,j(t) is derived assuming that τi,j
executed for its worst case time, while bundles of τi before τi,j executed for zero time.
Clearly, this situation cannot happen for every bundle of τi; hence, when writing Con-
straint 1a over all j, we can effectively over-estimate the workload of task τi. We make one
final observation:

Observation 7.5. Since at most one bundle of τi can be active at any time, by definition
it holds: Ci

k =
∑bi

j=1C
i,j
k .

Therefore, based on Observations 7.4, 7.5 and Equation 7.7, in Constraint 1b we also
bound the contribution of τi on τk such that:

Ci
k =

bi∑
j=1

Ci,j
k =

bi∑
j=1

bk∑
p=1

Ci,j
k,p ≤ W i(t). (7.20)

Moving on, Constraints 2a, 2b bound the contributions on each bundle under analysis
τk,p, rather than on the entire task τk. Note that here, lk,p + Ik,p represents a bound on
the time that τk,p can be active, that is, the response time of the bundle. We use the
linearized upper bound in Equations 7.17, 7.18 rather than the workload bound W i,j(t) to
ensure that the algorithm formulation is a linear programming problem; note that for the
same reason, we remove the floor from Equation 7.10 in the expression for the interference
bound Ik,p, and we relax the variables Ci,j

k,p to be real rather than natural numbers.

Finally, Constraint 3 adds a restriction on the values of the contributions that allow us
to tighten the analysis. The condition SF i,q

k,p evaluates to true if a bundle τi,q of τi cannot
execute while τk,p is active. Consider another bundle τi,j of τi with higher priority than τk,p.
Since bundles are always executed in order, between the execution of any two jobs of τi,j, τi,q
must be executed once. But if SF i,q

k,p = true this is not possible while τk,p is active, meaning

that no more than one job of τi,j can interfere with τk,p; hence, we obtain Ci,j
k,p ≤ li,j. To

understand how the condition SF i,q
k,p is derived, refer to Figure 7.8, and consider a bundle

τi,q with hi,q = 2 and lower priority than τk,p (Pi,q < Pk,p). Note that in both Figure 7.8(A)
and Figure 7.8(B), τi,q cannot execute while τk,p is also executing because there are not
enough cores for both bundles (hi,q + hk,p > m). In Figure 7.8(A), τi,q also cannot execute

159

in parallel with the interference rectangle, since its height (m − hk,p + 1 = 2) leaves only
one core free, while τi,q requires two (that is, hi,q + m − hk,p + 1 > m). In Figure 7.8(B),
the height of the interference rectangle is 1, but all bundles that have a priority higher
than τk,p (τy,z with y 6= k and Py,z ≥ Pk,p), and can thus interfere with it, have a height
of at least 2, which again does not leave enough cores for τi,q (hi,q + hy,z > m). In either
case, τi,q cannot execute in parallel with the interfering rectangle; and since it also cannot
execute in parallel with τk,p, it follows that it cannot run while τk,p is active. The next two
lemmas formally prove the correctness of the constraint.

Interfering Bundles τk,p τi,q Interference Rectangle

0

3

2

1

0
1 2 3 4 5

Time

C
o
re
s

(A) (B)

0

3

2

1

0
1 2 3 4 5

Time

C
o
re
s

Figure 7.8: Examples of lower-priority bundles’ ability to run

Lemma 7.4. If SF i,q
k,p is true, then τi,q cannot execute while τk,p is active.

Proof. Since SF i,q
k,p holds, we have hi,q + hk,p > m; hence, τi,q and τk,p cannot execute

simultaneously on m cores.

Next, assume that τk,p is ready. Since it also holds Pi,q < Pk,p, other bundles with higher
priority than both τk,p and τi,q must occupy at least m−hk,p + 1 cores. Given SF i,q

k,p =true,
we finally have hi,q + m − hk,p + 1 > m or ∀τy,z, y 6= k ∧ Py,z ≥ Pk,p : hi,q + hy,z > m.
In either case, there are not enough cores available for hi,q to execute in parallel with the
higher priority bundles.

In summary, we have shown that if SF i,q
k,p holds, then τi,q cannot execute while τk,p is

either ready or executing. Hence, τi,q cannot execute while τk,p is active.

Lemma 7.5. In any window of time where at most one job of τk,p is active, if SF i,q
k,p is

true for a bundle τi,q with i 6= k, then we have Ci,j
k,p ≤ li,j for all other bundles of τi.

160

Proof. Let ta be the earliest time in the window in which the only job of τk,p is active, and
let tb be the last such time (if there is no such job, then trivially Ci,j

k,p = 0 and the lemma
holds). After being activated, a bundle remains active until it finishes; hence, [ta, tb] is a
continuous interval of time.

By contradiction, assume that Ci,j
k,p > li,j; then, at least two jobs of τi,j must execute

within [ta, tb]. However, since bundles are always executed in order, at least one job of
τi,q must also execute between the finishing time of the first job and the time the second
job of τi,j becomes active. This implies that τi,q executes in [ta, tb], which is impossible by
Lemma 7.4.

We can now show that Listing 7.1 computes a valid upper bound Ik(t) in Theorem 7.2.
We start with a helper lemma.

Lemma 7.6. Consider a window of time of length t ≤ Dk starting with the arrival of a job
of τk. The contributions Ci,j

k,p for such window must satisfy Constraints 1-3 in Listing 7.1.

Proof. We show that the values of the contribution Ci,j
k,p must satisfy all five constraints in

Listing 7.1.

Constraint 1a: by Observation 7.4 and Equation 7.16 we have:
bk∑
p=1

Ci,j
k,p = Ci,j

k ≤ W i,j(t).

Hence, the constraint must be satisfied.

Constraint 1b: similarly to the case of Constraint 1a, by Observations 7.4, 7.5 and
Equation 7.7 we obtain

∑bi
j=1

∑bk
p=1 C

i,j
k,p ≤ W i(t).

Constraint 2a: note that the constraint is equivalent to Ci,j
k,p ≤ W i,j

(
lk,p+

∑
∀i 6=k

∑bi
j=1

(
I i,jk,p×

Ci,j
k,p

))
. By contradiction, assume the constraint is violated. By monotonicity of W i,j(t)

and Lemma 7.2, this yields:

Ci,j
k,p > W i,j

(
lk,p +

∑
∀i 6=k

bi∑
j=1

(
I i,jk,p × C

i,j
k,p

))

≥ W i,j
(
lk,p + b

∑
∀i 6=k

bi∑
j=1

(
I i,jk,p × C

i,j
k,p

)
c
)

≥ W i,j(lk,p + Ik,p). (7.21)

161

But since the schedule is work conserving, τk,p cannot be active for more than lk,p + Ik,p
time units; hence based on Equation 7.17 applied to a window of length t = lk,p + Ik,p we
must have Ci,j

k,p ≤ W i,j(lk,p + Ik,p), a contradiction.

Constraint 2b: similarly to the case of Constraint 2a, if the constraint is violated we
obtain: Ci,j

k,p > lk,p + Ik,p, which contradicts Equation 7.18.

Constraint 3: since we are assuming a window of length t ≤ Dk starting with the arrival
of a job of τk, it follows that at most one job of τk,p can be active in the window; hence,
Lemma 7.5 must hold and the constraint must be satisfied.

Theorem 7.2. The LP formulation in Listing 7.1 computes an upper bound to the inter-
ference Ik for a window of time of length t ≤ Dk starting with the arrival of a job of τk.
Furthermore, the bound is monotonic in t.

Proof. We first show that Listing 7.1 is indeed a Linear Programming problem. The free
variables Ci,j

k,p are (non-negative) real variables. Note that SF i,j
k,p, W

i,j(t) and W i(t) are

constants for given input t. Ik,p is a linear expression of variables Ci,j
k,p, while the objective

function and Constraints 2a, 2b are linear in Ik,p; but since the composition of linear
functions is linear, all expressions are indeed linear in the free variables.

We next show that the computed value for the objective function is monotonic in t.
Note that in Listing 7.1, the value of t is only used to compute functions W i,j(t) and W i(t)
in Constraints 1a and 1b. But since both functions are monotonic in t, it follows that
increasing t leads to a relaxation of the constraints; hence, the objective function cannot
decrease.

Finally, we show that Listing 7.1 computes a valid upper bound for Ik. First note
that any assignment to variables Ci,j

k,p that maximizes the objective function
∑bk

p=1 Ik,p also

maximizes the value of Ik = b
∑bk

p=1 Ik,pc. Furthermore, based on Observation 7.2 and
Lemma 7.2 it holds:

Ik = b
bk∑
p=1

Ik,pc = b
bk∑
p=1

∑
∀i 6=k

bi∑
j=1

(
I i,jk,p × C

i,j
k,p

)
c ≥

bk∑
p=1

b
∑
∀i 6=k

bi∑
j=1

(
I i,jk,p × C

i,j
k,p

)
c ≥

bk∑
p=1

Ik,p = Ik; (7.22)

that is, for a given set of contributions Ci,j
k,p, Ik is a valid bound to the interference Ik.

Now by Lemma 7.6, we know that any valid set of contributions in a a window of time

162

of length t ≤ Dk starting with the arrival of a job of τk must respect all constraints of
the optimization problem; and since furthermore the optimization problem relaxes the
value of the variables (from natural numbers to real), it follows that no valid values of
the contributions in the studied window can produce a higher value of Ik. This shows
that Ik is indeed an upper bound to the interference for any possible valid values of the
contributions, concluding the proof.

Based on Theorem 7.2, the response time Rk of the task under analysis is then computed
using Equation 7.1, where Ik(Rk) is obtained using Listing 7.1.

7.2.4 Priority Assignment

Based on the presented analysis, we now discuss how to assign priorities to tasks or bundles.
For the case of per-task priorities, it is well-known that even for sequential tasks, neither
Rate-Monotonic (RM) nor Deadline-Monotonic (DM) assignments are optimal in global
scheduling [50]. Audsley’s Optimal Priority Assignment (OPA) algorithm is optimal for
some schedulability analyses [23], but the proof of optimality requires a key condition: the
schedulability of a task under analysis should not depend on the relative ordering of higher
priority tasks. Unfortunately, this is not true for either our approach or related work [109],
since the workload upper bounds for higher priority task τi in Equations 7.6, 7.14 are
functions of the response time Ri of τi, which itself depends on tasks with priority higher
than τi.

Hence, in rest of this chapter, we consider the DM policy for per-task priority assign-
ment. However, for the case of per-bundle priorities, we propose a heuristic to further
optimize the schedulability of bundled task sets. As noted when discussing Figure 7.5, the
height of the interference rectangle for “tall” bundles is smaller, which in turn can lead to
higher interference for a given amount of contribution. For this reason, the LP problem
will attempt to assign as much contribution as possible to the tallest bundle of the task
under analysis. Consequently, we propose to raise the priorities of tall bundles; this reduces
the contribution that the LP can assign to such bundles, at the cost of generating some
amount of priority inversion. In particular, we adopt the following simple heuristic, which
modifies the DM priorities 1/Di based on the ratio hi,j/m between the height of a bundle
and the number of cores in the system:

Pi,j =
1

Di

×
(

1 +
hi,j
m

)
. (7.23)

163

Note that we scale the impact of hi,j based on the deadline to avoid causing too much
priority inversion. We evaluate the quality of the heuristic in Section 7.3 comparing it
against the per-task DM assignment.

7.2.5 Discussion

Sustainability: as discussed in Section 7.1.1, an executing bundle always reserves the
same number of cores hi,j. However, the bundle could execute for less than its worst
case length li,j. The analysis is sustainable with respect to changes in bundle length: in
particular, note that Lemma 7.3 shows that the worst case scenario used to derive the
workload W i,j(t) remains correct even if some bundles of τi execute for less than their
worst case length.

Holistic Analysis: as noted in Section 7.2.4, Equations 7.6, 7.14 assume that a bound
on the response time of interfering task Ri is known. When priorities are assigned per-task
and are distinct, it is sufficient to compute the response time of each task according to
Equation 7.1, from the highest priority to the lowest priority one. However, in the case of
per-bundle priorities, this poses a problem: some bundles of τi could be higher priorities
than other bundles of τk and vice-versa, creating a circular relation between Ri and Rk.

We can solve the issue by employing a standard holistic analysis framework, as shown
in Algorithm 7.2. The algorithm starts by assigning a response time of Li to each task τi.
Then, at each iteration, the algorithm computes a new set of response times R′k as the fixed
points of Equation 7.1, applied to each task under analysis τk using the response times Ri

of the previous iteration. The algorithm continues until the response times converge with
R′i = Ri for all tasks, or we obtain Rk > Dk for at least one task, in which case we fail to
prove the task set schedulable.

It is immediate to see that if the algorithm converges, then we have Ri ≤ Di for
all tasks and the obtained Ri must indeed be valid upper bounds. Furthermore, note
that W i(t),W i,j(t) and W i,j(t) are monotonic in Ri. Hence, if the response times Ri of
interfering tasks increase, then the response time R′k computed based on Equation 7.1 and
Listing 7.1 cannot decrease. Due to the natural number time convention, this means at each
iteration of the algorithm either all response times are the same as the previous iteration,
in which case the algorithm terminates, or at least one response time must increase by a
discrete amount. Hence, the algorithm terminates in a finite number of iterations.

Complexity and Precision: the complexity of each iteration of the fixed-point re-
cursion in Equation 7.1 is dominated by the LP problem in Listing 7.1. Given bmax =
max∀i{bi}, both the number of variables and the number of equations in the problem

164

Algorithm 7.2 Holistic Analysis Iteration

1: ∀i : R′i = Li
2: repeat
3: ∀i : Ri = R′i
4: for each τk do
5: Compute R′k based on Equation 7.1 using
6: the {Ri} values
7: if R′k > Dk return unknown

8: until ∀i : R′i = Ri

9: return schedulable

are O(n × b2
max). Since an LP problem can be solved in polynomial time in the number

of variables and constraints, the resulting schedulability analysis is of pseudo-polynomial
complexity.

We make two observations on the precision of the analysis. First, as noticed in Sec-
tion 7.2, some constraint relaxations were required to obtain a LP problem, chief among
them the substitution of W i,j(t), which is neither linear nor convex/concave, with W i,j(t).
These relaxations have been employed to avoid the complexity of solving a non linear
problem. Second, while we presented our analysis based on the response time framework
introduced in [39], the same analysis strategy could also be applied for the problem win-
dow framework [30, 81] by invoking Listing 7.1 based on the length of the window. The
trade-off is a worse bound on W i,j(t) for tasks that include carry-in (an interfering task
has carry-in if its first job arrives before the start of the time window) for the ability to
limit the number of tasks that have carry-in. However, limiting carry-in is challenging in
gang-scheduling: as pointed out in Section 2.2.1, the solution adopted in [81] is incorrect.
We thus reserve such investigation as future work.

7.3 Evaluation

We evaluate the effectiveness of the proposed approach based on synthetic task sets gen-
eration. A bundled task τi is generated by first uniformly selecting a total WCET Li in
the interval [10, 150] and a number of bundles bi in [2, 5]. The period Ti is then uniformly
generated in the interval [Li, 10×Li], resulting in a task utilization Ui between Vi/(10×Li)
and Vi/Li, and a minimum possible period of 10 and maximum possible period of 1500.
Deadline is assigned equal to period (implicit deadline). To obtain a task set τ with a

165

given total utilization value, we continue generating tasks and adding them to the task set
until we reach the desired utilization.

We consider three types of task sets, meant to represent different types of applications,
based on which we alter the generation of the height hi,j and length li,j of each bundle.
For lightly-parallel task sets, each bundle is randomly categorized as either a short or tall
bundle. Bundles in the short category are assigned a height in the interval

[
1, d0.3×me

]
,

while bundles in the tall category are assigned a height in
[
m − d0.3 × me + 1,m

]
. For

what concerns the length, 80% of the WCET Li is randomly distributed among the short
bundles, while the remaining 20% is distributed among tall bundles. The generation process
for heavily-parallel task sets is similar, except that 80% of the WCET is assigned to tall
bundles and 20% to short ones. Finally, for mixed task sets, we do not divide the bundles
into categories; instead, each bundle is assigned a height in [1,m], and Li is randomly
distributed among all bundles.

S
ch

ed
u

la
b

ili
ty

0

0.2

0.4

0.6

0.8

1

Utilization
1 2 3 4 5 6

Lightly Parallel

S
ch

ed
u

la
b

ili
ty

0

0.2

0.4

0.6

0.8

1

Utilization
4 5 6 7 8

Heavily Parallel

Rigid-Gang
Thread-Global
Bundles-Gang
Bundles-Gang-Priority
Federated

S
ch

ed
u

la
b

ili
ty

0

0.2

0.4

0.6

0.8

1

Utilization
2.5 3 3.5 4 4.5 5 5.5 6 6.5

Mixed

Figure 7.9: Schedulability test of the compared analyses on 8 cores with respect to task
set types

Figure 7.9 shows results in terms of percentage of schedulable task sets based on total
task set utilization, for each of the three task set types on a system with m = 8 cores. In
Figure 7.10, we also show the case of a system with m = 32 cores; results are similar.

We show five curves in each graph. bundles represents our analysis in Section 7.2
using per-task priorities, while bundles-priority represents the same analysis using the per-
bundle priority assignment introduced in Section 7.2.4. In the case of rigid, we again apply
our analysis, except that we consider a rigid model where each task comprises a single
bundle of length Li and a height hmax

i = maxbij=1{hi,j}. The thread curve represents the
state-of-the-art response time analysis for fixed-priority thread scheduling of DAG tasks
in [109] 5. Since the analysis in [109] relies on knowledge of the critical path length and

5While [109] discusses conditional DAG tasks, it can also be applied to traditional non-conditional DAG

166

volume of each DAG-task, for comparison with the bundled model we set the critical path
length equal to Li and the volume equal to Vi; indeed, note that when running in isolation
on a system with m cores, as discussed in Section 7.1.2, the makespan of a DAG with
maximum degree of parallelism m is equal to its critical path length. In practice, for
real application we expect that the volume under thread scheduling would be inflated due
to the synchronization overheads of independently scheduled threads. Finally, federated
represents the schedulability test based on capacity argumentation bound provided in [93].
In federated, the task set is considered not schedulable if it requires more cores than the
total number of cores provided by the system.

Based on the figure, it can be observed that rigid performs poorly in the case of lightly-
parallel tasks. This is expected due to the pessimism in the rigid model, as the rigid box of
a task (Li×hmaxi) overestimates its actual volume Vi. As tasks become more “packed”, such
that the difference between the rigid box and the actual volume is smaller, the performance
of the rigid model becomes closer to the one of the bundle model. Clearly, in the extreme
case of a task set where each task always requires hmax

i cores, there would be no difference
between the models.

In addition, the suggested per-bundle priority heuristic is mostly useful for the case of
lightly-parallel tasks. By raising the priority of tall bundles, the suggested heuristic causes
some amount of priority inversion to higher priority tasks. In the case of lightly-parallel
tasks, tall bundles have shorter length; hence, the amount of interference caused by priority
inversion is smaller compared to the other cases.

Note that the global thread scheduling approach is performing comparatively poorly
for highly-parallel task sets. The reason is that the analysis in [109] suffers from an extra
self interference term (Vi − Li)/m, which does not exist in gang scheduling. For more
packed task sets, this term grows with respect to the WCET Li. On the other hand,
federated scheduling can suffer from cores overprovisioning in a different way to the gang
rigid model. In federated scheduling, a parallel task is allocated the minimum number
of cores that makes it barely schedulable. In the worst-case, one complete core might be
wasted for each parallel task. Although the schedulability test in federated scheduling [93]
does not suffer from self interference as in global thread scheduling, based on how much
core overprovisioning is incurred, federated scheduling can do comparatively worse or better
than global thread scheduling. Note that as the number of cores in the system increases,
federated scheduling improves over global thread scheduling, as show in Figure 7.10, due
to more available cores that can be dedicated for parallel tasks.

tasks, which are a special case of the former.

167

S
ch

ed
u

la
b

ili
ty

0

0.2

0.4

0.6

0.8

1

Utilization
4 6 8 10 12 14 16 18 20 22

Lightly Parallel

S
ch

ed
u

la
b

ili
ty

0

0.2

0.4

0.6

0.8

1

Utilization
12 14 16 18 20 22 24

Mixed

S
ch

ed
u

la
b

ili
ty

0

0.2

0.4

0.6

0.8

1

Utilization
16 18 20 22 24 26 28 30

Heavily Parallel

Rigid-Gang
Thread-Global
Bundles-Gang
Bundles-Gang-Priority
Federated

Figure 7.10: Schedulability test of the compared analyses on 32 cores with respect to
task set types

7.4 Bundled Scheduling for the 3-Phase Task Model

The bundled scheduling model presented so far does not manage accesses to main memory.
To enforce isolation among parallel tasks, we next discuss how to integrate the 3-phase task
model with bundled scheduling. As discussed in Section 3.2, the 3-phase task model suffers
more delay in preemptive policy than in non-preemptive policy, mainly due to excessive
reloading wasting the memory transfer time. Hence, the main question we need to address
is: can we extend the bundled model by considering a non-preemptive gang scheduling
policy?

Unfortunately, it is easy to see that under a work-conserving, non-preemptive gang
scheduling scheme, a task can suffer unbounded blocking due to lower-priority tasks. Con-
sider the example in Figure 7.11. In the preemptive case, the scheduler preempts two
lower-priority bundles on three cores to schedule the just arrived higher-priority bundle
that requires 4 cores. On the other hand, the non-preemptive case fails to schedule the
released higher-priority bundle. Specifically, at time zero, when the higher-priority bundle
is released, one core is occupied by one bundle of height one. Since it is a non-preemptive
scheduler, it waits for that bundle to finish. However, another lower-priority bundle ar-
rives before the first lower-priority bundle finishes. As a work-conserving scheduler, it
will schedule the newly arrived bundle as it only requires one core. By the time the first
lower-priority bundle finishes, at time one, still not all four cores are free, hence, as a
non-preemptive scheduler, cannot schedule the pending higher-priority bundle yet. This
scenario can go on indefinitely.

To overcome the aforementioned issues, we propose to adopt a deferred preemption
approach [51]. Specifically, a lower-priority bundle is allowed to run for σ time units before
it can be preempted by a higher-priority bundle. Unfortunately, a naive application of

168

Preemptive

0

4

3

2

1

0

C
o
re
s

0

4

3

2

1

0
1 2 3
Time

 Lower-Priority Bundles
Higher-Priority Bundle (4 cores)

Release of
0

4

3

2

1

0

C
o
re
s

0

4

3

2

1

0
1 2 3 4 5 6

Time
7

Non-Preemptive

Figure 7.11: Preemptive versus non-preemptive gang scheduling

deferred preemption does not prevent unbounded blocking; the problem stems from the
unsynchronized preemption points on different cores, causing scheduling decisions for each
core to happen at different time. This timing behavior impedes the work-conserving sched-
uler from making system-wide scheduling decision for all cores and limits its decision to
just few free cores. Figure 7.12 shows an example of the problem (deferred preemption)
and the proposed solution (synchronous deferred preemption).

Deferred-Preemption

 Lower-Priority Bundles

Higher-Priority Bundle ()

Release of
Preemption Point

0

4

3

2

1

0

C
o
re
s

0

4

3

2

1

0
1 2 3 4 5 6

Time
7

τ2

τ1

τ3

τ4

τ5

τ6

Synchronous
Deferred-Preemption

0

4

3

2

1

0

C
o
re
s

0

4

3

2

1

0
1 2 3 4 5 6

Time
7

τh

τ2

τ1

τ3

τ4

τ5

τ6

τh

Figure 7.12: Deferred preemption versus synchronous deferred preemption in gang
scheduling

In the deferred preemption case, a bundle is scheduled on the assigned set of cores
as soon as it arrives if the cores are available. After that the bundle can run for σ time

169

before it can be preempted (red-dashed lines). Since different bundles can be activated
and scheduled on different cores at different times, the respective preemption points of
each bundle can also be at different times. As shown in the figure, it is possible that
another bundle arrives just before the preemption point and prevents the higher priority
bundle from being scheduled. Just like the non-preemptive case, this scenario can be
repeated indefinitely. In a non-gang scheduling algorithm, this problem does not exist
since scheduling decisions are local to cores, thus there will be no pending task as long as
there is at least one idle core.

The proposed solution, synchronous deferred preemption, relies on synchronizing the
context-switches on all cores according to a system-wide time-triggered event that fires at
a fixed rate (every σ). As shown on the right side of Figure 7.12, scheduling decisions
happen at the synchronous preemption points only. For example, unlike in the traditional
deferred preemption case, although τ2 arrives before the preemption point of τ1, it cannot
be scheduled right when it arrives. Instead, it has to wait until the next system-wide
preemption point, which is strictly at time one in the example. Since τ1 already executed
for one time slot of σ and τh is pending, the scheduler will preempt τ1, schedule τh, and
keep the lower-priority τ2 pending. The downside of this solution is the wasted time due to
synchronization. Specifically, if a bundle finishes execution before the preemption point,
the relevant cores stay idle until the next preemption point. This is depicted in the figure
at time 4 and time 6. The wasted time is maximized when the bundle finishes ε time after
the preemption point, thus wasting almost a complete slot.

To account for the wasted CPU time due to the synchronous preemption policy, we
thus incorporate the wasted CPU time into the WCETs of the bundles, by considering an
extended bundle length lk,p that is a multiple of σ:

lk,p =
⌈ lk,p
σ

⌉
× σ. (7.24)

According to our proposed execution model, a bundle needs to be loaded into the local
memories of the targeted cores before it can run. Similar to Section 3.3, we assume a fixed-
size time slot for DMA operations. In addition, we assign the slot size for DMA operations
to be equal to the slot size between successive preemption points; effectively making the
scheduling decisions for both cores and DMA at the preemption points. We further assume
that the size of the allocated time slot σ is sufficient to load one partition in each of the
m cores, including any required unload operation to free up the targeted partitions. The
DMA operations are non-preemptive; thus, once a bundle starts loading, it is guaranteed
to run on the CPU for at least σ time during the next time slot. Unlike the eager DMA

170

loading policy for the non-preemptive cases in Sections 3.2, 3.3 and in Chapter 5, we apply
a lazy DMA loading mechanism, meaning that a bundle is only loaded one slot before
it is executed, even if free partitions are available beforehand. This policy is to avoid
unnecessary blocking in the case where a lower-priority bundle would be loaded, but not
executed in the next time slot; nonetheless, the lower priority bundle would have to execute
at some point for at least one slot since it has been loaded, hence introducing an extra slot
of blocking.

:DMA Load :DMA Unload Partition #2Partition #1
Color
Codes

4
3
2
1C

o
re
s

0 1 2 3 4 5 6
Time

7

DMA

τ4,1

τ3,1
Arrival
Time

4

τ4,1

τ4,1 τ5,1

3

τ3,1

τ3,1

τ3,2

2
τ3,1

8 9 10 11 12

4
τ4,1

3
4

τ3,2

τ5,1

2

τ5,1

τ3,2

τ2,1τ1,1

4
τ3,2

2

τ2,1

τ1,1

τ2,1

τ6,1

1

τ6,1

τ6,1

τ5,1

2
τ2,1

4

τ3,2

1
τ1,1

2
τ5,1

2
τ2,1

4
τ3,2

τ4,1

1

τ1,1

τ3,2

τ6,1

Figure 7.13: Example schedule of integrating bundles into the 3-phase execution model

Figure 7.13 shows an example of bundle scheduling integrated with the 3-phase exe-
cution model. In the example, there are six tasks with ordered priories: τ6 is the lowest
priority and τ1 is the highest priority. τ3 and τ4 consist of two bundles each, whereas the
other tasks consist of one bundle each. The scheduling decisions happen at the beginning
of the time slots, times 0, 1, 2..., 12 in the figure. Each DMA operation, in the figure, is
annotated with the name of the bundle, and the number of partitions on different cores
that it loads, which is equal to the height of the bundle. Since we consider a sporadic
task system, the first bundle in a task can arrive at any time. Each subsequent bundle in
the same task is activated after the previous bundle finishes, synchronously with the time
slots. Due to the asynchronous nature of the arrival of the first bundle, it is possible that
it arrives in the middle of a slot, in which case it cannot start loading until the next slot,
even if there are free partitions. In the worst-case, a task might arrive ε time after the

171

beginning of a slot, effectively wasting it. Therefore, we account for an extra σ of blocking
time for each task due to the asynchronous arrival of its first bundle. For example, consider
the arrival of bundle τ4,1; this bundle arrives before time 0 when all cores are idle, but it
has to wait until time 0 to start loading.

We also account for an extra delay of σ time units for each bundle to load before it can
be executed, hence σ · bk in total for a task τk with bk bundles. This is necessary because
bundles of the same task cannot overlap (load a bundle while the previous bundle of the
same task is executing), as there might be data interdependence between them, similarly to
the multi-segment tasks discussed in Section 3.2.2. This case is depicted in the figure with
bundle τ3,2. Specifically, the release of τ3,2 is aligned with the finish time of the previous
bundle τ3,1, which is in turn aligned with the time slot at time 3. Therefore, the scheduler
selects the next bundle τ3,2 for loading immediately at time 3 to be able to execute it one
slot later at time 4. Note that since no bundle of τ3 can run in the interval [3, 4], the
scheduler can instead execute a lower priority bundle, τ4,1 in this case.

Note that, although τ5,1 arrives in the same time slot as τ4,1 and enough partitions are
available for all of them, at time 0 the scheduler only loads the highest-priority bundle
that can run in the next slot, τ4,1 in this case. Otherwise, τ5,1 could have blocked τ3,1 for
one extra slot. Therefore, in this scheduling scheme, higher-priority bundles cannot suffer
blocking from lower-priority bundles.

Obviously, a bundle under analysis τk,p still suffers interference due to preemption from
higher-priority bundles. Note that after being preempted, the bundle under analysis might
need to be reloaded. This happens when the bundle under analysis is evicted from the local
memory partitions to schedule other higher-priority bundles or lower-priority bundles that
can run in parallel with the higher-priority bundles; this is the case of bundle τ3,2 in the
figure, which is unloaded once preempted at time 5, and then resumes execution at time
9. However, the system scheduler, as discussed in Section 7.1.1, is assumed to know the
WCETs of all bundles. Consequently, we can hide the delay of reloading preempted tasks
by reloading the preempted bundle at the beginning of the last time slot where interfering
bundles run. This is possible since there must be at least m free memory partitions or
occupied by lower-priority bundles during that time slot, as there will be no more pending
higher-priority bundles that can interfere with τk,p. If the higher-priority interfering bundles
execute for less than their WCETs, it is still guaranteed that the preempted bundle can
be reloaded in the expected time slot or before; hence, in either cases, the reload time
is completely hidden. Observably, the lower-priority bundles cannot block the preempted
bundle. The reason is that the system is occupied by higher-priority bundles and only
lower-priority bundles of height less than hk,p can run during the preemption window.
Once hk,p partitions become free from higher-priority bundles, τk,p is scheduled to reload.

172

For the example in Figure 7.13, the decision to reload τ3,2 is taken at time 8, since the
scheduler knows that the interfering higher-priority bundle τ1,1 will finishes by time 9.
Other cases of preemption that do not incur reloading are the preemptions of τ4,1 and τ5,1,
as they are not evicted from their partitions.

Once a bundle finishes execution, it is guaranteed to unload in the next time slot. This
is because we assume that the size of the time slot is enough to both unload and load m
partitions. By employing eager DMA unload, meaning that any finished task is unloaded
right away, there will be no more than m partition to unload at any giving time slot.
Hence, any task suffers an additional σ delay to write back its data to main memory after
finishing execution.

We can now show how to extend the response time analysis in Section 7.2 to account
for the discussed synchronous deferred preemption model. First, we substitute the original
bundle lengths lk,p with the extended lengths lk,p defined in Equation 7.24. Then, Equa-
tion 7.25 determines the worst-case blocking time Bk a task under analysis τk can suffer
due to asynchronous sporadic arrival, and DMA load times for each bundle:

Bk = σ + bk · σ. (7.25)

Now we can construct an upper bound on the response time of the task under analysis τk
(based on when it finishes executing) as in Equation 7.26, where Ik(Rk−σ) is the bounded
interference computed by Listing 7.1, and Lk =

∑bk
p=1 lk,p:

Rk ← Lk + Ik(Rk − σ) +Bk. (7.26)

Note that we subtract σ from the length of the interfering window Rk−σ used by Listing 7.1
since the task under analysis cannot be preempted during its last execution slot; this is
similar to the approach in Chapters 3 and 5, where we subtract the execution time of the
task under analysis from the interference window as it runs non-preemptively. Finally, to
obtain the response time of τk,p including the time to write back its data, we simply sum
an extra term σ to the fixed-point Rk of Equation 7.26.

7.5 Summary

In this chapter, we introduced a novel task model for parallel real-time applications. Tra-
ditional real-time parallel models schedule threads of the same task independently, but this
can greatly increase the synchronization and intra-task communication overhead. In con-
trast, we argue that parallel real-time tasks should be gang-scheduled, so that all threads
of the same task are required to be executed concurrently.

173

While there exist previous work on gang scheduling of real-time tasks, the rigid gang
model assumes that the number of threads remains constant for the entire task execution,
which is not the case for many applications. Instead, our new bundled model allows to
change the number of parallel threads of an application during its execution, which are gang
scheduled on an identical multiprocessor. We derived a sufficient schedulability analysis for
the proposed model, and demonstrated its applicability after assigning distinct priorities
to each bundle based on its characteristics.

The proposed schedulability analysis assumes preemptive scheduling, similar to previ-
ous work. However, in practice the overheads of preemption and access to main memory
can be significant. For this reason, we also showed how the model can be adapted to
3-phase tasks, based on a simple system model where the size of a DMA slot is sufficient
to reload all cores.

We identify four main directions for future work. First, the model assumes a fixed
sequence of bundles; it could be further generalized to conditional tasks [109] where multiple
different sequences of bundles are possible at run-time. Second, we plan to study how to
further optimize the priority assignment. Third, as discussed in Section 7.2.5, minimizing
the workload of carry-in tasks is left for future investigation. Fourth, the proposed solution
for 3-phase tasks does not scale for large number of cores, given the requirement of reloading
all cores within the fixed time slot. Hence, we plan to study a more efficient scheme that
schedules DMA operations of multiple cores, along the lines of the solution introduced in
Chapter 5.

174

Chapter 8

Predictable Inter-core
Communication

In this chapter, we present a predictable interconnect between cores to facilitate intra-task
communication for parallel tasks. Aligning with our design philosophy, we are interested
in reducing hardware complexity. In particular, we propose HopliteRT, a simple FPGA-
based NoC architecture that inter-connects the private SPMs. Figure 8.1 shows a simplified
illustration of the proposed system architecture. Note that we still use DMA to load tasks
from main memory using the memory bus as discussed in the previous chapters. The
proposed SPM inter-connect NoC is limited for inter-core communication only.

To simplify the hardware implementation and improve timing predictability, we propose
to adopt a push-based mechanism for intra-task communication. To adapt the push-based
mechanism to a shared-memory semantic, we program the SPM controllers to push any
write operation to all relevant cores based on the execution context that we know from the
scheduling level. Specifically, we assume a release memory model [113] to simplify the hard-
ware design, Further, we assume that the hardware is weakly ordered in which it appears
sequentially consistent only to a software that obeys the synchronization model. Therefore,
a programmer has to use the concept of mutual exclusion (critical section) to ensure correct
functionality, since the total order of memory operations is not guaranteed by the memory
model adopted by the hardware. In particular, upon scheduling a parallel task on specific
cores, the local SPM-controllers are programmed to push (forward) write operations to
all sharers. Note that only write operations inside a critical section are pushed. Exiting
the critical section waits for last write operation to reach to its destinations. Compared
to a traditional pull-based mechanism using a snooping cache coherence interconnect, the
proposed approach results in simpler hardware implementation and derivation of latency

175

Core 1

SPM

HopliteRT NoC

SPM SPM
Controller

System Bus

Main Memory

DMA

Core m

SPM
Controller

Figure 8.1: System architecture with the proposed predictable interconnect between
private SPMs.

bound for communication among cores. However, as discussed in Section 2.2.2, it comes
at the cost of a more restricted programming model.

It is worth mentioning that for the sake of bounding the communication time be-
tween parallel threads of a parallel task, it suffices to plug any real-time interconnect with
provable latency bounds in place of HopliteRT, such as any real-time NoC. This would
equivalently meet our objective in composing the worst-case computation time and the
worst-case communication time to derive the total WCET of the parallel task. However,
aligning with our design philosophy, we are interested in reducing hardware cost, especially
since HopliteRT is only targeting inter-core communications, while communicating with
main memory is actually done through the system bus as shown in Figure 8.1. Therefore,
we are introducing HopliteRT a lean and efficient NoC targeting FPGA platforms.

Note that compared to the One-Way Shared Memory [144] reviewed in Chapter 2, Ho-
pliteRT uses a simpler hardware architecture. Specifically, [144] implements bidirectional
torus to improve the total bandwidth at the cost of more complex switch architecture.
While the analysis in [144] is not novel, the main contribution is at the Network Interface
(NI) level that continuously synchronizes local memories with the network at the cost of
less energy efficiency for data that are not actually shared, which also has a negative im-
pact on memory space utilization. In additions, the addressing mechanism adopted by the

176

NI is not scalable with the local memory size. Specifically, the read and write addresses
are implicitly embedded into the TDM slot number, which will lead to a very long hyper
period for larger memory sizes impacting the latency bounds.

In this work, we present a comprehensive solution that includes task and execution
models plus predictable inter-core communication for parallel tasks. Note that, our inter-
core communication model is expected to be more energy efficient compared to [144], as
the communication is only activated on demand. Moreover, we support arbitrary local
memory size at the cost of larger network payload (packet size), which is more scalable
than [144]. Unlike [144], in HopliteRT, we bound the communication latency based on
aggregated traffic curves.

Similar to Section 4.1, we consider FPGA as a viable prototyping platform to quickly
assess and alter our design parameters. In addition, FPGAs are actually a suitable plat-
form for deploying real-time systems. In detail, FPGA provides several interesting prop-
erties. First, its ability to be reprogrammed with new configurations makes it a viable
hardware development platform to reduce the development-evaluation cycle of hardware
designs. Second, the reconfigurability property of FPGA made it well suited for the mod-
ern heterogeneous embedded systems. For example, the FPGA can be used as hardware
accelerators for speeding up specific functions. In addition, different hardware functions
can be configured on demand leading to a better hardware utilization. In real-time domain,
the dynamic management of FPGA functions, at both the application and OS levels, has
received good attentions [130, 42, 154]. Moreover, for system deployments, FPGA is con-
sidered as low-cost alternative to Application Specific Integrated Circuit (ASIC), especially
for low deployment volumes. Actually, NASA utilizes FPGAs to deploy certain real-time
applications in their space programs [82].

The rest of the chapter is organized as follows. We first discuss HopliteRT generally, as-
suming a known set of communication flows between source and destination clients (cores).
In particular, Sections 8.1 and 8.2 provide background on FPGA overlay NoCs and the ex-
isting Hoplite switching architecture; Sections 8.3 and 8.4 discuss the new HopliteRT design
for real-time systems and provide bounds on maximum in-flight and injection latency; and
Section 8.5 evaluates the derived bounds under various workloads. Then, in Section 8.6 we
discuss how to employ HopliteRT for intra-task communication of bundled task, according
to the model described in Chapter 7. Finally, Section 8.7 provides concluding remarks.

177

8.1 The Case for FPGA Overlay NoCs

FPGA overlay NoCs (network-on-chip) such as Hoplite [79] provide a low-cost, high-
throughput implementation of communication networks on the FPGA chip. NoCs allow
designers to compose large-scale multi-processor, or multi-IP digital systems while pro-
viding a standard communication interface for interaction. This trend is true in the em-
bedded, real-time computing domain with multi-core chips supported by message-passing
NoCs [122, 35]. Modern real-time applications [87, 74] require many communicating pro-
cessing elements to cooperate on executing the task at hand. In contrast, with shared
memory systems that rely on cache coherency, explicit message passing on a suitably-
designed NoC allows real-time applications to have (1) deterministic bounds on memory
access, and (2) energy-efficient transport of data within the chip. FPGAs should be a par-
ticularly attractive target for the real-time computing market due to the small shipment
volumes of real-time products, and the ability to deliver precise timing guarantees that are
desirable for certification and correct, safe operation of real-time systems.

Until recently, FPGA-based NoCs were inefficient and bloated due to the implementa-
tion cost of switching multiplexers and FIFO queues. Hoplite [79] uses deflection routing to
(1) reduce the LUT mapping cost of the switching crossbar, and (2) remove queues from the
router that are particularly expensive on FPGAs. When compared to other FPGA NoCs
such as CMU Connect, and Penn Split-Merge routers, Hoplite is lean, fast, and scalable
to 1000s of routers on the same FPGA chip. Deflection routing resolves conflicts in the
network by intentionally mis-routing one of the contending packets. In baseline Hoplite,
these deflections can go on forever resulting in livelocks. This makes it unsuitable to use
this NoC in a real-time environment where bounds on routing time must be computable to
meet strict timing deadlines imposed by the application. An age-based routing scheme for
resolving livelocks in deflection-routed networks does exist, but this requires extra wiring
cost for transporting age bits and still does not deliver strict upper bounds that we are
able to show in this work.

In this chapter, we answer the following question: Can we modify Hoplite for real-
time applications to deliver strong, deterministic upper bounds on worst-case
routing latency including waiting time at the client? We introduce Hoplite-RT (Ho-
plite with Real-Time extensions) that requires no extra LUT resources in the router and
only two cheap counters in the client/processing element. These modification implement
the new routing and packet regulation policy in the NoC system. The router modification
has a zero cost overhead over baseline Hoplite due to a suitable encoding of multiplexer
select signals that drive the switching crossbars. With the counters at the client injec-
tion port, we can enforce a token bucket injection policy that controls the burstiness and

178

2
:1

2:1

W
E

N

SPE

(a) Shared East exit

2
:1

3:1

W
E

N

SPE

(b) Without sharing

Figure 8.2: Implementation choices for the Hoplite FPGA NoC Router. A LUT-
economical version (left) is able to exploit fracturable Xilinx 6-LUTs to fit both 2:1
muxes into a single 6-LUT. The larger, higher-bandwidth version (right) needs 2 6-LUTs
instead as the number of common inputs is lower than required to allow fracturing.

throughput of the various packet flows in the system. With these hardware modifications,
we compute bounds on two components of the packet latency (1) in-flight packet routing
time on the NoC, and (2) waiting time at the client or PE ports. In the next sections, we
first recap the architecture of Hoplite, and then discuss our modifications and implemen-
tation on a Xilinx Virtex-7 FPGA.

8.2 Background: Hoplite NoC Architecture

In this section, we introduce the Hoplite router switching architecture and identify why
the worst-case deflection and source queueing latencies can be unbounded.

Hoplite routes single-flit packets over a switched communication network using Dimen-
sion Ordered Routing (DOR). DOR policy makes packets traverse in the X-ring (horizon-
tal) first followed by the Y-ring (vertical). Hoplite uses bufferless deflection routing and
a unidirectional torus topology to save on FPGA implementation cost. While DOR is
not strictly required for deflection-routed switches, Hoplite includes this feature to reduce
switching cost by eliminating certain turns in the router. The internal microarchitecture

179

of the router is shown in Figure 8.2 with three inputs N (North), W (West) and PE (pro-
cessing element or client, used interchangeably in the text) and two outputs S (South +
processor exit) and E (East). When packets contend for the same exit port, one of them
is intentionally mis-routed along an undesirable direction to avoid the need for buffering.
The fractured implementation (Figure 8.2-a) serializes the multiplexing decisions to enable
a compact single Xilinx 6-LUT realization of the switching crossbar per bit. However, this
sacrifices the routing freedom to achieve this low cost. A larger design (Figure 8.2-b) that
needs 2 6-LUTs per bit (2× more cost) permits a greater bandwidth through the switches.
The larger cost is due to the inability to share enough inputs that would have allowed
fracturing the Xilinx 6-LUT into dual 5-LUTs. This larger design will become important
later in Section 8.3 when considering the microarchitecture of HopliteRT.

When considering the routing function capabilities of the Hoplite router, we make the
following observations:

• The PE port has lower priority than the network ports N and W resulting in waiting
time for packet injections. A client can get dominated by traffic from other clients
potentially blocking it forever. This is the source of unbounded waiting time at the
client injection and called source queueing latency.
• The N packet only travels S and no path to E is permitted under DOR routing rules.

Thus N packets can never be mis-routed (or deflected) and are guaranteed unimpeded
delivery to their destination.
• As a consequence, conflicts and deflections may only happen on a W → S packet which is

attempting to turn. A deflected packet must route around the entire ring in the network
before attempting a turn again.
• Due to the static priority for N → S packets, an unlucky W → S packet may deflect

endlessly in the ring and livelock and result in unbounded NoC in-flight routing time.
This scenario is shown in Figure 8.3.
• Deflections also steal bandwidth away from PEs in the ring, and add more waiting time

penalty for packets wishing to use the PE exit.

To summarize, the communication latency between two PEs at (X1, Y1) and (X2, Y2)
on the zero-load network is T s + (∆X + 1) + (∆Y + 1) due to DOR policy. Here, T s is
the waiting time at PE level, (∆X + 1) + (∆Y + 1) are the number of steps in the X-ring
and the Y-ring respectively. The worst-case in-flight routing and source queueing
latencies in Hoplite are both ∞. This is problematic for real-time applications that
need guaranteed bounds on application execution. If such an application wishes to use the
baseline Hoplite NoC for interacting with other components, one of the packets may get
victimized and deflect endlessly or a client port may get blocked forever. As a result, the
real-time application will miss its deadline and violate the system design requirements. For

180

PE
(0,3)

sw

PE
(0,2)

sw

PE
(0,1)

sw

PE
(0,0)

sw

PE
(1,3)

sw

PE
(1,2)

sw

PE
(1,1)

sw

PE
(1,0)

sw

PE
(2,3)

sw

PE
(2,2)

sw

PE
(2,1)

sw

PE
(2,0)

sw

PE
(3,3)

sw

PE
(3,2)

sw

PE
(3,1)

sw

PE
(3,0)

sw

PE
(3,3)

PE
(0,0)

Figure 8.3: Endless deflection scenario where red packets from (0,0)→ (3,3) are perpet-
ually deflected by blue packets from (3,3) → (3,1). The red spaghetti is the flight path
of one packet that gets trapped in the top-most ring of the NoC and never gets a chance
to exit due to the bossy blue packets.

safety critical applications (hard real-time applications) the deadlines are hard constraints
that cannot be violated. For NoCs in general, it is possible to provide statistical guarantees
on packet delivery times but these are still not strong enough for hard real-time problems.

The next two sections proposes minimal modifications to Hoplite and Client to provide
exact upper bounds of the worst-case latency of packet routing, and the worst-case waiting
time at the source. These bounds can then be used by the real-time application developer
to satisfy the hard deadline constraints imposed by the system.

8.3 Managing In-Flight Deflections

In this section, we describe the modifications to the Hoplite router to support bounded
deflections in the network. We explain the resulting routing table modifications that are
required and explain the operation of the NoC with an example.

In Figure 8.4, we show the proposed microarchitecture of HopliteRT. The key insight
here is the need to strategically introduce deflection freedom by making the switching

181

3
:1

3:1

W
E

N

SPE

Figure 8.4: Proposed routing function arrangement for bounded in-flight latency. De-
spite splitting the logic into 2× 5-LUTs (3:1 muxes), the same multiplexer select signals
(with different interpretation) drive both multiplexers. This allows a compact 6-LUT
implementation per bit.

crossbar more capable without sacrificing LUTs in return. The fractured LUT dual 2:1
LUT implementation in Figure 8.2-a is too restrictive to permit any adaptations to the
routing policy, and hence we consider a more capable dual 3:1 mux microarchitecture
instead that may need the more expensive two 6-LUT implementations. This 3-input,
2-output crossbar arrangement permits any input to be routed to either output as desired
by the routing policy. Thus, unlike the original Hoplite designs in Figure 8.2, we are able
to use a N → E turn now to support our goals.

With this rich switching crossbar, we must now choose our routing policy. An age-
based routing prioritization (Oldest-First [114]) can be implemented that prefers older
packets over newer packets when in conflict. This is a good use of the N → E path which
is exercised if W → S packet is older in age than the N → S packet. In this conflict
situation the N packet can be deflected E. The original ∞ bound will be reduced to a
different bound that depends on the network size m × m and congestion or load in the
system. However, this policy is unfair as it is biased towards traffic travelling from distant
nodes as traffic from nearby closer nodes is always victimized. A variation of the policy
that increments age only on deflections may be slightly fairer but the resulting bound is
still dependent on network congestion. Furthermore, we need to transmit extra bits in each
packet to record age of the packet which is wasteful of precious interconnect resources.

182

It turns out that we can limit the number of deflections without carrying any extra
information in the packet. The key idea is to invert the priorities of the router to always
prefer W traffic over N traffic. This is the exact opposite of the original Hoplite DOR
policy that always prioritizes N traffic (due to the absence of the N → E link). This
modified policy allows traffic on the X-ring to be conflict free, even when making the turn
to the Y-ring. On the other hand, it is the Y-ring traffic (North) that can suffer deflections.
Once the Y-ring traffic has been deflected onto the X-ring, it will have a higher priority
over any other Y-ring traffic it will encounter next. Thus, unlike the original design where
packets deflects multiple times on the same row without making progress, now the deflected
packet is guaranteed to make progress toward its destination. A packet might deflect only
once on each row (X-ring).

The routing table for this new HopliteRT router is shown in Table 8.1. The added
benefit of this routing policy is the ability to use the exact same select bits for both 3:1
multiplexers. So not only do we bound deflections in the NoC, but we also ensure we
can retain fracturability of the 6-LUT by supplying identical five inputs to the 3:1 mux.
Each mux interprets the same two select bits differently to implement the proper routing
decision. In this arrangement, the PE→E with W→S turns happening in the same cycle
are not supported even though the mux bandwidth is rich enough to support this condition.
This is because we want to avoid creating a third mux select signal that would prevent the
fractured 6-LUT mapping. If the developer can afford to double the cost of their NoC, then
this extra function can be supported without affecting the in-flight NoC worst-case routing
time bounds computed in this paper. It is important to note that the bandwidth capability
of the HopliteRT switch is in-between Figure 8.2-a and Figure 8.2-b. When compared to
Figure 8.2-a, HopliteRT supports an extra routing condition PE→S + W→E which is
otherwise blocked due to cascading of the muxes. However, unlike Figure 8.2-b, HopliteRT
does not support PE→E + W→S condition. Thus, HopliteRT is strictly the same size as a
less-capable switch in Figure 8.2-a while offering extra bandwidth and latency guarantees.

In Figure 8.5, we show the path taken by the packet from (0,0)→(3,3) as the example
earlier in Figure 8.3. In this scenario, we assume there are W → S flows in X-ring 0, 1,
and 2 that will interfere with the red packets in each ring. These flows will have priority
over the N → S red packet and will deflect those red packets in each ring. The blue packet
from (3,3)→(3,1) had the right of way in the original Hoplite NoC as shown in Figure 8.3.
In HopliteRT, it will be deflected once in the topmost ring, and then descend downwards
to exit at its destination.

Analytic In-Flight Latency Bound: Under the proposed HopliteRT policy, the
in-flight latency between nodes (X1, Y1) and (X2, Y2) on an m×m NoC is as follows:

183

PE
(0,3)

sw

PE
(0,2)

sw

PE
(0,1)

sw

PE
(0,0)

sw

PE
(1,3)

sw

PE
(1,2)

sw

PE
(1,1)

sw

PE
(1,0)

sw

PE
(2,3)

sw

PE
(2,2)

sw

PE
(2,1)

sw

PE
(2,0)

sw

PE
(3,3)

sw

PE
(3,2)

sw

PE
(3,1)

sw

PE
(3,0)

sw

PE
(3,3)

PE
(0,0)

Figure 8.5: Worst-Case path on Hoplite-RT for packet traversing from top-left PE (0,0)
to bottom-right PE (3,3). The red packets will deflect N→E in each ring due to a
conflicting flow (not shown). The blue packets previously had priority are now deflected
in the top-most ring before delivery.

184

Table 8.1: Routing Function Table to support Real-Time extensions to Hoplite. PE
injection has lowest priority and will stall on conflict. PE→E + W→S is not supported to
avoid an extra select signal driving the multiplexers and doubling LUT cost by preventing
fracturing a 6-LUT into 2×5-LUTs.

Mux select Routes Explanation

sel1 sel0

0 0 W→E + N→S Non-interfering
0 1 W→S + N→E Conflict over S
1 0 PE→E + N→S No W packet
1 1 PE→S + W→E No N packet

zero load: T f = ∆X + ∆Y + 2 (8.1)

worst case: T f = ∆X + ∆Y + (∆Y ×m) + 2 (8.2)

Here, ∆X = (X2 −X1 + m)%m and ∆Y = (Y2 − Y1 + m)%m are based on traversal
distances of the packet on the torus irrespective of relative order of the two nodes along
the directional topology. The zero load latency on the NoC is the same as original Hoplite.

Theorem 8.1. The in-flight latency of the HopliteRT is upper bounded by Equation 8.2

Proof. As described in Section 8.3, HopliteRT is engineered with a policy to prioritize the
traffic turning from the X-ring to the Y-ring. This policy provides guarantees that a packet
will be able to progress down on the Y-ring and cannot deflect more than once at every
row. In the worst case, a packet can be deflected on every router during its journey on the
Y-ring to the destination which is captured by Equation 8.2.

Finally, in Table 8.2, we show the effect of compiling Hoplite and HopliteRT to the
Xilinx Virtex-7 485T FPGA and observe a minor 4% reduction in LUT costs as (1) the
design is able to exploit the fracturable dual 5-LUTs per bit of the switching crossbar, and
(2) the DOR routing function is marginally simpler.

185

Table 8.2: FPGA costs for 64b router (4×4 NoC) with Vivado 2016.4 (Default settings)
+ Virtex-7 485T FPGA

Router LUTs FFs Period (ns)

Hoplite 89 149 1.29 ns
HopliteRT 86 146 1.22 ns

PE
(0,0)

sw

PE
(1,0)

sw

PE
(2,0)

sw

PE
(3,0)

sw

PE
(1,0)

Figure 8.6: Unlucky client at (1,0) is swamped by client at (0,0) that has flooded the NoC
with packets at full link bandwidth (one packet per cycle). Red packets from (0,0)→(x,y)
are perpetually blocking the client exit at (1,0). This results in a waiting time of ∞ for
packets at (1,0)

8.4 Regulating Traffic Injection

While the HopliteRT modification to the original Hoplite router was able to bound in-flight
NoC latency, source queueing delays can still be unbounded. Source queueing delays are
attributed to the least priority assigned to client injection port by the Hoplite router. This
is unavoidable in a bufferless setup where we do not have any place to store a packet that
may get displaced if the client port was prioritized. Furthermore, when using deflection
routing, there is no mechanism to distribute congestion information to upstream clients
to throttle their injection. Hence, a client may wait arbitrarily long if it is swamped by
another upstream client that has decided to flood the NoC with packets; a simple scenario
is depicted in Figure 8.6. Here, we have two flows: the blue flow from (0,0)→(3,0), and a
red flow from (1,0)→(x,0). If the rate of the blue flow is 1 (one packet per cycle), the red
flow will never get an opportunity to get onto the NoC. This is the cause of the∞ waiting
time at a client port.

In this section, we discuss a discipline for regulating traffic injection that ensures
bounded source queueing times in the bufferless, deflection-routed NoC such as Hoplite.
The underlying idea of regulation has been explored before in Kalray MPPA [52] but that
relies on source routing, statically determining NoC packet paths, and queueing in the NoC
and Client to deliver these deadlines.

186

Token
Bucket

rate
counter

token
counter

User
Logic

NoC
Switch

NoC ready

Packet

(rate+1)% 1
ρ

max(token+1,b)

b

overflow

Figure 8.7: Conceptual view of the Token Bucket regulator at the injection port of each
NoC client. FPGA implementation cost is two cascaded counters (no actual memory is
needed to store any tokens). The client can inject a packet into the NoC only when the
NoC is ready and there is at least one token available in the Token Bucket.

8.4.1 Token Bucket Regulator

In Figure 8.7, we show a high-level conceptual view of a Token Bucket regulator [36] inserted
on the client→NoC interface. The regulator shapes the traffic entering the network and
bounds the maximum amount of time the client (user logic) will have to wait to send a
packet over the network. The regulator is defined by parameters ρ (rate of packet injection
<1 packet/cycle) and b (maximum burst of consecutive packets ≥1). While conventional
token bucket implementations in large-scale network switches (i.e.internet) need to queue
or drop packets, we assume that we are able to directly stall or throttle the source (client).

The regulator is implemented using two counters that are cheap to realize on an FPGA.
A free-running rate counter is programmed to overflow after the regulation period 1

ρ
. On

each overflow a token is added to an abstract bucket. The bucket will fill until it reaches
its capacity b where is saturates. This is tracked by the second counter token counter.
Whenever a client wants to inject traffic into the NoC, the client is stalled until the bucket
is not empty and the NoC is ready (that is, no other NoC packet is blocking the client).
The client then withdraws one token from the bucket and sends the packet.

As an example, if a client has a rate ρ = 1
10

, it can inject one packet every 10 cycles.
The burstiness parameter b determines the maximum number of packets that the client
can send consecutively, assuming that the NoC is ready. If the client has a burst length
b = 5, and it did not send any packets for 50 cycles, it will accumulate five tokens. As a
result, it can send 5 packets in a burst before the token bucket is emptied.

It is worth mentioning that, in the worst case, if the traffic in the network is not

187

regulated (unknown traffic) the entire network will be considered as one ring. Therefore,
all the clients will have to share the bandwidth utilization

∑
ρ = 1. In this case the

aggregated injection rates for each client needs to be 1/m2 to guarantee injection for
everybody; otherwise, a client will be starved by the upstream traffic indefinitely, and the
bound on the waiting time will be unknown.

Based on the described regulation mechanism, in the next section 8.4.2 we compute the
maximum time that the client requires to send a sequence of K packets, with K ≤ b. We
first bound the amount of network traffic that interferes with the injection of packets on
either the East or South port. Then, we express a tight bound on the maximum amount
of interference to ensure that the client is not starved. Assuming that the bound is met,
we finally determine the maximum network delay for the injection of the first packet, and
of any successive packet in the sequence.

8.4.2 Analysis

We consider an m × m matrix of clients (x, y). We generalize the earlier discussion in
Section 8.4.1 by assuming that (x, y) can send packets to multiple other clients in the
network, using a different token bucket regulator for each such client. Hence, for any client
(x, y), we can define a set of flows:

Fx,y = {(x1, y1, ρ1, b1), (x2, y2, ρ2, b2), ..., (xn, yn, ρn, bn)}, (8.3)

where for flow fi = (xi, yi, ρi, bi), the destination client is (xi, yi) and the token bucket
parameters are ρi, bi. For a flow f ∈ Fx,y, we use the notation f.x, f.y, f.ρ, f.b to denote
the horizontal, vertical coordinates and regulator parameters of the flow, respectively. We
further use the notation λ(t) to denote a traffic curve, that is the maximum number of
packets transmitted on a port in any window of time of length t cycles. By definition of the
token bucket regulator, the maximum number of packets injected by (x, y) with destination
(xi, yi) is then:

λbi, ρix,y (t) = min
(
t, bi + bρi · (t− 1)c

)
. (8.4)

To determine the total traffic that could pass through a client and possibly affect its
injection rate, we need to know the aggregated traffic of the different sources that can
reach to the client. Consider two traffic curves λb1,ρ1 and λb2,ρ2 , bounding the traffic on
two input ports of a node and directed to the same output port. Lemma 8.1 defines an
operator ⊕ that combines the two traffic curves to compute a tight bound on the resulting
aggregated traffic.

188

Lemma 8.1. Let λb1,ρ1 and λb2,ρ2 bound the traffic on input ports (West, North or PE)
directed to the same output port (East or South). Then the traffic on the output port is
bounded by the following curve:

(λb1,ρ1 ⊕ λb2,ρ2)(t) = min
(
t, b1 + b2 + bρ1 · (t− 1)c+ bρ2 · (t− 1)c

)
. (8.5)

Proof. In any time window of length t, the number of packets transmitted on an output
port cannot be greater than the traffic produced by the input ports; hence it holds:

(λb1,ρ1 ⊕ λb2,ρ2)(t) ≤ b1 + b2 + bρ1 · (t− 1)c+ bρ2 · (t− 1)c.

Furthermore, since the number of packets cannot be larger than t, it also holds (λb1,ρ1 ⊕
λb2,ρ2)(t) ≤ t. Equation 8.5 then immediately follows.

Note that the definition of traffic curve for a token bucket regulator, as well as the
curve composition in Lemma 8.1, directly follows from the theory of network calculus [36],
and Lemma 8.1 is presented here for completeness. However, the bounds on injection
latency derived later in this section, and in particular Theorem 8.2, cannot be obtained
using network calculus because our regulator does not buffer packets.

Now, based on Equation 8.5, the operator ⊕ is both commutative and associative and
we are essentially combining traffic flows. Hence, for any set A of traffic curves λb,ρ, we
write ⊕A to denote the aggregation of all curves in A based on the operator. We also write
b(A) and ρ(A) to denote the sum of the burstiness and rate parameters, respectively, for
all traffic curves in A. Note that based on Equation 8.5, this implies:

⊕A(t) = min

(
t, b(A) +

∑
∀λb,ρ∈A

⌊
ρ · (t− 1)

⌋)
.

Deriving Conflicting Flows ΓCf : Having defined how to aggregate traffic curves for
multiple flows, the next step is to define the set of conflicting flows, that is, those flows
that block the injection of packets at the analyzed client. In particular, we consider a given
flow f ∈ Fx,y for the client at (x, y), and define a set ΓCf of traffic curves of other flows that
conflict with f .

Due to the complexity of the formal derivation of ΓCf , we first provide intuition on how
to derive such conflicting set. We show the set of interfering flows used to compute ΓCf in
Figure 8.8. After that, we formally the derive ΓCf .

189

• First, we do not make any assumption on the arbitration used by client (x, y) to decide
which flow to serve. Hence, f can suffer self conflicts from any other flow in Fx,y that
is injected on the same port of (x, y). For example, it may conflict on the South port
if f.x = x, that is the destination of f is on the same Y-ring as client (x, y), or East
otherwise.
• Second, we need to add to ΓCf all flows generated by other clients that conflict with f .

According to Table 8.1, if f injects packets to the East port, then it suffers conflicts
from any flow (W → E or W → S) arriving on the West port of (x, y). If, instead, f
injects to the South port, it suffers conflicts from flows turning W → S at (x, y), as well
as N → S flows arriving on the North port of (x, y) directed South.
• The set of flows going N → S is easy to determine, because flows are never deflected

on a different Y-ring (it may deflect N → E but will never switch Y-rings). However,
determining the set of flows on the West port is more involved, because traffic arriving
on the North port of any node in the y-th X-ring can be deflected N→E on the ring
itself if there is any traffic simultaneously turning W→S at the same node. Finally, if
the optimization discussed in Section 8.3 is employed, where the router is modified to
support PE→E + W→S routing at the cost of doubling the LUTs, the conflicting set
ΓCf can be modified to exclude W→S traffic in the case of East port injection.

PE

W→E

W→S

N→S N→E

PE→E

PE→S

Figure 8.8: Understanding interfering traffic flows at a client for determining the set of
conflicting flows ΓCf . Dotted N → E is a deflected flow that will wrap around the X-ring
and return at the W port. The PE → E (red flow) will interfere with W → E, and also
W → S flow due to HopliteRT router limits. And, the PE → S flow (blue flow) will
interfere with N → S, W → S, and the deflected N → E flows.

Now we focus on formally deriving the set of conflicting traffic curves ΓCf for a flow
f of client (x, y), We first consider the set of conflicting flows of other clients, and then

190

determine the set of conflicting flows of the same client (x, y).

According to Table 8.1, in order for a client to inject on the East port there must be
no traffic on the West port. Similarly, to inject on the the South port, there must be no
North traffic and no West traffic turning South. Note that all North traffic goes South
and does not turn East unless forcefully deflected due to a conflict on the South port. To
know if a client is able to inject a packet, we need to know the total incoming traffic on
each port. Equations (8.6 - 8.8) define the sets ΓN2S

x,y , ΓW2E
x,y , and ΓW2S

x,y of all traffic curves
for source clients that have traffic on the North port of (x, y) aiming South, on the West
port aiming East, and on the West port aiming South respectively. ∆Y (f.y, j) ≥ ∆Y (y, j)
and ∆X(f.x, i) > ∆X(x, i) mean that the traffic passes through the router (X, Y) on the
Y-ring or on the X-ring respectively.

ΓN2S
x,y = {λf.b, f.ρi,j | ∃ f ∈ Fi,j,∀ i, j ∈ [0,m) : (j 6= y)

∧(f.x = x) ∧∆Y (f.y, j) ≥ ∆Y (y, j)}
(8.6)

ΓW2E
x,y = {λf.b, f.ρi,y | ∃ f ∈ Fi,y, ∀ i ∈ [0,m) : (i 6= x)

∧∆X(f.x, i) > ∆X(x, i)}
(8.7)

ΓW2S
x,y = {λf.b, f.ρi,y | ∃ f ∈ Fi,y,∀ i ∈ [0,m) : (i 6= x)

∧(f.x = x)}
(8.8)

Note that the presented sets do not consider the deflection effect. In the case of a
conflict on the South port, the deflected traffic on the East port will cause extra pressure
on all the clients in the X-ring. Since deflection does not increase the mount of traffic going
South, the traffic on the North port of (x, y) is simply λN2S

x,y = ⊕ΓN2S
x,y . However, the same

is not true for the traffic λW2E
x,y and λW2S

x,y on the West port of (x, y). Consider a client (i, y)
on the same X-ring as (x, y): when λW2S

i,y and λN2S
i,y conflict on the South port of (i, y),

some amount of traffic in λN2S
i,y is deflected East and affects all the m clients on the y-th

X-ring. If the client under analysis (x, y) wants to inject packets to the East, the deflected
traffic at (i, y) thus need to be added to the set ΓW2E

x,y of conflicting injected traffic flows.

It remains to determine the amount of traffic of λN2S
i,y that can be deflected in the

general case. Clearly, the amount of deflected packets in a window of length t cannot be
greater than λN2S

i,y (t). Also, if there is no traffic turning West to South at (i, y), that is

191

if ΓW2S
i,y = ∅, then no traffic can be deflected. In all other situations, we conservatively

assume that all traffic produced by ΓN2S
i,y is deflected; even if the amount of traffic produced

by ΓW2S
i,y is smaller than λN2S

i,y , deflected packets of λN2S
i,y can travel around the X-ring and

deflect further packets of λN2S
i,y when turning W→S. Hence in the worst case, all N→S

traffic will be deflected. Since the deflected traffic affects every client on the X-ring, we
can thus define the set of aggregated deflected traffic Γdtoty that goes around in the X-ring
as the union of the sets ΓN2S

i,y for any client (i, y) such that there is traffic going W→S at
that client:

Γdtoty (t) = ∪∀i∈[0,m){ΓN2S
i,y | ΓW2S

i,y 6= ∅}. (8.9)

We can now compute the set of traffic curves ΓCEx,y of other clients that conflict with
injections on the East port at (x, y), and the set of traffic curves ΓCSx,y of other clients that
conflict with injections on the South port at (x, y). For ΓCEx,y , we combine the original traffic
generated from other clients in the same X-ring, ΓW2E

x,y that pass to the East port and ΓW2S
x,y

that turns south, plus the total deflected traffic on the X-ring:

ΓCEx,y = ΓW2E
x,y ∪ ΓW2S

x,y ∪ Γdtoty . (8.10)

For ΓCSx,y , we combine the original traffic generated from other clients in the same X-ring,
ΓW2S
x,y that turns South, plus the traffic that arrives from the North port headed South,

ΓN2S
x,y :

ΓCSx,y = ΓW2S
x,y ∪ ΓN2S

x,y . (8.11)

Note that we do not consider the deflected traffic Γdtoty (t) as part of ΓCSx,y (t), since among
the deflected traffic, only the flows in ΓN2S

x,y (t) turn south at (x, y). If the optimization
discussed in Section 8.3 is employed, where the router is modified to support PE→E +
W→S routing at the cost of doubling the LUTs, then the bounds can be improved. Since
the W→S traffic does not affect injection on the East port anymore, the set of conflicting
traffic on the East port is now equal to:

ΓCEx,y = ΓW2E
y ∪ (Γdtoty \ ΓN2S

x,y). (8.12)

Finally, we determine the set of conflicting flows of the same client (x, y). We make no
assumption on the arbitration used by the client to decide which flow to serve. Hence, we
consider a worst case where f is the lowest priority flow: that is, if there is any other flow
at (x, y) ready to be injected to the same port (East or South) as f , then f is blocked.
Based on this assumption, we simply consider all other flows in Fx,y as conflicting flows,

192

similarly to traffic produced by other clients in the network. More in details, if f.x = x,
then flow f injects to the South port at (x, y) and the set of conflicting traffic curves is:

ΓCf = ΓCSx,y ∪ {λf.b,f.ρx,y | ∃p ∈ Fx,y, p 6= f : p.x = x}; (8.13)

if instead f.x 6= x, then flow f injects to the East port and the set of conflicting traffic
curves is:

ΓCf = ΓCEx,y ∪ {λf.b,f.ρx,y | ∃p ∈ Fx,y, p 6= f : p.x 6= x}. (8.14)

Computing Bounds based on ΓCf : Once the set of conflicting flows ΓCf has been
derived, we can now study the maximum delay suffered by client (x, y) to inject a sequence
of K packets of flow f , under the assumption that K ≤ f.b. First, in the worst case, the
sequence of packets can arrive at the client when the bucket has just been emptied; hence,
in the worst case it will take a delay of d1/f.ρe − 1 before the bucket has one token. After
such initial time, the packets can be further delayed by conflicting traffic in the network,
which is bounded by ⊕ΓCf . Based on the properties of traffic curves, we first prove that
the flow cannot be starved as long as the condition ρ(ΓCf) < 1 is satisfied. Intuitively,
this means that the cumulative rate of conflicting flows is less than 1 packet/cycle; hence,
eventually there will be available clock cycles when the flow can be injected on the NoC.
The available rate of injection is thus 1− ρ(ΓCf).

Assuming that the condition ρ(ΓCf) < 1 is satisfied, we then show that:

• The first packet in the sequence can suffer a delay of at most d1/f.ρe−1 +T s cycles,
where:

T s =

⌈
b(ΓCf)

1− ρ(ΓCf)

⌉
. (8.15)

Here, T s represents the delay caused by the burstiness of conflicting flows; it is propor-
tional to the cumulative burst length of conflicting flows, and inversely proportional
to the available injection rate 1− ρ(ΓCf).

• For each successive packet in the sequence, the client suffers an addition delay of
either 1/f.ρ or 1/

(
1 − ρ(ΓCf)

)
cycles, whichever is higher. Here, the 1/f.ρ term

represents the case where further packets are delayed by regulation, hence they are
sent at the regulator rate f.ρ. The term 1/

(
1 − ρ(ΓCf)

)
represents the case where

packets are delayed by conflicting flows, hence they are sent at the available injection
rate of 1− ρ(ΓCf). In essence, we can prove that further packets in the sequence are
delayed by either regulation or conflicting traffic, but not both.

193

We now focus on formally deriving delay bounds for a sequence of K ≤ f.b packets of
flow f injected by client (x, y), as intuitively described above. In any window of time of
length t, by definition there must be at least t − ⊕ΓCf (t) free clock cycles, that is, clock
cycles where the flow is not delayed by conflicting flows. Therefore, if the flow has sufficient
tokens, it can inject up to t−⊕ΓCf (t) packets. The rest of the analysis proceeds as follows.
First, in Lemma 8.2 we derive a condition under which the flow is not starved, that is, it
will eventually receive free cycles. Assuming that such condition holds, in Lemma 8.3 we
then show that:

t−⊕ΓCf (t) ≥ max
(
0,
⌊(
t− (T s + 1)

)
·
(
1− ρ(ΓCf)

)⌋
+ 1
)
, (8.16)

where T s is defined as in Equation 8.15. This implies that the flow might receive no free
cycles for T s clock cycles (it receives one for a window of length T s + 1), but is then
guaranteed to receive slots at a rate of 1− ρ(ΓCf). Finally, note that the flow also cannot
inject packets at a rate higher than the one of its regulator, f.ρ. In summary, as proven
in Theorem 8.2, the first packet in the sequence waits for at most d1/f.ρe − 1 + T s cycles;
successive packets are sent either every 1/f.ρ or every 1/

(
1 − ρ(ΓCf)

)
cycles, whichever is

higher.

Lemma 8.2. Flow f cannot suffer starvation if ρ(ΓCf) < 1.

Proof. By expanding the expression for the guaranteed number of free injection cycles
t−⊕ΓCf (t) we obtain:

lCt−⊕ΓCf (t) = t−min

t, b(ΓCf) +
∑

∀λb,ρ∈ΓCf

bρ · (t− 1)c


= max

0, t− b(ΓCf)−
∑

∀λb,ρ∈ΓCf

bρ · (t− 1)c


≥ max

(
0, t− b(ΓCf)− ρ(ΓCf) · (t− 1)

)
= max

(
0, t ·

(
1− ρ(ΓCf)

)
−
(
b(ΓCf)− ρ(ΓCf)

))
. (8.17)

Now note that ρ(ΓCf) < 1 implies 1 − ρ(ΓCf) > 0; hence, the number of guaranteed free
slots increases with t, meaning that the flow cannot be starved.

Lemma 8.3. If ρ(ΓCf) < 1, then Equation 8.16 holds.

194

Proof. The lemma follows directly by algebraic manipulation, where the last inequality is
based on Equation 8.17.

lC max
(
0,
⌊(
t− (T s + 1)

)
·
(
1− ρ(ΓCf)

)⌋
+ 1
)

≤ max
(
0,
(
t− (T s + 1)

)
·
(
1− ρ(ΓCf)

)
+ 1
)

= max
(
0, t ·

(
1− ρ(ΓCf)

)
−
(
(T s + 1) ·

(
1− ρ(ΓCf)

)
− 1
))

= max

(
0, t ·

(
1− ρ(ΓCf)

)
−
((⌈

b(ΓCf)

1− ρ(ΓCf)

⌉
+ 1

)
(8.18)

·
(
1− ρ(ΓCf)

)
− 1

))
≤ max

(
0, t ·

(
1− ρ(ΓCf)

)
−
((

b(ΓCf)

1− ρ(ΓCf)
+ 1

)
(8.19)

·
(
1− ρ(ΓCf)

)
− 1

))
= max

(
0, t ·

(
1− ρ(ΓCf)

)
−
(
b(ΓCf)− ρ(ΓCf)

))
≤ t−⊕ΓCf (t).

Theorem 8.2. Assume ρ(ΓCf) < 1 and the client wishes to inject a sequence of K ≤ f.b
packets for flow f . Then the delay to inject all packets in the sequence is upper bounded
by:

d1/f.ρe − 1 + T s +

⌈
(K − 1) ·max

(
1

f.ρ
,

1

1− ρ(ΓCf)

)⌉
. (8.20)

Proof. In the worst case, the token bucket for f can be initially empty for at most d1/f.ρe−
1 clock cycles. Afterwards, a new token is added to the bucket every 1/f.ρ cycles, at which
point the next packet in the sequence becomes ready to be injected once the NoC port is
free. Note that since K ≤ f.b, the times at which the first K tokens are added, and thus
the packets in the sequence become ready at the regulator, do not depend on the time
at which the packets themselves are sent; this is because the bucket does not become full
until the K-th token is added.

Now consider the effect of conflicting NoC traffic. Let λfree(t) = max
(
0,
⌊(
t − (T s +

1)
)
·
(
1 − ρ(ΓCf)

)⌋
+ 1
)
, and consider any subsequence of i packets out of the sequence of

K packets under analysis which are being delayed by NoC traffic. Since the time at which
the packets become ready is fixed, the delay suffered by the last packet in the subsequence
cannot be larger than both d(i − 1) · (1/f.ρ)e and t̄, where t̄ is the minimum window
length for which λfree(t̄) = i (that is, the time that it takes for the NoC to have i free

195

cycles based on Lemma 8.3). Based on the expression for λfree, it is then trivial to see that
if 1/f.ρ ≥ 1/

(
1 − ρ(ΓCf)

)
, the worst case delay for the sequence is found when the first

(K − 1) packets are sent as soon as they become ready at the regulator, while the last
packet suffers NoC delay of T s; while if 1/f.ρ ≤ 1/

(
1 − ρ(ΓCf)

)
, the worst case is found

where all K packets are delayed by NoC traffic rather than regulation. Combining the two
cases yields Equation 8.20.

This result, which is formally expressed by Theorem 8.2, only holds for sequences of
packets of length at most equal to the burst length f.b of the flow. The key intuition is
that the burst length must be sufficient to allow the token bucket for f to “fill up” while
the flow is being blocked by conflicting NoC traffic. In the extreme case in which f.b = 1,
every packet in the sequence could suffer d1/f.ρe−1+T s delay, that is, it suffers delay due
to both regulation and conflicting traffic. This reveals a fundamental trade-off for the burst
length b assigned to each flow: if b is too small, then consecutive packets can be unduly
delayed. However, a larger b increases the delay T s suffered by other clients. Finally, if
ρ(ΓCf) ≥ 1, then no delay bound can be produced as the flow might be starved indefinitely
by conflicting traffic. If burst lengths can be chosen freely, an assignment of burst lengths
could be computed with a distributed optimization problem to minimize the worst case
latencies. Formulating and solving this optimization approach is left as future work.

Revisiting the in-flight latency bound Equation 8.2 captures the analytical worst-
case bound of the in-flight latency with no assumption about the traffic, e.g., the communi-
cation patterns and rates are unknown. The bound can be improved farther by leveraging
the knowledge about the traffic. In particular, we can reduce the number of deflection
points on the Y-ring if we know that on specific X-rings there will be no conflicting traffic.
To do this we include only the X-rings that can cause conflict. Since the set of conflicting
flows are now formally defined, we can update Equation 8.2, to be as in Equation 8.21.
We mainly optimize the term (∆Y ×m) to be (V ×m), where V ≤ ∆Y is the number of
conflicting rows (x-rings) which is defined in Equation 8.22.

T f = ∆X + ∆Y + (V ×m) + 2 (8.21)

V x1,y1
x2,y2

=

(y1+1+DY)%m∑
j=(y1+1)%m

(1) | ΓW2S
x2,j
6= ∅ (8.22)

196

8.5 Evaluation

In this section, we show experimental validation of our bounds under various workloads, and
packet flow configuration. We vary injection rates (in %), system sizes, traffic patterns,
and real-time feature support and measure in-flight NoC latency and source queueing
delays in the clients across our NoC. We compare the results to a baseline Hoplite NoC
without real-time support. For in-flight latency tests, we evaluate synthetic traffic with
2K packets/client that exercises worst-case paths. We consider LOCAL, RANDOM, TORNADO,
TRANSPOSE, and ALLTO1 (everyone sends a packet to (0,0) client) traffic generators. For
source queueing tests, we provide a tool to evaluate a user-supplied set of flows for feasibility
and provide a bound where one can be proved.

● ●
●

●
●

●
●

●
●

● ●
●

●
●

●
●

●
●

● ●
●

●
●

●
●

●
●

● ●
●

●
●

●
●

●
●

● ●
●

●
●

●
●

●
●

ALLTO1 LOCAL RANDOM TORNADO TRANSPOSE

10 100 10 100 10 100 10 100 10 100

1e+01

1e+03

1e+05

System Size

In
−

F
lig

ht
 L

at
en

cy
 (

W
or

st
 C

as
e)

●● Bound Hoplite HopliteRT

Figure 8.9: Effect of Traffic Patterns on Worst-Case In-Flight Latency of the Workload
at 100% injection rate. Worst-case analytical bounds (red) are easily violated by baseline
Hoplite. With HopliteRT we are always within the bound, and deliver superior worst-
case latency for ALLTO1, TORNADO, RANDOM, and LOCAL patterns. For TRANSPOSE, the
persistent victimization of N → S packets causes a slightly longer worst-case latency.

In-Flight NoC Latency Bounds: In Figure 8.9, we show the effect of using Ho-
pliteRT over the baseline design when counting the worst-case latency suffered by the
packet in the NoC. It is clear that for ALLTO1, TORNADO, RANDOM, and to some extend for
LOCAL patterns, the worst-case latency with our extensions has been significantly improved.
This is particularly true in the adversarial case where each client sends data to a single
destination. This pattern is representative of situations where a limited resource like a
DRAM interface must be shared across all clients in the system. Without HopliteRT,
some client requests to a DRAM interface may never route to the DRAM interface unless

197

● ●

100

200

300

400

1 100
Injection Rate

In
−

F
lig

ht
 L

at
en

cy
 (

W
or

st
 C

as
e)

●● Bound
Hoplite
HopliteRT

Figure 8.10: Effect of Injection Rate on Worst-Case In-Flight Latency of the RANDOM
Workload for 256 clients. At low injection rates, the NoC routing latencies are not very
different, but as the NoC gets congested, HopliteRT starts to deliver improvements.

other clients complete their requests1. For other traffic patterns, the benefit is less pro-
nounced, and it gets slightly worse for TRANSPOSE. This is because W→S static priority
victimizes N → S packets each time that abundantly occur in other workloads. It is pos-
sible to improve fairness by using an extra priority bit and history information, but that
would increase the cost of the NoC router. Finally, we show that our router never violates
the predicted bounds that are calculated based on our analysis and these are better than
the worst-case latencies observed in baseline Hoplite in most cases. Apart from the proofs,
this experimental validation supports a real-time developer in safely using these bounds
during system design. In Figure 8.10, we take a closer look at a 256-client simulation
and vary the injection rates from 0.1% to 100% for RANDOM workload. As expected, we
observe that at low injection rates <10%, both networks deliver packets better than the
bound. However, as network gets congested, the baseline Hoplite design delivers packets
with increasing worst-case latency that exceeds the bounds. The HopliteRT design is al-
ways better than the bound at all injection rates. Our observed latencies are within 20%
of the computed bound. The computed bound is consider tight, as it can be reached in
some cases as in ALLTO1 and LOCAL.

The improve bound on the in-flight latency is depicted in Figure 8.11. The figure
shows the bound Tf based on Equation 8.2 which computes the latency statically without

1This behavior was demonstrated at the FCCM 2017 Demo Night where Jan Gray’s GRVI-Phalanx [66]
engine with 100s of RISC-V processors interconnected with Hoplite. Clients closer to the DRAM interface
were effectively starved and never got service in a DRAM interface test.

198

considering the conflicting traffic. Whereas, Tf .opt represents the improved bound based
on Equation 8.21 that considers the conflicting traffic. The results show that the improved
bound is especially beneficial in large networks. As shown in Figure 8.11, the optimized
bound improves over the basic bound about 25% in the case of 16X16 NoC.

Figure 8.11: The optimized bound versus the basic one on Worst-Case In-Flight Latency
of RANDOM workload at 100% injection rate of 256 clients

Source-Queueing Bounds: We now show the benefit of client injection regulation
on source queueing delay. In these experiments, we use HopliteRT router in all compar-
isons and selectively enable regulation. This shows the need for regulation in addition to
modification to the Hoplite router for delivering predictable, bounded routing latencies in
the network. In this experiment, we set the offered rate ρ= 1

m2 (m×m=size of NoC) and a
burst b=1. The traffic rate is scaled to 1

m2 to ensure feasible flows to the single destination
client.

In Figure 8.12, we show the effect of using our regulator on source queueing delay for
traffic with the ALLTO1 pattern. From this experiment, it is clear that simply using the
HopliteRT router is insufficient and the source queueing times are large. When we add
regulator hardware to the client, the waiting times drops dramatically by over four orders
of magnitude. Our analytical bound tracks our observed behavior but there is a gap as
it must assume pessimistic behavior from interfering clients in the calculations. We also
consider RANDOM traffic pattern in Figure 8.13. Again, we observe better behavior with
regulated traffic injection but the latencies are lower than the ALLTO1 case. While RANDOM
traffic is less adversarial than the ALLTO1 pattern, our bound still holds, and regulation

199

●●
●

●

●
●

● ●

1e+02

1e+04

1e+06

0 100 200
System Size

S
rc

Q
 L

at
en

cy
 (

W
or

st
 C

as
e)

● Bound
Regulated

Unregulated

Figure 8.12: Comparing source queueing times for regulated vs. unregulated HopliteRT
NoCs as a function of system size for the ALLTO1 traffic pattern. Regulated traffic offers
much improved waiting times at the clients.

is still up to two orders of magnitude lower latency. You may also note that the bound
calculation is now significantly tighter than the ALLTO1 scenario as the traffic flows now
interfere is less-adversarial manner.

Finally, we show a breakdown of the bounds for the PE South and East ports in
Figure 8.14. The difference in bounds is because the E port can accept more packets due
to the DOR routing policy, and furthermore due to the limits of the routing configurations
shown in Table 8.1. Recall, we want to avoid doubling the LUT cost of the HopliteRT
router, and intentionally disallow PE → E and W → S packets to route simultaneously.
These have the effect of creating a difference in bounds for traffic injection along S and E
ports as shown in the figure. The E port suffers a higher waiting time as injection rate is
increased as we disallow E traffic in our LUT-constrained router.

8.6 Integrating Communication Time into Execution

Time of Bundled Tasks

In this section, we discuss how to bound the intra-task communication latency using Ho-
pliteRT for a parallel task scheduling according to the bundled model discussed in Chap-
ter 7. As mentioned earlier in this chapter, to bound injection latency we rely on knowing
the set of interfering flows. Once a packet is injected into the network, its routing (in-flight)
latency is bounded statically regardless of interference. Although an optimized bound on

200

●●
●

●
●

●

100

10000

0 100 200
System Size

S
rc

Q
 L

at
en

cy
 (

W
or

st
 C

as
e)

● Bound
Regulated

Unregulated

Figure 8.13: Comparing source queueing times for regulated vs. unregulated HopliteRT
NoCs as a function of system size for the RANDOM traffic pattern. Again, regulated traffic
offers better latency behavior, but bounds are much lower than the ALLTO1 pattern.

routing (in-flight) latency is also provided based on knowing the interfering flows (Equa-
tion 8.21) , we limit our discussion in this section to the basic static bound (Equation 8.2).

In our bundled scheduling scheme, we have no assumption on which cores are assigned
to a bundle, i.e., no core pinning; this applies to the bundle under analysis and to the
interfering bundles. This property eliminates the knowledge about the interfering flows,
because each time a bundle is scheduled it can be on different set of cores. Therefore, we
cannot directly apply the injection latency analysis based on conflicting flows as detailed in
Section 8.4.2. Note that other scheduling schemes, such as federated scheduling [93], that
promote task pinning can utilize the optimized latency analysis based on the knowledge of
the conflicting flows.

To compute the injection latency according to Equation 8.20, we maximize the inter-
fering flows based on assigned bandwidth to each application. Specifically, we assume that
all nodes that are not part of a bundle under analysis have an interfering flow to some
node assigned to the bundle under analysis. In other words, all other nodes are considered
upstream. To ensure that the no-starvation condition ρ(ΓCf) < 1 holds, we can use the

following bandwidth assignment: we assign a bandwidth utilization equal to
hk,p
m

to any
currently executing bundle τk,p. It is then up to the application to distribute the allocated
bandwidth internally among flows originating from nodes assigned to the bundle. It re-
mains to account for the burstiness of interfering flows, which impacts the value of the
initial latency T s in Equation 8.15.

We assume that the inter-core (inter-thread) communications within the application

201

300

600

900

1 2 3 4 5 6
Injection Rate

S
rc

Q
 L

at
en

cy
 (

W
or

st
 C

as
e)

East
South

Figure 8.14: Effect of Injection Rate on Worst-Case Source-Queueing Latency of the
ALLTO1 workload for 16 clients. The E port can accept more packets due to the DOR
routing policy; and furthermore be blocked by our LUT-constrained HopliteRT router.
Above a certain injection rate, no bounds can be computed due to infeasible flow rates
in the network.

are known. From scheduling perspective, while τk,p is running on hk,p cores for lk,p time
units, other interfering workload can run in parallel on the remaining m − hk,p cores.
Since we do not know which other bundles run in parallel at any given point in time,
we determine the set of bundles with the highest burstiness according to a simple greedy
algorithm. Specifically, all other interfering bundles are sorted according to their flows’
total burstiness. Then, we pick one interfering bundle at a time, starting from the one
with the highest burstiness, and assign it to the m − hk,p available cores, until there are
no more core remaining. Note that in this greedy algorithm, the last assigned bundle
might require a number of cores higher than the number of remaining cores; hence, the
resulting assignment can be pessimistic, but it is easy to see that it upper bounds the
total burstiness. In alternative, an exact algorithm could be used, but it would have a
complexity equivalent to bin-packing.

Note that if an application tries to send a chunk of packets larger than its assigned
burstiness b, the regulator will break it up into smaller chunks. By knowing the number
of chunks an application sends during its execution, we can bound the total latency by
summing the latency of each chunk of packets. Finally, we add the total communication
latency to the worst case execution time (length) of the bundle under analysis.

Note that, even without knowing the set of conflicting flows, there are few special cases
where the bundle under analysis will not have any external conflicting flows, hence, will

202

not suffer interference from other running bundles. Also, note that bundles of height one
do not generate communication traffic, thus does not contribute to interference. Consider
Figure 8.15, the first case A is when the bundle under analysis is of height m. Since no
other bundle can run in parallel, there will be no external interference. The second case
B, when the bundle under analysis is of height m− 1. Since only single-core bundles can
run in parallel, which do not generate communication traffic, there will be no external
interference similar to the first case. The third case C, single-core bundles also do not
receive communication interference as they do not use the network. In Case A, the worst-
case communication delay can be bounded in isolation by fixing threads to specific cores
and embed the pinning information into the application’s scheduler. We can apply the
same trick to Case C if we support task migration. Given the above observations, it is
worth mentioning that in small network sizes, e.g., ≤ 4, communication interference can
be avoided totally. However, the NoC is actually meant for larger network sizes, e.g., ≥ 16.

PE

0,0
NR

PE

1,0
NR

PE

2,0
NR

PE

0,1
NR

PE

1,1
NR

PE

2,1
NR

PE

0,2
NR

PE

1,2
NR

PE

2,2
NR

PE

0,0
NR

PE

1,0
NR

PE

2,0
NR

PE

0,1
NR

PE

1,1
NR

PE

2,1
NR

PE

0,2
NR

PE

1,2
NR

PE

2,2
NR

PE

0,0
NR

PE

1,0
NR

PE

2,0
NR

PE

0,1
NR

PE

1,1
NR

PE

2,1
NR

PE

0,2
NR

PE

1,2
NR

PE

2,2
NR

A B C

Figure 8.15: Example of three different cases of bundles that does not suffer communi-
cation interference

As discussed above, bounding the communication delay of the proposed HopliteRT
NoC is highly affected by the decisions at the scheduling level. This aligns well with our
design philosophy where we simplify the hardware and the analysis at the cost of more
complex scheduling policies. Developing a scheduling policy with the objective to improve
the bound of communication delay is in our interest and will be considered in future work.
For example, to improve the communication delay we can develop a scheduling policy to
assign rows (X-rings) to applications, as shown in Figure 8.16-A. This improves the delay
bound, as all the traffic stays within the row and does not affect other applications on
other rows, as shown in the upper row of the figure. In the case of assigning multiple rows
to a bundle, as shown in the bottom two rows in the figure, all traffic in the same row or

203

from the upper rows to the lower rows stays withing the boundaries of the rows and does
not affect other rows. However, traffic from lower rows to upper rows wraps around the
Y-ring and can affect other applications on other rows.

PE

0,0
NR

PE

1,0
NR

PE

2,0
NR

PE

0,1
NR

PE

1,1
NR

PE

2,1
NR

PE

0,2
NR

PE

1,2
NR

PE

2,2
NR

PE

0,0
NR

PE

1,0
NR

PE

2,0
NR

PE

0,1
NR

PE

1,1
NR

PE

2,1
NR

PE

0,2
NR

PE

1,2
NR

PE

2,2
NR

A B

Figure 8.16: HopliteRT node scheduling (A) and network partitioning (B)

To mitigate the traffic leaking effect between unrelated applications, we suggest to
add a new feature to HopliteRT router to support dynamic network partitioning. Sim-
ilar approach for deflection torus NoC is proposed in [46]. The intuition is to partition
the network into sub isolated networks as shown in Figure 8.16-B. We propose to group
the related nodes in isolated partition where traffic does not travel outside the partition.
Then, the same analysis mentioned above can be applied, but on the granularity of the
partition. This optimization improve both the worst-case routing latency as the network
width becomes smaller, and the injection rate (bandwidth) as the number of active nodes
on any path is fewer.

Figure 8.17 shows the required extra multiplexers to implement the dynamic partition-
ing. In this case, the 4 to 1 mux is implemented in one 6-LUT. This configuration supports
partitions as small as (1 X 2) and as large as (4 X 4). To support larger partitions, we
need larger muxes that requires more LUTs to implement.

8.7 Summary

In this chapter, we presented HopliteRT, an FPGA-based NoC that provides predictable
latency bounds for inter-core communication. A 64b HopliteRT router implementation
delivers approximately identical LUT-FF cost (2% less) compared to the original Hoplite

204

PE

0,0
NR

PE

1,0
NR

PE

2,0
NR

PE

1,1
NR

PE

2,1
NR

PE

0,2
NR

PE

1,2
NR

PE

2,2
NR

PE

0,1
NR

HopliteRT
Router

PE Mux

M
ux

Mux

N

S/PE

M
ux

W E

Figure 8.17: Suggested modification to the router to support dynamic partitioning

router. We also add two counters to the client interface to provide a Token Bucket regulator
for controlling packet injection in a manner that bounds source queueing delay. We show
the in-flight NoC routing bound to be (∆X+∆Y +(∆Y ×m)+2), and the source-queueing

bound to be (d 1
ρi
e− 1) +T s : T s = d b(ΓCf)

1−ρ(ΓCf)
e. We test HopliteRT across various statistical

datasets and show that (1) our analytical bounds are relatively tight for RANDOM workloads,
and (2) our solution provides significantly better latency behavior for ALLTO1 workload that
models shared DRAM interface access.

We then discuss how to use HopliteRT to determine latency bounds for intra-task
communication based on a push mechanism. We first derive bounds based on the bundle
scheduling model for parallel tasks detailed in Chapter 7. We then discuss a set of additional
scheduling restrictions that would allow the derivation of better bounds. We reserve to
study how to integrate such restrictions in the bundled scheduling model, in particular in
conjunction with the 3-phase execution scheme in Section 7.4, as part of our future work.

Finally, note that the analysis tools for this NoC are freely available to download at 2.

2https://git.uwaterloo.ca/watcag-public/hoplitert-bounds.

205

https://git.uwaterloo.ca/watcag-public/hoplitert-bounds.

Chapter 9

Conclusions

Scratchpad memory has long been introduced in embedded real-time platforms for its
energy efficiency and predictable performance. Many works have utilized SPM for perfor-
mance enhancement using static and dynamic SPM allocation at the applications level. In
this thesis, we improved the usability of scratchpad memory for hard real-time systems.
We introduced a system architecture and an execution model that exploit the predictabil-
ity of the SPM and hide access latency to shared resources, such as main memory. An
important property of the proposed solution is the dynamic management of the different
components in the system at the OS level. This property allows real-time applications to
be ported easily, as the complexity of the system is completely transparent to the appli-
cations. Basically, the proposed solution incorporates the SPM in a multi-tasking system
without reliance on the number of tasks. This property stems from limiting the SPM par-
titions to two tasks only. In addition, the 3-phase execution mechanism made it easy to
support inter-tasks asynchronous communication.

We augmented the proposed execution model with scheduling schemes that cover single-
core, partitioned, and global multicore systems. In addition, we considered scheduling
DMA access among cores in software, when the hardware does not provide predictable
arbitration between cores. As the results show in our evaluation, the proposed solution
significantly improves system schedulability compared to other cache and SPM-based ap-
proaches. As an outcome of this research, we argue that the use of SPM memory is a
viable alternative to caches for real-time systems, providing predictable performance and
simpler WCET analysis, with reasonable ease of use.

In this research, we addressed the gap between the need for predictable data sharing
of parallel tasks, and the existing real-time scheduling models that assume independent

206

threads. We introduced bundled scheduling model that extends the classical gang schedul-
ing to improve system schedulability. We showed how bundled scheduling can be applied
to several programming models, such as fork-join and DAG-based tasks. We incorpo-
rated parallel tasks into the proposed execution model to obtain a comprehensive solution
that covers both sequential and parallel tasks. To make that happen, we augmented our
scheduling model of parallel tasks with predictable inter-core NoC to facilitate data sharing
between parallel threads.

9.1 Limitations

In this section, we highlight a few limitations and the scope of applicability of the presented
solutions. At the task execution level, the 3-phase execution model requires the task to
be loaded into the local memory first before it can run from the local memory. After
the task finishes its execution phase, it can be downloaded back to main memory. In
comparison to the conventional hardware-managed cache-based execution model, the 3-
phase execution model needs explicit software-based memory management to govern the
execution of tasks. This introduces two main challenges. First the software complexity to
manage local memory allocations and tasks execution. In this work, we showed how to hide
this complexity by managing the entire process at the OS level and make it transparent to
applications.

Second, applications need to be factored in a way compatible with the 3-phase model.
Although this can be done manually for some small and simple programs, it becomes
tedious in most cases. In addition, the proposed solution imposes size restriction on tasks
memory footprint. Specifically, a task needs to fit entirely in the local SPM partition.
Although many hard real-time tasks might fit in the more spacious local memory of modern
chips, there are still applications that need to be split into smaller segments as discussed
in Chapter 3.

For these reasons, researchers has proposed tools [105] that use profiling techniques
for automatic refactoring of programs into 3-phase compatible format. However, there are
still few challenges. For instance, some dynamic memory accesses might be missed during
the profiling process leading to a need for accessing main memory during the execution
phase. This behavior will introduce memory access contention between cores. To account
for this contention at the analysis level, we can incorporate extra overheads in the WCETs
by inflating them by a certain percentage. The inflation can be based on worst-case expec-
tations. Similarly, based on the code and dynamic data structures, it might lead to load
more data than what is actually needed in the current job execution.

207

On the other hand, Matejka et al. [108] proposed compiler-based technique, based
on LLVM [90], to automatically transforms legacy code into 3-phase compatible code.
Although, the static program analysis employed in [108] produces more efficient memory
allocations than [105], it restricts the use of dynamic data that cannot be determined by the
static program analysis. In general, such restrictions are in line with the requirements of
typical coding standards adopted in the automotive real-time domain, such as the MISRA
guidelines [22]. In addition, HePREM [62] extends the techniques in [108] to split the GPU
tasks into 3-phase compatible segments.

Note that, although known methodologies exist [105, 108, 128, 145, 94, 152, 135, 100, 29]
to split a large application into smaller segments that are individually compliant with the
imposed constraint, not all types of applications can be efficiently segmented. Those types
of applications might suffer excessive blocking due to data dependency between segments,
which reduces the benefits of the proposed mechanism to hide memory access latency.
For example, dynamic-data-intensive applications such database applications would have
some challenges to be efficiently segmented. However, this dissertation is not focused on
program analysis. Instead, we mainly focus on scheduling 3-phase tasks to provide timing
isolation while hiding memory access latency. Through our work on this research, we note
that porting applications to this platform can be as simple as adding few lines to the
linker script to cluster tasks into consecutive blocks, as discussed in Section 4.1, to a more
complex process that requires compiler support.

At the schedulability level, it is worth mentioning that the proposed scheduling scheme
works best with tasks of similar sizes (execution times). This stems from the proposed
non-preemptive policy, as in the worst case, one very large task can induce undue blocking
time to other tasks, which reduces the schedulability of the system significantly. This
effect is another reason why a task might need to be split in to segments. Specifically, a
long executing task might be split into smaller execution segments to reduce the impact of
blocking. However, in our experiments with real-time benchmarks most applications were
configured to have relatively comparable execution times to resemble actual automotive
applications with execution time less than 1 ms. For some type of applications, such as
streaming applications, it is common to have similar execution times.

The standard schedulability evaluation graphs provided in this dissertation are based
on simulation experiments. Although we do not claim full coverage of all possible task sets,
we are confident that the presented results align with the projections of the mathematical
modeling and the analytical intuitions.

Note that the evaluation of the 3-phase task execution of bundled scheduling with inter-
core communication is not presented in this dissertation. Specifically, the evaluation would

208

require implementation of the extended platform, both on the hardware and the OS levels.
Therefore, due to time limitations, it is left for future work. Furthermore, in regards to
parallel tasks, the assumption that the largest bundle in the system can be loaded and
unloaded in one time slot needs to be relaxed; otherwise, there will be wasted time in the
slot that will manifest as unnecessarily blocking time for smaller bundles. Furthermore,
the current heuristic-based priority assignment in bundled scheduling needs further study.

9.2 Future Directions

We expect to continue investigating this line of research in the future, and extend it in
several directions. A key observation is that modern embedded platforms incorporate
more heterogeneous components. Heterogeneous multi-core platforms embed a number of
different types of processing elements, each specialized to optimize a set of functions, or
providing a different trade-off between performance and energy efficiency. As such, each
core may feature different ISAs, clock speeds and capabilities in terms of interaction with
the rest of the system. Extending our co-scheduling and memory management scheme to
such different components will impose additional challenges on both the scheduling level
and analysis level.

The increased need for embedded computer vision leaded to include GPUs in modern
embedded platform. Many relevant applications are memory intensive, and we anticipate
that the proposed execution model can improve hiding the memory latency for such appli-
cations. In the same direction, it is interesting to note that some many-core architectures,
such as Kalray1 and Parallella 2, provide cores that are already equipped with private
SPMs. In Kalary, cores are clustered in groups. The proposed mechanism, as the results
show, is able to utilize the memory bandwidth efficiently; hence, it can scale to more num-
ber of cores on a single channel memory better than other compared approaches. However,
to apply our approach to many-core platforms (> 64 cores), we need to investigate how to
distribute or partition tasks over different memory channels to avoid saturating memory
bandwidth. Otherwise, according to our scheduling scheme, all scheduling intervals will
be dominated by DMA-bound intervals, and prevent the ability to hide memory access
latency.

In practice, without handling of I/O data, any proposed approach will be of limited
utility. While we showed how I/O data can be handled in our proposed solution, incorpo-
rating full I/O analysis for particular embedded I/O devices with details latency analysis

1http://www.kalrayinc.com/IMG/pdf/FLYER_MPPA_MANYCORE.pdf
2https://www.parallella.org/

209

http://www.kalrayinc.com/IMG/pdf/FLYER_MPPA_MANYCORE.pdf
https://www.parallella.org/

is considered as a future work. We are also interested in incorporating more advanced
compiler techniques to automatically convert parallel programs into bundles and generate
application-level schedules accordingly. In particular, we plan to look at existing open pro-
gramming standards for parallel applications, such as OpenMP, which has recently received
significant attention in the real-time community.

In regards to HopliteRT for inter-core communication, an extension as suggested in
Section 8.6 is beneficial. This is to simplify clustering relevant nodes that belong to the
same bundle together, hence, improving worst-case communication latency.

Finally, we believe that this thesis has shown that there is ample space to improve
the execution of real-time applications, given enough control over the behavior of the
hardware platform. As such, we think it is crucial for embedded platforms’ vendors to
incorporate more fine-grain control over the hardware and allow software management of
hardware resources. This will encourage researchers to investigate ways to improve the
worst-case performance, enhancing the execution predictability beyond what the stock
hardware-control can do.

210

References

[1] Cache Architecture, ECE 3055: Computer Architecture and Operating Systems.
http://users.ece.gatech.edu/˜dblough/3055/.

[2] MERASA Project, http://ginkgo.informatik.uni-augsburg.de/merasa-web/. http:
//ginkgo.informatik.uni-augsburg.de/merasa-web/.

[3] NiosII Embedded Processor. http://www.altera.com/devices/processor/nios2/
ni2-index.html.

[4] parMERASA. http://www.parmerasa.eu/.

[5] Processors FAA Position Paper on Multi-ore. http://www.faa.gov/aircraft/air_
cert/design_approvals/air_software/cast/cast_papers/media/castâĂŘ32.
pdf.

[6] Zynq-7000 SoC ZC706 Evaluation Kit. http://www.xilinx.com/products/
boards-and-kits/ek-z7-zc706-g.htm.

[7] P4080 QorIQ Integrated Multicore Communication Processor Family Reference Man-
ual. www.frescale.com, 2012.

[8] FreeRTOS. http://www.freertos.org/, 2013.

[9] RapiTime. https://www.rapitasystems.com/products/rapitime, 2013.

[10] MicroBlaze Processor Reference Guide. http://www.xilinx.com/support/
documentation/sw_manuals/xilinx2014_4/ug984-vivado-microblaze-ref.
pdf, 2014.

[11] ERIKA Enterprise. http://erika.tuxfamily.org/, 2016.

211

http://users.ece.gatech.edu/~dblough/3055/
http://ginkgo.informatik.uni-augsburg.de/merasa-web/
http://ginkgo.informatik.uni-augsburg.de/merasa-web/
http://www.altera.com/devices/processor/nios2/ni2-index.html
http://www.altera.com/devices/processor/nios2/ni2-index.html
http://www.parmerasa.eu/
http://www.faa.gov/aircraft/air_cert/design_approvals/air_software/cast/cast_papers/media/cast‐32.pdf
http://www.faa.gov/aircraft/air_cert/design_approvals/air_software/cast/cast_papers/media/cast‐32.pdf
http://www.faa.gov/aircraft/air_cert/design_approvals/air_software/cast/cast_papers/media/cast‐32.pdf
http://www.xilinx.com/products/boards-and-kits/ek-z7-zc706-g.htm
http://www.xilinx.com/products/boards-and-kits/ek-z7-zc706-g.htm
www.frescale.com
http://www.freertos.org/
https://www.rapitasystems.com/products/rapitime
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_4/ug984-vivado-microblaze-ref.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_4/ug984-vivado-microblaze-ref.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_4/ug984-vivado-microblaze-ref.pdf
http://erika.tuxfamily.org/

[12] Freescale MPC5777M. http://cache.freescale.com/files/32bit/doc/fact_
sheet/mpc5777mfs.pdf, 2016.

[13] Ben Abdallah. Multicore Systems On-Chip: Practical Software/Hardware Design.
Springer, 2013.

[14] S.V. Adve and K. Gharachorloo. Shared memory consistency models: a tutorial.
Computer (Long. Beach. Calif)., 1996.

[15] Ahmed Alhammad and Rodolfo Pellizzoni. Schedulability analysis of global memory-
predictable scheduling. In Proc. 14th Int. Conf. Embed. Softw. - EMSOFT ’14. ACM
Press, 2014.

[16] Ahmed Alhammad and Rodolfo Pellizzoni. Time-predictable execution of multi-
threaded applications on multicore systems. In Des. Autom. Test Eur. Conf. Exhib.
(DATE), 2014. IEEE Conference Publications, 2014.

[17] Ahmed Alhammad and Rodolfo Pellizzoni. Trading Cores for Memory Bandwidth in
Real-Time Systems. In 2016 IEEE Real-Time Embed. Technol. Appl. Symp. IEEE,
2016.

[18] Ahmed Alhammad, Saud Wasly, and Rodolfo Pellizzoni. Memory efficient global
scheduling of real-time tasks. In 21st IEEE Real-Time Embed. Technol. Appl. Symp.
IEEE, 2015.

[19] Yannick Allard, Geoffrey Nelissen, Joel Goossens, and Dragomir Milojevic. A context
aware cache controller to bridge the gap between theory and practice in real-time
systems. In 2014 IEEE 20th Int. Conf. Embed. Real-Time Comput. Syst. Appl. IEEE,
2014.

[20] Sidharta Andalam, Partha Roop, Alain Girault, and Claus Traulsen. PRET-C: A
new language for programming precision timed architectures. Technical report, 2009.

[21] James Archibald and Jean-Loup Baer. Cache coherence protocols: evaluation using
a multiprocessor simulation model. ACM Trans. Comput. Syst., 1986.

[22] Motor Industry Software Reliability Association et al. MISRA C 2012: Guidelines
for the Use of the C Language in Critical Systems: March 2013. Motor Industry
Research Association, 2013.

[23] Neil C Audsley. Optimal priority assignment and feasibility of static priority tasks
with arbitrary start times. Citeseer, 1991.

212

http://cache.freescale.com/files/32bit/doc/fact_sheet/mpc5777mfs.pdf
http://cache.freescale.com/files/32bit/doc/fact_sheet/mpc5777mfs.pdf

[24] Philip Axer, Rolf Ernst, Heiko Falk, Alain Girault, Daniel Grund, Nan Guan, Bengt
Jonsson, Peter Marwedel, Jan Reineke, Christine Rochange, and Others. Building
timing predictable embedded systems. ACM Trans. Embed. Comput. Syst., 2014.

[25] Ke Bai, Jing Lu, Aviral Shrivastava, and Bryce Holton. CMSM: an efficient
and effective code management for software managed multicores. In Proc. Ninth
IEEE/ACM/IFIP Int. Conf. Hardware/Software Codesign Syst. Synth., 2013.

[26] Stanley Bak, Gang Yao, Rodolfo Pellizzoni, and Marco Caccamo. Memory-Aware
Scheduling of Multicore Task Sets for Real-Time Systems. 2012 IEEE Int. Conf.
Embed. Real-Time Comput. Syst. Appl., 2012.

[27] Theodore P Baker. Multiprocessor EDF and deadline monotonic schedulability anal-
ysis. In RTSS, 2003.

[28] Rajeshwari Banakar, Stefan Steinke, BS Bo-Sik S Bo-Sik Lee, M. Balakrishnan, and
Peter Marwedel. Scratchpad memory: design alternative for cache on-chip memory
in embedded systems. In Proc. ACM Press, 2002.

[29] S Bandyopadhyay, F Huining, H Patel, and E Lee. A scratchpad memory allocation
scheme for dataflow models. Technical report, 2008.

[30] Sanjoy Baruah. Techniques for multiprocessor global schedulability analysis. In
RTSS, 2007.

[31] Sanjoy Baruah, Vincenzo Bonifaci, and Alberto Marchetti-Spaccamela. The global
EDF scheduling of systems of conditional sporadic DAG tasks. In Real-Time Syst.
(ECRTS), 2015 27th Euromicro Conf., 2015.

[32] Sanjoy Baruah, Vincenzo Bonifaci, Alberto Marchetti-Spaccamela, Leen Stougie,
and Andreas Wiese. A Generalized Parallel Task Model for Recurrent Real-time
Processes. In 2012 IEEE 33rd Real-Time Syst. Symp. IEEE, 2012.

[33] Sanjoy K Baruah. The non-preemptive scheduling of periodic tasks upon multipro-
cessors. Real-Time Syst., 2006.

[34] Andrea Bastoni, Björn Brandenburg, and James Anderson. Cache-related preemp-
tion and migration delays: Empirical approximation and impact on schedulability.
Proc. OSPERT, 2010.

213

[35] M. Becker, B. Nikolic, D. Dasari, B. Akesson, V. Nelis, M. Behnam, and T. Nolte.
Partitioning and Analysis of the Network-on-Chip on a COTS Many-Core Platform.
In proceedings of the IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2017.

[36] Van Bemten. Network Calculus: A Comprehensive Guide. Technical report, 2016.

[37] Gérard Berry and Georges Gonthier. The Esterel synchronous programming lan-
guage: design, semantics, implementation. Sci. Comput. Program., 1992.

[38] Vandy Berten, Pierre Courbin, and Joël Goossens. Gang fixed priority scheduling of
periodic moldable real-time tasks. In 5th Jr. Res. Work. Real-Time Comput., 2011.

[39] Marko Bertogna and Michele Cirinei. Response-time analysis for globally scheduled
symmetric multiprocessor platforms. In Real-Time Syst. Symp. 2007. RTSS 2007.
28th IEEE Int., 2007.

[40] Marko Bertogna, Michele Cirinei, and Giuseppe Lipari. Improved schedulability
analysis of EDF on multiprocessor platforms. In ECRTS, 2005.

[41] E. Betti, S. Bak, R. Pellizzoni, M. Caccamo, and L. Sha. Real-Time I/O Management
System with COTS Peripherals. Computers, IEEE Transactions on, 2013.

[42] Alessandro Biondi, Alessio Balsini, Marco Pagani, Enrico Rossi, Mauro Marinoni,
and Giorgio Buttazzo. A Framework for Supporting Real-Time Applications on
Dynamic Reconfigurable FPGAs. In 2016 IEEE Real-Time Syst. Symp., pages 1–12.
IEEE, nov 2016.

[43] Björn B Brandenburg, John M Calandrino, and James H Anderson. On the Scala-
bility of Real-Time Scheduling Algorithms on Multicore Platforms: A Case Study.
In RTSS, 2008.

[44] Giorgio C Buttazzo. Hard real-time computing systems: predictable scheduling algo-
rithms and applications. Springer Science & Business Media, 2011.

[45] Paul Caspi and Oded Maler. From control loops to real-time programs. In Handb.
networked Embed. Control Syst. Springer, 2005.

[46] Kumar H B Chethan, Shubham Agarwal, and Nachiket Kapre. Deflection routing
for multi-level FPGA overlay NoCs. In 2016 Int. Conf. Field-Programmable Technol.
IEEE, 2016.

214

[47] Sébastien Collette, Liliana Cucu, and Joël Goossens. Integrating job parallelism in
real-time scheduling theory. Inf. Process. Lett., 2008.

[48] Pierre Courbin, Irina Lupu, and Joël Goossens. Scheduling of hard real-time multi-
phase multi-thread (MPMT) periodic tasks. Real-time Syst., 2013.

[49] Leonardo Dagum and Rameshm Enon. OpenMP: an industry standard API for
shared-memory programming. Comput. Sci. Eng. IEEE, 1998.

[50] Robert I Davis and Alan Burns. Improved priority assignment for global fixed priority
pre-emptive scheduling in multiprocessor real-time systems. Real-Time Syst., 2011.

[51] Robert I Davis, Alan Burns, José Marinho, Vincent Nelis, Stefan M Petters, and
Marko Bertogna. Global fixed priority scheduling with deferred pre-emption. In
RTCSA, 2013.

[52] Benoˆ Dupont de Dinechin and Amaury Graillat. Network-on-chip Service Guaran-
tees on the Kalray MPPA-256 Bostan Processor. In Proceedings of the 2Nd Interna-
tional Workshop on Advanced Interconnect Solutions and Technologies for Emerging
Computing Systems. ACM, 2017.

[53] J.-F. Deverge and I Puaut. WCET-Directed Dynamic Scratchpad Memory Allocation
of Data. In Real-Time Syst. 2007. ECRTS ’07. 19th Euromicro Conf., 2007.

[54] J-F Deverge and Isabelle Puaut. WCET-directed dynamic scratchpad memory allo-
cation of data. In Real-Time Systems, 2007. ECRTS’07. 19th Euromicro Conference
on, 2007.

[55] Zheng Dong and Cong Liu. Analysis Techniques for Supporting Hard Real-Time
Sporadic Gang Task Systems. In 2017 IEEE Real-Time Syst. Symp. IEEE, 2017.

[56] Stephen A Edwards and Edward A Lee. The case for the precision timed (PRET)
machine. In Proc. 44th Annu. Conf. Des. Autom. - DAC ’07. ACM Press, 2007.

[57] Bernhard Egger, Jaejin Lee, and Heonshik Shin. Scratchpad memory management
for portable systems with a memory management unit. In Proc. 6th ACM IEEE Int.
Conf. Embed. Softw. ACM, 2006.

[58] H. Falk and J. C. Kleinsorge. Optimal static WCET-aware scratchpad allocation of
program code. In Proceedings of the 46th Annual Design Automation Conference,
2009.

215

[59] Chris Fallin, Chris Craik, and Onur Mutlu. CHIPPER: A Low-complexity Bufferless
Deflection Router. In Proceedings of the 2011 IEEE 17th International Symposium
on High Performance Computer Architecture. IEEE Computer Society, 2011.

[60] Dror G. Feitelson and Larry Rudolph. Gang scheduling performance benefits for
fine-grain synchronization. J. Parallel Distrib. Comput., 1992.

[61] Shanna-Shaye Forbes, Hiren D. Patel, Edward A. Lee, and Hugo A. Andrade. An
Automated Mapping of Timed Functional Specification to a Precision Timed Archi-
tecture. In 2008 12th IEEE/ACM Int. Symp. Distrib. Simul. Real-Time Appl. IEEE,
2008.

[62] Bjorn Forsberg, Luca Benini, and Andrea Marongiu. HePREM: Enabling predictable
GPU execution on heterogeneous SoC. In 2018 Des. Autom. Test Eur. Conf. Exhib.,
pages 539–544. IEEE, 2018.

[63] Poletti Francesco, Paul Marchal, David Atienza, Luca Benini, Francky Catthoor, and
Jose M Mendias. An integrated hardware/software approach for run-time scratchpad
management. In Proc. 41st Annu. Des. Autom. Conf. ACM, 2004.

[64] Joël Goossens and Pascal Richard. Optimal scheduling of periodic gang tasks. Leibniz
Trans. Embed. Syst., 2016.

[65] K. Goossens, J. Dielissen, and A. Radulescu. A Ethereal Network on Chip: Concepts,
Architectures, and Implementations. IEEE Des. Test Comput., 2005.

[66] Jan Gray. GRVI-Phalanx: A Massively Parallel RISC-V FPGA Accelerator Accel-
erator. In Proc. 24th IEEE Symposium on Field-Programmable Custom Computing
Machines, 2016.

[67] Nan Guan, Martin Stigge, Wang Yi, and Ge Yu. Cache-aware scheduling and analysis
for multicores. In Proc. seventh ACM Int. Conf. Embed. Softw. - EMSOFT ’09. ACM
Press, 2009.

[68] Nan Guan, Wang Yi, Qingxu Deng, Zonghua Gu, and Ge Yu. Schedulability analysis
for non-preemptive fixed-priority multiprocessor scheduling. J. Syst. Archit., 2011.

[69] Nan Guan, Wang Yi, Zonghua Gu, Qingxu Deng, and Ge Yu. New Schedulability
Test Conditions for Non-preemptive Scheduling on Multiprocessor Platforms. 2008
Real-Time Syst. Symp., 2008.

216

[70] Damien Hardy, Thomas Piquet, and Isabelle Puaut. Using Bypass to Tighten WCET
Estimates for Multi-Core Processors with Shared Instruction Caches. In 2009 30th
IEEE Real-Time Syst. Symp. IEEE, 2009.

[71] Damien Hardy and Isabelle Puaut. WCET analysis of multi-level set-associative
instruction caches. J. Syst. Archit., 2008.

[72] Mohamed Hassan, Anirudh M Kaushik, and Hiren Patel. Predictable Cache Coher-
ence for Multi-Core Real-Time Systems. In RTAS, 2017.

[73] M. Y. Hsiao. A class of optimal minimum odd-weight-column SEC-DED codes. IBM
Journal of R and D, 1970.

[74] Huang-Ming Huang, Terry Tidwell, Christopher Gill, Chenyang Lu, Xiuyu Gao, and
Shirley Dyke. Cyber-physical systems for real-time hybrid structural testing: a case
study. In Proc. 1st ACM/IEEE Int. Conf. cyber-physical Syst., 2010.

[75] Yijie Huangfu and Wei Zhang. PEG-C: Performance Enhancement Guaranteed
Cache for Hard Real-Time Systems. IEEE Embed. Syst. Lett., 2014.

[76] Anantha Chandrakasan Jan M. Rabaey. Digital Integrated Circuits. Prentice-Hall,
2002.

[77] Morris A Jette. Performance characteristics of gang scheduling in multiprogrammed
environments. In Supercomput. ACM/IEEE 1997 Conf., 1997.

[78] N. Kapre. Marathon: Statically-Scheduled Conflict-Free Routing on FPGA Overlay
NoCs. In 2016 IEEE 24th Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM), 2016.

[79] N. Kapre and J. Gray. Hoplite: Building austere overlay NoCs for FPGAs. In Field
Programmable Logic and Applications, 2015.

[80] Hany Kashif and Hiren Patel. Buffer Space Allocation for Real-Time Priority-Aware
Networks. In proceedings of the IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS). IEEE, 2016.

[81] Shinpei Kato and Yutaka Ishikawa. Gang EDF Scheduling of Parallel Task Systems.
In 2009 30th IEEE Real-Time Syst. Symp. IEEE, 2009.

[82] Rich Katz Kenneth A. LaBel. NASA FPGA Needs and Activities. https:
//radhome.gsfc.nasa.gov/radhome/papers/label_fpga04.pdf, 2004.

217

https://radhome.gsfc.nasa.gov/radhome/papers/label_fpga04.pdf
https://radhome.gsfc.nasa.gov/radhome/papers/label_fpga04.pdf

[83] Yooseong Kim, David Broman, Jian Cai, and Aviral Shrivastaval. WCET-aware
dynamic code management on scratchpads for Software-Managed Multicores. In
2014 IEEE 19th Real-Time Embed. Technol. Appl. Symp. IEEE, 2014.

[84] Leonidas Kosmidis, Jaume Abella, Eduardo Quiñones, and Francisco J Cazorla. A
Cache Design for Probabilistically Analysable Real-time Systems. In Proc. Conf.
Des. Autom. Test Eur. EDA Consortium, 2013.

[85] Abderahman Kriouile and Wendelin Serwe. Formal Analysis of the ACE Specification
for Cache Coherent Systems-on-Chip. In Form. Methods Ind. Crit. Syst. Springer,
2013.

[86] Matthew Kuo, Partha Roop, Sidharta Andalam, and Nitish Patel. Precision Timed
Embedded Systems Using TickPAD Memory. In 2013 13th Int. Conf. Appl. Concurr.
to Syst. Des. IEEE, 2013.

[87] A Kurdila, M Nechyba, R Prazenica, W Dahmen, P Binev, R DeVore, and R Sharp-
ley. Vision-based control of micro-air-vehicles: Progress and problems in estimation.
In Decis. Control. 2004. CDC. 43rd IEEE Conf., 2004.

[88] K Lakshmanan, S Kato, and R Rajkumar. Scheduling Parallel Real-Time Tasks on
Multi-core Processors. In 2010 31st IEEE Real-Time Syst. Symp. IEEE, 2010.

[89] Karthik Lakshmanan, Shinpei Kato, and Ragunathan Rajkumar. Scheduling parallel
real-time tasks on multi-core processors. In Real-Time Syst. Symp. (RTSS), 2010
IEEE 31st, 2010.

[90] Chris Lattner and Vikram Adve. LLVM: A compilation framework for lifelong pro-
gram analysis & transformation. In Proceedings of the international symposium
on Code generation and optimization: feedback-directed and runtime optimization,
page 75. IEEE Computer Society, IEEE Computer Society, 2004.

[91] Jean-Yves Le Boudec and Patrick Thiran. Network Calculus: A Theory of Deter-
ministic Queuing Systems for the Internet. Springer-Verlag, 2001.

[92] Jing Li, Kunal Agrawal, Chenyang Lu, and Christopher Gill. Analysis of Global
EDF for Parallel Tasks. In 2013 25th Euromicro Conf. Real-Time Syst. IEEE, 2013.

[93] Jing Li, Jian Jia Chen, Kunal Agrawal, Chenyang Lu, Chris Gill, and Abusayeed
Saifullah. Analysis of Federated and Global Scheduling for Parallel Real-Time Tasks.
In Proc. - Euromicro Conf. Real-Time Syst., 2014.

218

[94] L. Li, L. Gao, and J. Xue. Memory coloring: A compiler approach for scratchpad
memory management. In Parallel Architectures and Compilation Techniques, 2005.
PACT 2005. 14th International Conference on, 2005.

[95] Yun Liang, Huping Ding, Tulika Mitra, Abhik Roychoudhury, Yan Li, and Vivy
Suhendra. Timing analysis of concurrent programs running on shared cache multi-
cores. Real-Time Syst., 2012.

[96] Ben Lickly, Isaac Liu, Sungjun Kim, Hiren D Patel, Stephen A Edwards, and Ed-
ward A Lee. Predictable programming on a precision timed architecture. In Proc.
2008 Int. Conf. Compil. Archit. Synth. Embed. Syst. ACM, 2008.

[97] J. Liedtke, H. Hartig, and M. Hohmuth. OS-controlled cache predictability for real-
time systems. In Proc. Third IEEE Real-Time Technol. Appl. Symp. IEEE Comput.
Soc, 1997.

[98] Chung Laung Liu and James W Layland. Scheduling algorithms for multiprogram-
ming in a hard-real-time environment. J. ACM, 1973.

[99] Jane W S W Liu. Real-Time Systems. Prentice Hall PTR, 2000.

[100] Yu Liu and Wei Zhang. Scratchpad Memory Architectures and Allocation Algorithms
for Hard Real-Time Multicore Processors. J. Comput. Sci. Eng., 2015.

[101] Jing Lu, Ke Bai, and Aviral Shrivastava. SSDM: smart stack data management for
software managed multicores (SMMs). In Proc. 50th Annu. Des. Autom. Conf., 2013.

[102] Lars Lundberg. Multiprocessor scheduling of age constraint processes. In RTCSA,
1998.

[103] T R Maeurer and D Shippy. Introduction to the Cell multiprocessor. IBM J. Res.
Dev., 2005.

[104] Renato Mancuso, Roman Dudko, Emiliano Betti, Marco Cesati, Marco Caccamo,
and Rodolfo Pellizzoni. Real-time cache management framework for multi-core ar-
chitectures. In 2013 IEEE 19th Real-Time Embed. Technol. Appl. Symp. IEEE, 2013.

[105] Renato Mancuso, Roman Dudko, and Marco Caccamo. Light-PREM: Automated
software refactoring for predictable execution on COTS embedded systems. In 2014
IEEE 20th Int. Conf. Embed. Real-Time Comput. Syst. Appl., pages 1–10. IEEE, aug
2014.

219

[106] Renato Mancuso, Rodolfo Pellizzoni, Marco Caccamo, Lui Sha, and Heechul Yun.
WCET(m) Estimation in Multi-core Systems Using Single Core Equivalence. In
Real-Time Syst. (ECRTS), 2015 27th Euromicro Conf., 2015.

[107] Milo M. K. Martin, Mark D. Hill, and Daniel J. Sorin. Why on-chip cache coherence
is here to stay. Commun. ACM, 2012.

[108] Joel Matějka, Björn Forsberg, Michal Sojka, Zdeněk Hanzálek, Luca Benini, and
Andrea Marongiu. Combining PREM compilation and ILP scheduling for high-
performance and predictable MPSoC execution. In Proc. 9th Int. Work. Program.
Model. Appl. Multicores Manycores - PMAM’18. ACM Press, 2018.

[109] Alessandra Melani, Marko Bertogna, Vincenzo Bonifaci, Alberto Marchetti-
Spaccamela, and Giorgio Buttazzo. Schedulability Analysis of Conditional Parallel
Task Graphs in Multicore Systems. IEEE Trans. Comput., 2016.

[110] S Metzlaff, I Guliashvili, S Uhrig, and T Ungerer. A dynamic instruction scratchpad
memory for embedded processors managed by hardware. In Proc. 24th Int. Conf.
Archit. Comput. Syst. (ARCS), 2011.

[111] Jörg Mische, Christian Mellwig, Alexander Stegmeier, Martin Frieb, and Theo Un-
gerer. Minimally buffered deflection routing with in-order delivery in a torus. Proc.
Elev. IEEE/ACM Int. Symp. Networks-on-Chip - NOCS ’17, 2017.

[112] Jörg Mische and Theo Ungerer. Guaranteed Service Independent of the Task Place-
ment in NoCs with Torus Topology. In Proc. 22Nd Int. Conf. Real-Time Networks
Syst. ACM, 2014.

[113] David Mosberger. Memory consistency models. ACM SIGOPS Oper. Syst. Rev.,
1993.

[114] Thomas Moscibroda and Onur Mutlu. A Case for Bufferless Routing in On-chip
Networks. In Proceedings of the 36th Annual International Symposium on Computer
Architecture. ACM, 2009.

[115] Bryon Moyer. Real World Multicore Embedded Systems. Newnes, 2013.

[116] Tiago Rogerio Muck and Antonio Augusto Frohlich. Run-time scratch-pad memory
management for embedded systems. In IECON 2011 - 37th Annu. Conf. IEEE Ind.
Electron. Soc. IEEE, 2011.

220

[117] Frank Mueller. Compiler support for software-based cache partitioning. ACM SIG-
PLAN Not., 1995.

[118] J Musmanno. Data Intensive Systems (DIS) Benchmark Performance Summary.
Technical report, 2003.

[119] R. Naseer and J. Draper. Parallel double error correcting code design to mitigate
multi-bit upsets in SRAMs. In Solid-State Circuits Conference, 2008. ESSCIRC
2008. 34th European, 2008.

[120] Geoffrey Nelissen, Vandy Berten, Joel Goossens, and Dragomir Milojevic. Techniques
Optimizing the Number of Processors to Schedule Multi-threaded Tasks. In 2012 24th
Euromicro Conf. Real-Time Syst. IEEE, 2012.

[121] Jan Nowotsch and Michael Paulitsch. Leveraging multi-core computing architectures
in avionics. In Dependable Comput. Conf. (EDCC), 2012 Ninth Eur., 2012.

[122] Andreas Olofsson, Tomas Nordström, and Zain ul Abdin. Kickstarting high-
performance energy-efficient manycore architectures with epiphany. CoRR, 2014.

[123] John K Ousterhout. Scheduling Techniques for Concurrebt Systems. In ICDCS,
1982.

[124] M. Panic, C. Hernandez, E. Quinones, J. Abella, and F. J. Cazorla. Modeling High-
Performance Wormhole NoCs for Critical Real-Time Embedded Systems. In proceed-
ings of the IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS), 2016.

[125] Marco Paolieri, Jörg Mische, Stefan Metzlaff, Mike Gerdes, Eduardo Quiñones,
Sascha Uhrig, Theo Ungerer, and Francisco J. Cazorla. A hard real-time capable
multi-core SMT processor. ACM Trans. Embed. Comput. Syst., 2013.

[126] Marco Paolieri, Eduardo Quiñones, Francisco J Cazorla, Guillem Bernat, and Mateo
Valero. Hardware support for WCET analysis of hard real-time multicore systems.
ACM SIGARCH Comput. Archit. News, 2009.

[127] Soyoung Park, Hae-woo Park, and Soonhoi Ha. A Novel Technique to Use Scratch-
pad Memory for Stack Management. In Des. Autom. Test Eur. Conf. Exhib. 2007.
DATE ’07, 2007.

221

[128] R Pellizzoni, E Betti, S Bak, G Yao, J Criswell, M Caccamo, and R Kegley. A
Predictable Execution Model for COTS-based Embedded Systems. In 2011 17th
IEEE Real-Time Embed. Technol. Appl. Symp., 2011.

[129] R. Pellizzoni, E. Betti, S. Bak, G. Yao, J. Criswell, M. Caccamo, and R. Kegley.
A Predictable Execution Model for COTS-Based Embedded Systems. In Proceed-
ings of the 2011 17th IEEE Real-Time and Embedded Technology and Applications
Symposium. IEEE Computer Society, 2011.

[130] Rodolfo Pellizzoni and Marco Caccamo. Real-Time Management of Hardware
and Software Tasks for FPGA-based Embedded Systems. IEEE Trans. Comput.,
56(12):1666–1680, dec 2007.

[131] Rodolfo Pellizzoni, Andreas Schranzhofer, Jian-Jia Chen, Marco Caccamo, and
Lothar Thiele. Worst case delay analysis for memory interference in multicore sys-
tems. In 2010 Des. Autom. Test Eur. Conf. Exhib. (DATE 2010). IEEE, 2010.

[132] Bo Peng, Nathan Fisher, and Marko Bertogna. Explicit preemption placement for
real-time conditional code. In Real-Time Syst. (ECRTS), 2014 26th Euromicro Conf.,
2014.

[133] Lúıs Miguel Pinho, Vincent Nélis, Patrick Meumeu Yomsi, Eduardo Quiñones, Marko
Bertogna, Paolo Burgio, Andrea Marongiu, Claudio Scordino, Paolo Gai, Michele
Ramponi, and Michal Mardiak. P-SOCRATES: A parallel software framework for
time-critical many-core systems. Microprocess. Microsyst., 2015.

[134] J A Poovey, T M Conte, M Levy, and S Gal-On. A Benchmark Characterization of
the EEMBC Benchmark Suite. IEEE Micro, 2009.

[135] Aayush Prakash and HD D Patel. An instruction scratchpad memory allocation for
the precision timed architecture. In Des. Autom. Test Eur. . . . , 2012.

[136] I Puaut and C Pais. Scratchpad memories vs locked caches in hard real-time systems:
a quantitative comparison. In Des. Autom. Test Eur. Conf. Exhib. 2007. DATE ’07,
2007.

[137] Arthur Pyka, Mathias Rohde, and Sascha Uhrig. A real-time capable coherent data
cache for multicores. Concurr. Comput. Pract. Exp., 2014.

[138] Arthur Pyka, Mathias Rohde, and Sascha Uhrig. Extended performance analysis
of the time predictable on-demand coherent data cache for multi- and many-core

222

systems. In 2014 Int. Conf. Embed. Comput. Syst. Archit. Model. Simul. (SAMOS
XIV). IEEE, 2014.

[139] Eduardo Quiñones, Emery D. Berger, Guillem Bernat, and Francisco J. Cazorla. Us-
ing Randomized Caches in Probabilistic Real-Time Systems. In 2009 21st Euromicro
Conf. Real-Time Syst. IEEE, 2009.

[140] Jan Reineke. Randomized caches considered harmful in hard real-time systems.
Leibniz Trans. Embed. Syst., 2014.

[141] Abusayeed Saifullah, Jing Li, Kunal Agrawal, Chenyang Lu, and Christopher Gill.
Multi-core real-time scheduling for generalized parallel task models. Real-Time Syst.,
2013.

[142] Abusayeed Saifullah, Jing Li, Kunal Agrawal, Chenyang Lu, and Christopher Gill.
Multi-core real-time scheduling for generalized parallel task models. Real-Time Syst.,
2013.

[143] Abhik Sarkar, Frank Mueller, Harini Ramaprasad, and Sibin Mohan. Push-assisted
migration of real-time tasks in multi-core processors. In Proc. 2009 ACM SIG-
PLAN/SIGBED Conf. Lang. Compil. tools Embed. Syst. - LCTES ’09. ACM Press,
2009.

[144] Martin Schoeberl. One-way shared memory. In 2018 Des. Autom. Test Eur. Conf.
Exhib. IEEE, 2018.

[145] Paul Sebexen and Thomas Sohmers. Software Techniques for Scratchpad Memory
Management. In Proceedings of the 2015 International Symposium on Memory Sys-
tems, pages 98–102. ACM, 2015.

[146] M. She. Semiconductor Flash Memory Scaling. University of California, Berkeley,
2003.

[147] Mayank Shekhar, Abhik Sarkar, Harini Ramaprasad, and Frank Mueller. Semi-
Partitioned Hard-Real-Time Scheduling under Locked Cache Migration in Multicore
Systems. In 2012 24th Euromicro Conf. Real-Time Syst. IEEE, 2012.

[148] John Paul Shen and Mikko H Lipasti. Modern processor design: fundamentals of
superscalar processors. Waveland Press, 2013.

223

[149] Zheng Shi and Alan Burns. Real-Time Communication Analysis for On-Chip Net-
works with Wormhole Switching. In Second ACM/IEEE Int. Symp. Networks-on-
Chip (nocs 2008). IEEE, 2008.

[150] Sudhir Singh. Performance optimization in gang scheduling in cloud computing. Int.
Organ. Sci. Res. Comput. Eng., 2012.

[151] C. Slayman. Whitepaper on Soft Errors in Modern Memory Technology. Technical
report, 2010.

[152] Muhammad R Soliman and Rodolfo Pellizzoni. WCET-Driven Dynamic Data
Scratchpad Management with Compiler-Directed Prefetching.

[153] Daniel J. Sorin, Mark D. Hill, and David A. Wood. A Primer on Memory Consistency
and Cache Coherence. Synth. Lect. Comput. Archit., 2011.

[154] C. Steiger, H. Walder, and M. Platzner. Operating systems for reconfigurable em-
bedded platforms: online scheduling of real-time tasks. IEEE Trans. Comput., 53,
2004.

[155] V Suhendra and T Mitra. Exploring locking & partitioning for predictable shared
caches on multi-cores. In Proc. 45th Annu. Des. Autom. Conf., 2008.

[156] V. Suhendra, T. Mitra, A. Roychoudhury, and Ting Chen. WCET Centric Data
Allocation to Scratchpad Memory. In 26th IEEE Int. Real-Time Syst. Symp. IEEE,
2005.

[157] Vivy Suhendra, Abhik Roychoudhury, and Tulika Mitra. Scratchpad allocation for
concurrent embedded software. ACM Transactions on Programming Languages and
Systems (TOPLAS), 2010.

[158] Richard Szeliski. Computer vision: algorithms and applications. Springer Science &
Business Media, 2010.

[159] R. Tabish, R. Mancuso, S. Wasly, A. Alhammad, S.S. Phatak, R. Pellizzoni, and
M. Caccamo. A Real-Time Scratchpad-Centric OS for Multi-Core Embedded Sys-
tems. In 2016 IEEE Real-Time Embed. Technol. Appl. Symp. RTAS 2016 - Proc.,
2016.

224

[160] R Tabish, R Mancuso, S Wasly, S S Phatak, R Pellizzoni, and M Caccamo. (under
review) A Real-Time Scratchpad-centric OS with Predictable Inter/Intra-Core Com-
munication for Multi-core Embedded Systems. In Real-Time Syst. RTS. Springer,
2018.

[161] R. Tabish, R. Mancuso, S. Wasly, S.S. Phatak, R. Pellizzoni, and M. Caccamo. A
reliable and predictable scratchpad-centric OS for multi-core embedded systems. In
Proc. IEEE Real-Time Embed. Technol. Appl. Symp. RTAS, 2017.

[162] Hideki Takase, Hiroyuki Tomiyama, and Hiroaki Takada. Partitioning and allocation
of scratch-pad memory for priority-based preemptive multi-task systems. In 2010
Design, Automation & Test in Europe Conference & Exhibition (DATE 2010), 2010.

[163] Hideki Takase, Hiroyuki Tomiyama, and Hiroaki Takada. Partitioning and allocation
of scratch-pad memory for priority-based preemptive multi-task systems. In 2010
Des. Autom. Test Eur. Conf. Exhib. (DATE 2010). IEEE, 2010.

[164] David Tam, Reza Azimi, Livio Soares, and Michael Stumm. Managing shared L2
caches on multicore systems in software. In Work. Interact. between Oper. Syst.
Comput. Archit., 2007.

[165] Corey Tessler and Nathan Fisher. BUNDLE: real-time multi-threaded scheduling to
reduce cache contention. In Real-Time Syst. Symp. (RTSS), 2016 IEEE, 2016.

[166] Sascha Uhrig, Lillian Tadros, and Arthur Pyka. MESI-Based Cache Coherence for
Hard Real-Time Multicore Systems. In Archit. Comput. Syst. 2015. Springer, 2015.

[167] Theo Ungerer, Francisco Cazorla, Pascal Sainrat, Guillem Bernat, Zlatko Petrov,
Christine Rochange, Eduardo Quinones, Mike Gerdes, Marco Paolieri, Julian Wolf,
Hugues Casse, Sascha Uhrig, Irakli Guliashvili, Michael Houston, Floria Kluge, Ste-
fan Metzlaff, and Jorg Mische. Merasa: Multicore Execution of Hard Real-Time
Applications Supporting Analyzability. IEEE Micro, 2010.

[168] R. Vargas, S. Royuela, M. Serrano, X. Martorell, and E. Quinones. A lightweight
OpenMP4 run-time for embedded systems. In Proc. ASP-DAC, 2016.

[169] Bryan C. Ward, Jonathan L. Herman, Christopher J. Kenna, and James H. Ander-
son. Making Shared Caches More Predictable on Multicore Platforms. In 2013 25th
Euromicro Conf. Real-Time Syst. IEEE, 2013.

225

[170] Saud Wasly and Rodolfo Pellizzoni. A Dynamic Scratchpad Memory Unit for Pre-
dictable Real-Time Embedded Systems. In 2013 25th Euromicro Conf. Real-Time
Syst. IEEE, 2013.

[171] Saud Wasly and Rodolfo Pellizzoni. Hiding memory latency using fixed priority
scheduling. In 2014 IEEE 19th Real-Time Embed. Technol. Appl. Symp. IEEE, 2014.

[172] Saud Wasly and Rodolfo Pellizzoni. (under review)Bundled Scheduling of Parallel
Real-time Tasks. In Real-Time Syst. Symp. RTSS. IEEE, 2018.

[173] Saud Wasly, Rodolfo Pellizzoni, and Nachiket Kapre. HopliteRT: An efficient FPGA
NoC for real-time applications. In F. Program. Technol. (ICFPT), 2017 Int. Conf.,
2017.

[174] J Whitham and N Audsley. Implementing time-predictable load and store operations.
In Proc. EMSOFT, 2009.

[175] J Whitham, RI I Davis, N Audsley, S Altmeyer, and C Maiza. Investigation of
Scratchpad Memory for Preemptive Multitasking. jwhitham.org, 2012.

[176] Jack Whitham and Neil C. Audsley. Explicit Reservation of Local Memory in a
Predictable, Preemptive Multitasking Real-Time System. In 2012 IEEE 18th Real
Time Embed. Technol. Appl. Symp. IEEE, 2012.

[177] Jun Yan and Wei Zhang. WCET Analysis for Multi-Core Processors with Shared L2
Instruction Caches. In 2008 IEEE Real-Time Embed. Technol. Appl. Symp. IEEE,
2008.

[178] Gang Yao, Rodolfo Pellizzoni, Stanley Bak, Emiliano Betti, and Marco Caccamo.
Memory-centric scheduling for multicore hard real-time systems. Real-Time Syst.,
2012.

[179] Heechul Yun, Renato Mancuso, Zheng-Pei Wu, and Rodolfo Pellizzoni. PALLOC:
DRAM bank-aware memory allocator for performance isolation on multicore plat-
forms. In 2014 IEEE 19th Real-Time Embed. Technol. Appl. Symp. IEEE, 2014.

[180] Heechul Yun, Gang Yao, Rodolfo Pellizzoni, Marco Caccamo, and Lui Sha. Mem-
Guard: Memory bandwidth reservation system for efficient performance isolation in
multi-core platforms. In 2013 IEEE 19th Real-Time Embed. Technol. Appl. Symp.
IEEE, 2013.

226

[181] Sergey Zhuravlev, Sergey Blagodurov, and Alexandra Fedorova. Addressing shared
resource contention in multicore processors via scheduling. In ACM SIGARCH Com-
put. Archit. News, 2010.

227

	List of Tables
	List of Figures
	Introduction
	Challenges with Multi-Core Systems
	Shared Resources and Contention
	Data Sharing in Parallel Tasks

	Scope and Contributions of This Work
	PART(I): Efficient Tasks Isolation
	PART(II): Predictable Tasks Communication

	Structure of the Dissertation

	Background and Related Work
	Predictability and Timing Isolation in Multicore Systems
	Comparing the Architecture of SPM with Cache
	Cache Memory
	Scratchpad Memory
	Other Task Isolation Techniques

	Real-time Tasks Communication
	Real-Time Scheduling of Parallel Tasks
	Memory Model
	Predictable Network On-Chip Architectures

	I Efficient Task Isolation For Real-time Applications
	Partitioned Scratchpad-Centric Scheduling of 3-Phase Real-time Tasks
	System Model
	Case (I): Scheduling 3-Phase Tasks with Variable-size DMA Operations
	Schedulability Analysis of The 3-Phase Tasks with Dynamic-size DMA Operations
	Analysis of Multi-Segment Tasks

	Case (II): Scheduling 3-Phase Tasks with Fixed-size DMA Operations
	Schedulability Analysis of The 3-Phase Tasks with Fixed-Size DMA Operations

	Fault-Tolerant Scheduling of 3-Phase Tasks
	Extending Schedulability Analysis for Error Recovery
	Response Time Calculation
	Accounting for Error Recovery

	Summary

	System Implementation
	Implementation on an FPGA Platform
	Hardware Architecture
	Address Translation
	Software Implementation
	Evaluation

	Implementation on a COTS Platform
	Platform Description
	OS Design
	Evaluation

	Summary

	Global Scratchpad-Centric Scheduling of 3-Phase Real-time Tasks
	Task Model and Notations
	Scheduling Algorithm
	Scheduler Design

	Schedulability Analysis
	Bounding the Interfering Jobs
	Bounding the Individual Workload Ik(Ji)
	Bounding the Total Workload Ik()
	Bounding the Interference on a Problem Job
	Schedulability Condition

	Evaluation
	Summary

	II Task Communication For Hard Real-time Applications
	Inter-Task Communication with 3-Phase Task Model
	The Proposed Inter-Task Communication Model
	Implementation
	Bounding Communication Latency
	Evaluation
	Summary

	Bundled Scheduling of Parallel Real-time Tasks
	System Model
	The Scheduling Algorithm
	Programming Model

	Schedulability Analysis
	Bounding the Contribution
	Analysis for Multiple Bundles
	Tightening the Analysis
	Priority Assignment
	Discussion

	Evaluation
	Bundled Scheduling for the 3-Phase Task Model
	Summary

	Predictable Inter-core Communication
	The Case for FPGA Overlay NoCs
	Background: Hoplite NoC Architecture
	Managing In-Flight Deflections
	Regulating Traffic Injection
	Token Bucket Regulator
	Analysis

	Evaluation
	Integrating Communication Time into Execution Time of Bundled Tasks
	Summary

	Conclusions
	Limitations
	Future Directions

	References

