
SCHEDULING IN NETWORKS WITH LIMITED

BUFFERS

by

Mahmoud Elhaddad

M.S. in Computer Science, North Carolina State University, 2001

Submitted to the Graduate Faculty of

Arts and Sciences in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2010

UNIVERSITY OF PITTSBURGH

FACULTY OF ARTS AND SCIENCES

This dissertation was presented

by

Mahmoud Elhaddad

It was defended on

May 6, 2010

and approved by

R. Melhem, PhD, Professor

D. Mossé, PhD, Professor

K. Pruhs, PhD, Professor

P. Krishnamurthy, PhD, Associate Professor

Dissertation Director: R. Melhem, PhD, Professor

ii

SCHEDULING IN NETWORKS WITH LIMITED BUFFERS

Mahmoud Elhaddad, PhD

University of Pittsburgh, 2010

In networks with limited buffer capacity, packet loss can occur at a link even when the

average packet arrival rate is low compared to the links speed. To offer strong loss-rate

guarantees, ISPs may need to adopt stringent routing constraints to limit the load at the

network links and the routing path length. However, to simultaneously maximize revenue,

ISPs should be interested in scheduling algorithms that lead to the least stringent routing

constraints. This work attempts to address the ISPs needs as follows. First, by proposing an

algorithm that performs well (in terms of routing constraints) on networks of output queued

(OQ) routers (that is, ideal routers), and second, by bounding the extra switch fabric speed

and buffer capacity required for the emulation of these algorithms in combined input-output

queued (CIOQ) routers.

The first part of the thesis studies the problem of minimizing the maximum session loss

rate in networks of OQ routers. It introduces the Rolling Priority algorithm, a local online

scheduling algorithm that offers superior loss guarantees compared to FCFS/Drop Tail and

FCFS/Random Drop. Rolling Priority has the following properties: (1) it does not favor

any sessions over others at any link, (2) ensures a proportion of packets from each session

are subject to a negligibly small loss probability at every link along the sessions path, and

(3) maximizes the proportion of packets subject to negligible loss probability.

The second part of the thesis studies the emulation of OQ routers using CIOQ. The OQ

routers are equipped with a buffer of capacity B packets at every output. For the family

of work-conserving scheduling algorithms, we find that whereas every greedy CIOQ policy

is valid for the emulation of every OQ algorithm at speedup B, no CIOQ policy is valid at

iii

speedup s < 3
√
B − 2 when preemption is allowed. We also find that CCF, a well-studied

CIOQ policy, is not valid at any speedup s < B. We then introduce a CIOQ policy CEH,

that is valid at speedup s ≥
√

2(B − 1). Under CEH, the buffer occupancy at any input

never exceeds 1 +
⌊
B−1
s−1

⌋
.

iv

TABLE OF CONTENTS

1.0 INTRODUCTION . 1

1.1 Minimization of the Maximum Session Loss Rate 2

1.2 Exact Emulation of OQ Routers Using CIOQ 3

1.3 Organization of the Dissertation . 5

2.0 PROBLEM DEFINITION AND PRELIMINARIES 6

2.1 Problem Definition . 6

2.1.1 Problem Parameters . 6

2.1.2 Input Specification . 7

2.1.3 The Arrival Process . 9

2.1.4 The Performance Metric . 9

2.2 Summary of Results . 10

2.3 Related Research . 12

3.0 THE ROLLING PRIORITY ALGORITHM 15

3.1 Specification of the Algorithm . 15

3.1.1 Service and Drop Policies . 16

3.1.2 Phase Randomization . 17

3.2 Properties of Rolling Priority . 18

3.3 Performance Under Heavy Traffic . 19

3.4 Routing Tradeoffs . 20

4.0 CONCLUDING REMARKS . 24

5.0 PROBLEM DEFINITION AND PRELIMINARIES 26

5.1 The OQ Emulation Problem . 27

v

5.2 Summary of Results . 29

5.3 Related Work . 31

5.4 Organization . 32

6.0 SWITCH MODELS . 33

6.1 OQ Algorithms . 33

6.2 CIOQ Policies . 35

6.3 Families of OQ Algorithms . 37

7.0 OQ EMULATION OF NON-PREEMPTIVE SCHEDULING ALGO-

RITHMS . 40

7.1 The Speedup — Buffer Capacity Trade-off 40

7.2 The Critical Cells First CIOQ Policy . 42

7.2.1 OQ Emulation using CCF and G-CCF 45

8.0 OQ EMULATION WITH PREEMPTION ALLOWED 49

8.1 The Speedup Lower Bound . 49

8.2 CCF Is Not Better Than The Worst Greedy Policy 53

9.0 THE CCF-EAF HYBRID CIOQ POLICY 57

9.1 The CEH CIOQ Policy . 58

9.2 Performance of CEH . 60

10.0 CONCLUDING REMARKS . 62

BIBLIOGRAPHY . 64

vi

LIST OF TABLES

1 Summary of OQ Emulation Results . 62

vii

LIST OF FIGURES

1 Output-Queued Router Architecture . 8

2 Tail-Buffered Links . 8

3 Network Sessions . 8

4 Session Priorities Under the Rolling Priority Algorithm 17

5 Session Epochs Under the Rolling Priority Algorithm 17

6 FCFS/RD versus RP-n Under Heavy Load 21

7 Routing Tradeoffs at B = 5 . 22

8 Routing Tradeoffs at B = 7 . 23

9 Routing Tradeoffs at B = 10 . 23

10 Output Queued and Combined Input-Output Queued Architectures 34

11 Illustration of the Proof of Theorem 8.1 . 51

12 Illustration of the Proof of Theorem 8.2 . 55

viii

1.0 INTRODUCTION

Scheduling in packet routing networks can be described as allocating communication link

resources (i.e., transmission and buffering resources) to packets over time. Until recently, the

performance of scheduling algorithms in packet networks has mostly been studied in terms

of packet delay and stability (boundedness of backlog). These studies, for example [26, 8,

45, 28,12,22,27,6], have led to valuable insights into the behavior of scheduling algorithms,

such as FCFS and Generalized Processor Sharing (GPS). However, in investigating delay

and stability, the packet network is modeled as a queuing network where communication

links are represented by servers with infinite waiting room, which limits the practical value

of the resulting algorithmic guarantees.

Delay and stability guarantees lead to bounds on buffer occupancy that can be leveraged

in dimensioning buffer capacities at the router ports to prevent, or at least bound, packet

loss. These buffer occupancy bounds are often dependent on network parameters, such as

link capacities and the network diameter, which are impractical to track in today’s large

decentralized networks. More importantly, relying on such bounds for buffer dimensioning

ignores the technological constraints on buffer capacity, which have recently risen due to

increasing link speeds [2, 17], and the drive toward constructing photonic packet switches

with integrated optical packet buffers [33,9, 5].

Under stringent buffer capacity constraints, the packet loss rate (ratio of dropped packets

to those offered to the network) becomes the primary metric in the evaluation of scheduling

algorithms. This dissertation looks at two fundamental scheduling problems related to min-

imizing the loss rate. To date, this area of research has remained largely unexplored, with

only few known results.

1

The first part of this dissertation studies the problem of minimizing the maximum session

loss rate in networks with output-queuing routers (packet switches). The second part inves-

tigates the extra speed and buffering capacity required in Combined input-output queuing

(CIOQ) routers — a scalable and widely adopted router architecture — so that the results

obtained in the first part carry over to networks of CIOQ routers.

1.1 MINIMIZATION OF THE MAXIMUM SESSION LOSS RATE

Recent research has shown that TCP-NewReno flows traversing a single work-conserving

link having a small buffer are able to withstand high loss rate and achieve good link utiliza-

tion, under assumptions that limit the contribution of each flow to the total link load [17].

However, several questions regarding the performance of networks with small router buffers

remain open. This work is motivated by one question that is critical to the utility of such

networks: What statistical guarantees on the packet loss rate experienced by user flows

(or aggregates thereof) can be supported by a network with small router buffers, without

imposing severe restrictions on the link utilization or the routing path length?

Given the load at the network links and the link buffer capacities, the loss rate along a

network path is determined by three factors: (1) the packet arrival process, (2) the packet size

distribution, and (3) the scheduling algorithm (i.e., the service discipline and the drop policy)

used at the links. The effect of variability in the arrival process and the benefit of limiting

burstiness by regulating the arrival process have been well studied and understood [40, 36].

Similar queuing-theoretic results apply to the distribution of packet sizes; constant packet

sizes are desirable when the objective is to minimize the rate of buffer overflow events at a

link (the frequency of exceeding a certain buffer occupancy threshold). In contrast, there

are only few known results concerning the performance of scheduling algorithms in networks

with small or fixed-size buffers [1].

Motivated by the need for loss-rate guarantees in networks with small buffers, this work

studies the problem of link scheduling to minimize the maximum session loss rate.1 Al-

1A session is a traffic aggregate between two network routers, routed along a single network path.

2

gorithms that perform well on this metric enable network service providers to offer strong

loss rate guarantees to their customers (e.g., as part of their service level agreement) while

maintaining good utilization of the network capacity (hence, revenue).

In this part of the thesis, we introduce Rolling Priority, a local online work-conserving

algorithm with the following properties: (1) The algorithm does not favor any session over

others (in terms of packet loss rate) at any link, (2) it ensures that some packets from

each session are subject to a small packet loss probability (much smaller than the average

packet loss rate at the link) at every link along the session’s path, and (3) it maximizes

the proportion of packets from each session that are subject to such a small loss probability

at every link. Intuitively, Rolling Priority performs well by minimizing the proportion of

packets in each session that face a significant loss probability at any link. We show that this

algorithm enables the network providers to offer strong loss rate guarantees while maintaining

good utilization of the network capacity.

1.2 EXACT EMULATION OF OQ ROUTERS USING CIOQ

In the first part of this dissertation, as well as in the general packet scheduling literature,

performance analysis of packet scheduling algorithms commonly assume that routers use

Output Queuing (OQ) [1, 21, 22, 26, 8]: At each time step, all newly arriving packets are

switched to their corresponding outputs where they are stored awaiting transmission. The

simplicity of this model is attractive for analysis purposes since each router output is accu-

rately viewed as a single-server queue controlled by an instance of the scheduling algorithm,

independently of other router ports. However, a well-known practical limitation of OQ is

that in a router with N ports, the switch fabric must have a speedup of N — it must transfer

packets to the output at a speed N times the speed of the communication links. This limits

scalability while the router sizes continue to grow beyond hundreds of ports.

To overcome the scalability problem, most packet routers use Combined-Input-Output

Queuing (CIOQ) [10]: At each time step, up to s, s � N , packets can be switched from

any input port to their corresponding outputs, and up to s packets can be switched to any

3

output port, so that the router’s switch fabric may operate at a speedup of only s. The

switch fabric is most commonly an unbuffered switching (cross-bar) matrix. Combined-

Input-Output Queuing comes at the cost of maintaining additional packet buffers at the

input ports (hence the name) and arbitrating access to the switch fabric among packets at

the input ports. Switch-fabric arbitration may introduce dependence among packet arrivals

at different outputs, thus complicating the analysis of scheduling algorithms in CIOQ routers.

A question that naturally arises is whether provable packet loss and delay guarantees

provided by a scheduling algorithm in networks of OQ routers carry over to networks of

CIOQ routers. This is the case if the CIOQ routers emulate the OQ routers: for any

scheduling algorithm in a given class and any sequence of packet arrivals, replacing an OQ

router with a CIOQ router does not change the sequence of dropped packets at the router,

the order of packet departures from each output, or the departure times. Since packet loss

and delay guarantees obtained by analyzing networks of OQ routers carry over to networks

of OQ-emulating CIOQ routers, studying the minimum CIOQ switch speedup and buffer

capacity required for OQ emulation is of practical and theoretical relevance. We refer to

this problem as the OQ emulation problem.

In their seminal paper [10], Chuang, Goel, McKeown and Prabhakar studied a special

case of the OQ emulation problem, where the output buffers in the OQ router, and both

the input and output buffers in the CIOQ router are sufficiently large to prevent packet

loss under every possible packet arrival sequence. Under this assumption, the drop policy

of any scheduling algorithm is never exercised. Therefore, a CIOQ router emulates an OQ

router if for every PIFO (Push-in-First-Out) service discipline and packet arrival sequence,

the order of packet departures from each CIOQ router output and the departure times, are

identical to the corresponding sequences for the OQ router. For this setting, the authors

of [10] identified an arbitration policy that achieves OQ emulation at speedup 2, and showed

that no arbitration policy can achieve OQ emulation at speedup 2 − 1/N , where N is the

number of input/output ports.

The second part of this dissertation studies the general OQ emulation problem (i.e.,

including the emulation of OQ loss behavior) when the buffer capacity at any router port

cannot exceed some capacity B > 1. Specifically, it investigates the required buffer capacity

4

at the input ports of a CIOQ router and the required switch fabric speedup so that it can

emulate an OQ router with B packet buffers at every output. In this setting, a particular

concern is that buffer overflows at the input ports of a CIOQ router may lead to dropping

packets that are not dropped by the OQ router.

The main findings in this part are as follows: Whereas a CIOQ router can emulate any

non-preemptive OQ algorithm in the family above at a fabric speedup of 2, emulation of

preemptive algorithms requires Ω(B
1
3) speedup. We give a CIOQ policy for the emulation

of any preemptive algorithm at O(B
1
2) speedup. This result suggests that the emulation

preemptive OQ algorithms may be feasible only for OQ routers with small buffers.

1.3 ORGANIZATION OF THE DISSERTATION

The dissertation is organized into two self-contained but complementary parts, corresponding

to the problems described in the previous sections. Whereas the loss rate minimization

problem is defined on networks of OQ switches, the emulation problem involves scheduling

packets within one CIOQ switch. As a result, each problem has its own network or switch

model and related literature. This is reflected in the organization of the dissertation, with

each of the parts including its own model, review of related research, and concluding remarks.

Part 1.3 (Ch. 2–4) covers the minimization of the maximum session loss rate in networks

of OQ switches, and Part 4 (Ch. 5–10) covers the emulation of finite-buffered OQ switches

using CIOQ.

5

2.0 PROBLEM DEFINITION AND PRELIMINARIES

In this part of the thesis, we study the minimization of the maximum session loss rate. We

introduce and analyze the Rolling Priority algorithm, which is shown to offer better loss-rate

guarantees compared to well-known algorithms such as FCFS/Drop Tail.

This chapter defines the scheduling problem by specifying the input to a scheduling

algorithm and the objective function. It also reviews related work.

2.1 PROBLEM DEFINITION

2.1.1 Problem Parameters

For any scheduling algorithm, the worst-case input that determines the performance of

the algorithm depends on the range of values that may be assumed by the network and

traffic parameters. In this work, an instance of the scheduling problem is characterized by

a triplet of parameters (B,N,H) where B is the link buffer capacity, N is the maximum

number of sessions that may traverse a link, and H is an upper bound on the path length

of every session. This work seeks to find an algorithm that performs well on all parameters

in the small-buffer regime where B << N . The performance objective is formally stated in

Section 2.1.4.

For a given triplet P = (B,N,H), I(P) denotes the set of inputs obeying the restrictions

imposed by the parameters.

6

2.1.2 Input Specification

For a given P = (B,N,H), an input I ∈ I(P) is a triplet (N ,S,J), where N is a network

represented by its topology, S is a collection of permanent sessions in N , and J is a se-

quence of timed packet injections into N by the sessions in S. The inclusion of the network

topology as part of the input is motivated by the interest in algorithms that perform well

on any network. This work considers only the case where all packets are of uniform size

and equal importance. It is known that scheduling problems in this setting are not triv-

ial [1]. Moreover, since the variability in packet sizes generally increases the frequency of

buffer overflow events [22], one would expect networks with small buffers to segment or pack

incoming packets into fixed-size ones at the network’s edge.

In a network N = (V,E), the set of vertices V represents the output-queued network

routers, and the set of directed edges E ⊆ V × V represents the network links. A link

e = (u, v) is equipped at its tail, u, with a buffer of capacity B ≥ 0 packets. Each router

in v ∈ V is equipped with a set of input and output ports. An input port is internal if it

is connected to the head, v, of a link (u, v) in E. Otherwise it is called an external input

port. Similarly, an output port is called internal if it is connected to the tail of a link in

E, and called external otherwise. Each session is associated with a dedicated external input

port where it injects packets at its source router and with a dedicated external output port

at its destination router, where packets leave the network unless dropped at some upstream

router. Figs 1–3 illustrate the elements of a network.

Each session in S, identified by its source-destination node pair, is assigned a fixed

path and continuously injects packets at its source node. It has a bandwidth demand

specifying its average packet injection rate. A session’s path length and bandwidth demand

are disseminated only to routers along its path. Recall that N and H are upper bounds

on the number of sessions traversing any given link and the path length of any session,

respectively.

Time proceeds in discrete steps. Each time step is divided into a forwarding substep

and a switching substep. During the forwarding substep, each link transmits a packet from

those present in its buffer, if any. The packet becomes available at the input port connected

7

input ports output ports

link

Figure 1: An output queued router (switch) has

a fully-connected switch fabric. Packets arriving

at the input ports are immediately switched to

the corresponding output ports. Packets may be

stored in the link buffers at the output pending

transmission.

output ports input ports
tail-buffered link

Figure 2: A link is a directed edge attached to

an output port at its tail, and to an input port

at its head. At its tail, a link is equipped with a

buffer of capacity B. A router port is internal if

it connects the router to another one through a

link in E. It is external otherwise.

u

v w

u

1

2

Figure 3: A session routed along a path (u1, v, w) injects packets into a dedicated external input

port at u1, and its successfully delivered packets depart from the network through a dedicated

external output port at w. The diagram also shows a session routed along (u2, v, w). The two

sessions share link (v, w).

8

to the head of the link after a propagation delay of an integral number of time steps. During

the switching substep, each router moves all the packets available at its input ports to the

appropriate output ports according on their respective paths. If, at the tail of any link, the

number of packets requiring storage exceeds the buffer capacity, B, the scheduling algorithm

must drop the excess packets.

The sequence of packet injections, J , is a finite set J ⊂ S × Z. A session can inject at

most one packet every time step into its external port. That is, for any t: (s, t), (s′, t) ∈ J

implies s 6= s′.

2.1.3 The Arrival Process

Traffic injection by each session is assumed to be a counting process with independent

increments [38].1 The number of arrivals in disjoint time intervals of the same length are iid

random variables. Observe that the Poisson process is a special case of the above, where the

number of arrivals in any time interval follows the exponential distribution. The injection

rate of every session is also assumed to be an integral multiple of 1
T0

, for some T0 ∈ Z+.

The Rolling Priority algorithm, introduced in the next chapter, is designed to support a

loss-rate guarantee over consecutive intervals of length T0.

2.1.4 The Performance Metric

For a set of parameters P = (B,N,H), let I ∈ I(P), I = (N ,S,J), and let Σ be the set of

all sequences of n disjoint intervals of length T0 steps (n > 0). Further, let A(I) denote the

cost of algorithm A on input I. A(I) is defined as:

A(I) , max
s∈S

max
σ∈Σ

1

n

n∑
i=1

E
[
XA
σ,i(I)

]
, (2.1)

where XA
σ,i(I) is a random variable representing the fraction of packets dropped by algorithm

A among those injected during the ith interval of σ. Obviously, the distribution of Xσ,i

1A stochastic process {Γ(t) : t ≥ 0} is a counting process if Γ(t) ≥ 0 for every t, and for any s > t,

Γ(s− t) = Γ(s)− Γ(t) ≥ 0.

9

depends on the intensity of packets arrivals and the scheduling decisions made by A. A(I) is

the maximum of this expectation over all sequences in Σ – across all sessions. We refer to a

session and sequence of intervals that determine the cost of A on input I as a critical session

and a critical sequence, respectively. The sequence size n can be any positive integer. The

effect of the sequence size on performance is explored in Ch. 3.

The cost of an algorithm A on P is its cost on the worst input in I(P). For the worst

input to be well defined, I(P) is made finite by requiring that the number of routers in a

network and the length of the packet injection sequence be bounded above by arbitrarily

large constants defined in terms of B,N, and H.

Remarks. The cost of an algorithm A on an input I is the maximum expectation of

the loss rate among all same-session sequences of packet injections. Using the maximum

expectation as a metric reflects the interest in capturing the average performance of the

algorithm on a critical sequence of intervals under the worst input.

Characterizing the performance of each algorithm based on its worst possible input is

a natural choice when loss-rate guarantees are sought. The small-buffer regime described

above is also a natural choice since, for any algorithm, increasing the number of sessions

that can share a link relative to the buffer capacity permits inputs with higher packet loss

rate.

2.2 SUMMARY OF RESULTS

In evaluating the worst-case performance of an algorithm, the input can be viewed as being

generated by an adversary, whose goal is to maximize the loss rate of some session. This

work assumes that the adversary fully specifies the input, including the complete sequence of

packet injections, prior to injecting the first packet and without revealing it to the algorithm.

Thus, if the algorithm is randomized, the adversary may not adjust the input based on the

randomized decisions taken by the algorithm.

This work quantifies the loss guarantees offered by an algorithm when the sequence of

packet injection from any given session obeys the statistical restrictions imposed by the

10

stochastic process of Section 2.1.3. The restrictions on the injection process limit the packet

injection rate as well as the burstiness of arrivals. A network operator would naturally impose

such statistical restrictions to be able to offer strong loss guarantees, while accepting as much

revenue-generating traffic as possible. The arrival process assumed here is a generalization of

the Poisson process. The guarantees are evaluated using analytical modeling and simulation.

These results, along with accurate analytical models for characterizing the performance of

FCFS/RD (Random Drop) and Rolling Priority (introduced below) as a function of the

problem parameters, (B,N,H), have been published in [14,15,13].

For the general arrival process defined above, we introduce the Rolling Priority algorithm,

which possesses the desired characteristics outlined below, and is designed to support a loss-

rate guarantee over consecutive intervals of length T0 steps:

• The algorithm assigns to each packet a rank drawn uniformly and independently at

random from [1, N], and the rank remains fixed throughout the packet’s sojourn in the

network.

• At each link, the algorithm transmits the packet with highest rank in every time step.

• In case of buffer overflow at an link, the algorithm drops packets with the lowest rank

among those in the link’s buffer and the new arrivals.

As we shall see in the next chapter, under Rolling Priority, the rank assigned to a packet

may vary from one link to the next, but remains within a narrow range.

The performance of Rolling Priority is compared to FCFS/RD (non-preemptive random

drop) analytically and using simulation. In FCFS/RD, if the number of packets arriving

simultaneously at a link exceeds the available buffer space by e packets, then e randomly

selected packets among the new arrivals are dropped. FCFS/RD is used as a representative

of algorithms that do not favor individual sessions or packets over others at any link, and do

not give any preferential treatment to packets that already consumed upstream resources.

The evaluation is carried in two different settings. First, in a heavy-traffic setting, which

may be induced by link failures and the ensuing rerouting of traffic, leading to heavy load at

the surviving links. Under such conditions, a network operator may guarantee a minimum

throughput (the complement of the loss rate) to each session for the purpose of delivering

11

critical traffic. Second, in the normal operation setting, where the operator may seek to

accept and route as many sessions as possible within constraints on routing path length,

H and the maximum load at the link, which is represented by N when the sessions have

identical bandwidth demand. The constraints are chosen to guarantee a constant bound on

the loss rate of every session.

Under heavy Poisson traffic, Rolling Priority is shown analytically to support throughput

guarantees that are nearly insensitive to the path length parameter, H. For example, it

guarantees the delivery of nearly 67% of the packets injected by each session for paths up

to 50 hops in length at 90% link utilization when the buffer capacity is 5 packets. This is

in contrast to FCFS/RD which provides only 20% throughput guarantee under the same

conditions. At 10 hops, Rolling Priority provides a throughput guarantee that is 10% higher

than FCFS/RD (corresponding to a 44% improvements in the guaranteed loss rate bound).

The performance gap grows in favor of Rolling Priority with increasing the limit on the path

length, H.

In the normal-operation setting, simulation with periodic session traffic shows that for

a given upper bound on the session loss rate, the Rolling Priority algorithm provides better

load-path length trade-offs compared to FCFS/RD. For instance, at B = 5 and 60% link

utilization, Rolling Priority increases the maximum path length at which the network can

support a loss rate guarantee of 0.02 by 40% (from 15 to 21 hops). This can improve the

network provisioning cost by reducing the link density (the ratio of links to routers) required

to support anticipated traffic.

2.3 RELATED RESEARCH

As mentioned in motivating this work, the performance of scheduling algorithms in packet

networks has mostly been investigated in terms of packet delay and stability (i.e., bound-

edness of backlog) guarantees, for example [26,8, 45,28,12,22,27,6]. However, the resulting

buffer occupancy bounds fail to account for the technological constraints on buffer capacity,

which have recently risen due to increasing link speeds [2], and the drive towards construct-

12

ing photonic packet switches with integrated optical packet buffers [33, 9, 5]. In networks

with finite buffering capacity, the packet loss rate and throughput are the primary metrics

for the evaluation of scheduling algorithms. Surprisingly, to date this area of research has

remained largely unexplored, with only few known results.

Maximization of the total network throughput (the number of successfully delivered

packets during a bounded interval) has been studied within the competitive analysis frame-

work [1, 21, 4, 37]. In [1], Aiello et al. show that whereas every work-conserving algorithm

is competitive on DAGs,2 on general networks, Nearest-To-Go (NTG), Longest-In-System

(LIS) and Furthest-From-Origin (FFO) are competitive, but FCFS/Drop Tail and Furthest-

To-Go (FTG) are not.

The problem studied here is related to the network throughput problem as follows. The

Rolling Priority algorithm is competitive for the network throughput problem on general net-

works, as it guarantees (in expectation) the delivery of a non-zero fraction of packets injected

by each session. NTG, LIS and FFO on the other hand, may starve sessions traversing mul-

tiple hops. The author is not aware of any prior research on per-session throughput problems

within the competitive analysis framework.

The work by Reisslein et al. [35] provides a bufferless-multiplexing framework for sup-

porting statistical delay guarantees in multihop networks. Using traffic regulation at the

ingress and bufferless multiplexing at the core, they transform the problem of providing

ingress–egress delay guarantees into one of providing loss guarantees. The loss bounds are

obtained using an approximate fluid-multiplexer model. The fluid model may severely un-

derestimate the loss probability in packet multiplexers (links) because of the assumption

that flows can have a fixed peak transmission rate (smaller than the link capacity) across

all time scales. Under this assumption, a bufferless fluid multiplexer can simultaneously

serve multiple flows without incurring “fluid” loss. Note that on the other hand, a packet

multiplexer (a link) can only serve one packet (thus one flow) at a time at time scales smaller

than the packet transmission time. The scheduling order (service discipline) is trivial in the

bufferless multiplexing model. For the drop policy, the authors assume that if at any instant

2An algorithm is competitive if it has a bounded competitive ratio relative to an optimal offline algorithm.

That is, the competitive ratio does not grow asymptotically with the length of the packet injection sequence.

13

the sum of flow rates exceeds the capacity of the link, fluid loss is shared proportionally

among flows. As we shall see, this is not readily satisfied by scheduling algorithms.

Finally, a note regarding Active Queue Management (AQM) schemes [18]. These schemes,

most notably Random Early Detection (of congestion) (RED) [19] attempt to prevent loss

synchronization and fairly apportion loss among TCP flows sharing a common bottleneck

by voluntarily (probabilistically) dropping packets without buffer overflow. RED has been

evaluated on a single bottleneck with small buffer and was shown to perform poorly in this

setting [32]. The reason however is shared among all AQM schemes, which are designed to

detect the onset of congestion (overload) by observing the buffer occupancy using a moving

average over a long time interval, rather than observing the instantaneous queue length.

These schemes are too slow to react when the buffer capacity is small such that loss occurs

without persistent overload.

14

3.0 THE ROLLING PRIORITY ALGORITHM

This chapter introduces the Rolling Priority algorithm which possesses the following char-

acteristics: (1) it does not favor any session over others at any link, (2) it favors individual

packets over others but treats each packet consistently throughout its sojourn in the net-

work (favorably or otherwise), and (3) it results in low probability of contention between

favored packets. Rolling Priority is designed to support loss-rate guarantees over a sequence

of consecutive intervals of length T0 under the arrival process specified in Section 6. In

the following sections, the algorithm’s performance is compared to that of FCFS/RD under

heavy and moderate network load.

An overview of the results is presented in Section 2.2, along with the motivation for the

choice of load settings, and the choice of FCFS/RD as the baseline algorithm.

3.1 SPECIFICATION OF THE ALGORITHM

The Rolling Priority (RP) algorithm is based on the concept of session epochs. From the

perspective of a session, time is divided into disjoint epochs of Te = nT0 time steps (n is

a parameter of the algorithm hence the epoch length is the same for all sessions). The

boundaries of a particular session epoch are shifted from one link to the next along the path

of the session by the link’s propagation delay. The epoch boundaries for different sessions

are not synchronized.

The algorithm was originally proposed for Optical Burst Switching (OBS) networks [15,

14], which are based on advance reservation of transmission opportunities. As described in

15

this chapter, RP can also be adopted in packet networks without any changes. However,

the origins of the algorithm affect some design decisions. In particular, RP does not assign

a fixed rank to each packet, instead, it guarantees (under some mild conditions) that the

rank of a packet remains within a narrow range throughout its sojourn in the network.1,2

3.1.1 Service and Drop Policies

At every time step, RP gives scheduling priority (service and drop priority) to sessions

sharing the link in the order of earliest-starting current epoch, where the current epoch

of a session at a given time step is the unique session’s epoch spanning that step. The

session(s) with earliest-starting current epoch have the highest priority. Figure 4 illustrates

the assignment of priority at different time steps at a link shared by three sessions a, b and

c. At every time step in the interval [t1, t2), the current epoch for session b started earlier

than the current epochs of sessions a and c. As a result the priority of session b is highest

within this interval. The highest priority session during [t2, t3) is c, and it is a during [t3, t4).

The cycle repeats with the start of a new epoch of session a. The cyclic priorities can be

enforced using a circular queue as shown in the figure. At the beginning of the time step, if

the number of packets available at the link (those already in the buffer and those offered by

the router’s input interfaces) exceeds the buffer capacity B, the excess packets are dropped.

RP drops packets from the least priority sessions so that the B packets with highest session

priority remain. During the remainder of the time step, RP serves a packet from the highest

priority session with backlog, if any.

1 In OBS, each session periodically requests transmission opportunities at particular time steps during

a future epoch. This setting prevents the algorithm from effectively using assigned ranks or priorities to

packets since transmission requests are granted in the order they are received and a granted request cannot

be revoked.
2It is assumed that a packet injected in a given session epoch remains within the epoch boundaries

throughout its sojourn in the network.

16

a
b

timet1 t2

start of new epoch

c

t3 t4

head

ca
b

t5

ca
b

ca
b

ca
b

Figure 4: The priorities of three sessions a, b and c at

a link. A circular queue is used to enforce the cyclic

priorities. The head pointer indicates the session with

highest priority at any given time.

time

link 1

link 2
tprop

start of epoch

Figure 5: The start of a ses-

sion epoch at two consecutive

links (link interfaces) differs by the

propagation delay of the upstream

link (tprop).

3.1.2 Phase Randomization

To ensure high priority packets are subject to a small loss probability at every link, RP uses

randomization to avoid contention among a large number of high priority sessions at any

link. Furthermore, RP loosely aligns the start of session epochs across the links it traverses

so that a packet that is given high priority at a link is likely to have high priority at all links

along the path. Both randomization and epoch alignment are part of session initialization

that we now describe.

Each session has an associated phase variable φ. Suppose the session is initialized at time

t0. The ingress router of the session chooses the value of the phase uniformly at random from

the interval [0, Te) so that the session starts a new epoch at time t+ φ+ iTe, i = 0, 1, 2,

The phase of the session is communicated to downstream links in the form of a one-time

initialization packet, init, sent from the ingress at time t0 + φ. The reception time of

the init packet at a given link specifies the session’s epoch start times at that link. For

instance, if an init packet for a particular session is received at the link at time t, then a

new epoch for the session at that link starts at times t + iTe, i ≥ 0. Because RP’s service

and drop policies rely on the knowledge of session epoch boundaries, the init packets are

always given higher scheduling priority than all data packets so that they are almost never

17

dropped.3

Figure 5 shows a timing diagram with two links in tandem along the path of a session.

The session’s init packet does not experience any queuing delay. In this case, the start of a

new session epoch at the upstream link precedes the start of a new epoch at the downstream

link by exactly the propagation delay of the upstream link.

3.2 PROPERTIES OF ROLLING PRIORITY

Let RP-n denote the algorithm RP with epoch duration T = nT0 for some n ≥ 1. We view

each epoch as being composed of n consecutive subepochs, numbered 1, . . . , n, of length T0

slots.

Consider an epoch e of a session s at a link l along its path. If the number of sessions

sharing the link is Nl, then the number of sessions (with packets) of higher scheduling priority

during the kth subepoch, k = 1, . . . , n, is approximately a binomial random variable with

success probability n−k+1
n

, and expectation Nl
n−k+1
n

. This follows from phase randomization

and applies to every epoch of any session s, at any link along its path.

Since the behavior above applies to all sessions, RP-n does not favor any session over

others at any link. Clearly, RP-n assigns different scheduling priority to different packets,

but every packet receives consistent treatment at every link — in terms of the proportion of

higher priority traffic it contends with — as long as each packets remains within (or close)

to the subepoch where it was injected.

Note also that as the number of subepochs, n, increases it becomes unlikely that many

sessions start new epochs within the same subepoch. That is, contention among high-priority

packets becomes unlikely.

In [15], we showed that for a set of parameters (B,N,H), the worst-case input for the

3Initialization packets are dropped only when there are too many init packets at a given link, but such

packets are rare since sessions are traffic aggregates that are supposed to persist for long time (i.e., weeks

or months). Recovery mechanisms from the loss or corruption of init packets is not part of the scheduling

algorithm but should be provided, for example by having link interfaces notify the ingress routers of packets

belonging to uninitialized sessions before dropping them.

18

Rolling Priority algorithm is one where a session s traverses exactly H hops and at each

hop it contends with exactly N − 1 sessions. The path of each of the background sessions

shares only one link with that of session s. Moreover, background sessions do not face any

contention upstream of the link shared with s.

3.3 PERFORMANCE UNDER HEAVY TRAFFIC

In this section, we compare the performance of FCFS/RD and RP-n. We find that under

light load, FCFS/RD performs nearly as well as RP-n, But that the difference in loss rate

bounds grows quickly with load.

Consider a session s routed along a path of length h link, competing at each link with

N − 1 one-hop sessions. Ignoring the effect of load thinning affecting s at upstream links,

let the loss rate at every link along the path be β. Given the stationarity and independent

increments properties of the arrival process, under FCFS/RD the individual packets are

indistinguishable. That is, the loss probability of each packet at any link is also β. Thus

the expected loss rate for session s averaged over any sequence of packets under FCFS/RD

is given by:

MFCFS/RD
s = 1− (1− β)h

≈ 1− e−hβ, for large h. (3.1)

Under RP-n, consider an epoch of session s and let its subepochs be numbered 1 through

n. By the properties of RP-n above, the expected scheduling priority for the session’s packets

during subepoch i linearly improves with increasing i. Suppose that there exists q ∈ (0, 1]

such that the priority for all subepochs beyond subepoch dnqe is high enough that the loss

rate is much smaller than β. Specifically, let βj denote the loss rate during the jth subepoch,

and suppose β
βj
≥ αp for j : dnqe ≤ j ≤ n and for constants α > 0, p > 1. Then under

19

RP-n,

MRP-n
c < q + (1− q)

[
1−

(
1− β

αp

)h]

≈ q + (1− q)(1− αp
√
e−hβ). (3.2)

Comparing (3.1) and (3.2), we find that under moderate-to-heavy load, (e.g., β > 0.01),

M
FCFS/RD
c quickly approaches 1 as h increases. In contrast MRP-n

c grows slowly with h due

to the αp root. Furthermore, when the range of h is such that hβ � αp, MRP-n
c saturates at

q.

The difference in bounds between RP-n and FCFS/RD depends on how fast the loss rate

drops across subepochs under RP-n. As an example consider the above network when traffic

arrival correspond to a Poisson process. For simplicity we model each link as an M/M/1/B

queue so that at load ρ the loss probability is approximately ρB+1 where B is the buffer size.

Under FCFS/RD β = ρB+1 and M
FCFS/RD
c = 1− (1− ρB+1)h. Under RP-n, the traffic load

that s contends with decreases linearly throughout the epoch. Thus for subepoch i, we have

ρi ≈ ρ(1− i
n
) and β

βi
≈ ρB+1

ρB+1(1− i
n

)B+1 = (n
n−i)

B+1, which is on the form αp.

The plot in Figure 6 compares the performance of FCFS/RD and RP-n at different

values of n when the load at the links is 90%, and B = 5. At n = 10, RP guarantees the

delivery of nearly 67% of the packets injected by each session for paths up to 50 hops in

length indicating that beyond the third subepoch (q = 1/3), the loss rate at every link is

negligible. This is in contrast to FCFS/RD which provides only 20% throughput guarantee.

The RP curve for n = 2 highlights the role played by the size of the loss-rate averaging

interval. The loss rate curve saturates around 0.5 indicating that loss rate during the second

subepoch is negligible at every link.

3.4 ROUTING TRADEOFFS

This section presents a simulation-based comparison of the performance of RP-n and FCFS/RD

under light to moderate load. This corresponds to the normal operation setting where the

20

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 50 40 30 20 10 1

M
ea

n
Lo

ss
 R

at
e

Path Length (hops)

FCFS/RD

RP(n = 2)

RP(n = 10)

Figure 6: Numerical comparison of FCFS/RD versus RP-n under heavy load.

network operator seeks to support a bounded loss rate to all sessions by limiting the load

on each link and the maximum session path length.

The performance of each algorithm is characterized by the loss rate of a foreground session

routed along a path of h links, competing at each link with N−1 one-hop background sessions.

Packet injection by each session is periodic with period size T = 100 steps. During any T

consecutive time steps, a session is equally likely to inject a packet at any step. If a session

injects a packet at time t, it also injects a packet at t+T, t+2T, The load at a link is the

rate of packet injection by all sessions traversing the link over T consecutive steps. Periodic

traffic is chosen here to mimic traffic shaping at the ingress points of the buffer-limited

network. In RP-n, each period represents a subepoch, that is T0 = T = 100 steps.

In the simulation experiments, each session has a unit bandwidth demand. That is,

every session injects only 1 packet per period. Under the assumption of independent arrival

processes, this is shown in [14] to maximize the one-hop loss rate (average over all sessions).

Allowing sessions with higher bandwidth demand reduces contention (the probability of

buffer overflow in a given time step) at a given load because a session cannot inject more

than one packet during a time step.

Figures 7, 8, 9 show the routing tradeoffs for both algorithms at B = 5, 7, 10 packets,

respectively. In each plot, a contour represents a tradeoff between the routing path length

21

of the foreground session and the load at the links (number of session traversing a link)

to achieve a desired constant loss rate. These tradeoffs are obtained by estimating the

average loss rate for the foreground session at each path length and link utilization. The

loss rate estimates are obtained by repeatedly running each experiment until the length of

the 95-percentile confidence interval is at most 10% of the point estimate.

The figures show that the Rolling Priority algorithm improves the load-path length

tradeoffs compared to FCFS/RD. For instance, at B = 5 and 60% link utlization (Figure 7),

RP-n increases the maximum path length at which the network can support a loss rate

guarantee of 0.02 by 40% (from 15 to 21 hops). This can translate to reduction in the

network provisioning cost by reducing the link density (the ratio of links to routers) required

to support anticipated traffic. Alternatively in the same plot, fixing the maximum path

length and the desired loss bound (e.g., at 10 hops and 0.02 loss rate), one can see that

RP-n improves the maximum allowed link utilization (hence the operating revenue for a

given network) by 2% (from 63 to 65%). Similar observations can be for the other loss rate

bounds and buffer sizes.

0.02

0.02

0.02

0.04

0.04

0.04

0.06

0.06

0.06

0.08

0.08

0.1

0.1

Max. path length (hops)

M
ax

. l
oa

d

5 10 15 20 25
0.6

0.65

0.7

0.75

0.8

0.85

0.02

0.02

0.04

0.04

0.04

0.06

0.06

0.06

0.08

0.08

0.08

0.1

0.1

0.1

Max. path length (hops)

M
ax

. l
oa

d

5 10 15 20 25
0.6

0.65

0.7

0.75

0.8

0.85

Figure 7: Observed tradeoff between load and path length to achieve a desired loss rate with

periodic traffic and B = 5. Left: (a) RP-n (n = 10), and right: (b) FCFS/RD packet scheduling.

22

0.02

0.02

0.02

0.04

0.04

0.06

0.06

0.08

0.08

0.1

Max. path length (hops)

M
ax

. l
oa

d

5 10 15 20 25
0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.02

0.02

0.02

0.04

0.04

0.06

0.06

0.08

0.08

0.1

0.1

Max. path length (hops)

M
ax

. l
oa

d

5 10 15 20 25
0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

Figure 8: Observed tradeoff between load and path length to achieve a desired loss rate with

periodic traffic and B = 7. Left: (a) RP-n (n = 10), and right: (b) FCFS/RD packet scheduling.

0.02

0.02

0.02

0.04

0.04

0.06

0.06

0.08

Max. path length (hops)

M
ax

. l
oa

d

5 10 15 20 25
0.8

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9

0.02

0.04

0.04

0.06

0.06

0.08

0.08

0.1

0.1

Max. path length (hops)

M
ax

. l
oa

d

5 10 15 20 25
0.8

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9

Figure 9: Observed tradeoff between load and path length to achieve a desired loss rate with

periodic traffic and B = 10. Left: (a) RP-n (n = 10), and right: (b) FCFS/RD packet scheduling.

23

4.0 CONCLUDING REMARKS

This part of the dissertation considered the problem of packet scheduling to minimize the

maximum session loss rate in networks of output-queued routers with limited buffering ca-

pacity, fixed-size packets, and unit-capacity links.

The problem and the corresponding algorithms are of practical interest to network op-

erators seeking to provide strong loss-rate guarantees to customer sessions, especially in

heavy-traffic conditions (e.g., those resulting from link failures). Analysis under heavy

Poisson traffic showed that algorithms with the characteristics listed below, represented

by Rolling Priority, support significantly stronger loss-rate guarantees with increasing max-

imum routing path length compared to FCFS/RD, which satisfies only item (i).

(i) The algorithm does not favor any session over others (in terms of packet loss rate) at

any link,

(ii) it ensures that some packets from each session are subject to a negligibly small packet

loss probability, much smaller than the average packet loss rate at the link, at every link

along the session’s path, and

(iii) the proportion of packets from each session that are subject to a negligibly small loss

probability at every link is as large as possible.

This work can be extended in several directions. The performance objective and algo-

rithms are relevant to a wide class of queuing network applications. A similar objective can

be defined for any queuing network with multiple commodities and limited storage capacity

at the servers, and where the a server can only serve a limited numbers customers at any

instant (as opposed to fluid flow models).1 One possible extension is to allow jobs (packets)

1In a fluid flow model, any number of distinct commodities (flows) can by served simultaneously as long

24

of different sizes. Although, from a practical perspective, this will result in weaker perfor-

mance guarantees, it becomes necessary in applications where grouping or fragmenting jobs

into fixed-size ones is not possible.

It is immediately obvious that (ii) and (iii) above are also characteristics of algo-

rithms that might perform well on network-throughput metrics (as opposed to session-loss

or throughput metrics), while requiring that none of the sessions is starved. One metric that

captures this objective is maximizing the log of the sum of session throughputs. A possible

research avenue is to investigate how well Rolling Priority performs on the logarithmic-

throughput objective.

A limitation of this work is that in practice, most routers do not follow the output-

queuing architecture. The second part of this dissertation studies how the more-prevalent

Combined Input-Output Queuing routers can be used to emulate scheduling algorithms

running on output-queued routers to achieve the same performance guarantees.

as the sum of the flow rates does not exceed the server (e.g., link) capacity.

25

5.0 PROBLEM DEFINITION AND PRELIMINARIES

In most Internet switches (routers), each switch output is equipped with a packet buffer, and

employs an output scheduling algorithm to resolve contention among packets attempting to

access the attached link. A switch output can transmit one packet at a time from the buffer,

and this packet then departs the switch. In addition to a service discipline that determines

the packet transmission order, the output scheduling algorithm defines a drop policy (also

known as the buffer management policy) to deal with buffer overflow events. The most

commonly used algorithm is FIFO/Drop Tail where an incoming packet is dropped only

if there is no space to store it in the appropriate output buffer, and packets in the buffer

are served in FIFO order. A switch’s inputs may also be equipped with buffers to hold the

incoming packets until they can be delivered to the proper outputs, across the switch fabric.

In this work, we consider the setting where packets arrive online, and all the links have equal

speed (capacity). Each output can transmit one packet per time step, and there is at most

one new arrival at each switch input per step.

Performance analysis of output scheduling algorithms in the above setting, for exam-

ple [1,21,22,26,8], often assume that switches are of the Output Queuing (OQ) type. In an

OQ switch, at each time step all newly arriving packets are switched to their respective out-

puts, where they are stored awaiting transmission. This switch architecture allows modeling

packet networks as networks of queues where each switch output is accurately represented

by a single-server queue controlled by an instance of the output scheduling algorithm, inde-

pendently of the other switch ports. However, a well-known limitation of output queuing is

that in a switch with N input/output ports, the switch must have an internal fabric speed

that is N times the speed (capacity) of a link [10]: N packets destined to some output

26

may arrive at the same time step at different inputs. The switch fabric must then be able

to simultaneously transfer the N packets to that output port (i.e., at N time the speed of

the switch links). This limits the applicability of output queuing in current switches where

scalability, in terms of link speed and the number of ports, is a primary design objective [23].

To avoid the fabric speed as a scalability bottleneck, most packet switches today use

Combined Input-Output Queuing (CIOQ): At each time step, up to s (s� N) packets can

be switched from any input port to their respective outputs, and up to s packets can be

switched to any output port, so that the switch’s fabric may operate at a speedup of only

s relative to the link speed. CIOQ switches require packet buffers at the input ports, and

a policy (the CIOQ policy) to arbitrate access to the switch fabric among packets stored at

the inputs. Contention for access to the switch fabric among packets destined to different

outputs complicates the analysis of scheduling algorithms in CIOQ switches.

A question that naturally arises is whether packet loss, throughput, and delay guarantees

(including per-session guarantees) provided by any output scheduling algorithm in a network

of OQ switches carry over to networks of CIOQ switches. This is indeed the case if replacing

each OQ switch with a CIOQ switch does not change the sequence of packet departures

from any of the outputs, which motivates the study of OQ switch emulation using CIOQ

switches.

5.1 THE OQ EMULATION PROBLEM

OQ emulation is defined informally as follows: A CIOQ switch with N input/output ports

emulates an OQ switch of the same size if for any output scheduling algorithm employed by

the OQ switch (henceforth, OQ algorithm) and any sequence of packet arrivals, the sequence

of packet departures from each CIOQ switch output is identical to the sequence of departures

from the corresponding OQ output. The CIOQ switch can emulate the OQ switch if, given

its fabric speedup, the CIOQ policy transfers incoming packets to their respective outputs

through the fabric in time to meet their departure times from the emulated switch. If this

is the case for every arrival sequence, irrespective of the switch size and the capacity of the

27

output buffers, we say that the CIOQ policy is valid for the emulation of the OQ algorithm.

A CIOQ policy may be valid for the emulation of a given OQ algorithm under explicitly

stated restrictions. In particular, it may be valid only in the infinite-buffers setting, in

which the output buffers in the OQ switch (and the CIOQ switch) are considered to be of

unlimited capacity. A CIOQ policy is valid for the emulation of a family of OQ algorithms if

it is valid for the emulation of every algorithm in that family. A formal definition of validity

is introduced in Section 6.2.

The OQ emulation problem was proposed by Chuang et al. [10], where the objective is

to identify CIOQ policies that are valid, in the infinite-buffers setting, for the emulation of a

family of OQ algorithms of practical interest, while imposing minimal requirements on the

fabric speedup. In the OQ emulation problem, neither the CIOQ policy nor the emulated

OQ algorithm has knowledge of future arrivals, and no statistical assumptions are made

about the sequence of arrivals.

In the infinite-buffers setting, the drop policy is never exercised and, as such, the OQ al-

gorithm can be defined by its service discipline. In that setting, Chuang et al. [10] introduced

Critical Cells First (CCF),1 a CIOQ policy that is valid at speedup 2 for the emulation of

the family of Push-In-First-Out (PIFO) service disciplines, which includes many well-known

disciplines such as FIFO (FCFS), Strict Priority, and Weighted Fair Queuing.2 They also

showed, using FIFO as an example, that no CIOQ policy is valid for the emulation of all

PIFO service disciplines at speedup ≤ 2−1/N . Similar results were obtained simultaneously

and independently by Stoica and Zhang [42].

In this work, we investigate CIOQ policies for the emulation of OQ switches with fixed

buffer capacity B > 0 at every output. Our interest in this setting is motivated by the

emergence of technological constraints on buffer capacity in high-speed electronic and optical

switches, which may limit B to a few dozen packets [17, 5].

Before summarizing our results we describe the framework within which OQ emulation

is set [10,24,3]: To emulate a given OQ algorithm, the CIOQ switch maintains, at all time,

1The terms “packets” and “cells” are used interchangeably throughout the paper.
2In a PIFO service discipline, a packet arriving to an output queue can be inserted at any queue location.

In each time step, the packet at the head of the queue, if any, departs from the switch.

28

complete information about the internal state of the OQ algorithm and the configuration

(content) of the emulated switch buffers. This information is leveraged so that:

(i) The CIOQ policy can move the packets presently at the inputs to the output side in

time for departure.

(ii) The output ports dequeue and transmit each packet that reaches its departure time.

At any time, a packet that is dropped by the emulated OQ algorithm is immediately dis-

carded from the CIOQ buffer where it resides. To implement this framework, the CIOQ

switch maintains a model of the OQ switch’s output buffers, which is controlled by the OQ

algorithm. In every time step, the CIOQ switch updates the model with any new arrivals

and observes the algorithm’s decisions. Note that this emulation framework applies to ran-

domized as well as deterministic algorithms: Given an arrival sequence, the CIOQ switch

emulates the sample path taken by the randomized algorithm.

5.2 SUMMARY OF RESULTS

We evaluate CIOQ policies in terms of the CIOQ speedup required for the emulation of

work-conserving OQ algorithms, and the additional buffer capacity needed to prevent buffer

overflow events at the CIOQ inputs.The CIOQ switch is assumed to have buffer capacity

B at every output (the same output buffer capacity as the OQ switch). To find the buffer

capacity needed at each input, we adopt a CIOQ switch model where the buffer capacity at

the inputs is infinite, and bound the maximum buffer occupancy, over all arrival sequences,

for the CIOQ policy under consideration. The bounds depend only on the switch parameters

such as the speedup and the output buffer capacity.

A CIOQ policy is said to be (s, b)-valid for the emulation of a given OQ algorithm if it

is valid for the emulation of the algorithm at speedup s and, at that speedup, the buffer

occupancy at any CIOQ input does not exceed b. For the family of work-conserving OQ

algorithms, we find that whereas any greedy CIOQ policy is valid for the emulation of any al-

gorithm at speedup B, no CIOQ policy is valid for the emulation of all algorithms at speedup

29

s < 3
√
B − 2, when preemption is allowed.3,4. We also show, using FIFO/Drop Front [44,25]

as example, that CCF is not valid for the emulation of preemptive PIFO algorithms at any

speedup s < B. We then introduce a greedy CIOQ policy, CEH, that is valid for the em-

ulation of all work-conserving OQ algorithms at speedup s ≥
⌊√

2(B − 1)
⌋
. Under CEH,

the buffer occupancy at any input never exceeds 1 +
⌊
B−1
s−1

⌋
. Beside ensuring that packets

meet their departure time from the emulated OQ switch, CEH transfers packets destined to

the same output in their order of arrival, whenever possible. This prevents the buildup of

excessively large queues at the inputs.

For the family of non-preemptive OQ algorithms, we characterize a trade-off between the

CIOQ speedup and the input buffer occupancy. Specifically, we show that for any greedy

policy that is valid at speedup s > 2, the input buffer occupancy cannot exceed 1 +
⌈
B−1
s−2

⌉
.

We also show that a greedy variant of the CCF policy is (2, B)-valid for the emulation of

non-preemptive OQ algorithms with PIFO service disciplines.

Although FIFO/Drop Tail is the most well-known algorithm, many algorithms of prac-

tical and theoretical interest use preemptive drop policies. In addition to Drop Front, pre-

emptive policies include Nearest-To-Go [1], which resolves contention in favor of the packets

with nearest destination, Strict Priority, and Random Drop, which chooses the packets to

drop at random among those in the buffer.

The reason that there is no CIOQ policy capable of OQ emulation at constant CIOQ

speedup is that if preemption is allowed all packets buffered at some CIOQ input port may

immediately become needed at the corresponding outputs for departure. Thus, the CIOQ

speedup must be at least equal to the maximum input buffer occupancy (over all possible

arrival sequences). Although we obtain the lower bound using FIFO/Drop Front, similar

examples can be constructed for OQ algorithms using the above-mentioned preemptive drop

policies.

In addition to shedding light on the effect of preemption on the CIOQ resources required

for OQ emulation, the 3
√
B − 2 lower bound, and the speedup required by CEH suggest that

3A greedy policy is one that transfers a maximal set of packets from the inputs to the outputs in every

time step.
4An algorithm is non-preemptive if it may drop packets only by rejecting them upon arrival to an OQ

switch’s buffer. It is preemptive otherwise

30

the emulation of any OQ algorithm may be feasible in high-speed and all optical switches

with limited buffer capacity [17,5]. Finally, it is also worth noting that our results continue

to hold in the case where the link capacities are not identical. In this case, the CIOQ speedup

is the ratio of the fabric speed to the speed of the fastest link.

5.3 RELATED WORK

Whereas OQ emulation in the infinite-buffers setting has been studied extensively, only few

studies investigated the emulation of OQ switch with finite buffers. A simulation-based

study in [5], suggests that under light traffic conditions, a CIOQ switch with speedup 2

and an input buffer capacity of 2 packets exhibits a loss behavior similar to that of an OQ

switch with small output buffers employing the FIFO/Drop Tail scheduling algorithm. This

motivated our investigation of whether a similar result can be obtained for any OQ algorithm

and under all traffic patterns.

Kesselman and Rosén [24] showed that CCF is (2, 2B)-valid for the emulation of the

FIFO/Drop Tail algorithm. It is straightforward to show that this result applies to all OQ

algorithms combining a PIFO service discipline and a non-preemptive drop policy. The

greedy variant of CCF we describe here improves the maximum input buffer occupancy to

B at the same computational complexity. Such savings could be of practical significance in

all-optical switches.

Attiya, Hay, and Keslassy [3] proposed CIOQ policies for a relaxed version of the emula-

tion problem: For any arrival sequence, each packet that successfully departs the OQ switch

must depart the CIOQ switch within a bounded delay. They introduce a frame-based CIOQ

policy that observes the packets departing from the OQ switch in each time frame, and

transfers them from the input to the output in the following frame. The proposed CIOQ

policy guarantees a relative packet delay and maximum buffer occupancy at most twice

the output buffer capacity (2B), at speedup 2. Remarkably, the result holds for any OQ

algorithms, even for those with preemptive drop policies. The reason is that even if all

packets buffered at some CIOQ input depart simultaneously from the emulated OQ switch,

31

the CIOQ policy can spread their transfer to the output side over a time frame duration (B

time steps) without violating the relative delay guarantee. Although the throughput of a

CIOQ switch using the frame-based policy is identical to the throughput of the emulated OQ

switch and the relative packet delay is small, exact guarantees (e.g., throughput) obtained

for a multihop network of OQ switches do not carry over to networks of CIOQ switches

because of permitted delay. Composing approximate bounds over multiple hops leads to

loose bounds, the quality of which depends on the number of hops [26]. As a result, in this

work we choose to investigate the cost of exact OQ emulation.

Finally, we should note that Minkenberg [34] studied the emulation of OQ switches with

finite buffers, and reported a result that appears to contradict the results in this paper and

in [24]. The result states that no CIOQ policy that does not starve some input queue can be

work-conserving at any speedup < N (the size of the switch). Hence, no policy can emulate

an OQ switch employing a work-conserving scheduling algorithm. The result is obtained

by constructing an example where the number of packets present in the CIOQ switch and

destined to the same output can exceed the output buffer capacity. This is in contrast to

the framework considered here and in [24, 3], where the CIOQ switch immediately discards

any packet that is dropped by the OQ algorithm.

5.4 ORGANIZATION

In the next chapter, we introduce some notation and definitions used throughout this part of

the thesis. In Chapter 7 we present the results pertaining to the emulation of non-preemptive

OQ algorithms. Results pertaining to the emulation of preemptive algorithms are presented

in Chapter 8, leading to the specification and analysis of the CEH CIOQ policy in the

following chapter.

32

6.0 SWITCH MODELS

Consider an OQ switch with N input/output ports equipped with buffer capacity B ≥ 1

packets at every output, and a CIOQ switch of the same size and output buffer capacity.

Our goal is to identify CIOQ policies for the emulation of the OQ switch. In this section, we

give a precise characterization of such policies and introduce notation and definitions used

in the following chapters.

A switch’s input and output ports are labeled I1, . . . , IN and O1, . . . , ON , respectively.

Given the foreseen technological limitations on buffer capacity and the demand for switch

scalability, we limit our study to the case N � B. Time proceeds in discrete steps indexed

by the natural numbers. A time step is divided into three phases: the arrival, switching,

and departure phases, in that order. During the arrival phase, arriving packets are received

at the input ports (at most one per port), whereas in the switching phase, the switch may

transfer packets from the input side to the output side across its fabric. Finally, in the

departure phase each output port can transmit one packet along the attached link.

A sequence of packet arrivals σ is a non-empty finite set of triplets 〈I, τ, p〉, each repre-

senting the arrival of a packet p at input I and time step τ .

6.1 OQ ALGORITHMS

As shown in Figure 10(a), in an OQ switch, the fabric provides a dedicated point-to-point

channel between each input and output. This enables the switch to simultaneously transfer

up to N packets to each output port. Given that at most N packets arrive during a time step,

33

Input ports Output ports

...

...

2I

1I

NI

N-1I

NO

1O

(a)

2I

1I

NI

N-1I

...

...

...

... ... NO

... 1O
Input ports Output ports

(b)

Figure 10: Switch architectures: (a) Output Queuing, and (b) Combined Input-Output

Queuing.

all packets are transferred to their respective outputs in the switching phase immediately

following their arrival.

At the output ports, each packet received from the input side is stored in the output

buffer awaiting departure, or is dropped if no buffer space is available to store it. The output

scheduling algorithm decides the departure order of packets in the buffer, and which packets

are dropped in the case of overflow. For brevity, an output scheduling algorithm employed

in an OQ switch is henceforth called an OQ algorithm.

Each output port in the OQ switch independently executes a copy of the OQ algorithm.

Let σ be the arrival sequence. At any time, the configuration of an output buffer is the set of

packets stored in the output’s buffer. At the start of the departure phase of each time step

t, the algorithm takes the current output configuration, and the history of packet arrivals

and packet drops up to t as input, and decides which packets to drop, if any, and which

packet to transmit during the departure phase. These decisions, along with any additional

information (e.g., packets’ queue positions in the case of FIFO-based algorithm), is called

the state of the OQ algorithm at time t. Note that the OQ algorithm does not necessarily

34

arrange the packets in the buffer into a queue. It may, for example, randomly choose a

packet to transmit in each step.

The sequence of packet departures given arrival sequence σ is represented by a set Dσ.

Each element in the set is a triplet 〈O, τ, p〉 denoting the departure of packet p from port O

at time τ .

Within the OQ emulation framework described in Chapter 5.1, the CIOQ switch “simu-

lates” a complete step (all three phases) of the OQ switch at the start of each CIOQ switching

phase. This allows the CIOQ to keep track of the OQ algorithm’s decisions. The CIOQ

switch emulates the OQ switch if for every arrival sequence σ, the sequence of departures

from the CIOQ switch ports is the same as the departure sequence from the emulated OQ

switch, that is Dσ. This is the case if and only if, given the CIOQ speedup, the CIOQ policy

transfers each packet from the input to its output in time for departure.

6.2 CIOQ POLICIES

Suppose σ is the arrival sequence at the CIOQ switch (Figure 10(a)). At the start of the

switching phase of every time step t, the CIOQ policy maps the current input configuration

(the set of packets stored at the inputs) and the current state of the OQ algorithm at each

of the emulated OQ outputs to a subset of the packets available at the input ports. Packets

in this subset are moved to the outputs across the CIOQ fabric during the switching phase.

The choice of the packets in to move to the output in a given time step is deterministic and

is subject to the speedup constraint: Given a fabric speedup s ≥ 1, the policy must choose

the packets to transfer so that at most s packets are moved from each input, and at most s

packets are moved to each output in a given step.

A CIOQ policy that enables the CIOQ to emulate a given OQ algorithm is called a valid

policy for the emulation of the algorithm.

Definition 6.1 (Valid CIOQ Policy). A CIOQ policy is valid for (the emulation of) a given

OQ algorithm if, for any switch size N , output buffer capacity B ≥ 1, and for every arrival

35

sequence, it transfers the packets through the CIOQ fabric so that for every time step t,

any packet that would depart from the emulated OQ switch during t is transferred to the

corresponding CIOQ output before t’s departure phase. A CIOQ policy is valid for a family

of OQ algorithms if it is valid for every algorithm in that family.

A CIOQ policy may be valid for the emulation of an algorithm only under some restric-

tions. For example, only in the infinite-buffers setting where the output buffer capacity is

considered unlimited.

For a given OQ algorithm, switch parameters, and arrival sequence, a valid policy is

said to meet the OQ departure time of every packet. Valid policies for the emulation of a

particular OQ algorithm (or a family thereof) may differ in the buffer capacity requirements

at the CIOQ inputs and the required CIOQ speedup. A CIOQ policy that is valid at speedup

s, and for which the input buffer occupancy does not exceed b under any arrival sequence, is

called an (s, b)-valid CIOQ policy. It is easy to see that an (s, b)-valid policy is also (s′, b′)-

valid for all (s′, b′) where s′ ≥ s and b′ ≥ b, if at speedup s′ it transfers at each time step a

super-set of the packets it would transfer at speedup s.

We focus our attention on CIOQ policies that are greedy. A greedy policy transfers a

maximal set of packets to the output in every time step. As a result, for every non-greedy

CIOQ policy π and CIOQ speedup s, one can define a greedy policy π′, that, at every time

step transfers a super-set of the packets transferred by π. Obviously, if π is valid (for the

emulation of some OQ algorithm) at speedup s, then π′ is also valid at the same speedup.

The following definitions lead to a formal characterization of greedy policies, and are

used in subsequent chapters:

Definition 6.2 (Input Blocking). A packet p at a CIOQ input port I is input blocked during

a time step t if, during t’s switching phase, the CIOQ policy transfers s packets from I to

the output side, and these packets do not include p.

Definition 6.3 (Output Blocking). A packet buffered at some input port and destined to

output port O is output blocked during time step t if, during t’s switching phase the CIOQ

36

policy transfers s packets to output O, and these packets do not include p.

Definition 6.4 (Greedy CIOQ Policy). A CIOQ policy is greedy if at every time step, every

packet buffered at an input port is either transferred to the output, is input blocked, or is

output blocked.

6.3 FAMILIES OF OQ ALGORITHMS

The objective of the OQ emulation problem is to identify CIOQ policies that are valid for

the emulation of all OQ algorithms, at minimum CIOQ speedup and input buffer capacity

requirements. Toward this end, we seek upper and lower bounds on the resource requirements

of greedy CIOQ policies for the emulation of families of work-conserving algorithms.

Because, in the OQ switch, an output buffer can accept at most B new packets in a time

step, a speedup of B is sufficient for the emulation of all work-conserving algorithms.

Proposition 6.1. Every greedy CIOQ policy is (B, 1)-valid for the emulation of all work-

conserving OQ algorithms.

Proof. The result follows by induction from the observation that the input buffers are empty

prior to the earliest arrivals, and at each time step, if the CIOQ input buffers are empty at

the start of the arrival phase, they are also empty at the end of switching phase.

Such speedup requirement is feasible only when B is very small (e.g., up to 5), but would

be prohibitive even in high-speed packet switches with limited buffering capacity.

To obtain lower bounds on the resource requirements of greedy CIOQ policies, we con-

sider subsets of work-conserving algorithms that include well-known and widely-used ones.

37

Namely, the family of algorithms with non-preemptive drop policies (non-preemptive algo-

rithms) and the family of algorithms with PIFO service disciplines (PIFO algorithms).

The drop policy of an OQ algorithm is non-preemptive if an incoming packet may be

dropped upon arrival to the OQ switch, but may not be dropped once admitted to the

output buffer. Otherwise, the drop policy is preemptive. Non-preemptive drop policies are

collectively referred to as “Drop Tail.” These policies differ in how the tie is broken when

the number of arrivals destined to an output port in a given time step exceeds the space

available in that output’s buffer. Possible tie-breaking rules include randomly choosing the

“victim” packets among those arrivals, and tie-breaking based on input port numbers, or

based on information in the packets’ headers [7].

A PIFO service discipline arranges the packets in the output buffer into a queue, where:

(P1) At each time step, the packet at the head of the output queue departs the OQ switch.

(P2) An arriving packet is inserted at some arbitrary position (defined by the service disci-

pline) in the output queue.

(P3) For each pair of packets p, q in the output queue, if p precedes q relative to the head of

the queue at some time t, then this order is preserved at every subsequent step where

both packets remain in the buffer.

In the absence of further packet arrivals to the output port, the position of any packet in the

queue determines the time it departs from the OQ switch. We refer to this as the projected

departure time of the packet at time t. Note that a PIFO service discipline may be paired

with any drop policy (premptive or non-preemptive).

In the next chapter we investigate the speedup and input buffer capacity required by

greedy CIOQ policies for the emulation of non-preemptive OQ scheduling algorithms. Em-

38

ulation of OQ preemptive algorithms is considered in the following chapter.

39

7.0 OQ EMULATION OF NON-PREEMPTIVE SCHEDULING

ALGORITHMS

In this chapter, we study the emulation of non-preemptive OQ scheduling algorithms. First,

we characterize a trade-off between speedup and the maximum input buffer occupancy. The

trade-off applies to all greedy CIOQ policies that are valid at speedup s > 2. Then, we

describe a greedy variant of the CCF policy introduced in [10] and show that this variant is

(2, B)-valid for the emulation of non-preemptive PIFO OQ algorithms.

7.1 THE SPEEDUP — BUFFER CAPACITY TRADE-OFF

Theorem 7.1. Let π be a greedy CIOQ policy that is valid for the emulation of a non-

preemptive OQ algorithm A at speedup s > 2, with buffer capacity B at every output port.

Then, the buffer occupancy at each of the CIOQ switch’s inputs does not exceed 1 +
⌈
B−1
s−2

⌉
.

Proof. To reach contradiction, suppose that there is a CIOQ input Ii, i ∈ {1, . . . , N}, with

buffer occupancy exceeding 1 +
⌈
B−1
s−2

⌉
at some time step. Let t be the earliest such step and

consider the following claim:

Claim 7.1. Let p be packet with the earliest arrival time among those in Ii’s buffer just

40

after the arrival phase of time step t, and let t − x be p’s arrival time. Then the greedy

CIOQ policy had transferred at least x+B+ 1 packets to p’s output port during the interval

[t− x, t).

Let Oj, j ∈ {1, . . . , N}, be p’s output port. By Claim 7.1 (proof below), neither p nor the

first x+B packets transferred to Oj during [t−x, t) are dropped by the non-preemptive OQ

algorithm. Otherwise, these packets would have been dropped by the CIOQ upon arrival.

That is, without being buffered for a complete time step at the input (as in p’s case) or

being transferred to the output. Since the emulated OQ output serves at most x packets

during [t − x, t) and the arrival sequence is the same for both the CIOQ and the emulated

OQ switch, the emulated OQ output corresponding to Oj would hold more than B packets

at the beginning of time step t, which contradicts the fact that the output buffer capacity

of the emulated OQ switch is B packets.

To prove the claim first observe that x ≥ d(B − 1)/(s− 2)e + 1: since an input can

receive at most one new arrival in each time step, Ii’s input buffer content at t has to build

up over at least
⌈
B−1
s−2

⌉
+ 2 time steps starting with p’s arrival and including t. The value

of x exceeds d(B − 1)/(s− 2)e + 1 if there are arrivals after p that are transferred to the

output before time t. Suppose the number of packets that arrive at Ii in [t − x, t) and are

transferred to the output before t is z. Then x−z =
⌈
B−1
s−2

⌉
+1. Now, observe that Ii buffers

at most d(B − 1)/(s− 2)e packets at the beginning of step t−x (prior to p’s arrival). These

pakets, in addition to the z packet described above, will be transferred to the output during

[t−x, t), resulting in at most TIB =
(⌈

B−1
s−2

⌉
+z
)
/s input-blocked steps for p during [t−x, t).

41

Let TOB denote the number of steps where p is output blocked during [t− x, t). Then

TOB = x− TIB

≥ x− 1

s

(⌈
B − 1

s− 2

⌉
+ z

)
.

Under any greedy CIOQ policy, the number of packets transferred to p’s output during the

steps where p is output blocked is sTOB.

s · TOB ≥ x+ (s− 1)x−
⌈
B − 1

s− 2

⌉
+ z

= x+ (s− 2)

⌈
B − 1

s− 2

⌉
+ (s− 1) + (s− 2)z

≥ x+ (B − 1) + (s− 1) + (s− 2)z

> x+B,

where the second step is obtained using x − z =
⌈
B−1
s−2

⌉
+ 1, and the last step follows from

the restriction s > 2 and the fact that z ≥ 0.

7.2 THE CRITICAL CELLS FIRST CIOQ POLICY

In this section, we review the CCF CIOQ policy of [10] and introduce its greedy variant,

G-CCF. We show that G-CCF is (2, B)-valid for the emulation of non-preemptive PIFO

algorithms. In contrast to this result, we show in the next chapter that G-CCF is not valid

for OQ emulation at any speedup less than B when preemption is allowed.

CCF and G-CCF consist of two components: The management of input buffers, and the

selection of packets to transfer to the output in every step. We begin by describing the buffer

management component, which is common to both policies, then specify packet selection,

starting with G-CCF.

42

Input Buffer Management: Under both CCF and G-CCF, the input buffer is orga-

nized as a queue that permits insertion of packets at arbitrary locations and the removal

of packets at arbitrary locations. Consider an arbitrary packet p and let t be its arrival

time. Further, let l be the output cushion of p, defined as the number of packets at p’s

output that have earlier projected departure time than p from the emulated OQ switch (as

calculated after t’s arrival phase). Packet p is inserted into the input queue at position l+ 1

(from the head of the queue). If the queue has less than l packets, the arriving packet is

inserted at the end of the queue.

Packet Selection in G-CCF: To choose the set of packets to transfer to the output, in

each time step G-CCF computes a many-to-many pairwise-stable matching (details below)

of input ports to output ports. For this, G-CCF uses the Gale-Shapley Deferred Acceptance

algorithm [20] (also know as the stable-marriage algorithm), as adapted by Roth to the

many-to-many setting [39].

Given a CIOQ speedup s ≥ 1, each port participates with a quota of s packets in the

many-to-many matching. That is, up to s packets at each input port are transferred to the

output side and up to s packets are transferred to an output port. Matching is based on

the preferences of the inputs and outputs. The output preference is represented by a list of

packets and the respective inputs arranged in increasing order of the projected OQ departure

time. The input preference is a list of the packets queued at the input (and their respective

outputs) arranged in the same order as the input queue. A port prefers to be matched with

ports that appear earlier in its preference list. In the following pseudo-code, an outstanding

request for a packet is a request that the corresponding input has not already rejected.

Deferred-Acceptance-Algorithm

while there are outputs with unfilled quota and outstanding requests

do

Each such output requests its preferred packets from the inputs to

fulfill its quota

Each input grants the requests it prefers without exceeding its quota

43

Note that in the second step of the while loop, an input may cancel previous grants to

accept more preferred requests.

Per the definition pairwise stability [41], a matching is pairwise-stable given the G-CCF

preference lists if at every time step t, for every packet p buffered at some input at the

beginning of the switching phase, either:

• p is transferred to the corresponding output during t,

• s packets with earlier projected OQ departure times are transferred to p’s output during

t, or

• s packets ahead of p in its input queue are transferred to their corresponding outputs

during t.

It follows that G-CCF is a greedy CIOQ policy (cf. Definition 6.4).1

Packet Selection in CCF: CCF computes s one-to-one stable matchings in every time

step by repeatedly invoking the (one-to-one) Deferred Acceptance algorithm [20]. The one-

to-one algorithm uses the same input and output preference lists as G-CCF. Each output

can request at most 1 packet, and each input can grant at most 1 packet in an iteration of

the while loop.

Though the resulting matchings are individually stable, one can construct an example

where the iterative matching procedure in CCF fails to transfer a maximal set of packets in

1A pairwise stable matching is guaranteed to exist at every time step. In general terms, a pairwise stable

matching exists if every agent has substitutable preferences. That is, the agent continues to want to partner

with an agent from the other side of the market even if another agent becomes unavailable [31, 39]. In our

application, agents are ports on the input and output sides of the switch. Input Ports have substitutable

preferences. If any packets buffered at the input are output blocked, it continues to want to transfer the

remaining packets to their respective outputs. Similarly, output ports have substitutable preferences. If any

packets requested by an output port are input blocked, it continues to seek the remaining packets on its

preference list.

44

a given time step; thus showing that CCF is not a greedy policy. The reason is that there

can be an invocation of the one-to-one Deferred Acceptance algorithm where all packets

requests by an output port are rejected by the corresponding inputs (each input grants a

better preferred request), while more than one of these packets are not input blocked in a

later iteration.

In our application, the Deferred Acceptance algorithm is O(B · N) regardless of the

input and output quotas. Thus, at a constant speedup both G-CCF and CCF have the

same worst-case complexity.

7.2.1 OQ Emulation using CCF and G-CCF

Kesselman and Rosén proved that CCF is (2, 2B)-valid for the emulation of the FIFO/Drop Tail

algorithm [24]. The result also holds for any non-preemptive PIFO algorithms. Here, we

give a similar result for G-CCF that lowers the input buffer capacity capacity required to B

packets.

Lemma 7.1. G-CCF is valid at speedup 2 for the emulation of any non-preemptive PIFO

OQ scheduling algorithm.

Proof. The proof is similar to [10, Lemma 1]. Consider a packet p that is not dropped upon

arrival by the OQ algorithm. At any time step during which p remains at the input, the

slackness of p is obtained by subtracting the number of packets ahead of p in the input queue

from p’s output cushion. Observe that by the input-buffer management rule, the slackness

is at least zero upon p’s insertion into the input queue. The proof proceeds by showing that

at speedup 2, the slack remains non-negative. Observe that by the definition of the output

45

cushion, whenever p reaches its departure time, its output cushion must be zero. As a result,

if p’s slackness is non-negative, the number of packets ahead of p in the input queue when

it reaches its departure time must also be zero. As p would be at the top of both the input

and output preference lists during that step, it would be transferred to the output in time

for departure.

To see that the slackness remains non-negative, observe that at each time step where p is

at the input, the many-to-many Deferred Acceptance algorithm increases p’s output cushion

by 2, or decreases the number of packets ahead of it in the input queue by 2. Since the output

cushion may also decrease by one due to a departure, and the number of packet ahead of

p at the input may increase by one due to a new arrival, p’s slackness either increases or

remains unchanged in every step it remains at the input.

Now, we are ready to state our main result for G-CCF.

Theorem 7.2. For any output buffer capacity B > 0, G-CCF is a (2, B)-valid CIOQ policy

for the emulation of any non-preemptive PIFO OQ algorithms.

Proof. By Lemma 7.1, G-CCF is valid at speedup 2 for the emulation of any non-preemptive

PIFO algorithm. We show that at speedup 2, for any packet p, the number of packets ahead

of p in the input queue never exceeds B − 1.

Suppose p arrives at some input Ii, i ∈ {1, . . . , N}, at t. Let l be p’s output cushion

upon arrival. To avoid the trivial case, we assume p is not dropped by the emulated OQ

algorithm, hence l < B. The packet is inserted by G-CCF into some position ` + 1, where

` ≤ l.

Consider the sequence of consecutive time steps starting with p’s arrival. Since G-CCF

46

is a greedy policy, in each step, p is either transferred to the output, is input blocked, or

is output blocked. At any time step where p remains at the input, the number of packets

ahead of p in the input queue ends up with an increase of one packet only if p is output

blocked. That is, if its output cushion also ends up with a net increase of one packet at the

end of the time step. Furthermore, p’s output cushion ends up with a decrease of one packet

only if p is input blocked. That is, if the number of packets ahead of it in the input queue

ends up with a decrease of at least one packet (at most one packet is inserted into the input

queue ahead of p, while exactly two packets ahead of p are transferred to the output in that

step).

For each step where p is output blocked its output cushion increases by exactly one, and

for each step where it is input blocked its output cushion decreases by at most one, and two

packets ahead of it in the queue are transferred to the output. Thus, the number of packets

ahead of p in the input queue increases by 1 only if its output cushion also increases by 1

(a step where p is output blocked). Furthermore, p’s output cushion decreases by 1 only if

the number of packets ahead of it in the input queue decreases by at least 1 (at most one

packet is inserted into the input queue ahead of p at any step).

For any time step τ , let τ denote τ ’s arrival phase and τ denote τ ’s switching and

departure phases. Suppose the number of packets ahead of p in the input buffer reaches B

for the first time at the end of the arrival phase of step tB > t. Divide [t, tB] into B − `

intervals [t`, t`+1], [t`+1, t`+2], . . . , [tB−1, tB], where t` = t and ti is the earliest time step where

the number of packets ahead of p in the input buffer reaches i at the end of the arrival phase.

Since the number of packets ahead of p increases by 1 in every interval [ti, ti+1], the

number of steps where p is output blocked exceeds the number of steps where it is input

47

blocked by at least 1 in every such interval. It follows that at the end of the arrival phase

ti+1, the output cushion is at least one more than it was at the end of ti. Thus, p’s output

cushion reaches at least B at the end of the arrival phase of time step tB.

Let the output backlog of packet p be the total number of packets present at the CIOQ

switch and destined to the same output as p. p’s output cushion is strictly smaller than its

output backlog since the latter accounts for p itself. Thus p’s output backlog at the end of

tB exceeds B, which contradicts the fact that the emulated OQ has output buffer capacity

B.

48

8.0 OQ EMULATION WITH PREEMPTION ALLOWED

In this chapter we show that no greedy CIOQ policy is valid for the emulation of all OQ

algorithms at speedup s ≤ 3
√
B − 2 when preemption is allowed, and that G-CCF is not

valid at any speedup s < B under the same conditions.

8.1 THE SPEEDUP LOWER BOUND

Theorem 8.1. No greedy CIOQ policy is valid for the emulation of all PIFO scheduling

algorithms at any speedup s ≤ 3
√
B − 2 when preemption is allowed in the emulated OQ

algorithm, and the output buffer capacity is B.

Proof. The theorem holds trivially for B < 3. For any B ≥ 3 and s ≤ 3
√
B − 2, we construct

an example where no greedy CIOQ policy can transfer all packets to their outputs on time for

departure. The example uses FIFO/Drop Front as the emulated OQ scheduling algorithm.

Under FIFO/Drop Front, whenever an overflow occurs, packets at the head of the emulated

FIFO queue are preempted (dropped) to make room for the new arrivals. The new arrivals

are then inserted at the tail of the FIFO queue.1

1In case the number of new arrivals exceeds B, only B arbitrarily chosen packets are accepted.

49

Starting with t = 1, we will specify a packet arrival sequence that leads to buffer oc-

cupancy s at some input port I∗ after exactly s steps. In the following arrival phase, new

arrivals will increase the buffer occupancy at I∗ to s+1 packets (all having distinct outputs),

and cause the Drop Front policy to preempt all packets ahead of those buffered at input

I∗ in their emulated FIFO output queues. Thus, all packets buffered at I∗ become needed

immediately for departure at their respective outputs. Since no more than s packets can

be transferred simultaneously to the output side from the same input port, at least one of

the packets among those buffered at I∗ misses its OQ departure time, which completes the

proof.

The arrival sequence is as follows (see Figure 11 for an illustration). At every step t in

[1, s], B − 1 packets destined to port Ot are injected into inputs I1 through IB−1. Under

any CIOQ policy, in the switching phase of any step t ∈ [1, s], at most st input ports are

dequeued by the policy. This is because the inputs buffer packets destined to at most t

different outputs and, given speedup s, each output can receive at most s packets in a time

step. It follows that at the end of time step s, at most s
∑s

t=1 t = s3+s2

2
≤ s3 ports have

been dequeued in one or more time steps. Conversely, among ports I1 through IB−1, at least

(B − 1) − s3 ports are never dequeued in [1, s]. Given s ≤ 3
√
B − 2, there is at least one

such port. Let I∗ be a port in {I1, . . . , IB−1} that was never dequeued during [1, s]. Then

port I∗ buffers exactly s packets at the end of step s. To keep the emulated output buffers

full at every t in [1, s], a packet destined to Oi is injected into port IB−1+i for each output

Oi ∈ {O1, . . . , Ot}. Observe that since FIFO/Drop Front is work-conserving, if all packets

with OQ departure time in [1, s] are transferred to the output in time for departure, the

number of packets present in the switch and destined to output Ot is exactly B at the end

50

O1 O2 . . . Ot . . . Os

I1 1

I2 1

...
...

IB−1 1

IB 1

IB+1 1

...
. . .

IB+t−1 1

...

IN

(a) Packets arrivals at time t ≤ s. A packet

arrival is indicated by 1 in the table position

corresponding to the input port at which it

arrives and its output destination.

Step Step

(b) Configuration of CIOQ input I∗ and

the emulated output queues at the end of

the arrival phase of steps s and s + 1.

Figure 11: Illustration of the arrival sequence in the proof of Theorem 8.1.

51

of the arrival phase of every step in [t, s], and B − 1 packets at the end of the departure

phase.

In the arrival phase of step s+1, packets are injected as follows. Let the s packets already

buffered at I∗ be denoted p1, . . . , ps, in such a way that packet pi is the packet destined to

output Oi. Furthermore, for each pi ∈ {p1, . . . , ps}, let fi < B − 1 denote the number of

packets ahead of pi in its emulated FIFO output queue. For each pi ∈ {p1, . . . ps}, fi + 1

packets destined to port Oi are injected into ports I(i+1)B through I(i+1)B+fi . In addition,

one packet destined for output Os+1 is injected into port I∗. We will denote this packet by

ps+1.

Since at the end of (the departure phase of) step s, each of the emulated output buffers

corresponding to outputs Oi, i = 1, . . . , s buffers B−1 packets, the fi new arrivals will cause

the Drop Front policy to preempt (drop) all the packets ahead of pi in its emulated FIFO

output queue. The new arrivals are then added to the tail of the emulated FIFO output

queue. Thus, every packet pi, i = 1, . . . , s buffered at I∗ must be transferred to the output

during step s + 1 in order to meet its departure time. Packet ps+1 must also depart during

step s + 1 since it is the only packet present in the switch that is destined to output Os+1.

However, at most s packets can be transferred from port I∗ to the output side during step

s+ 1. Thus at least one packet misses its departure time.

The example in the proof of Theorem 8.1 assumes N ≥ 2B2 input/output ports. It uses

FIFO/Drop Front, which is a PIFO OQ scheduling algorithm. The Drop Front policy has

been proposed for the objective of minimizing the queuing delays incurred by successfully

delivered packets [44], but has also been shown to improve TCP throughput compared to

Drop Tail [25].

52

8.2 CCF IS NOT BETTER THAN THE WORST GREEDY POLICY

Next we show that when preemption is allowed, G-CCF (hence CCF) is not valid for the em-

ulation of all PIFO OQ algorithms at any s < B. To reach this result, we demonstrate using

an example that G-CCF fails to emulate a variant of the FIFO/Drop Front OQ scheduling

algorithm that recognizes two different classes of packets: a low-delay class, denoted as class

L, and a bulk data transfer class denoted as class T . We refer to this variant as 2-class

FIFO/Drop Front. The proof exploits the fact that G-CCF favors packets with earlier pro-

jected OQ departure times in every time step, and the fact that “investing” in such packets

may be futile if preemption is allowed.

In 2-class FIFO/Drop Front, each traffic class has a fixed allocation (a partition) of the

emulated OQ buffer capacity. We specify the buffer allocations by a pair (BL, BT) where

BL + BT = B. At any time, the number of class-L packets present in the buffer does not

exceed BL, and similarly for class-T . An incoming packet is inserted into the proper buffer

partition based on its class. Each of the two partitions is a FIFO buffer, where Drop Front

is used to resolve overflow events. In each time step, a class-T packet is served if and only

if no class-L packets are present in the L-partition.2

Theorem 8.2. If preemption is allowed, G-CCF is not valid for the emulation of PIFO OQ

algorithms at any s < B.

Proof. Consider a CIOQ switch employing the G-CCF policy to emulate the 2-class FIFO/Drop Front

scheduling algorithm. The proof proceeds by specifying a sequence of packet arrivals that,

2As described, 2-class FIFO/Drop Front uses Complete Buffer Partitioning [29]. It is straightforward to

specify a similar algorithm that allows each class to utilize any unused buffer capacity by the other, potentially

extracting some statistical multiplexing gains [16]. The proof of Theorem 8.2 remains unaffected.

53

at speedup s = BL < B, results in buffer occupancy BL · B + 1 at some CIOQ input port

in as many steps. Without further packet arrivals, at least one packet buffered at the des-

ignated input is not transferred to the output in time for departure: Since the emulated

algorithm is work-conserving, the BLB + 1 packets must all depart the switch by the end of

step BLB + B. On the other hand, at most BL packets can be moved from the designated

input to the output side in a time step. Hence, at the end of step BLB + B, exactly one

packet remains buffered at the designated input, thus missing its departure time.

It remains to specify the arrival sequence (see Figure 12 for an illustration). At each

time step t in [1, BLB], a T -packet destined to output Ot arrives at input I1. Furthermore,

for each packet p buffered at I1 including the new arrival, s = BL L-packets, destined to the

same output as p, are injected at s different input ports.3 At every time step t in [2, BLB],

in the emulated OQ switch, the newly arrived L-packets cause the scheduling algorithm to

drop all the L-packets already in the output buffer of every output port in {O1, . . . , Ot}. On

the other hand, in the CIOQ switch, G-CCF transfers the newly arrived L-packets to their

respective outputs immediately upon arrival, where they replace the preempted packets.

Given s = BL, all T -packets are output blocked, thus remain buffered at the input.

At the end of time step BLB there are as many packets buffered at each of the input

ports I1. In the following step, a T -packet arrives at port I1 destined to output OBLB+1,

thus raising the buffer occupancy at input I1to BLB + 1.

3The number of different switch ports used in this example is no more than 2B3. Since at t = BLB the

buffer occupancy at port I1 is at most BLB, the number of different inputs used for packet injection is at

most B2
LB < B3. Each of the packets at I1 is destined to a different output. Thus the total number of ports

used by the arrival sequence up to step BLB, including the outputs, does not exceed B3 + BLB < 2B3.

54

O1 O2 . . . Ot . . . OBLB

I1 T

I2 L

...
...

IBL+1 L

IBL+2 L

...
...

I2BL+1 L

...
. . .

ItBL+2 L

...
...

I(t+1)BL+1 L

(a) Packets arrivals at time t ≤ BLB. A packet

arrival is indicated by T or L (depending on the

packet’s class) in the table position corresponding to

the input port at which it arrives and its output des-

tination.

Step Step

L-class queue

T-class queue

(b) Configuration of CIOQ input I1 and the emulated output

queues at the end of the arrival phase of steps BLB and

BLB + 1.

Figure 12: Illustration of the arrival sequence in the proof of Theorem 8.2.

55

In constructing the example to show that G-CCF is not a valid policy at any speedup

s < B, we exploited the fact that whenever possible, CCF transfers packets to each output

in the order of their projected OQ departure times. As a consequence of preemption, some

packets (the T -packets in our example) remain output blocked for an extended period of

time, Thus allowing the occupancy of corresponding input buffers to build up. In the next

chapter, we consider mitigating this buffer buildup at the inputs by ordering the output

preference lists based on the time of packet arrival.

56

9.0 THE CCF-EAF HYBRID CIOQ POLICY

In constructing the example to show that CCF is not a valid policy at any speedup s < B

when preemption is allowed, we exploited the fact that, whenever possible, CCF transfers

packets to each output in the order of their OQ departure times. As a result, some pack-

ets may remain output blocked for a relatively large number of steps, thus allowing the

occupancy of corresponding input buffer to build up.

Early Arrivals First (EAF) is a CIOQ policy where every newly arrived packet is inserted

at the head of the corresponding input queue. To choose the packets to transfer to the output

in a given time step, EAF computes a many-to-many stable matching of input to output

ports in the same way as G-CCF. However, unlike G-CCF, each output’s preference list is a

list of the packets buffered at the inputs and destined to that output, arranged in order of

non-increasing arrival time, with ties broken based on port numbers.

As with G-CCF, a pairwise-stable matching always exists under EAF, and, assuming a

CIOQ speedup s > 1, it is one where at every time step, for each packet p at the input,

either:

• p is transferred to the corresponding output during t,

• s packets with earlier arrival times are transferred to p’s output during t, or

• s packets ahead of p in its input queue are transferred to their corresponding outputs

57

during t.

It is easy to see that unlike CCF and G-CCF, EAF is not prone to input buffer buildup when

preemption is allowed. But it is also obvious that EAF would fail to emulate a scheduling

algorithm where a later arrival to the switch may have an earlier departure time; for example,

OQ algorithms based on strict packet priorites or the Last-In-First-Out service discipline.

9.1 THE CEH CIOQ POLICY

Now we propose and investigate the performance of a greedy policy, CEH, which is a hybrid

of CCF and EAF. Under CEH, new arrivals to the CIOQ switch are inserted at the head

of the corresponding input buffer. Given CIOQ speedup s ≥ 2, CEH chooses the packets

to transfer from the input to the output by sequentially computing two pairwise stable

matchings using the Deferred Acceptance algorithm (Section 7.2)

The first is a matching computed using the input and output CCF preference lists. In

this matching, every output has a quota of 1 and every input has a quota of s. That is,

whereas the number of packets participating in the stable matching destined to any given

output does not exceed 1, an input may participate in the matching with up to s packets.

The quotas for the second matching are calculated as follows: Suppose some port P (an

input or output port) participates in the first matching with U(P) packets. Then, in the

second matching its quota is s−U(P) packets. The second matching is computed using the

EAF preference lists described above.

The following lemma implies that CEH is a greedy policy. We use this result in the next

section to obtain the speed required for OQ emulation using CEH.

58

Lemma 9.1. At every time step t, for every packet p buffered at one of the inputs at the

beginning of the arrival phase, either:

(i) p is transferred to the corresponding output, say O,

(ii) There exists a packet with earlier OQ departure time and s−1 packets with earlier arrival

times that are transferred to output O, or

(iii) Exactly s packets ahead of p in its input queue are transferred to their corresponding

outputs.

Proof. Suppose a packet p buffered at some input I is not transferred to the output during

a time step t. Then, in the first stable matching, either p does not participate in matching

in favor of a packet with earlier OQ departure time, or in favor of s packets ahead of it in

the input queue. Let U(I) ≤ s be the number of packets with which input I participates in

the first stable matching. Furthermore, suppose p is destined to output O and let U(O) ≤ 1

be defined similarly to U(I).

In the second matching, ports I and O have quotas s−U(I) and s−U(O), respectively.

Since the second matching is a stable matching where p does not participate, then either

s−U(O) packets destined to O with arrival times earlier than p participate in the matching,

or s− U(I) packets ahead of p in the input queue participate in the matching. The lemma

follows from the definitions of U(I) and U(O).

Now we present the main result concerning CEH.

59

9.2 PERFORMANCE OF CEH

Theorem 9.1. At any speedup s ≥ max{2,
⌈√

2(B − 1)
⌉
}, CEH is (s, 1 + B−1

s−1
)-valid for

the emulation of all work-conserving OQ algorithms.

Proof. Suppose s ≥ 2 and consider a packet p that is not dropped by the OQ scheduling

algorithm. Suppose the packet arrives at time t and departs the OQ switch at time t′ > t.

Upon arrival, at most B−1 packets with earlier arrival times than p and destined to the

same output are buffered at the CIOQ’s input side. This is because at most B packets with

a common destination can simultaneously exist in the CIOQ switch. Obviously, the number

of packets buffered at the input side and have earlier arrival times than p does not increase

in subsequent time steps.

At time t, p is at the head of the input queue. At any step τ ∈ [t, t′), where p is not

transferred to the output due of output blocking, at least s − 1 packets at the input side

with earlier arrival times than p participate in the second stable matching. These packets

are then transferred to the output during τ . Consequently, since at the input side, there is

at most B − 1 packets with earlier arrival time than p at time t, the number of time steps

in [t, t′) during which p is output blocked is at most
⌊
B−1
s−1

⌋
. In any step during which p is

output blocked, the number of packets ahead of it in the input queue increases by at most

one. Thus, the number of packets ahead of p in its input buffer is incremented by 1 at most⌊
B−1
s−1

⌋
times.

Suppose p is not transferred to the output until t′. During t′, p cannot be output blocked

since it has the earliest departure time among packets destined to its output. It follows that

p is moved to the output if during t′ it is not input blocked. This is the case if s >
⌊
B−1
s−1

⌋
.

60

That is, if s ≥
⌈√

2(B − 1)
⌉
. Thus CEH is valid at any speedup s ≥

⌈√
2(B − 1)

⌉
.

The buffer occupancy at any input port never exceeds 1 +
⌊
B−1
s−1

⌋
since the number

of packets ahead of any packet in an input queue is incremented at most
⌊
B−1
s−1

⌋
times,

irrespective of whether it is eventually dropped or transferred to the output.

Notice that the proof allows for newly arriving packets to preempt packets already in

the switch buffers. It also doesn’t make any restriction on the service discipline. In fact it

allows the emulated OQ algorithm to rearrange the packet positions in the output queue at

any time.

61

10.0 CONCLUDING REMARKS

This part of the dissertation investigated CIOQ policies for the emulation of finite-buffered

OQ switches employing a work-conserving (OQ) scheduling algorithm. It showed that emu-

lation of preemptive algorithms requires Ω(B
1
3) speedup, and introduced a CIOQ policy for

the emulation of any preemptive algorithm at O(B
1
2) speedup. This result suggests that the

emulation of OQ routers with small buffers using CIOQ is practically feasible. The results

are summarized in Table 1.

Table 1: Summary of OQ Emulation Results

Speedup (s)

Lower Bound Upper Bound Required Input Buffer Capacity

PIFO/non-preemptive 2 2 1 + dB−1
s−2
e if s > 2; B if s = 2

PIFO/preemptive 3
√
B − 2

√
2(B − 1) 1 + bB−1

s−1
c

Closing the gap between the speedup lower bound and the upper bound due to CEH is

an obvious direction for future research. Another direction is the study of OQ emulation

in buffered crossbar switches (CICQ) [11, 43, 30]. The additional buffering capacity at each

cross points in CICQ switches may reduce the speedup required for OQ emulation compared

to CIOQ switches. Magill et al. [30] studied exact emulation of OQ switches with unlimited

62

buffers and fixed-size packets using CICQ switches; showing that the emulation of several

specific OQ service disciplines is possible at speedup 2. Turner [43], investigated the emu-

lation of OQ switches with unlimited buffers using asynchronous CICQ switches. Allowing

packets of different sizes, he showed that the emulation of PIFO service disciplines, with

bounded packet delay relative to the emulated OQ switch, is possible at speedup 2 with lim-

ited buffering at the crosspoints. It is interesting to investigate whether similar results hold

for the emulation of OQ switches with finite buffers and preemptive scheduling algorithms.

63

BIBLIOGRAPHY

[1] W. Aiello, R. Ostrovesky, E. Kushilevitz, and A. Rosén. Dynamic routing on networks

with fixed-size buffers. In Symposium On Discrete Algorithms (SODA), 2003.

[2] G. Appenzeller, I. Keslassy, and N. McKeown. Sizing router buffers. In ACM SIGCOMM

’04, August /September 2004.

[3] H. Attiya, D. Hay, and I. Keslassy. Packet-mode emulation of output-queued switches.

In ACM symposium on on parallel algorithms and architectures, Jan 2006.

[4] Y. Azar and R. Zachut. Packet routing and information gathering in lines, rings and

trees. Proc. 13th Annual European Symp. on Algorithms (ESA), Dec 2005.

[5] N. Beheshti, Y. Ganjali, R. Rajaduray, D. Blumenthal, and N. McKeown. Buffer sizing

in all-optical packet switches. In Optical Fiber Communication, 2006.

[6] A. Borodin, J. Kleinberg, P. Raghavan, M. Sudan, and D. P. Williamson. Adversarial

queuing theory. J. ACM, 48(1):13–38, 2001.

[7] B. Braden, D. Clark, and J. C. et al. RFC2309: Recommendations on queue manage-

ment and congestion avoidance in the internet. Internet RFCs, Jan 1998.

[8] C.-S. Chang. Performance Guarantees in Communication Networks. Springer-Verlag,

London, UK, 2000.

[9] C.-S. Chang, Y.-T. Chen, and D.-S. Lee. Constructions of optical FIFO queues.

IEEE/ACM Trans. Netw., 14(SI):2838–2843, 2006.

64

[10] S.-T. Chuang, A. Goel, N. McKeown, and B. Prabhakar. Matching output queuing

with a combined input output queued switch. IEEE Journal on Selected Areas in

Communications, 17(6):1030–1039, June 1999.

[11] S.-T. Chuang, S. Iyer, and N. Mckeown. Practical algorithms for performance guarantees

in buffered crossbars. In In IEEE INFOCOM, 2005.

[12] J. A. Cobb, M. G. Gouda, and A. Elnahas. Time-shift scheduling: Fair scheduling of

flows in high-speed networks. IEEE/ACM Transactions on Networking, 6(3):274–285,

June 1998.

[13] M. Elhaddad, H. Iqbal, T. Znati, and R. Melhem. On minimizing the worst-case loss

rate in packet-routing networks. Technical report, The University of Pittsburgh, 2007.

[14] M. Elhaddad, R. Melhem, and T. Znati. Analysis of a transmission scheduling algo-

rithm for supporting bandwidth guarantees in bufferless networks. ACM Sigmetrics

Performance Evaluation Review, December 2006.

[15] M. Elhaddad, R. Melhem, and T. Znati. Supporting loss guarantees in buffer-limited

networks. International Workshop on Quality of Service (IWQOS), June 2006.

[16] A. Elwalid, D. Mitra, and R. Wentworth. A new approach for allocating buffer and

bandwidth to heterogeneous regulated traffic in an ATM node. IEEE Journal of Selected

Areas in Communications, 13(6):1115–1127, August 1995.

[17] M. Enachescu, Y. Ganjali, A. Goel, N. McKewon, and T. Roughgarden. Routers with

very small buffers. In IEEE Infocom, 2006.

[18] S. Floyd. Proposed modifications to RED, and other proposals for active queue man-

agement. [Online:] http://www.icir.org/floyd/red.html. (A list of AQM proposals).

[19] S. Floyd and V. Jacobson. Random early detection gateways for congestion avoidance.

IEEE/ACM Trans. Netw., 1(4):397–413, 1993.

[20] D. Gale and L. Shapley. College admissions and the stability of marriage. The American

Mathematical Monthly, Jan 1962.

[21] E. Gordon and A. Rosén. Competitive weighted throughput analysis of greedy protocols

on DAGs. In PODC ’05: Proceedings of the twenty-fourth annual ACM SIGACT-

65

SIGOPS symposium on Principles of distributed computing, pages 227–236, New York,

NY, USA, 2005. ACM Press.

[22] M. Harchol-Balter and D. Wolfe. Bounding delays in packet-routing networks. In the

27th Annual ACM Symposium on Theory of Computing (STOC), May 1995.

[23] S. Iyer and N. McKeown. Analysis of the parallel packet switch architecture.

IEEE/ACM Transactions on Networking (TON, 11(2), Apr 2003.

[24] A. Kesselman and A. Rosen. Scheduling policies for CIOQ switches. Journal of Algo-

rithms, 60(1):60–83, Jul 2006.

[25] T. Lakshman, A. Neidhardt, and T. Ott. The drop from front strategy in TCP and in

TCP over ATM. In INFOCOM, Jan 1996.

[26] J. Le Boudec and P. Thiran. Network Calculus: A theory of deterministic queues for

the Internet. Number 2050 in LNCS. Springer Verlag, 2002.

[27] E. Leonardi, M. Mellia, M. A. Marsan, and F. Neri. Joint optimal scheduling and

routing for maximum network throughput. 2005.

[28] C. Li and E. Knightly. Coordinated multihop scheduling: A framework for end-to-end

services. IEEE/ACM Trans. Netw., 10(6), December 2002.

[29] A. Lin and J. Silvester. Priority queueing strategies and buffer allocation protocols

for traffic control at an atm integrated broadband switching system. IEEE Journal on

Selected Areas in Communications, 9(9):1524–1536, Dec 1991.

[30] R. Magill, C. Rohrs, and R. Stevenson. Output-queued switch emulation by fabrics

with limited memory. IEEE Journal on Selected Areas in Communications, 21(4):606–

615, 2003.

[31] R. Mart́ınez, J. Massó, A. Neme, and J. Oviedo. An algorithm to compute the full set

of many-to-many stable matchings. Mathematical Social Sciences, Jan 2004.

[32] M. May, J. Bolot, C. Diot, and B. Lyles. Reasons not to deploy RED. In Proc. of 7th.

International Workshop on Quality of Service (IWQoS’99), London, pages 260–262,

June 1999.

66

[33] N. McKeown and D. Wischik. Hot Topic: Making router buffers much smaller. SIG-

COMM Comput. Commun. Rev., 35(3):73–74, 2005.

[34] C. Minkenberg. Work-conservingness of CIOQ packet switches with limited output

buffers. Communications Letters, IEEE, 6(10):452– 454, 2002.

[35] M. Reisslein, K. W. Ross, and S. Rajagopal. A framework for guaranteeing statistical

QoS. IEEE/ACM Trans. Netw., 10(1):27–42, 2002.

[36] J. W. Roberts and J. T. Virtamo. The superposition of periodic cell arrival streams in

an ATM multiplexer. IEEE Trans. Commun., 39(2):298–303, Feb. 1991.

[37] A. Rosén and G. Scalosub. Rate vs. buffer size: greedy information gathering on the

line. Proceedings of the nineteenth annual ACM symposium on parallel architectures

and algorithms, Dec 2007.

[38] S. M. Ross. Stochastic Processes. John Wiley & Sons, Inc., second edition, 1996.

[39] A. Roth. Stability and polarization of interests in job matching. Econometrica, Jan

1984.

[40] V. Sivaraman, H. Elgindy, D. Moreland, and D. Ostry. Packet pacing in small buffer op-

tical packet switched networks. IEEE/ACM Transactions on Networking (TON, 17(4),

Aug 2009.

[41] M. Sotomayor. Three remarks on the many-to-many stable matching problem. Mathe-

matical Social Sciences, Jan 1999.

[42] I. Stoica and H. Zhang. Exact emulation of an output queueing switch by a combined

input output. In International Workshop on Quality of Service, 1998.

[43] J. S. Turner. Strong performance guarantees for asynchronous buffered crossbar sched-

uler. IEEE/ACM Trans. Netw., 17(4):1017–1028, 2009.

[44] N. Yin, M. Hluchyj, and M. Mansfield. Implication of dropping packets from the front

of a queue. IEEE Trans. Communications, Jan 1993.

67

[45] T. Znati and R. G. Melhem. Node delay assignment strategies to support end-to-end

delay requirements in heterogeneous networks. IEEE/ACM Trans. Netw., 12(5):879–

892, 2004.

68

	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	1. Summary of OQ Emulation Results

	LIST OF FIGURES
	1. Output-Queued Router Architecture
	2. Tail-Buffered Links
	3. Network Sessions
	4. Session Priorities Under the Rolling Priority Algorithm
	5. Session Epochs Under the Rolling Priority Algorithm
	6. FCFS/RD versus RP-n Under Heavy Load
	7. Routing Tradeoffs at B=5
	8. Routing Tradeoffs at B=7
	9. Routing Tradeoffs at B=10
	10. Output Queued and Combined Input-Output Queued Architectures
	(a).
	(b).
	11. Illustration of the Proof of Theorem 8.1
	(a). Packets arrivals at time t s. A packet arrival is indicated by 1 in the table position corresponding to the input port at which it arrives and its output destination.
	(b). Configuration of CIOQ input I* and the emulated output queues at the end of the arrival phase of steps s and s+1.
	12. Illustration of the Proof of Theorem 8.2
	(a). Packets arrivals at time t BLB. A packet arrival is indicated by T or L (depending on the packet's class) in the table position corresponding to the input port at which it arrives and its output destination.
	(b). Configuration of CIOQ input I1 and the emulated output queues at the end of the arrival phase of steps BLB and BLB+1.

	1.0 INTRODUCTION
	1.1 Minimization of the Maximum Session Loss Rate
	1.2 Exact Emulation of OQ Routers Using CIOQ
	1.3 Organization of the Dissertation

	2.0 PROBLEM DEFINITION AND PRELIMINARIES
	2.1 Problem Definition
	2.1.1 Problem Parameters
	2.1.2 Input Specification
	2.1.3 The Arrival Process
	2.1.4 The Performance Metric

	2.2 Summary of Results
	2.3 Related Research

	3.0 THE ROLLING PRIORITY ALGORITHM
	3.1 Specification of the Algorithm
	3.1.1 Service and Drop Policies
	3.1.2 Phase Randomization

	3.2 Properties of Rolling Priority
	3.3 Performance Under Heavy Traffic
	3.4 Routing Tradeoffs

	4.0 CONCLUDING REMARKS
	5.0 PROBLEM DEFINITION AND PRELIMINARIES
	5.1 The OQ Emulation Problem
	5.2 Summary of Results
	5.3 Related Work
	5.4 Organization

	6.0 SWITCH MODELS
	6.1 OQ Algorithms
	6.2 CIOQ Policies
	6.3 Families of OQ Algorithms

	7.0 OQ EMULATION OF NON-PREEMPTIVE SCHEDULING ALGORITHMS
	7.1 The Speedup --- Buffer Capacity Trade-off
	7.2 The Critical Cells First CIOQ Policy
	7.2.1 OQ Emulation using CCF and G-CCF

	8.0 OQ EMULATION WITH PREEMPTION ALLOWED
	8.1 The Speedup Lower Bound
	8.2 CCF Is Not Better Than The Worst Greedy Policy

	9.0 THE CCF-EAF HYBRID CIOQ POLICY
	9.1 The CEH CIOQ Policy
	9.2 Performance of CEH

	10.0 CONCLUDING REMARKS
	BIBLIOGRAPHY

