174 research outputs found

    JamLab: Augmenting Sensornet Testbeds with Realistic and Controlled Interference Generation

    Get PDF
    Radio interference drastically affects the performance of sensor-net communications, leading to packet loss and reduced energy-efficiency. As an increasing number of wireless devices operates on the same ISM frequencies, there is a strong need for understanding and debugging the performance of existing sensornet protocols under interference. Doing so requires a low-cost flexible testbed infrastructure that allows the repeatable generation of a wide range of interference patterns. Unfortunately, to date, existing sensornet testbeds lack such capabilities, and do not permit to study easily the coexistence problems between devices sharing the same frequencies. This paper addresses the current lack of such an infrastructure by using off-the-shelf sensor motes to record and playback interference patterns as well as to generate customizable and repeat-able interference in real-time. We propose and develop JamLab: a low-cost infrastructure to augment existing sensornet testbeds with accurate interference generation while limiting the overhead to a simple upload of the appropriate software. We explain how we tackle the hardware limitations and get an accurate measurement and regeneration of interference, and we experimentally evaluate the accuracy of JamLab with respect to time, space, and intensity. We further use JamLab to characterize the impact of interference on sensornet MAC protocols

    Frequency hopping in wireless sensor networks

    Get PDF
    Wireless sensor networks (WSNs) are nowadays being used to collectively gather and spread information in different kinds of applications, for military, civilian, environmental as well as commercial purposes. Therefore the proper functioning of WSNs under different kinds of environmental conditions, especially hostile environments, is a must and a lot of research currently ongoing. The problems related to the initialization and deployment of WSNs under harsh and resource limited conditions are investigated in this thesis. Frequency hopping (FH) is a spread spectrum technique in which multiple channels are used, or hoped, for communications across the network. This mitigates the worst effects of interference with frequency agile communication systems rather than by brute force approaches. FH is a promising technique for achieving the coexistence of sensor networks with other currently existing wireless systems, and it is successful within the somewhat limited computational capabilities of the sensor nodes hardware radios. In this thesis, a FH scheme for WSNs is implemented for a pair of nodes on an application layer. The merits and demerits of the scheme are studied for different kinds of WSN environments. The implementation has been done using a Sensinode NanoStack, a communication stack for internet protocol (IP) based wireless sensor networks and a Sensinode Devkit, for an IPv6 over low power wireless personal area network (6LoWPAN). The measurements are taken from the developed test bed and channel simulator for different kinds of scenarios. The detailed analysis of the FH scheme is done to determine its usefulness against interference from other wireless systems, especially wireless local area networks (WLANs), and the robustness of the scheme to combat fading or frequency selective fading

    Interference mitigation strategy design and applications for wireless sensor networks

    Get PDF
    The Institute of Electrical and Electronics Engineers (IEEE) 802.15.4 standard presents a very useful technology for implementing low-cost, low-power, wireless sensor networks. Its main focus, which is to applications requiring simple wireless connectivity with relaxed throughout and latency requirements, makes it suitable for connecting devices that have not been networked, such as industrial and control instrumentation equipments, agricultural equipments, vehicular equipments, and home appliances. Its usage of the license-free 2.4 GHz frequency band makes the technique successful for fast and worldwide market deployments. However, concerns about interference have arisen due to the presence of other wireless technologies using the same spectrum. Although the IEEE 802.15.4 standard has provided some mechanisms, to enhance capability to coexist with other wireless devices operating on the same frequency band, including Carrier Sensor Multiple Access (CSMA), Clear Channel Assessment (CCA), channel alignment, and low duty cycle, it is essential to design and implement adjustable mechanisms for an IEEE 802.15.4 based system integrated into a practical application to deal with interference which changes randomly over time. Among the potential interfering systems (Wi-Fi, Bluetooth, cordless phones, microwave ovens, wireless headsets, etc) which work on the same Industrial, Scientific, and Medical (ISM) frequency band, Wi-Fi systems (IEEE 802.11 technique) have attracted most concerns because of their high transmission power and large deployment in both residential and office environments. This thesis aims to propose a methodology for IEEE 802.15.4 wireless systems to adopt proper adjustment in order to mitigate the effect of interference caused by IEEE 802.11 systems through energy detection, channel agility and data recovery. The contribution of this thesis consists of five parts. Firstly, a strategy is proposed to enable IEEE 802.15.4 systems to maintain normal communications using the means of consecutive transmissions, when the system s default mechanism of retransmission is insufficient to ensure successful rate due to the occurrence of Wi-Fi interference. Secondly, a novel strategy is proposed to use a feasible way for IEEE 802.15.4 systems to estimate the interference pattern, and accordingly adjust system parameters for the purpose of achieving optimized communication effectiveness during time of interference without relying on hardware changes and IEEE 802.15.4 protocol modifications. Thirdly, a data recovery mechanism is proposed for transport control to be applied for recovering lost data by associating with the proposed strategies to ensure the data integrity when IEEE 802.15.4 systems are suffering from interference. Fourthly, a practical case is studied to discuss how to design a sustainable system for home automation application constructed on the basis of IEEE 802.15.4 technique. Finally, a comprehensive design is proposed to enable the implementation of an interference mitigation strategy for IEEE 802.15.4 based ad hoc WSNs within a structure of building fire safety monitoring system. The proposed strategies and system designs are demonstrated mainly through theoretical analysis and experimental tests. The results obtained from the experimental tests have verified that the interference caused by an IEEE 802.11 system on an IEEE 802.15.4 system can be effectively mitigated through adjusting IEEE 802.15.4 system s parameters cooperating with interference pattern estimation. The proposed methods are suitable to be integrated into a system-level solution for an IEEE 802.15.4 system to deal with interference, which is also applicable to those wireless systems facing similar interference issues to enable the development of efficient mitigation strategies

    TOWARD ENHANCED WIRELESS COEXISTENCE IN THE 2.4GHZ ISM BAND VIA TEMPORAL CHARACTERIZATION AND EMPIRICAL MODELING OF 802.11B/G/N NETWORKS A DISSERTATION

    Get PDF
    This dissertation presents an extensive experimental characterization and empirical modelling of 802.11 temporal behavior. A detailed characterization of 802.11b/g/n homogeneous and heterogeneous network traffic patterns is featured, including idle time distribution and channel utilization. Duty cycle serves as a measure for spectrum busyness. Higher duty cycle levels directly impact transceivers using the spectrum, which either refrain from transmission or suffer from increased errors. Duty cycle results are provided for 802.11b, g and n Wi-Fi technologies at various throughput levels. Lower values are observed for 802.11b and g networks. Spectrum occupancy measurements are essential for wireless networks planning and deployment. Detailed characterization of 802.11g/n homogeneous and heterogeneous network traffic patterns, including activity and idle time distribution are presented. Distributions were obtained from time domain measurements and represent time fragment distributions for active and inactive periods during a specific test. This information can assist other wireless technologies in using the crowded ISM band more efficiently and achieve enhanced wireless coexistence. Empirical models of 802.11 networks in the 2.4 GHz Industrial, Scientific, and Medical (ISM) band are also presented. This information can assist other wireless technologies aiming to utilize the crowded ISM band more efficiently and achieve enhanced wireless coexistence. In this work models are derived for both homogeneous and heterogeneous 802.11 network idle time distribution. Additionally, two applications of 802.11 networks temporal characterization are presented. The first application investigates a novel method for identifying wireless technologies through the use of simple energy detection techniques to measure the channel temporal characteristics including activity and idle time probability distributions. In this work, a wireless technology identification algorithm was assessed experimentally. Temporal traffic pattern for 802.11b/g/n homogeneous and heterogeneous networks were measured and used as algorithm input. Identification accuracies of up to 96.83% and 85.9% are achieved for homogeneous and heterogeneous networks, respectively. The second application provides a case study using 802.15.4 ZigBee transmitter packet size on-line adjustments is also presented. Packet size is adaptively modified based on channel idle time distribution obtained using simple channel power measurements. Results demonstrate improved ZigBee performance and significant enhancement in throughput as a result of using adaptive packet size transmissions

    Adaptive CCA for IEEE 802.15.4 Wireless Sensor Networks to Mitigate Interference

    Full text link
    IEEE 802.15.4 Wireless Sensor Networks (WSNs) share the 2.4 GHz Industrial, Scientific, and Medical (ISM) license-free band with many other wireless technologies such as IEEE 802.11b/g Wireless Local Area Networks (WLANs). Because of the low-power, however, IEEE 802.15.4 WSNs are potentially vulnerable to the interference introduced by the other wireless technologies such as IEEE 802.11b/g WLANs, which have much higher power. Particularly, in the presence of heavy interference, IEEE 802.15.4 nodes can hardly get a chance to access the channel, which could result in discarding a large amount of packets. In this paper, we propose a decentralized approach to help IEEE 802.15.4 nodes mitigate interference. By adaptively and distributively adjusting Clear Channel Assessment (CCA) thresholds of IEEE 802.15.4 nodes in the presence of heavy interference, the approach can substantially reduce the amount of discarded packets due to channel access failures, and therefore significantly enhance the performance of IEEE 802.15.4 WSNs. The approach is robust, responsive and easy to be implemented at a low cost. The effectiveness of the approach is validated by OPNET simulation

    Experimental Evaluation of Interference Mitigation on The 2.4 GHz ISM band Using Channel Hopping

    Get PDF
    Both research and practice have revealed that sensor devices running the 802.15.4 on their MAC layer may be competing for wireless communication on the 2.4 GHz ISM band with Wi-Fi, Bluetooth and other proprietary devices. Building upon a SunSPOT development platform, we evaluate the impact of channel hopping on interference mitigation in the 2.4 GHz ISM band and propose a channel hopping model that may be used to mitigate interference under different indoor WSN deployment scenarios. The results obtained by using a wireless sensor network where the sensor nodes are placed at different distances from an interference source and using different power levels agree with previous experimental works on interference in the 2.4GHz band and reveal that (1) channel hopping can improve the performance of WSNs when deployed in Wi-Fi collocating environments and (2) among the different parameters, the received signal strength indication (RSSI) is the most relevant for WSN performance evaluation in collocating Wi-Fi environments

    Wireless Technologies for IoT in Smart Cities

    Full text link
    [EN] As cities continue to grow, numerous initiatives for Smart Cities are being conducted. The concept of Smart City encompasses several concepts being governance, economy, management, infrastructure, technology and people. This means that a Smart City can have different communication needs. Wireless technologies such as WiFi, ZigBee, Bluetooth, WiMax, 4G or LTE (Long Term Evolution) have presented themselves as solutions to the communication needs of Smart City initiatives. However, as most of them employ unlicensed bands, interference and coexistence problems are increasing. In this paper, the wireless technologies available nowadays for IoT (Internet of Things) in Smart Cities are presented. Our contribution is a review of wireless technologies, their comparison and the problems that difficult coexistence among them. In order to do so, the characteristics and adequacy of wireless technologies to each domain are considered. The problems derived of over-crowded unlicensed spectrum and coexistence difficulties among each technology are discussed as well. Finally, power consumption concerns are addressed.García-García, L.; Jimenez, JM.; Abdullah, MTA.; Lloret, J. (2018). Wireless Technologies for IoT in Smart Cities. Network Protocols and Algorithms. 10(1):23-64. doi:10.5296/npa.v10i1.12798S236410
    corecore