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Abstract 

This dissertation presents an extensive experimental characterization and empirical 

modelling of 802.11 temporal behavior. A detailed characterization of 802.11b/g/n 

homogeneous and heterogeneous network traffic patterns is featured, including idle time 

distribution and channel utilization.  

Duty cycle serves as a measure for spectrum busyness. Higher duty cycle levels directly 

impact transceivers using the spectrum, which either refrain from transmission or suffer 

from increased errors. Duty cycle results are provided for 802.11b, g and n Wi-Fi 

technologies at various throughput levels. Lower values are observed for 802.11b and g 

networks. Spectrum occupancy measurements are essential for wireless networks 

planning and deployment.  

Detailed characterization of 802.11g/n homogeneous and heterogeneous network traffic 

patterns, including activity and idle time distribution are presented. Distributions were 

obtained from time domain measurements and represent time fragment distributions for 

active and inactive periods during a specific test. This information can assist other 

wireless technologies in using the crowded ISM band more efficiently and achieve 

enhanced wireless coexistence.  

Empirical models of 802.11 networks in the 2.4 GHz Industrial, Scientific, and Medical 

(ISM) band are also presented. This information can assist other wireless technologies 

aiming to utilize the crowded ISM band more efficiently and achieve enhanced wireless 

coexistence. In this work models are derived for both homogeneous and heterogeneous 

802.11 network idle time distribution.  
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Additionally, two applications of 802.11 networks temporal characterization are 

presented. The first application investigates a novel method for identifying wireless 

technologies through the use of simple energy detection techniques to measure the 

channel temporal characteristics including activity and idle time probability distributions. 

In this work, a wireless technology identification algorithm was assessed experimentally. 

Temporal traffic pattern for 802.11b/g/n homogeneous and heterogeneous networks were 

measured and used as algorithm input. Identification accuracies of up to 96.83% and 

85.9% are achieved for homogeneous and heterogeneous networks, respectively. The 

second application provides a case study using 802.15.4 ZigBee transmitter packet size 

on-line adjustments is also presented. Packet size is adaptively modified based on channel 

idle time distribution obtained using simple channel power measurements. Results 

demonstrate improved ZigBee performance and significant enhancement in throughput 

as a result of using adaptive packet size transmissions. 
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 Chapter 1: Introduction 

With estimated annual Wi-Fi devices transactions reaching nearly $315 million dollars in 

2014, it is clear that Wi-Fi has become a major contributor to today’s global 

communications economy [1]. Demand for wireless data transfer has increased 

significantly in recent years, rendering wireless spectrum an expensive and scarce 

resource. The ability to operate in the free, unlicensed ISM (Industrial Scientific and 

Medical) band has prompted cost effective Wi-Fi chip production. Hence, a large number 

of modern day gadgets, such as laptops, smartphones, printers, cameras and wearable 

devices, are now equipped with Wi-Fi wireless communications technologies, making Wi-

Fi one of today’s prevailing wireless communications technologies. New bandwidth-

hungry and distributed applications like HD video transfer, social media, Internet of 

Things, and cloud computing have exacerbated the problem. Recent telecommunication 

research has focused on developing more efficient means for exploiting available, yet 

limited, frequency spectrum.  

Various wireless technologies are uniquely characterized according to time, frequency, 

and power domains. Wireless technology characterization and identification provides a 

wireless device attempting to access the medium with valuable information, including 

anticipated transmission periodicity, frequency bandwidth, and transmit power, among 

other parameters. Awareness about these characteristics is useful, especially in 

heterogeneous frequency bands like the ISM band. 

Spectrum scarcity has risen significantly in the past few years, triggering intensified 

research in multiple areas, such as spectrum occupancy measurements and cognitive radio. 



2 
 

An ever-increasing reliance on wireless communications makes frequency spectrum an 

expensive resource. Although a number of spectrum occupancy measurement campaigns 

have been presented in literature, as discussed in following sections, most target to study 

underutilized spectrum and multiple bands scanning. Limited work has investigated 

2.4GHz ISM band spectrum occupancy.  

Spectrum scarcity makes heterogeneous spectrum access a necessity in current wireless 

networks primarily because the scarcity forces wireless technologies to share the same 

frequency band [2]. As a consequence, wireless coexistence among various wireless 

technologies sharing the same medium is gaining increased attention as an integral feature 

for reliable operation. Coexistence is defined as “the ability of one system to perform a 

task in a given shared environment where other systems have an ability to perform their 

tasks and may or may not be using the same set of rules” [3]. Knowledge of both 

anticipated and current spectrum occupancy levels enables efficient planning and 

parameter adaption for coexisting wireless technologies, thus enhancing transmission 

efficiency. 

The ISM band is unlicensed, making it an attractive solution for wireless device 

manufacturers. Several protocols (e.g., Wi-Fi, Bluetooth, Bluetooth Low Energy (BLE), 

and ZigBee) have been developed to operate in the ISM band. Wireless chips for these 

protocols are now manufactured in large scale, further reducing their prices. Consequently, 

the ISM band is widely recognized as one of the most crowded frequency bands and serves 

as a timely example of issues related to heterogeneous spectrum access. Spectrum 

occupancy measurement serves as a tool to assist wireless device manufacturers to make 

cognizant decisions when choosing transmission parameters, including transmission 
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power, frequency, and frame size, among others. This is performed using algorithms to 

intelligently characterize the spectrum occupancy and identify wireless technologies 

utilizing the spectrum at a particular time. 

Wi-Fi is a primary causes of interference in the ISM band due to the technology’s high 

power and data rate when compared with other technologies sharing the 2.4 GHz ISM 

band. Hence, characterizing spectrum occupancy behavior of Wi-Fi is vital for both 

frequency channel planning and wireless device development in the 2.4 GHz ISM band. 

A means to analyze spectrum occupancy for Wi-Fi is measuring channel duty cycle (DC), 

modelling idle time distributions and using this information to identify wireless 

technologies sharing the medium. Notably, DC is defined as the fraction of time at which 

the received signal strength is above a certain threshold [4]. 

Wi-Fi networks operating in the ISM band are typically heterogeneous, as they include 

802.11b/g/n Wi-Fi standards, which have significant differences in both PHY and MAC 

layers, as will be discussed in greater detail in chapters that follow. Networks supporting 

any of these standards could exist within close proximity of one another. Thus, 

understanding spectrum occupancy for heterogeneous Wi-Fi networks can aid in 

improving coexisting network performance. Measuring frequency channel DC is one 

method for assessing spectrum occupancy.  

This work in part investigates time distributions modelling of 802.11 heterogeneous 

networks in the 2.4GHz ISM band, including a detailed characterization of 802.11b/g/n 

homogeneous and heterogeneous network traffic patterns. This type of study will facilitate 

better understanding of 802.11 temporal behavior, thus enabling improved design for 

coexisting wireless technologies. Time distribution modelling focuses on 802.11 
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networks, in particular, primarily due to their high power levels and extensive use. This 

makes 802.11 networks the foremost interferer in the exceedingly crowded 2.4GHz ISM 

band. This band is of special interest to wireless coexistence for two chief reasons:  

1) The relatively limited 80MHz spectrum, and  

2) The large number of wireless technologies that share the ISM band.  

These aspects cause wireless coexistence difficulties for technologies sharing the ISM 

band with 802.11 networks. Consequently, interference between 802.11 and other 

technologies (e.g., Bluetooth, ZigBee, and BLE, among others) could have adverse effects 

depending on the application of devices sharing the same 802.11 frequency band [5][6][7].  

A critical example of the effect of 802.11 interference with other coexisting technologies 

can be found in the medical device industry. Many medical device manufacturers 

implement wireless technologies in their devices for a number of practical reasons, 

including patient convenience. Medical device applications for wireless connectivity 

range from transmitting regular telemetry data to patient life-critical applications. 

Medical devices must utilize low-power consumption technologies to minimize service 

interruption. Several manufacturers employ ISM band wireless technologies as often as 

possible, primarily due to global availability and reduced costs due to standardization and 

large scale manufacturing. ZigBee, Bluetooth, and BLE are examples of popular wireless 

communication technologies currently implemented in medical devices. Devices using 

these technologies could suffer severe interference among ISM transmitters caused by 

802.11 traffic [8][9], which can jeopardize medical device functionality and impose a risk 

to patient safety depending on the specific application of the medical device. Diligent 

wireless coexistence risk assessment of wireless medical systems must be performed 
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based on data-rate and delay requirements, as well as anticipated spectrum occupancy. 

Consequently, the United States Food and Drug Administration (FDA) has recommended 

that radiated coexistence testing should be performed during the wireless medical device 

certification process [10]. The experimental wireless technology identification techniques 

assessment presented in this work is directly related to the wireless medical devices 

example as measurements were performed in the 2.4 GHz ISM band. Note that from 

hereafter, wireless technologies sharing frequency bands with 802.11 will be referred to 

as coexisting technologies (CT); the 2.4 GHz ISM band is referred to as the ISM band. 

Channel awareness in terms of temporal characteristics (e.g., DC, activity distribution, and 

idle time distribution) aids CTs’ intelligent transmission decision-making. Frame size, 

channel access frequency, and time (and/or transmission frequency channel) can be 

modified for improved performance based on channel temporal traffic patterns. 

Various wireless applications operating in different frequency bands will benefit from 

wireless technology characterization and identification techniques. For example, cognitive 

radio requires spectrum usage awareness for cognitive nodes to operate properly. 

Cognitive radio network requires spectrum usability assessment, particularly in licensed 

bands, before a cognitive node can access the medium. Threats to wireless coexistence 

increase with cognitive radio use regardless of advanced spectrum sensing. Hence, 

identification of wireless technologies operating in a specific spectrum band provides a 

cognitive node with an estimate of potential interference. A cognitive node can use 

gathered information to aid in decision-making about using an intended frequency band.  
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This dissertation presents a detailed temporal characterization of 802.11 homogeneous and 

heterogeneous wireless channels in the ISM band based on an energy detection technique. 

The contributions of this work include the following:  

1. Provide a methodology for wireless channel temporal characterization using an 

energy detection technique. 

2. Offer an extensive experimental study of traffic patterns and DC for homogeneous 

and heterogeneous 802.11 networks and a detailed scheme for DC measurements 

for Wi-Fi 802.11b/g/n. The presented study links measured DC to data throughput 

level and the number of coexisting networks. Also, a comparison between obtained 

results using two developed measurement tools for time domain (TD) and 

frequency domain (FD) is presented. DC measurement data is analyzed via 

conventional inferential statistical methods (i.e., null-hypothesis tests, linear 

regression, and others) to validate DC obtained in TD with DC measured in FD. 

3. Provide detailed empirical modelling of 802.11 homogeneous and heterogeneous 

networks in the  ISM band, including evaluation of idle time devised models 

compared with corresponding measured distributions for 802.11b/g/n single and 

multi-pair transmissions obtained via energy detection method. 

4. Report findings for a study investigating wireless technology identification using 

energy detection and machine learning techniques. Wireless technology 

identification is possible through received signal demodulation. However, this 

method could prove impractical, primarily because a wireless terminal with such 

functionality must support many different demodulation schemes. A novel 

alternative method for wireless technology identification through the use of simple 
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energy detection techniques is presented. A developed algorithm a) constructs 

temporal activity and idle time distributions from measured received signal 

strength (RSS), b) extracts distinguishing features from distribution, and c) 

provides technology identification decision using machine-learning classifiers. 

Experimental assessment of a developed algorithm has been performed, yielding 

high identification accuracy: 96.83% for homogeneous Wi-Fi networks and 85.9% 

for heterogeneous Wi-Fi networks. 

5. Deliver results from a case study investigating CT (ZigBee) performance 

improvement when coexisting with an 802.11g network through temporal 

characterization. A ZigBee simulation was implemented wherein ZigBee packet 

size was changed adaptively according to channel idle time distribution to improve 

ZigBee performance under interference. ZigBee throughput and packet error rate 

(PER) for both fixed packet sizes and variable packet sizes were tracked and 

reported. 

This dissertation is organized as follows. Chapter 2 lists related work and provides an 

overview of the ISM band technologies investigated in this work. Chapter 3 details 

methodology and the experimental setup. Chapters 4 and 5 present 802.11 networks 

temporal characterization including; spectrum occupancy analysis and time distributions 

of 802.11 networks, respectively. 802.11 idle time distributions empirical modeling work 

is presented in Chapter 6. Chapter 7 offers two applications of 802.11 networks temporal 

characterization.  The first reports adaptive ZigBee frame size based on 802.11g network 

for improving performance; the second identifies wireless technology using energy 
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detection and machine learning techniques for devices sharing the medium. Finally, a 

conclusion is provided in Chapter 8. 
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 Chapter 2: Literature Review 

This chapter provides an overview of earlier work related to spectrum occupancy 

monitoring. Studies researching energy detection spectrum sensing, spectrum temporal 

patterns modelling, throughput-sensing problem, frame aggregation techniques, and 

wireless technologies identification are examined in the following subsections. An 

overview of wireless technologies investigated in this work is provided, as well. 

Energy detection spectrum sensing 

Energy detection, also known as transmitter detection or radiometry, is a simple and 

widely recognized spectrum sensing technique—one that has been adopted in many 

applications, including cognitive radio [11]. Unlike other spectrum sensing techniques, 

those employing an energy detection algorithm do not need prior information about the 

channel or received signal. The energy detecting algorithm has three stages. In the first 

stage, received signal energy is measured within a frequency span (or bandwidth). In the 

second stage, the measured signal is compared with a predefined threshold to separate the 

desired signal from background noise. In the third stage, a decision is made as to whether 

or not there is an active signal (i.e., if the measured energy value is above or equal to the 

threshold). This energy detection technique is characterized by low computational cost 

and minimal implementation complexity. However, its performance degrades with a low 

signal-to-noise ratio (SNR) [12]. The lower the SNR, the higher the probability of false 

detection. This drawback can be overcome by introducing improved energy detection 

algorithms, which enhances the performance of the conventional energy detection method 

[13][14][15]. 
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Presented work in this dissertation details an energy detection method to scan the wireless 

spectrum in the ISM band. A variety of tests with varying throughput and number of 

transmitters were performed. Idle time and activity distributions were extracted, and 

empirical models were devised for a number of 802.11 combinations at varying 

throughput. The purpose of these tests is three fold: 

1. Describe idle time distribution mathematically with acceptable accuracy to 

facilitate a better understanding of 802.11 heterogeneous networks.  

2. Characterize temporal spectrum utilization by 802.11 networks to provide channel 

occupancy awareness for wireless technologies coexisting with 802.11 networks. 

Occupancy awareness results in intelligent and more efficient design. 

3. Utilize the activity and idle time distributions obtained via energy detection method 

to provide examples of using this approach to enhance the performance of 

coexisting technologies. 

Spectrum temporal patterns modelling 

Following is a summary of related work on spectrum measurement and temporal 

patterns modeling. 

Earlier work investigating spectrum occupancy measurements in the ISM band is of 

particular interest, as it falls within the scope of work presented herein. Limited work has 

been found in literature for ISM band spectrum occupancy measurement. In [16], spectrum 

occupancy measurements using distributed directional antennas are presented. This work 

provides information on spatial dimension influence over duty cycle (DC). ISM band 

measurements were conducted in an office environment, and DC for uncontrolled 
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environment was reported. The work adopted conventional energy detection with fixed 

threshold for calculating DC. The work was extended in [17], wherein measurements 

acquired from two devices with multiple directional antennas were conjoined using 

different combining rules. DC average measurement for one day in an office area was 

presented.  

In [18], a measurement approach in the ISM band using energy detection was proposed. 

Measurements were undertaken using frequency domain (FD) sweeping, wherein each 

measurement was performed for 30 minutes. DC was presented as a function of frequency. 

Notably, the paper focused on measurement tool parameters development. Although other 

studies investigated ISM band activity to model idle time distributions, DC results were 

not provided [19] [20].  

Aforementioned studies focused on spectrum sensing and DC reporting of uncontrolled 

transmissions on the spectrum. Work presented in herein is unique in that it investigates 

802.11 temporal patterns in a controlled environment for single and multiple homogeneous 

and heterogeneous 802.11 transmitters with varying throughput levels. The study also 

models 802.11 network idle time distributions, thus capturing temporal behavior of the 

main interference sources might exist in the  band. 

Examples of previous research investigating temporal behavior in a licensed, non-ISM 

band can be found in [21] [22]. Work presented in [21] models long term DC and 

activity/idle time distributions for measurements obtained from several bands. The paper 

provides an accurate model for DC for cellular bands GSM and DCS. Though 

measurements were taken for the ISM band, they were not presented nor discussed. The 

presented model for idle time distribution is provided for large scale (in order of seconds), 
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whereas presented distributions in this dissertation are for small scale distributions (i.e., 

micro seconds). 

Modelling of wireless activity temporal patterns using Continuous-Time semi-Markov 

Chain CTMC was presented in [22]. Two measurement devices that provided high and 

low time resolution were employed. The longest time resolution achieved and reported 

was 128 µs, which is inadequate to accurately capture WLAN activity patterns. The work 

applied different distributions to various bands. Although the authors in [22] mentioned 

ISM measurement of ISM band spectrum utilization, results were not presented. 

Throughput-sensing problem 

In the ISM band, 802.11, and other Coexisting Technologies (CTs) have equal privilege 

to use the unlicensed band. Notably, the high power and data rate of 802.11 have made 

this technology the dominant transmitter. The 802.11 interference effect on CT far exceeds 

CT interference effect on 802.11. Hence, other CTs must optimize wireless coexistence 

with 802.11 to improve their performance. This phenomenon is analogous to cognitive 

radio networks where a secondary user (SU) must manage spectrum access to minimize 

interference with primary user (PU).  

In a cognitive radio (CR) network, the SU frame transmission time is divided into sensing 

time and transmission time. The latter is one of the most important parameters effecting 

SU throughput [23]. Frame time must be optimized by minimizing sensing time and 

maximizing transmission time. Effects of PU traffic on SU throughput has been 

investigated in earlier literature [24][25][26][27][28].  
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Researchers in [24] were the first to examine the effect of PU altering transmission state 

during SU transmission on CR performance (i.e., throughput). Previous studies considered 

a channel to be either busy or available, maintaining only one or the other of the two states 

during SU frame transmission. An investigation in [24] proposed an analytical model 

wherein one transition from OFF to ON was considered, based on PU throughput. 

Researchers did not consider, however, the effect of a changing SU frame size. 

In [25], the effect of PU changing its state during an OFF period was also analyzed. In 

[26], the possibility of PU changing states one time during the OFF stage was investigated. 

CR throughput was maximized based on frame size, assuming that ON/OFF durations and 

sensing time maintain an exponential distribution. Work presented in [27] developed an 

analytical model to describe and maximize SU throughput based on optimizing SU frame 

size and sensing period. The analytical model accounted for up to two PU traffic state 

transitions, although this assumption might not be true, depending on PU frame duration 

(i.e., acknowledgement—ACK or data). Authors of [28] implemented a sensing scheme 

to estimate the distribution of PU ON/OFF durations and decide whether or not to sense a 

channel. PU traffic ON/OFF durations were assumed to have a Gaussian distribution.  

Frame aggregation techniques 

Frame aggregation has been researched extensively in literature. The research led 

eventually to the technology implementation in 802.11n standard’s MAC layer. Earlier 

studies investigating frame aggregation and adaptive frame size are discussed below. This 

portion of the literature review will facilitate a better understanding of the frame 

aggregation technology in 802.11n networks. Also, it highlights possibilities of 

implementing similar approaches for CTs in the ISM band.  
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Adaptive frame aggregation is investigated in [29] [30] [31] [32] [33] [34] [35] [36]. 

Research in [29] investigated optimal frame size based on Bit Error Rate (BER) estimated 

from SNR.  The paper assumes saturated nodes with only RTS/CTS scheme. Also, 

existence of a feedback mechanism that reports SNR to transmitter is assumed. 

[30] introduces an algorithm that dynamically chooses the aggregation scheme to be used 

in 802.11s mesh networks. Algorithm uses BER, quantity, and distribution of frame arrival 

to the transmitter queue for making a choice regarding the aggregation scheme. This 

technique assumes that BER is measured from received frames. Authors of [31] develop 

an analytical model to describe impact of frame aggregation on saturation throughput. 

Frame error rate is calculated from received block ACK to adaptively change sub-frame 

size. 

A joint data rate and fragment size adaption based on error probability is investigated in 

[32]. In this context, the probability of error is estimated by the transmitter by counting the 

number of unsuccessfully received fragments using block ACK whilst not relying on SNR. 

Authors of [33] propose a frame size estimation technique based on frame error rate (FER). 

Kalman filter is used to estimate optimal frame size using FER. 

In [34], an analytical model to optimize frame size based on delay constraints of the node 

is proposed. It assumes that the network is in saturated condition. This method also 

assumes that all nodes in the network broadcast their delay information wherein delay is 

defined as the time required by a node to successfully access the channel. It is assumed 

that a node can acquire information about number of transmitting nodes by observing the 

network without specifying the mechanism. 
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An algorithm that adaptively changes the aggregated frame size is proposed in [35]. The 

algorithm aims at maintaining delay below a specific maximum boundary. In [36] a 

dynamic frame aggregation scheme based on channel conditions in 802.11a network is 

investigated. The algorithm estimates the probability of error using received ACK signal 

strength, and then utilizes a lookup table to adjust the data rate and frame size. 

A study presented in [37] precedes frame aggregation technology. Different from 

aforementioned studies, researchers investigate variable frame size in terms of 

performance of saturated 802.11 DCF in terms of packet size, contending nodes, and 

packet error probability. An analytical framework was developed to determine optimal 

frame size for maximizing throughput based on BER. 

Other research activities studied channel state estimation or frame size change for other 

purposes, such as scheduling and technology interoperability (e.g., [38] [39]). 

Experimental evaluation of increasing 802.11 frame payload size to 4KB was presented 

in [38]. The main contribution of that study was providing a software interface to enable 

Linux host to send/receive a frame larger than the Ethernet standard of 1500 Bytes. 

However no adaptive frame size variation was presented in the paper. Authors of [39] 

propose a scheduling mechanism that takes into account channel state and transmitter 

queue size. In this context, access point (AP) is assumed to schedule the user with good 

channel state and long queue time to optimize throughput. No variation of frame size was 

presented. 

Wireless technology and MAC method identification 

To the best of the author’s knowledge, no previous work has been published that identifies 

various 802.11 standards by way of observing power measurements from a medium where 
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standards are operational. Unlike research detailed below, the newly developed method 

does not require demodulating the received signal, nor is it necessary to successfully 

perform accurate identification based only on raw power measurements. 

Bayesian machine learning method and  independent component analysis technique have 

been employed in [40] and [41] respectively for clustering 2.4 ISM band wireless 

networks. These methods investigate blind technology identification (BTI) approach to 

group wireless transmissions with similar behavior. Such techniques are useful for 

identifying number of wireless transmissions with distinct behavior using the spectrum 

band with no prior knowledge about these wireless technologies. Nevertheless, additional 

information about the underlying wireless technologies being used by such transmissions 

cannot be deduced without a prior knowledge of the corresponding wireless technologies 

characteristics.  

Authors in [42] aimed at detecting Classic Bluetooth (BT) piconets and Wi-Fi 802.11g 

networks. The researchers developed a method using Universal Software Radio Peripheral 

(USRP) to collect (4 MHz) bandwidth power measurements in the ISM band. Classic BT 

piconets were identified through a time-binning mechanism, which demonstrated that 

power bursts falling in the same time bin are originated from a single piconet. An 

alternative suggested method requires demodulating sensed bursts, and then obtaining the 

72-bit Channel Access Code, which is unique to each piconet. The presence of Wi-Fi 

access points is determined by examining distinct equalization sequences included in AP 

beacons, and then cross-correlating observations within a beacon time period. 
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Fingerprinting is also heavily studied in literature. In contrast to [42], [43] exploits specific 

emitter identification (SEI) second-order cyclic OFDM features for identifying different 

hardware emitting 802.11a/g signals. The experiment output is a wireless card model as 

opposed to counting the number of nodes or networks existing on the medium. Other 

similarly targeted sources in literature can be found by investigating means to identify a 

used wireless network card, such as [44] that identifies specific Network Interface Cards 

(NICs) among a group of identical NICs. Likewise, [45] promotes the use of transient 

features that are manifested when a wireless transmitter is switched on as means for 

transmitter identification. The study presented in [46] relies on frame inter-arrival time as 

a parameter toward determining a distinct device fingerprint. 

Authors of [47] presented a method in which a cognitive radio node identifies the MAC 

protocol of other nodes (e.g., primary users of spectrum or other cognitive nodes) among 

four types of MACs: TDMA, CSMA/CA, pure ALOHA, and slotted ALOHA. The method 

relies on extracting two power features, namely received power mean and variance, and 

six time features, including minimum, median, and maximum of both channel idle and 

busy durations. This work relies on simulation to generate fictitious date, which is then 

input into Support Vector Machine learning-algorithm for identifying a MAC protocol. 

Comparison with previous research 

This section provides a detailed comparison between work presented in this dissertation 

and the most relevant studies presented in the previous sections. Earlier studies on 

spectrum temporal patterns modelling focused on idle time distributions in licensed 

bands. These studies were expected to be the impetus for a cognitive network solution in 

which a secondary user would be privileged to use the spectrum whenever the primary 
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user was inactive. However, several issues were found when employing cognitive radio 

in a licensed band (e.g., hidden transmitter problem).  

Such problems have spawned alternative solutions to spectrum sensing, such as centralized 

databases providing information about primary user activity in licensed bands. Notably, 

due to the complexity and heterogeneous nature of this problem, limited work has 

investigated spectrum occupancy scanning and modelling of 2.4 GHz ISM band. 

Furthermore, no agreed-upon definition exists for an ISM band primary user.  

Work presented in this dissertation is focused on overcoming these issues by detailing 

temporal distributions modelling in the ISM band. The following assumptions have been 

made:  

 802.11 networks are the main interferer in the ISM band as a results of their high 

power and their use as a large data transfer solution, as demonstrated and proven in 

earlier literature (e.g. [7][8][48]). 

 Providing a comprehensive set of experiments to describe 802.11 networks is 

important for identifying: 1) Homogeneous and heterogeneous network 

combinations; 2) Varying throughput levels from low throughput to saturation; and 

3) Varying number of transmitting terminals. Uncontrolled spectrum 

measurements are subjective, as indicated by variations in results reported in the 

literature. Controlled spectrum measurement narrows the problem with a limited 

set of parameters for presenting a reproducible representation of the spectrum. 

Of most interest are studies performed by Lopez-Benitez et. al. [21][22]. In [21] spectrum 

measurements were performed for the following bands: TETRA-UL, TETRA-DL, E-
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GSM 900 UL, E-GSM 900 DL, DCS 1800 UL, DCS 1800 DL, DECT, and ISM bands. 

Active time, idle time, and DC results were then presented for TETRA, E-GSM, and DCS 

bands at a testing site in Barcelona, Spain. Discrete Time Markov-Chain (DTMC)—with 

two states representing active and idle time—was implemented to model the obtained 

spectrum measurements for the three aforementioned bands. Notably, the measurements 

were characteristic of a large time scale in the order of seconds. DTMC models were 

unable to represent the statistical characteristics of most scanned bands, as these models 

diverged from their active and idle time distributions. In an effort to enhance these 

models, transition probabilities between the active and idle states were determined using 

instantaneous, time variant, DC models rather than total average DC values. In other 

words, a time-inhomogeneous, rather than time homogenous, DTMC was implemented.  

Models performed well for cellular bands DCS and E-GSM demonstrating a deterministic 

DC pattern. TETRA band models did not perform as well, given that this band is more 

heterogeneous in nature with random DC behavior. Even though performing ISM band 

measurement was mentioned, no modelling results were provided for this band. Also, 

time resolution for spectrum measurement activities performed in [21] is very low— in 

the order of second. As such, the provided measurements fail to capture short-scale timing 

behavior demonstrated by the MAC layer of the wireless communication technologies 

operating in the studied bands. Alternatively, the work performed in this dissertation 

provides a high resolution, extensive spectrum measurement survey for the 2.4GHz ISM 

band. A systematic experimental evaluation of the homogeneous and heterogeneous 

802.11 networks spectrum activity at wide range of throughput values was performed and 

presented, providing a detailed description of DC, active time, and idle time distributions.  
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In [22], authors extended their work by performing empirical modelling for their obtained 

active and idle time distributions. The investigated models were Exponential, Generalized 

Exponential, Pareto, Generalized Pareto, Log-Normal, Gamma, and Weibull. Short time-

scale measurements were performed using a USRP platform. Models were evaluated and 

presented for the following bands: amateur, paging, PMR/PAMR, cellular mobile 

communications, and cordless bands. Weibull distribution provided best models for 

amateur and PMR/PAMR bands. Paging and cellular mobile communication bands, idle-

time distributions were best modeled using Pareto and generalized exponential 

distributions, respectively. However, no short time-scale analysis was performed for the 

2.4GHz ISM band. ISM band analysis was only performed for single large-scale 

measurement result. Such analysis, as discussed previously, fails to represent temporal 

behavior of wireless technologies using the band which in turn is greatly dictated by the 

MAC layer implementation. In contrast to previous work, this dissertation provides a 

comprehensive experimental analysis of the 802.11 networks temporal behavior on the 

spectrum in the ISM band, including empirical modeling of obtained results. Empirical 

modeling is performed at a detailed level to capture appropriate distributions and their 

parameters that best model different 802.11 combinations at various throughput levels. 

Also, this work is performed at high time resolution for capturing the smallest 802.11 

MAC layer time duration of 10µs. Such high time resolution was not implemented in 

previous work, leading to a deficiency in accurately describing temporal behavior of the 

2.4GHz ISM bands.   

Regarding previous work investigating the throughput-sensing problem, none of these 

studies presents a realistic measure of PU activity pattern, due to assumptions regarding 
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ON/OFF duration and frequency [27][28]. It is possible that modelling the ON/OFF 

duration with exponential or normal distribution might prove inaccurate, as these 

distributions change with protocol type, throughput, and number of nodes in the network. 

Experimental identification of a PU traffic pattern and temporal characteristics, including 

MAC protocol, can prove useful toward enhancing CT performance. Modelling of this 

traffic pattern can then be performed using supporting empirical results. Work presented 

in Chapter 5 of this dissertation aims at finding empirical time distribution of 

homogeneous and heterogeneous 802.11 networks in the ISM band. Chapter 6 presents a 

detailed empirical modelling of idle time distributions in an effort to provide a more 

accurate representation of these time distributions—beyond normal distribution 

assumptions made in previous literature.  

Regarding adaptive frame size, most aforementioned studies focus on 802.11 networks. 

Also, many of these assume existence of a feedback mechanism from the receiver to the 

transmitter, which in fact might not exist. On the other hand, variable frame size for CTs 

with 802.11 using spectrum temporal pattern provides an opportunity to enhance CTs 

performance. CTs with 802.11 networks in the ISM band suffer great degradation in 

performance at 802.11 high throughput values (e.g., ZigBee). Temporal characterization 

of 802.11 DC and idle time distribution help CTs select a frame size to statistically 

minimize frame error rate (FER). For example, [31] presents a technique to change 

MPDU size based on the maximum tolerable FER. In that study, FER is estimated from 

Block ACK to implement the algorithm. A Bianchi analytical model was constructed to 

balance MPDU size based on FER to improve saturation throughput. The model assumes 

that contending nodes are using RTS/CTS mechanism to access the medium. However, 
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this assumption might not be realistic, as real networks are heterogeneous and may use 

different schemes. Likewise, RTS/CTS scheme is rarely used in real world 

implementation due to its low efficiency [49]. Results of the developed analytical model 

are depicted in  

Figure 2-1. Increasing frame size at low FER value would always result in better 

throughput. On the contrary, at higher FER, optimal throughput is demonstrated by a 

particular frame size. Increasing frame size beyond that optimal value results in 

throughput degradation. Choosing optimal frame size relies heavily on the availability of 

a feedback mechanism to obtain an accurate FER estimation. Also, [49] developed an 

analytical model for optimizing saturation throughput only while assuming utilization of 

RTS/CTS mechanism by all contending transmitters. In comparison, work proposed in 

this dissertation uses an empirically found idle time distribution to adaptively regulate 

coexisting technology transmitter’s frame sizes. An extensive experimental campaign is 

used to obtain and construct active and idle time distribution for 802.11 networks acting 

as an interferer degrading coexisting network performance. Such empirical distribution 

provides an accurate representation of medium availability state for both homogeneous 

and heterogeneous 802.11 networks. Another advantage of the work presented in this 

dissertation is that it does not require a feedback mechanism to obtain Packet Error Rate 

(PER) for implementing the adaptive packet size method. Rather, it directly uses 

statistical parameters of the obtained idle time distributions to regulate the transmitter’s 

packet size. Nevertheless, PER is acquired and logged for this work to perform analysis 

on the obtained results. Idle time distributions themselves can be constructed by any radio 

interface measuring received signal strength (RSSI) by simple energy detection method, 
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as will be explained further in the following chapters. Adaptive packet size results 

provided in Chapter 8 of this dissertation show a similar trend when compared to  

Figure 2-1. Packet size saturates at a specific level for very low spectrum occupancy, 

corresponding to low PER, and is limited by the implemented standard, ZigBee, 

maximum packet size. This maximum packet size provides highest throughput compared 

to smaller packet sizes. Nonetheless, smaller packet sizes demonstrate an improved 

throughput compared to larger ones at higher spectrum occupancy levels, corresponding 

to higher PER.  

 

Figure 2-1. Saturation throughput vs. frame size for different FER values [31] 

Finally, when considering wireless technology identification, work presented in this 

dissertation is unique in that it provides a simple, yet effective, time-based feature 

detection technique for wireless technology identification. A practical example of this 
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method is presented and validated in chapters that follow. Previous research presented in 

[47] is of most interest when compared to the work presented herein, as it relies on features 

extracted from spectrum power measurement to perform identification. Authors in [47] 

used simulation to identify MAC layer implementation for transmitters using the spectrum. 

Support Vector Machine (SVM) algorithm is used to perform the identification process. 

Two power features—received power mean and variance—and six time features, namely 

minimum, median and maximum idle time, and busy time durations, were used. Notably, 

time duration vary considerably in actual implementation based on throughput, number of 

transmitters using the spectrum, and the PHY and MAC layers implementation for these 

transmitters. As such, time durations obtained from simple MAC technique 

implementation, with the assumption of fixed active durations, would not accurately 

represent real world implementations. To calculate received power, implemented 

simulation assumes a simple Rayleigh fading channel. This assumption constitutes a 

simplification that does not represent real world environments with multi-path fading. The 

results show the possibility of performing MAC layers identification, Aloha, Slotted 

Aloha, CSMA/CA, and TDMA when using the aforementioned features and assuming a 

single technology is using the spectrum. Wireless technology identification work 

presented in this dissertation is based on extensive experimental results from 802.11 

homogeneous and heterogeneous measurements at varying spectrum 

occupancy/throughout levels. A set of temporal features extracted from active and idle 

time distributions. Compared to previously discussed research, this dissertation presents 

and validates a wireless technology identification method, not only MAC layer 

implementation, but also using a comprehensive experimental campaign. Notably, 
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temporal-based features are used only to avoid uncertainty associated with power related 

features resulting from power fluctuations dependent upon the communication 

environment. Wireless technology identification, presented in Chapter 8, demonstrates 

identification accuracies of 96.9% and 85.9% were achieved for homogeneous and 

heterogeneous 802.11 networks, respectively. Also, number of transmitter identification 

was investigated with satisfactory result. Details of the conducted study are offered in 

Chapter 8.  

2.4 GHz ISM band spectrum overview 

The ISM band, spanning over 80 MHz from 2.4 GHz to 2.48 GHz, is the home for many 

popular wireless technologies (e.g., Wi-Fi 802.11b/g/n, ZigBee, Bluetooth, Bluetooth Low 

Energy (BLE), and others). These technologies share the same spectrum with overlapping 

frequency channels. See Figure 2-2 for a visual approximation of frequency channels 

belonging to different ISM band technologies.  

802.11Wi-Fi has the widest frequency channel size—22 MHz, with 11 overlapping 

channels, of which 1, 6, and 11 are non-overlapping. 802.15.4 ZigBee has a more limited 

frequency channel width of 2 MHz with frequency span of 5 MHz between center 

frequencies of adjacent channels. 802.15.4 ZigBee has 16 non-overlapping in the ISM 

band. Classic Bluetooth, on the other hand, uses a frequency hopping spread spectrum 

access with 79 non-overlapping, 1 MHz channels. Finally, Bluetooth Low Energy (BLE) 

has 40 channels, each 2 MHz wide.  

802.11 networks, and to some extent 802.15.4 ZigBee, are under investigation in this 

work. Consequently, more details on the MAC and physical layers of 802.11b/g/n and 
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802.15.4 ZigBee are provided in the following subsections. A thorough understanding of 

these standards will aid in interpreting results in following chapters. 

 

Figure 2-2. 2.4GHz ISM band frequency channels. 

802.11b 

802.11b was published in 1999 as an amendment to the original 802.11 standard [50]. The 

standard supports data rates of up to 11Mbps. This subsection provides information on 

802.11b Physical (PHY) and Medium Access Control (MAC) layers. Both have a direct 

effect on spectrum temporal characteristics of transceivers implementing the standard.  

Distributed coordination function (DCF) 

IEEE 802.11b implements Distributed Coordination Function (DCF) as its MAC 

technique for which a transmitter follows carrier sense multiple access/collision avoidance 

(CSMA/CA) scheme. CSMA/CA uses a technique known as Clear Channel Assessment 

(CCA) to ensure that the medium is vacant prior to performing a frame transmission. The 

purpose of this procedure is avoiding collisions with other transmitters. 

Figure 2-3 illustrates functionality of DCF. A transmitter with a frame in its queue choses 

a random back-off value from a specific minimum contention window and continuously 
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senses the medium until it becomes idle. If the medium is occupied, transmitter freezes its 

back-off counter. Once the medium becomes idle, transmitter starts decrementing its back-

off counter. This process is repeated until the back-off counter expires (i.e., reaches a value 

of 0.) The transmitter then proceeds with frame transmission. Receiver replies with an 

Acknowledgment (ACK) after short inter-frame spacing (SIFS) waiting time, provided the 

frame was received correctly. Other transmitters should wait for distributed inter-frame 

spacing (DIFS) waiting time after transmission ends before continuing to decrement their 

back-off counters. If two transmitting nodes choose the same back-off value at the same 

time, a collision will occur, and packet transmission will be rendered unsuccessful. 

Colliding nodes will then move to a higher back-off stage wherein back-off window is 

binary exponentially larger. Details of 802.11b MAC timing parameters can be found in 

Table 1. 

Notably, a transmitter using DCF will hold off frame transmission until its back-off 

counter expires even if the medium remains idle during the entire process. This behavior 

results in a low temporal efficiency whenever a single transmitter is attempting to access 

the medium. Nevertheless, DCF provides a better chance of coexistence (between 802.11 

transmitters strictly) when a large number of these transmitters are using the medium at 

the same time.  



28 
 

 

Figure 2-3.  DCF functionality 

Two CCA modes are generally used in wide band networks (e.g., 802.11 and 802.15.4 

ZigBee) [51][52]: 

1. Non-coherent carrier sensing: This method uses a fixed CCA power threshold 

to detect spectrum occupancy. It is fast and low power, but prone to errors. 

2. Coherent carrier sensing (preamble detection): This method demodulates the 

signal and detects the preamble before backing off. It is slower and consumes 

more power, but less prone to errors. 

Commercially available 802.11 chipsets commonly implement coherent carrier sensing to 

take advantage of its robustness. 802.15.4 ZigBee chipsets implement a non-coherent 

carrier sensing method to conserve energy. Narrow band networks use energy detection 

only. 
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Table 1. 802.11b timing parameters 

Parameter 
Value 

SIFS 10 μs 

DIFS 50 μs 

ACK 202 μs 

MPDU size 1500 Byte 

frame duration 1220 μs 

Complimentary Code Keying (CCK)  

802.11b PHY layer supports data rates of 1, 2, 5.5 and 11Mbps. The higher data rates of 

5.5 and 11Mbps, which are of interest in this work, use CCK modulation wherein data 

ready for transmission is grouped in 8-bits sequences. Each sequence is then used to find 

an 8-chips spreading code. Spreading codes are modulated using Differential Quadrature 

Phase Shift Keying (DQPSK) and sent over the air at a rate of 11Mchip/s. An 11Mbps 

data rate is then achieved, given that an 8-bits sequence was used to find the 8-chip 

symbols [53][54].  

CCK modulation works by using the aforementioned 8-bits data sequence to choose one 

of 64 orthogonal code words. The 8-bits sequence is divided into 2-bits pairs known as 

dibits (d0, d1, d2, d3), where d0 represents the two least-significant bits. These dibits are 

then used to find phase parameters φ1 to φ4, as specified in Table 2.  

Table 2. CCK phase parameters 

Dibit 
Phase parameter 

00 0 

01 π/2 

10 π 

11 3π/2 
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The phase parameters are then substituted in (1) to find the code word to be transmitted. 

CCK functionality is depicted in Figure 2-4.  

𝒄 =  {
𝒆𝒋(𝝋𝟏+𝝋𝟐+𝝋𝟑+𝝋𝟒), 𝒆𝒋(𝝋𝟏+𝝋𝟑+𝝋𝟒), 𝒆𝒋(𝝋𝟏+𝝋𝟐+𝝋𝟒),

−𝒆𝒋(𝝋𝟏+𝝋𝟒), 𝒆𝒋(𝝋𝟏+𝝋𝟐+𝝋𝟑), 𝒆𝒋(𝝋𝟏+𝝋𝟑), −𝒆𝒋(𝝋𝟏+𝝋𝟐), 𝒆𝒋(𝝋𝟏)
} (1) 

 

Figure 2-4. CCK functionality 

802.11g 

802.11g standard was published in 2003 [55]. The primary difference between 802.11b 

and g resides in the PHY layer. 802.11g supports peak data rate of up to 54Mbps with 

Orthogonal frequency-division multiplexing (OFDM) and 64-QAM modulation. Similar 

to its 802.11b predecessor, 802.11g implements DCF for its MAC layer with few 

differences in timing parameters. Nevertheless, the temporal efficiency effect of DCF is 

more pronounced in 802.11g, resulting in average data rates much lower than the 

standard’s peak data rate. This behavior results from the shorter frame duration of 802.11g, 

compared to 802.11b due to its higher data rate. Temporal efficiency of the various 

standards is discussed in greater details in the following chapters. 

Table 3. 802.11g timing parameters 

Parameter 
Value 

SIFS 10 μs 

DIFS 28μs 

ACK 30 μs 

MPDU size 1500 Byte 

Frame duration 253 μs 

8 bits data 
sequence

Select 
spreading 

code

Find phase 
parameters

DQPSK
Modulator

CCK code
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Orthogonal Frequency Division Multiplexing (OFDM) 

OFDM works by modulating data into multiple narrowband adjacent subcarriers, which 

are orthogonal in nature. Consequently, sidebands of each subcarrier has limited 

interference effect on the other subcarrier. OFDM is characterized by its immunity to 

frequency selective fading, as the channel is divided into narrowband subcarriers that are 

affected individually[56].  

In 802.11g, the 20MHz channel is divided into 52 subcarriers with 312.5 KHz carrier 

spacing. Four subcarriers are used as pilot carriers while the remaining 48 are used as data 

subcarriers. Data subcarriers are then modulated using 64-Quadrature Amplitude 

Modulation (64-QAM) modulation resulting in peak data rate of 54 Mbps when using a 

single spatial stream. OFDM functionality is depicted in Figure 2-5 [57]. The scrambler is 

used to randomize bit streams to eliminate long strings of ‘1’ and ‘0’. Such long sequences 

negatively affect time synchronization at the receiver. The sequences also prevent power 

concentration in a particular narrow frequency band. Convolutional encoding is a type of 

error-correcting code used in the scheme. Inverse Fast Fourier Transform (IFFT) is 

intended to distribute data into different subcarriers. Finally, 64-QAM is a used as a digital 

modulation scheme. 

 

Figure 2-5. OFDM functionality 
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802.11n 

802.11n was introduced in 2009 and enabled data rates of up to 600Mbps [58]. The 

standard implements several enhancements in both PHY and MAC layer. PHY layer 

enhancements include beamforming, channel aggregation, and Multi-Input Multi-Output 

(MIMO) data streams. Beamforming provides the transmitter with the capability of 

tracking a particular receiver by changing the radiated beam shape, thus taking advantage 

of multiple transmitter antennas. This functionality is limited by radio interface 

capabilities, number of antennas, and 802.11n radio chip. Most of today’s common 

802.11n transmitters lack the latter functionality with number of antennas limited to two 

for a transceiver.  

Channel aggregation allows the choice of either 20 MHz or 40 MHz channel. A channel 

of 20MHz is generally chosen in the 2.4 GHz ISM band due to its limited bandwidth of 

80 MHz. MIMO allows for up to 4X4 antennas on the transmitter and receiver sides, 

enabling higher data rates.  

802.11n uses DCF as its MAC layer protocol. Nevertheless, the standard introduces frame 

aggregation as MAC layer enhancements. This functionality leads to the foremost effects 

on spectrum temporal characteristics.  

For testing reported in this work, A-MPDU was used for 802.11n. This enabled a peak 

data rate of 65Mbps for a single spatial stream and 64-QAM modulation type. See Table 

4 for 802.11n timing parameters in the 2.4 GHz ISM band. 
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Table 4. 802.11n timing parameters. 

Parameter 
Value 

SIFS 10 μs 

DIFS 28μs 

RIFS 2 μs 

Block ACK 36 μs 

MPDU size 1500 Byte 

Frame duration 
Variable depending on A-

MPDU size (189 μs – 8.9ms) 

Frame aggregation 

Frame aggregation is introduced in 802.11n, wherein multiple sub-frames can be 

aggregated into one large aggregated frame [59]. The result is a considerable 

improvement in temporal efficiency when compared to earlier standards. However, frame 

aggregation increases the likelihood of interference with other non-802.11 CTs. Also, 

802.11-b and -g terminals sharing the medium could suffer from performance degradation 

resulting from extended 802.11n spectrum occupancy.  

Two types of aggregation schemes are defined in 802.11n:  1) aggregated MAC service 

data unit (A-MSDU) and 2) aggregated MAC protocol data unit (A-MPDU). A-MSDU 

works by aggregating several MSDUs with a single MAC header, a PHY header, and 

frame check sequence (FCS). See Figure 2-6. 

A-MPDU is formed from multiple MPDUs, each having its own MAC header and FCS. 

Each sub-frame has its own FCS and can be retransmitted independently. See Figure 2-7. 

A-MSDU is more efficient, as it is characterized with a lower header-to-payload ratio. 

However, it is also more prone to erroneous environments. 802.11n introduces block ACK, 
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as well, wherein each sub-frame can be acknowledged individually. This allows 

independent retransmission of corrupted frames.  

 

Figure 2-6. Aggregated MAC service data unit  

 

 

Figure 2-7. Aggregated MAC protocol data unit 

802.15.4 ZigBee 

802.15.4 ZigBee is designed as a low power, low data rate technology, making it suitable 

for wireless sensor network (WSN) and wireless medical devices applications [60]. The 

standard supports a data rate of 250 kbps in the ISM band by implementing Direct-

Sequence Spread Spectrum (DSSS) coding and Orthogonal Quadrature Phase-Shift 

Keying (OQPSK) digital modulation. ZigBee technology has a maximum packet size of 

127 bytes, including header, and uses a CSMA/CA for regulating medium access while 

operating in ad hoc mode [61]. 

A simulation using 802.11g/n and 802.15.4 heterogeneous networks MAC layer was 

developed in Matlab. The simulation was intended to validate experimental results 

presented herein. The setup supported multiple nodes so that each node can be configured 

with its own 802.11 or 802.15.4 standard, frame size, and number of aggregated frames. 
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The same simulation was used for a ZigBee adaptive packet size case study, which is 

presented later in this dissertation.  
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 Chapter3: Experimental and Simulation Setup 

This chapter provides a detailed description of both experimental and simulation setups 

implemented in this work. For the experimental setup, 802.11 networks, including their 

equipment and setup, are first described. Second, measurement equipment and their tasks 

are presented. Finally, a description of algorithms implemented to analyze collected data 

is provided. For computer simulation setup, simulation approach and parameters are 

described for both 802.11 and 802.15.4 networks. 

Experimental setup 

The spectrum temporal characterization, empirical modelling and wireless technology 

identification work presented in this dissertation was performed using a proper 

experiments campaign that implemented an energy detection technique. This method can 

be easily applied to any radio interface measuring received signal strength (RSS) values. 

Power measurements were first performed on 802.11 networks using external 

measurement devices. Detected signal was then processed to extract DC values and 

temporal distributions. Next, this data was used to perform empirical modelling of 802.11 

idle time distributions. Extracted distributions were also used in wireless technology 

identification using machine-learning methods. The following subsections detail network 

and measurement equipment and their layout. 

Networks under test 

The experimental setup utilized one-, two-, or three-pair 802.11 networks, each with an 

access point acting as a transmitter (TX) and a station acting as a receiver (RX) positioned 
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at a prefixed separation distance of one meter. Equipment was deployed on wooden tables 

at an elevation of one meter. See Figure 3-1.  

 

Figure 3-1. Example of 802.11 test setup 

Tests were conducted at the University of Oklahoma-Tulsa Wireless and Electromagnetic 

Compliance and Designer (WECAD) center. 802.11 nodes were Mikrotik router boards 

433UAH [62] that were interfaced with a “R52Hn” miniPCI network adapter supporting 

802.11b/g/n networks using Atheros chipsets. See Figure 3-2. 

 

Figure 3-2. Mikrotik 802.11 router boards and miniPCI network adapters 

802.11 networks were each configured to operate using the standards under investigation 

(i.e., 802.11b, 802.11g, and 802.11n). 802.11 transmitters operated using a Unix-based 
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operating system with a graphical user interface capable of controlling all of the 802.11 

chip functionalities. The operating system included test software that was used for 

generating traffic at a particular throughput [63]. Requested throughput values were 

incremented for consecutive tests, starting from low throughput to saturation. Throughput 

increment values were varied based on the 802.11 standard used, number of pairs, and 

the standards combination under test. 

A one-pair 802.11 network was used for first testing stage. Another pair was added to 

second testing stage, and a third pair was included for third testing stage. All pairs were 

configured to use the same 802.11 standard for each homogeneous networks test. The 

following combinations were used for both 2-pair and 3-pair heterogeneous tests: 1) 

802.11_b-g, b-n, and g-n; and 2) 802.11_b-b-g, b-b-n, b-g-g, g-g-n, b-g-n, b-n-n, and g-n-

n. Achieved throughput values and other 802.11 configuration parameters were logged 

for each test.  

Terminals were set to maintain a transmit power of 16dBm for homogeneous networks 

tests. Such transmission power proved to be high, as 802.11 receiver RF front end might 

be saturated and cause instability in the recorded throughput. Consequently, some of the 

homogeneous network tests were repeated until stable throughput was achieved to ensure 

consistent output. To avoid this problem in heterogeneous networks tests, transmission 

power was dropped to 8dBm. This transmission power still ensures a signal to noise ratio 

(SNR) high enough for distances considered in the test setup, making noise effect 

negligible. 
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Measurement setup 

Two NI Vector Signal Analyzers (VSAs) were configured to collect time and frequency 

domain measurements [64]. The used devices are VSA are PXIe-5644R and PXIe-5663 

for time domain and frequency domain measurements, respectively. Both devices were 

running NI LabVIEW software. For frequency domain measurements, a channel width 

of BW=20MHz and resolution bandwidth of RBW=400 kHz was used. Notably, 

frequency domain measurements were used merely for DC comparison and validation of 

the time domain measurements.  

For time domain measurements, the VSA’s local oscillator was pre-tuned to the center 

frequency of channel in use. The selected I/Q rate determine the sampling rate for this 

channel. A 10MS/s rate was used for measurement, and a moving average—served as a 

low pass filter—was implemented to smooth instantaneous power values. Note that the 

smallest time parameter defined in all 802.11b, g and n standards MAC layers is the Short 

Inter-Frame Spacing (SIFS). SIFS for 802.11b, g and n in the 2.4 GHz ISM band is 10µs. 

Assuming a sampling rate four times the Nyquist rate of (2*f), f being the highest 

frequency component in the message signal, a sampling rate of 0.8 MS/s should suffice 

for providing a satisfactory representation of the sampled signal. Time domain 

measurements were used for all analysis and modelling work presented in this 

dissertation. 

VSAs were used to perform spectrum activity measurements of 802.11 networks using 

energy detection method. Two VSAs were deployed adjacent to one another at a prefixed 

distance from 802.11 transmitters. Distance between 802.11 transmitters and VSAs was 
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calibrated so that average power received from all transmitters was equal. Figure 3-3 

shows a graphical representation of the test setup, including separation distances. 

 

Figure 3-3. Graphical representation of test setup with separation dimensions 

Energy detection algorithms 

Two different measurement methods were employed in this research: time domain (TD) 

and frequency domain (FD) [65]. In TD measurement, received power values from a 

specific frequency band were recorded continuously at a predetermined sampling rate. 

VSA swept a set of frequencies, collecting and storing received power values in FD 

measurements.  

Time domain algorithm 

Time domain measurements were conducted at two phases. In phase 1, a VSA was tuned 

to the center frequency of the 802.11 channel under use (e.g., channel 6, 2.437GHz). 

Amplitude values were streamed as data file-to-disk during testing at a sampling rate of 

10MS/s. In phase 2, a time domain algorithm processed collected data to extract DC 

values, active time distributions, and idle time distributions. 

The algorithm commences by extracting the power threshold separating channel active 

and idle times. Next, the program analyzes the entire recording and compares power 
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averages with the found threshold. Power values above the threshold are assigned a ‘1’, 

representing activity; power values below the threshold are assigned a ‘0’, representing 

an inactive channel. Strings of consecutive ‘1’s and ‘0’s are then used to build active and 

idle time distributions. These strings are also used test data to determine duty cycle. 

The time domain analysis algorithm process is depicted in Figure 3-4. The following 

provides a step-by-step description of the algorithm’s process:  

1) Calculate the instantaneous power values. 

2) Smooth the signal, using a moving average algorithm that serves as a low pass filter.  

3) Calculate the power signal threshold by i) determining the power histogram for a set 

of the data recordings, ii) fitting a Gaussian distribution to the lowest power hill in the 

histogram, and iii) setting the threshold to five standard deviations from the peak of the 

lowest power hill to ensure ample separation between 802.11 signal and noise floor 

[66].  

4) Analyze entire data recording by comparing calculated power averages to calculated 

threshold (i.e., ‘1’ represents channel activity and is assigned if the average power value 

is above the threshold; ‘0’ represents channel idle state and is assigned in case average 

power values is below the threshold). As such, data recording is converted to ‘1’s and 

‘0’s, representing active and idle periods. 

6) Calculate consecutive active and idle time durations. 

5) Calculate and save DC value. 
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Figure 3-4. Time domain (TD) algorithm pseudo-code. 

Frequency domain algorithm 

For frequency domain measurements, VSA first scans the medium and measures the 

noise floor. A threshold value at least 5dB above the noise floor is set. VSA then samples 

802.11 frequency channel. Average power value is constantly compared with the 

reference threshold. Given that average power value is above threshold, an activity state 

‘1’ is logged, meaning the channel is occupied/utilized for this particular sample. 

Conversely, if average power value is below threshold, logging a ‘0’ indicates an idle 

time state. Duty cycle indicates the level of channel utilization and is calculated by taking 

the number of ‘1’s over the total number of logged ‘0s’ and ‘1’s (e.g., DC = [‘1s’ / (‘1s’ 

+ ‘0s’)]) for both time and frequency domain measurements [65]. Frequency domain 

measurements aim solely at validating time domain duty cycle readings. 
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Frequency domain DC measurements were conducted in real-time. The algorithm 

process included the following steps:  

1) Set a VSA to sweep the 802.11 frequency channel bandwidth (e.g., 22MHz) under 

test (e.g., channel 6). 

2) Scan the medium and calculate the noise-floor peak power value.  

3) Set the threshold value at least 5dB above the noise-floor to minimize false detection 

and to distinguish signal from noise.  

4) Run the VSA to sweep the selected 802.11 frequency channel.  

5) Compare each power value in every sweep with the reference threshold.  

6) Calculate DC, indicating the level of channel utilization in frequency domain [65] 

by calculating the number of ‘1s’ over the total number of combined ‘0s’ and ‘1s’. 

7) Use cumulative moving average to assimilate DC values calculated in each sweep.  

Figure 3-5 illustrates a pseudo-code of the used frequency domain algorithm.  

 

Figure 3-5. Frequency domain algorithm pseudo-code. 

FD measurements Algorithm 

Input: Spectrum, Bandwidth, Channel-Band, Bin-Size 

Output: Duty-cycle 

Initialization: 

1: Spectrum=2.40~2.48GHz; Bandwidth=80MHz; 

Bin-Size = 100KHz; Channel-Band = 22MHz 

2: Read Power Spectrum 

3: CALC/Set Threshold value 

 

Duty-Cycle: 

1: Read Power Spectrum 

2: for each Power-value in a Channel-Band do 

 if Power-value >= Threshold then 

 Activity-States = +1   

end if 

States-Number = +1 

end for 

3: Duty-cycle = Activity-States / States-Number 
4: do Moving Average Duty-cycle 
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Test methodology 

The following steps describe the testing protocol implemented to collect 

aforementioned measurements of 802.11 networks:  

- A pre-scan for the medium was conducted prior to testing to ensure no 

interference from adjacent buildings in the ISM band and to measure noise floor. 

Noise floor was measured less than -105dBm. An example of measured noise 

floor is depicted in Figure 3-6. 

- 802.11 network terminals were configured on the standard under study (802.11b, 

802.11g and 802.11n), and 802.11 channel 6 was chosen as transmit channel. 

- Starting from low throughput to saturation, pre-defined throughput values were 

incremented in steps for consecutive tests. The increment step was defined based 

on the 802.11 protocol under test. Figure 3-7 and Figure 3-8 depict examples of 

spectrograms for 802.11g 25Mbps and 5Mbps throughputs, respectively. These 

figures illustrate the effect of high throughput vs. low throughput on the spectrum 

occupancy at a high level. As expected, higher throughput leads to higher detected 

power levels for longer times on the spectrum. This results in higher measured DC 

values. A detailed analysis investigating DC levels corresponding to various 

802.11 networks and varying throughput levels is presented in the following 

chapters. 
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Figure 3-6. Noise floor lab measurement. 

- Achieved throughput values and other 802.11 configuration parameters were 

logged for each test. 

- Two NI VSAs were configured to collect and log time-domain and frequency-

domain measurements, as described in previous sections. 
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Figure 3-7. Spectrogram for 802.11g at 25Mbps. 

 

Figure 3-8. Spectrogram for 802.11g at 5Mbps. 
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Simulation setup 

MATLAB simulation was developed for both 802.11g and 802.15.4 ZigBee MAC layer 

transmission. The purpose of these simulations is threefold: 

1) Comparing simulation and experimental measurements achieved DC and 

inactivity distributions for 802.11g networks, as well as highlighting some 

behavior of large 802.11 networks that might be difficult to investigate through 

experimental effort. 

2) Creating an interfering medium to test for 802.15.4 ZigBee packet error rate (PER) 

variation based on 802.11g traffic, highlighting sever effect of 802.11 networks on 

CTs in the ISM band. 

3) Assessing 802.15.4 ZigBee throughput enhancement when implementing variable 

frame size based on 802.11g idle time distributions, which demonstrates possible 

enhancements to CTs performance that might be obtained by 802.11 temporal 

characterization. 

802.11g simulation 

Simulation implements the 802.11 MAC layer, DCF (Distributed Coordination Function), 

in a MATLAB® environment and defines multiple 802.11g nodes that can contend over 

the medium. A node can be either saturated or Poisson. A saturated node has a full frame 

queue at all times, as the name implies. In a Poisson node, frames arrive to the transmission 

queue following a Poisson distribution with average arrival rate of λ. Varying λ results in 

variable achieved throughput values. The following parameters can be controlled in the 
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developed simulation: number of transmitters, frame size, minimum contention window, 

number of back-off stages, and average arrival rate.  

According to current configuration, simulation provides total network throughput, channel 

utilization, idle distribution, probability of collision, per transmitter back-off value, and 

per transmitter back-off stages. Comparing simulation and experimental results is 

beneficial for validating both approaches.  

The following steps describe the 802.11g simulation process: 

- Number of nodes and their types are selected (e.g., Poisson, saturated), and the 

simulation parameters are chosen (e.g., arrival rates for Poisson nodes, contention 

windows sizes). 

- Simulation duration, including warm-up duration, is chosen. 

- The simulation commences. 802.11 measurements are not logged during the 

warm-up period. 

- A node with a packet in its queue attempts to access the medium using DCF 

functionality, described in Chapter 2, with the following three results: 

o Successfully access the medium and perform transmission after waiting for 

randomly selected back-off time and Distributed Inter Frame Spacing 

(DIFS) value. 802.11g first back-off stage consists of 16 values ranging 

from 0 to 15 time slots, where each time slot is 9μs. A transmitting node 

will wait for a DIFS value after an end-of-transmission prior to choosing a 

random back-off value, where DIFS value is 28μs. 

o If the medium becomes occupied with other 802.11 transmissions during 

the back-off period, the 802.11 transmitter waits for those to finish.  
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o If two transmitting nodes choose the same back-off value, a collision will 

occur and packet transmission is rendered unsuccessful. Colliding nodes 

will jump to a higher back-off stage for which the back-off window is 

exponentially larger.  

- The following data is logged for the post warm-up simulation duration, based on 

the 802.11g transmission: 

o Achieved throughput, which might be different from requested throughput 

due to possible medium congestion and collisions, based on the number of 

simulated nodes. 

o Duty cycle. 

o Active and idle time distributions. 

o Medium occupancy durations, which are an array of durations at which the 

medium was occupied with 802.11g transmission for later use in the 

802.15.4 ZigBee simulation. 

 Table 5 provides timing parameters used in 802.11g simulation. 

Table 5. 802.11g simulation parameters values 

Parameter Value 

SIFS 10 μs 

DIFS 28 μs 

Minimum contention window 0 – 144 μs 

ACK 30 μs 

802.11 MPDU size 1500 Byte 

 

The following equations provide parameters contributing to calculated simulation timing 

output. Note that timing outputs apply for both 802.11g and 802.15.4 simulations: 
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o Transmission time = PHY header + MAC header + packet payload + 

SIFS + 2*propagation delay + ACK + DIFS 

o Channel utilization time during Tx = PHY header + MAC header + 

packet payload + ACK 

o Collision time = PHY header + MAC header + packet payload + DIFS + 

propagation delay                

o Channel utilization time during collision = PHY header + MAC header + 

packet payload 

802.15.4 ZigBee simulation   

802.15.4 ZigBee simulation implements 802.15.4 ZigBee MAC mechanism. ZigBee uses 

DCF for distributed medium access with several variations from 802.11. To save energy, 

ZigBee transmitter does not perform carrier sensing while decrementing its back-off 

counter. Thus, it does not freeze the back-off counter in the event of a busy medium. 

Rather, back-off counter is decremented until it reaches the penultimate back-off slot 

where carrier is sensed for the last two time slots. In the event of occupied medium, 

transmission is deferred and ZigBee terminal jumps to a higher back-off stage. In this 

simulation a node can either have frame arrival resulting in a saturated queue or Poisson-

distributed frame arrival with average arrival rate of λ. Note that ZigBee has data rate of 

250Kbps and time slot duration of 320µs. 

Notably, 802.11 nodes perform coherent clear channel assessment wherein they back off 

only to other 802.11 transmitters. 802.15.4 ZigBee nodes perform non-coherent clear 

channel assessment wherein they perform back off merely based on the Received Signal 
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Strength (RSS) value. The purpose of this behavior is to conserve energy. Both coherent 

and non-coherent clear channel assessment methods are described in Chapter 2. 

Developed simulation assesses 802.15.4 ZigBee coexistence in the presence of interfering 

transmission on the same frequency channel (e.g. 802.11 transmissions). The simulation 

utilizes medium occupancy information, which can be obtained from 802.11g simulation 

to determine 802.15.4 ZigBee throughput and probability of collision. It is assumed that 

802.11g is using coherent carrier sensing and, thus, does not back off for ZigBee 

transmission [67]. Also, any collision between ZigBee and 802.11g transmission results 

in a corrupted ZigBee packet.   

The following parameters can be controlled in the developed simulation:  

- Number of transmitters. 

- Minimum contention window. 

- Number of back-off stages. 

- Packet size. 

- Frame arrival rate. 

- Medium occupancy durations.  

Simulation output includes total network throughput, channel utilization, and packet error 

rate. Simulation provides several other parameters unrelated to this work, thus, are not 

described.  
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 Chapter 4: Spectrum Characterization – 802.11 Throughput and Duty 

Cycle  

This chapter presents experimental spectrum occupancy results obtained in this research, 

including DC and throughput for single-pair and multi-pair homogeneous and 

heterogeneous 802.11 networks [68][69]. Experimental and simulation results are 

compared, and then presented in an effort to provide a more detailed analysis of DC results 

and to extrapolate for a higher number of communicating 802.11 terminals. DC 

measurements are validated by comparing time-domain and frequency-domain spectrum 

occupancy results.  

Homogeneous networks DC 

Each of the three standards was assessed individually for a single-pair network. In this 

configuration, an access point acts as a transmitter by sending UDP data at multiple 

throughput values to a station that acts as a receiver.  

Throughput and duty cycle results for one-pair networks 

DC results per throughput for single-pair 802.11b, g, and n networks are shown in Figure 

4-1.  

 

Figure 4-1. 802.11b/g/n single-pair DC vs. throughput. 
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802.11g achieved maximum DC of 67.29% at throughput of 28.1 Mbps. The relatively 

low DC observed for 802.11g results from overhead imposed by DCF standard. In this 

scenario, the transmitter must perform a back-off at each single-data frame transmission.  

802.11b achieves a higher maximum DC of 84.95%, at throughput of 7.1 Mbps. Although 

both 802.11 b and g have similar back-off functionality, 802.11b transmits at the lower 

data rate of 11Mbps, which results in a longer frame duration. Consequently, 802.11b 

records higher DC for a much lower throughput.  

802.11n achieves the highest DC of 97.97% with throughput reaching 56.4 Mbps. High 

DC demonstrated by 802.11n is a direct result of the frame aggregation mechanism 

implemented in the standard, rendering it an extremely time-efficient technology.   

Throughput and duty cycle results for two-pairs networks 

Spectrum occupancy for multiple pairs was investigated next. Figure 4-2 and Figure 4-3 

depict throughput and DC for two-pair 802.11b. Test number labeling used in this chapter 

refers to the standard being investigated, as well as the throughput value (e.g., G05N10 

refers to two pairs: 802.11g with set throughput value of 5Mbit/s and 802.11n with set 

throughput value of 10Mbit/s). Figure 4-2 shows that achieved throughput is divided 

equally among contending pairs when offered traffic for both pairs reaches saturation 

point. 
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Figure 4-2. Set throughput vs. achieved throughput for 802.11b two-pair network. 

 

Figure 4-3. DC results for 802.11b two-pair network. 

Total network throughput reaches 7.8Mbps at saturation, which is slightly higher than the 

one-pair scenario. Recorded DC for two pairs reaches up to 92.26% for saturation. This 

phenomenon is a consequence of a more efficient spectrum use for two pairs. Whenever a 

one-pair transmitter is performing back-off, the second pair has a chance to proceed with 

transmission.  

Results for two-pair 802.11g, including throughput and DC, are shown in Figure 4-4 

and Figure 4-5.  Similar to 802.11b, saturation DC and total achieved throughput recorded 

an increase for two-pair 802.11g. Saturation DC was 77.86%, indicating a 10% increase 

over the single pair. 
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Figure 4-4. Set throughput vs. achieved throughput for 802.11g two-pair network. 

 

Figure 4-5. DC results for 802.11g two-pair network. 

Two-pair spectrum occupancy results for 802.11n are presented in Figure 4-6 and 

Figure 4-7. A marginal increase of less than 1% in DC saturation is observed for two pair 

when compared to a single pair. However, saturation aggregate throughput dropped to 

52.2Mbps. 802.11n initially achieves DC of more than 97% for single-pair scenario. 

Adding more transmitters did not significantly impact temporal efficiency. Nevertheless, 

additional transmitters increased the chances of erroneous transmissions, which in turn led 

to a decrease in total achieved throughput. 
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Figure 4-6. Set throughput vs. achieved throughput for 802.11n two-pair network. 

 

Figure 4-7. DC results for 802.11n two-pair network. 

Throughput and duty cycle results for three-pair networks 

802.11 b, g, and n three-pair spectrum occupancy results are depicted in Figure 4-8 through 

Figure 4-13. Figure 4-9 shows that maximum achievable DC of 92.48% was recorded for 

802.11b, which is comparable to results for two pair. Maximum saturation aggregate 

throughput drops to 7.6Mbps when compared to 7.8Mbps achieved for two pair as can be 

seen in Figure 4-8. 

802.11g three pair achieves maximum DC saturation of 80.65%. The highest aggregate 

throughput for 802.11g was comparable to two pair. 802.11n three-pair DC remains at 

approximately 98% and demonstrates a marginal increase over two pair. Maximum 

achieved throughput dropped to 51.5Mbps.  
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Figure 4-8. Set throughput vs. achieved throughput for 802.11b three-pair network. 

 

Figure 4-9. DC results for 802.11b three-pair network. 

All transmitters achieved their requested throughput for tests characterized as below 

saturation. DC for two pair with a specific aggregate throughput is comparable to DC 

value at the same throughput level for single pair at a difference not exceeding 4%, in 

most scenarios. For example, 802.11g two-pair test with 10Mbps throughput for both 

pair-A and pair-B yielded a DC of 50%, which is comparable to DC of 48.48% achieved 

for single pair with 20Mbps achieved throughput. Another example is 802.11n two pair 

with achieved throughput of 10Mbps for pair-A and 20Mbps for pair-B. This test recorded 

a DC of 69.81%, which is comparable to DC of 65.48% achieved for single pair with 

30Mbps throughput. Similar observations apply when comparing three-pair DC to two-

pair. 
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Figure 4-10. Set throughput vs. achieved throughput for 802.11g three-pair network. 

 

Figure 4-11. DC results for 802.11g three-pair network. 

 

Figure 4-12. Set throughput vs. achieved throughput for 802.11n three-pair network. 

 

Figure 4-13. Set throughput vs. achieved throughput for 802.11n three-pair network. 
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Duty cycle error analysis 

This subsection provides error analysis for DC results obtained from time-domain and 

frequency-domain measurements. Error analysis aims at validating both DC 

measurement techniques. Time-domain DC measurements were obtained via offline 

analysis, while frequency-domain DC measurements were calculated in real-time. Hence, 

this analysis allows the flexibility to choose the technique that provides the best results 

given resources available. Two 6.6 GHz VSAs (NI PXIe-5663E) were tested side by side. 

The primary difference in measurements was an algorithm running on VSA-1 for 

calculating DC in time domain and an algorithm running on VSA-2 for calculating DC 

in frequency domain. Three validation methods were conducted to compare DC 

measurements obtained from each VSA. 

Comparing the mean and Standard Deviation: 

Comparing standard deviation and mean values of time domain and frequency domain 

measurement groups demonstrated identical variation from the mean, which indicates 

statistical confirmation for both groups. See Table 6. Figure 4-14 details a test-by-test 

comparison between DC measurements obtained in time domain and frequency domain. 

Clearly, both approaches achieved similar results. 

Table 6. Comparison between DC Statistics in time domain and frequency domain 

Methodology Number 

of tests 

Mean Standard Deviation 

DC- time domain 128 75.282 24.462 

DC- frequency domain 128 74.983 24.223 

Differences 0.299 0.239 
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Figure 4-14. Comparison between DC measurements in time domain and frequency domain. 

Linear Regression Analysis (LRA): 

Linear Regression Analysis (LRA) was used to model the relationship and correlation 

between TD and FD measurements, as shown in Figure 4-15. Given two equal size sets of 

values; X and Y, LRA fits the group of observations to a line. This line represents the 

“best-fit” line in a sense that the error between real Y values and corresponding predicted 

values using fitted line equation is minimized [70]. Then a value r2 is calculated as a 

measure of linear relationship between X and Y. The r2 is a fraction that assumes a value 

between 0 and 1. It is computed using the following equation: 

r2 =  1 −
SSreg

SStot
 (2) 

Where SSreg represents the sum of deviations between fitted line and (x, y) observations 

and SStot is the sum of deviations between null hypothesis and (x, y) observations [71]. 

Null hypothesis is a horizontal line that passes through the mean of all Y observations. An 

r2 value of 0 means that X provides no information on Y whereas a value of 1 means that 

all (x, y) observations lie on the fitted line perfectly. An r² of 0.9979 was calculated for 
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homogeneous DC tests representing a strong correlation between the two datasets of 

measurements and confirming a trivial difference between the two groups. 

 

Figure 4-15. Linear regression calculated between time domain and frequency domain. 

Root Mean Square Deviation (RMSD): 

Root Mean Square Deviation (RMSD), in other words Root Mean Square Error (RMSE), 

was adopted to find the average difference between the two DC measurement datasets. 

See (3). 

RMSD =  √
∑ (𝑋𝑜𝑏𝑠,𝑖 − 𝑋𝑚𝑜𝑑𝑒𝑙,𝑖)2𝑛

𝑖=1

𝑛
 (3) 

Xobs is the observed value and Xmodel is the modelled value at time/place i. Results indicated 

RMSD = 1.18219, which represents the mean deviation between time-domain and 

frequency-domain DC measurements in terms of percentage (i.e., 1.18219%), which is 

negligible. 

Heterogeneous networks DC 

This section provides spectrum occupancy results, including DC and throughput for mutli-

pair heterogeneous 802.11 networks in the 2.4 GHz ISM band.  
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Throughput and duty cycle results for two-pairs 

The setup included two access points, transmitters (TX),sending UDP data to two stations 

acting as receivers (RX). Various throughput values were set for each node in the 

network, ranging from low throughput to saturation.  

Figure 4-16 depicts set throughput vs. achieved throughput for two heterogeneous pairs. 

One pair was setup as 802.11g, and the other as 802.11n. The figure demonstrates that 

802.11n dominates 802.11g and achieves a much higher percentage of peak data rate than 

802.11g in the scenario of saturation. This behavior is a result of frame aggregation 

implemented in 802.11n. Thus, an 802.11n device will transmit multiple frames after 

accessing the medium, whereas 802.11g releases frequency channel after each single-

frame transmission. Both 802.11 g and n achieve desired throughput when below 

saturation. Figure 4-17 shows measured DC for 802.11gn combination. A maximum DC 

of 97.88% was recorded, which compares to results obtained from 802.11n single pair. 

In addition, total achieved DC for below saturation is comparable to aggregate DC of 

corresponding single pair tests with the same throughput. For example, two-pair tests 

using 10Mbps achieved throughput for both 802.11g, and 802.11n recorded a DC of 

47.1%. This compares to 47.38% aggregate DC for both 802.11g and n single-pair tests 

with 10Mbps achievable throughput.  

Figure 4-18 demonstrates set vs. achieved throughput for 802.11bn. Similar to 802.11gn, 

the transmitter using 802.11n dominates the spectrum, leaving little chance for 802.11b 

communication.  Figure 4-19 depicts DC results with maximum achievable DC of 

98.06%. Results are similar to 802.11g-n for below saturation in that measured DC is 
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comparable to single-pair aggregate DC resulting from the two corresponding tests with 

achieved throughput values equal to the two-pair scenario.  

Set throughput vs. achieved throughput results for 802.11g-b tests are shown in Figure 

4-20. 802.11b achieved a higher percentage of its peak data rate when compared to 

802.11g under saturation. Because of 802.11b lower data rate, its frame duration is much 

longer than that of 802.11g. Consequently, 802.11b occupies the medium for much longer 

durations compared to 802.11g, thus resulting in the higher percentage of achieved 

throughput to peak data rate. Figure 4-21 depicts achieved DC for 802.11g-b test. 

Maximum achieved DC reached 88.17%. This constitutes a slight increase over the 

802.11b single-pair scenario. 

 

Figure 4-16. Set throughput vs. achieved throughput for two heterogeneous pairs: 802.11gn (GN). 

 

 

Figure 4-17. DC value for two heterogeneous pairs: 802.11gn. 
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Figure 4-18. Set throughput vs. achieved throughput for two heterogeneous pairs: 802.11bn (BN). 

 

Figure 4-19. DC value for two heterogeneous pairs: 802.11bn. 

 

Figure 4-20. Set throughput vs. achieved throughput for two heterogeneous pairs: 802.11bg (BG). 

 

Figure 4-21. DC value for two heterogeneous pairs: 802.11bg. 

Throughput and duty cycle results for three-pairs 

In this subsection, spectrum utilization for 802.11b, g, and n three-pair heterogeneous 

networks combinations were investigated. Figure 4-22 and Figure 4-23 depict achieved 
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throughput and measured DC for 802.11b-b-g combination. Pairs A and B operated on 

802.11b, whereas pair C operated on 802.11g. The effect of 802.11b for three pairs on 

802.11g transmitter was similar to two-pair scenario where 802.11g pair achieved only 

5Mbps of the approximately 30Mbps maximum achievable throughput. Two 802.11b 

pairs achieved analogous throughput values of 3.3 and 2.9Mbps. Maximum saturation DC 

of 87.89% was recorded, which is comparable to 802.11bg two-pair scenario. Achieved 

throughput and DC for 802.11g-g-b combination are shown in Figure 4-24 and Figure 

4-25. Although three-pair combinations achieved similar throughput values, 802.11g has 

a peak data rate five times greater than 802.11b. Maximum saturation DC of 87.94% was 

recorded. 

 

Figure 4-22. Set throughput vs. achieved throughput for three heterogeneous pairs: 802.11bbg (BBG). 

 

Figure 4-23. DC value for three heterogeneous pairs, 802.11bbg. 
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Figure 4-24. Set throughput vs. achieved throughput for three heterogeneous pairs: 802.11ggb (GGB). 

 

Figure 4-25. DC value for three heterogeneous pairs: 802.11ggb (GGB). 

Figure 4-26 through Figure 4-29 depict achieved throughput and DC for 802.11bbn and 

802.11nnb combinations. Examining 802.11b and n three-pair combinations, it can be seen 

that 802.11n pairs dominate the spectrum with higher achieved throughput to peak data 

rate. 802.11b pairs were unable to achieve throughput higher than 1.2Mbps for either one 

of the two combinations at saturation. Saturation DC reached 96.21% and 98.65% for 

802.11bbn and 802.11nnb, respectively.  
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Figure 4-26. Set throughput vs. achieved throughput for three heterogeneous pairs: 802.11bbn (BBN). 

 

Figure 4-27. DC value for three heterogeneous pairs: 802.11bbn (BBN). 

 

Figure 4-28. Set throughput vs. achieved throughput for three heterogeneous pairs: 802.11nnb (NNB). 
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Figure 4-29. DC value for two heterogeneous pairs: 802.11nnb (NNB). 

Set throughput vs. achieved throughput and DC results for 802.11ggn and 802.11nng 

combinations are shown in Figure 4-30 through Figure 4-33. 802.11g performed poorly in 

both combinations, which is a similar behavior to 802.11gn two-pair scenario. This is a 

result of 802.11n frame aggregation depriving 802.11g transmitters from frequently 

accessing the medium. This is reflected in achieved DC, which reached up to 97.2%, 

primarily for 802.11n transmissions.  

 

Figure 4-30. Set throughput vs. achieved throughput for three heterogeneous pairs: 802.11ggn (GGN). 

 

Figure 4-31. DC value for three heterogeneous pairs: 802.11ggn (GGN). 
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Figure 4-32. Set throughput vs. achieved throughput for three heterogeneous pairs, 802.11nng (NNG). 

 

Figure 4-33. DC value for three heterogeneous pairs, 802.11nng (NNG). 

Results of 802.11b-g-n combination are presented in Figure 4-34 and Figure 4-35 and 

confirm previous findings. At saturation throughput, 802.11n transmitter scored the 

highest percentage of achieved throughput-to-peak data rate, achieving 60.46% of its peak 

data rate. 802.11b and 802.11g achieved 7.81% and 3.89%, respectively, of their peak data 

rates. 

Duty cycle error analysis 

This subsection provides error analysis for DC results obtained from time-domain and 

frequency-domain measurements. The two aforementioned VSAs were used to collect 

time-domain and frequency-domain measurements. Similar to the homogeneous scenario, 
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the algorithm operating on VSA-1 calculated DC in time domain, and the algorithm 

operating on VSA-2 calculated DC in frequency domain. Three validation methods were 

conducted to compare DC measurements obtained from each VSA. 

 

Figure 4-34. Set throughput vs. achieved throughput for three heterogeneous pairs: 802.11g, 802.11b, and 

802.11n (GBN). 

 

Figure 4-35. DC value for three heterogeneous pairs: 802.11g, 802.11b, and 802.11n (GBN). 

Comparing the mean and Standard Deviation: 

Standard deviation and mean values of time-domain and frequency-domain measurement 

groups show similar values, as shown in Table 7. This suggests that statistically both 

groups have similar distributions.  
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Table 7. Comparison between DC Statistics in time domain and frequency domain 

Methodology Number of tests Mean Standard Deviation 

DC- time domain 343 88.3162 11.97395 

DC- frequency domain 343 87.5784 11.92431 

Differences 0.7378 0.04964 

Figure 4-36 depicts a test-by-test comparison between DC measurements obtained in 

time domain and frequency domain. Both methods achieved similar results. 

 

Figure 4-36. Comparison between DC measurements in time domain and frequency domain. 

Linear Regression Analysis (LRA): 

LRA was also used to model the relationship and estimate the correlation between time-

domain and frequency-domain 802.11 heterogeneous networks measurements, as shown 

in Figure 4-37. The value R²=0.9925 was calculated and represents strong goodness of fit 

(i.e., correlation) between the two dataset measurements. This result confirms a negligible 

difference between the two groups. 
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Root Mean Square Deviation (RMSD): 

RMSD was also used to find the average difference between the two time-domain and 

frequency-domain DC measurements for the heterogeneous 802.11 networks. Results 

provided an RMSD value of 1.37717. As explained earlier, this value represents the mean 

deviation between the measurement sets in percentage. This value is negligible. 

 

Figure 4-37. Linear Regression time domain vs. frequency domain for heterogeneous network. 

Simulation results 

This subsection provides a comparison for DC and throughput results between 

simulation and experimental tests. Figure 4-38 shows DC at incrementing throughput 

values for a single 802.11g node. Although results are nearly identical, experimental 

measurements achieved slightly higher DC than simulation for all throughput values.  
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Figure 4-38. Simulation and experimental DC and throughput comparison for a below saturation 802.11g 

one-pair network. 

Figure 4-39 compares maximum achieved DC and throughput for one, two, and three 

802.11g nodes. Contrary to the “below saturation scenario,” simulation DC for the 

“saturation scenario” was slightly higher than the experimentally measured DC. The most 

significant difference for a single-pair saturation test was 5.63%. Differences did not 

exceed 2.08% for all other saturation and below-saturation tests. All experimental and 

simulation results followed the same trend. 

Saturation results for both experimental and simulation showed that as the number of 

transmitter increases, DC increases. Notably, the rate of DC increase is lower for three pair 

when compared to two pair. Total network throughput increased for two pair, and then 

dropped for three pair and resulted from an increased number of collisions reported in the 

simulation. 
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Figure 4-39. Simulation and experimental DC and throughput comparison for 802.11g one-, two- and 

three- pair saturated networks. 

Figure 4-40 presents extrapolated throughput and DC results for a large number of 

transmitters using 802.11g simulation. Highest achieved throughput was recorded for two 

transmitters. Total throughput starts dropping after populating the network with three or 

more transmitters. Nevertheless, DC continues to increase as the network is populated with 

more transmitters. Rate of increase becomes low when populating the network with more 

transmitters. 
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Figure 4-40. 802.11g simulation extrapolated throughput and DC values for a large number of transmitters 

Aggregated frame size has a significant effect on heterogeneous 802.11 network 

throughput and wireless coexistence, as has been discussed earlier. An experiment was 

conducted using simulation where one 802.11g node was coexisting with nine 802.11n 

nodes. Two 802.11n aggregated frame sizes were used—10 aggregated frames and 42 

aggregated frames.  

Figure 4-41 shows achieved per node throughput. 802.11g node achieves lower throughput 

as the number of 802.11n aggregated frames increases. Nonetheless, all nodes, including 

the nine 802.11n and one 802.11g nodes, have uniform medium access, as can be seen in 

Figure 4-42. Even though the opportunity for medium access is fairly distributed, 802.11g 

nodes send only one frame per medium access whereas 802.11n nodes send multiple 

frames per medium access. This phenomenon deprives 802.11g from medium access for 

longer periods of time and causes sever degradation in 802.11g node performance when 

coexisting in the same vicinity with 802.11n nodes. 
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Figure 4-41. Per transmitter throughput for 802.11g/n shared medium for various numbers of 802.11n 

aggregated frames. 

 

Figure 4-42. Medium access distributions for 802.11g/n shared medium at various numbers of 802.11n 

aggregated frames 
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Conclusion 

This chapter presented a comprehensive study of 802.11b, g and n spectrum occupancy. 

DC and throughput levels were presented and discussed for one, two, and three 

communicating pairs. Both 802.11 homogeneous and heterogeneous networks were 

investigated. Tools developed for time domain and frequency domain were used to obtain 

DC measurements. Error analysis between time domain and frequency domain DC 

measurements was presented, as well. Analyses included four statistical methods for 

confirming equivalence between two methods for obtaining DC measurements. 
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 Chapter 5: Spectrum Characterization – 802.11 Experimental Time 

Distributions 

This chapter provides 802.11 time distribution results obtained from test performed for 

the work presented in this dissertation. Results detail activity and idle time distributions 

for both homogeneous and heterogeneous 802.11 networks in the 2.4 GHz ISM band. 

Distributions were obtained from time domain measurements and represent time 

fragment distributions for active and inactive periods during a specific test. Active periods 

are times during which a channel is occupied with a transmission; idle periods are times 

during which the channel is available. Along with duty cycle (DC) values, these 

distributions provide a detailed analysis of channel traffic patterns. Results for one-, two-

, and three-pair 802.11 networks are presented and discussed below. Details in this 

chapter highlight temporal efficiency of various 802.11 standards, as well as their 

aggressiveness towards other 802.11 standards. Idle time distribution simulation results 

for an 802.11g network are also presented and compared with empirical distribution 

results.   

Homogeneous networks 

This section offers results obtained from homogeneous experimental tests. The 802.11 

channel was populated with networks composed of one-, two-, or three-transceiver pairs. 

Networks were configured to operate on 802.11b, g, or n for any given test.  
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Idle time distributions 

Idle time distribution provides valuable information on channel availability to the CT, 

which can be used to estimate appropriate frame size and time of channel access. The aim 

is to minimize the probability of collision with 802.11 transmissions.  

Various behaviors can be observed in three distinct idle-time duration regions for all idle 

time distributions presented in this work. The first region represents idle-time fragment 

durations equal to or below the SIFS value and corresponds with up to 50% of total idle-

time fragments. They represent inter-frame spacing before ACK transmission. The 

second idle-time region represents the DCF standard minimum contention window. 

Distribution in this region depends on the number of transmitters and offered traffic. It 

also assumes an exponential shape when more than one transmitter utilizes the network. 

Idle-time fragment distribution is uniform when the network is populated with only one 

saturated transmitter. The third idle-time region includes idle-time fragments with 

duration longer than the minimum contention window. Distribution in this region depends 

mainly on offered traffic and throughput distribution between contending transmitters, as 

discussed below.  

Figure 5-1 illustrates one pair idle-time CDFs for 802.11b, g and n. SIFSs account for 

approximately 50% of total idle-time fragments presented. Remaining time fragments are 

distributed between DCF minimum contention window (i.e., second region) and higher 

idle-time durations (i.e., third region), depending on throughput. Time fragments 

resulting from minimum contention window account for a higher percentage of the total 
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idle time for higher throughput. Figure 5-1 also indicates that idle-time fragments in the 

second region are uniformly distributed. This is a direct result of the DCF functionality, 

as discussed earlier. Notably, the second idle-time region for 802.11b is larger than that 

of 802.11g/n, primarily due to the wider minimum contention window of 802.11b with 

32 time slots as compared to 802.11g and n with 16 time slots. 

Regarding the third region, idle-time distribution is primarily dependent on frame arrival 

rate and transmitter queue state. Figure 5-1 shows that 802.11g and n 10Mbps are nearly 

the same for idle-time CDFs, duty cycle, and exhibited behavior. 802.11g and n 20Mbps 

distributions exhibit similar behavior. The reason for the observed similarity is that peak 

data rate for 802.11n is 65Mbps whereas peak data rate for 802.11g is 54Mbps, thus both 

standards will have comparable frame arrival rate for throughput values much lower than 

saturation. CDFs for the two standards diverge at higher throughput values.  

Figure 5-1 also shows that 802.11g saturates at 67% DC at the point where nearly 99% 

of idle-time fragments are either SIFS or back-off values resulting from minimum 

contention window. This means that even with a saturated queue, channel is available 

almost 33% of the time when a single 802.11g pair is occupying the medium. However, 

802.11n saturates at 98% DC resulting from frame aggregation. Hence, the standard is 

extremely time efficient. Time fragments resulting from SIFSs and minimum contention 

window equal approximately 95% of total idle time fragments, given 802.11n saturation. 

802.11b saturates at DC of 85%.   
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Figure 5-1. Idle-time distributions for: a) 802.11b, b) 802.11n and c) 802.11g one pair 

Figure 5-2, Figure 5-3, and Figure 5-4 depict two- and three-pair idle-time CDFs for 

802.11b, g and -n, respectively. Test runs for identical standards with comparable 

throughput were shown to have similar DC. However, idle-time CDFs had dissimilar 

third region patterns, depending on throughput distribution among transmitters. Idle-time 

fragments were found to spread over a wide range of time durations when throughput was 

distributed more equally among transmitters. Nevertheless, idle-time fragments become 

more concentrated around a certain value whenever one transmitter dominates network 

throughput. See dashed curves in the figures below. Idle-time fragments in the second 

region have an exponential distribution when two or more pairs at high throughput value 

occupy the medium when compared with uniform distribution observed for one-pair 

scenario. This scenario is a direct result of the transmitter back-off counter freezing when 

the medium is sensed busy during the transmission of another node. This leads to further 

fragmentation of second region idle-time intervals. 
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Figure 5-2. 802.11b idle time distributions for two and three pairs 

 

Figure 5-3. 802.11g idle time distributions for two and three pairs 
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Figure 5-4. 802.11n idle time distributions for two and three pairs 

Activity distributions 

802.11b, g and n activity distributions for one-, two-, and three-saturation tests are 

depicted in Figure 5-5, Figure 5-6 and Figure 5-7, respectively. Note that these 

distributions are not normalized and that they represent time duration, count of ACK 

frames, and count of data frames. The resulting frame and ACK durations are 

straightforward for both 802.11b and g, as frame size is fixed. Thus, most frame durations 

are fixed around a certain value because they primarily depend on data rate. As for 

802.11n, activity distribution depends on the number of aggregated frames, which is in 

turn is affected by offered traffic, assuming a large enough queue. This behavior is clearly 

demonstrated from activity distributions as 802.11n throughput is increased. See Figure 

5-8 for 802.11n one-pair activity distributions.  
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Figure 5-5. 802.11b saturation activity distributions for one- two- and three pairs 

 

Figure 5-6. 802.11g saturation activity distributions for one- two- and three pairs 

 

Figure 5-7. 802.11n saturation activity distributions for one-  two- and three pairs 
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An interesting observation for all three standards is that the number of detected frames 

and ACKs were larger for two pairs when compared with both the one-pair and the three-

pair cases. The reason for this behavior is the following: 1) for the one-pair case, 

requested throughput is achieved without any risk of collision. However, the spectrum 

resource is not fully utilized due to the DCF procedure; 2) transmitters achieve a more 

efficient use of the frequency spectrum when more data frames are sent with a very low 

potential probability of collision in the two-pair case; 3) given three pair scenario, 

transmitters occasionally send frames at lower data rate due to the increased number of 

errors when compared with two- and one-pair cases. This in turn results in fewer 

transmitted frames per unit time. See table IV for 802.11g/n saturation achieved 

throughput.  

Table 8. 802.11n/g saturation throughput 

standard Number of 

pairs 

Achieved Throughput 

(Mbps) 

802.11g One 28.1 

Two 29.4 

Three 28.3 

802.11n One 56.4 

Two 52.2 

Three 51.5 

 

802.11n one-pair activity CDFs while increasing throughput from 1Mbps to saturation 

are depicted in Figure 5-8. Clearly, the size of aggregated frames becomes larger as 

throughput increases. This in turn leads to a lower number of aggregated frames 

transmitted on the channel after a certain throughput level is achieved. As a result, the 

transmitted frames become larger.  
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Figure 5-8.  802.11n one pair activity distribution 

Heterogeneous networks 

This section presents experimental results of heterogeneous networks tests. Distributions 

include a combination of two- and three-pair tests running different standards where each 

pair can be 802.11b, g or n. Results aid in understanding temporal behavior of mixed 

environments that contain multiple networks operating on different 802.11 standards 

(e.g., apartment buildings and complexes, shopping areas, downtown buildings, and other 

like settings).  

Idle time distributions 

Two- and three-pair heterogeneous idle-time distributions for 802.11g and n (and not 

802.11b) are presented in this chapter to avoid redundancies. 802.11bgn three-pair 

combination results are presented as well. Figure 5-9 shows idle-time CDF for two-pair 

heterogeneous network tests, including an 802.11gn combination. Throughput for each 

transmitter was incremented from low values to saturation. Select representative tests are 

shown in Figure 5-9. Results for two-pair heterogeneous networks idle-time distribution 

were similar to homogeneous networks in that idle-time distributions are divided into 
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three regions. Two tests (see dashed curves in Figure 5-9) demonstrated variable behavior 

when SIFS accounted for less than 50% of total idle-time count. The decrease in SIFS 

percentage resulted from missing ACKs, as indicated by dashed curves in Figure 5-12 

below—802.11g/n activity distributions. 

 

Figure 5-9.  Two pairs heterogeneous networks idle time distribution 

Figure 5-10 depicts idle-time CDFs for three pair 802.11g and n heterogeneous networks, 

including ggn and gnn combinations. Second and third regions merge when there is no 

clear separating margin observed between the two regions. This results from further 

fragmentation of idle-time durations in both regions.  
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Figure 5-10. Three pairs heterogeneous networks idle time distribution 

Figure 5-11 depicts idle time-CDFs for three-pair 802.11bgn combination. The effect of 

802.11b on idle-time distribution is minimal, as both 802.11g and n have smaller minimum 

contention window that results in significantly more frequent medium access. 

Consequently, the second idle-time region appears to be similar to that of 802.11gn two-

pair CDFs. The third-idle time region did not exceed 2000μs of idle time-fragment for 

offered throughput values. This behavior is an outcome of extended spectrum occupancy 

resulting from 802.11b and n traffic. Also, 802.11b and g, lacking frame aggregation 

capability, would likely attempt to access the spectrum at a higher frequency to achieve 

their requested throughput when compared with 802.11n. 
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Figure 5-11. Three pairs bgn heterogeneous networks idle time distribution 

Activity distributions 

Activity-time fragment distributions for heterogeneous networks are of interest, as they 

aid in standard identification through energy detection, which is presented as an 

application in Chapter 8 of this document. Time duration of activity fragments represents 

transmitted frame duration, which is related to frame size, data rate, and frame 

aggregation. Detecting frame duration through energy detection provides an effective 

way for standard identification primarily because it does not require demodulation of 

received frames.  

Figure 5-12 depicts 802.11g/n two-pairs heterogeneous networks activity CDFs for select 

tests. Frames belonging to the two standards can be distinguished by their time duration. 

802.11b and g frame durations are generally fixed due to fixed frame size. A small 

number of these frames might have a specifically longer duration when an 802.11g 

terminal transmits at certain data rate that is lower than 54Mbps.  
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802.11n frame durations are variable and result from frame aggregation, which depends 

upon offered traffic, number of datagrams in the transmitter queue, and queue size. 

Similar behavior can be observed in Figure 5-13 for three pair 802.11b/g/n combination.  

 

Figure 5-12. Two pairs heterogeneous networks activity distribution 

 

Figure 5-13. Three pairs heterogeneous networks activity distribution 
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Simulation results 

This section discusses results obtained from simulation for 802.11g and compares them 

with experimental results. As previously discussed, simulation for an 802.11g network 

was developed for time distribution and DC comparison purposes and to assess possible 

enhancement to technologies coexisting with 802.11 networks in the ISM band. Figure 

5-14 demonstrates similarities between experimental and simulation DC for 802.11g in 

both unsaturated and saturated network.  

By examining CDF idle time in Figure 5-14, one can observe that idle-time distributions 

obtained from the experimental study and the simulation are comparable for saturated 

networks. Notably, dissimilarity becomes evident at time durations equal to or higher 

than the first back-off stage for unsaturated network. This results from the assumption of 

Poisson distributed frame arrival in the simulation, which is explained in more detail 

below. Saturation idle-time fragments result primarily from SIFS and DCF back-off 

durations because the transmitter queue is always saturated. Nevertheless, frame arrival 

to the transmitter queue had a higher impact on idle-time distribution at lower traffic.  

 

Figure 5-14. Simulation vs. experimental idle time distributions   
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In the simulation, frame arrival is modeled using a Poisson distribution, which is a popular 

and typical mathematical tool for modeling frame arrival into queue.  

In presented experiments, Poisson distribution provided accurate results for modeling DC 

experimental measurement, as observed in Chapter 4. Given idle-time distribution, the 

simulation shows a steady increase in frequency for periods longer than the minimum 

contention window. Experimental idle-time distribution exhibits a sudden rise in percent 

of idle time fragments for the aforementioned idle-time region. This rise indicates that 

the specific transmitter application provided a deterministic frame arrival rate at a specific 

value. This phenomenon explains dissimilarity observed in Figure 5-14. Hence, 802.11 

channel traffic patterns in an idle-time region higher than the minimum contention 

window is directly impacted by frame arrival to the queue.  

In summary, traffic patterns are directly affected by both MAC layer standard and the 

queue frame arrival. Results demonstrated that an applied method for assessing traffic 

patterns on a wireless channel is necessary for both wireless coexistence and cognitive 

radio applications. An empirical modelling of 802.11 time distributions would provide a 

mathematical approach to capture realistic 802.11 networks temporal behavior.    

Conclusion 

This chapter presented an extensive temporal characterization of 802.11b, g and n traffic 

patterns. Presented results provided information about active and idle time distribution. 

These distribution illustrated behavior of 802.11 homogeneous and heterogeneous 

networks for one-, two- and pairs. Investigation were performed for throughput ranging 
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from low values to saturation and delivered critical information regarding wireless 

coexistence potential with 802.11 networks in the 2.4GHz ISM band. 
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 Chapter 6: 802.11 Time Distributions Empirical Modeling 

This chapter presents empirical modeling methodology and results for 802.11 

homogeneous and heterogeneous networks. Empirical idle-time distributions obtained 

and discussed in previous chapters were used as a basis for this study. Modeling analysis 

was performed to accurately describe best-fit models for 802.11 empirical idle-time 

distributions. Doing so is essential for determining the appropriate design of wireless 

technologies able to coexist with 802.11 networks. Furthermore, the models serve as a 

foundation for enabling cognitive transmission on the ISM band. Idle-time distributions 

are of special interest, as they can be used to design a superior wireless network and 

improve performance of other coexisting wireless devices. Several approaches can be 

utilized to model idle-time distributions.  

Earlier research focused on passive energy scanning of activity in various bands to build 

traffic pattern distribution and model idle-time distributions. Though this approach is 

valid for licensed bands, such practice is inadequate for the unsilenced ISM band. Traffic 

patterns in the heterogeneous ISM band are random in nature, as they depend on multiple 

parameters such as desired throughput, 802.11 networks combination, and number of 

transmitters in the network. To overcome this limitation, a comprehensive set of 

experiments was designed to encompass a wide variety of 802.11 combinations and 

traffic levels. The experimental setup was presented in Chapter 3 described in earlier 

chapters. Energy detection method was used to sense 802.11 activity and construct idle-

time distributions. Later, idle-time distributions were modeled based on a number of 

mathematical distributions. Two metrics are used to evaluate constructed models. Figure 

6-1 provides an overview of the work flow. A detailed description of the process is 
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provided in the following subsections to help the research community 1) reproduce the 

experiment; and 2) accurately utilize models in future research. 

 

Figure 6-1. Process for analyzing 1.4GHz ISM band 802.11 idle time distributions   

A number of candidate distributions (Exponential, Weibull, Log-Normal, Generalized 

Pareto, and Gamma) are selected and described based on previous literature work 
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empirical 802.11 network idle-time Cumulative Distribution Functions (CDF). Two 

metrics, namely Kullback-Leibler divergence (𝐷𝐾𝐿) and Bhattacharyya distance, are 

described and discussed in the following section. These metrics are used to evaluate 

models with various distributions against 802.11 empirical idle-time distributions. 

Empirical modelling results for a variety of 802.11 combinations are then presented and 

evaluated. Finally, a set of best performing models that describe 802.11 combinations are 

presented.    

Candidate distribution for 802.11 modelling 

This section describes candidate distributions that were identified in a comprehensive 

search of the literature and utilized for empirical modeling reported in this chapter. The 

distributions serve as preliminary candidates to model 802.11 idle-time distributions in 

the ISM band. Table 9 provides notations used for distribution employed in this work. 
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Table 9. Notations 

Notation Description 

1/𝑎 
Exponential distribution rate 

parameter 

𝑐 Scale 

𝑘 Shape 

𝑚 Log mean 

𝑠 Log standard deviation 

𝜃 Threshold parameter 

The following provides a description of corresponding distributions [73]: 

Exponential distribution 

The commonly known Exponential distribution has been widely used for modeling 

various physical phenomena, especially in networking applications. Exponential 

distribution describes the time between consecutive events (i.e., packet arrivals) in a 

Poisson process. Probability Density Function (PDF) and Cumulative Density Function 

(CDF) are given in (4) and (5): 

 
𝑓𝐸(𝑡; 𝑎) =  

1

𝑎
𝑒

− 𝑡
𝑎  (4) 

 
𝐹𝐸(𝑡; 𝑎) = 1 −  𝑒

− 𝑡
𝑎  (5) 

The following equations provide moments of the Exponential distribution: 

 𝐸𝐸(𝑡) = 𝑎 
(6) 

 𝑉𝐸(𝑡) = 𝑎2 
(7) 

Weibull distribution 

Weibull distribution is extensively used in reliability engineering, as well as other 

applications, given its simplicity and adaptability. The distribution is drastically affected 
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by its scale and shape parameters, c and k respectively. The flexibility of Weibull 

distribution is a primary reason for implementation in this investigation, as well as in 

other time-dimension spectrum modeling research reported in literature. The following 

equations provide PDF and CDF of Weibull distribution: 

 
𝑓𝑊(𝑡; 𝑘, 𝑐) =  

𝑘

𝑐
(

𝑡

𝑐
)

𝑘−1

𝑒−(
𝑡
𝑐

)
𝑘

 (8) 

 
𝐹𝑊(𝑡; 𝑘, 𝑐) = 1 −  𝑒−(

𝑡
𝑐

)
𝑘

 (9) 

Moments of Weibull distributions are provided in (10) and (11): 

 
𝐸𝑊(𝑡) = 𝑐. 𝛤 (

1

𝑘
+ 1) (10) 

 
𝑉𝑊(𝑡) = 𝑐2 {𝛤 (

2

𝑘
+ 1) − 𝛤 (

1

𝑘
+ 1)

2

} (11) 

where 𝛤(. ) is the complete Gamma function. 

 Log-normal distribution 

Log-normal distribution corresponding variable is the product of a large number of 

independent and identically distributed (i.i.d), variables. Log-normal distribution is often 

used in wireless communications to describe received power fluctuations around a mean 

value. It has also been used for modelling spectrum occupancy CDFs for various licensed 

frequency bands. The following equations provide PDF and CDF of log-normal 

distribution:  

 
𝑓𝐿𝑁(𝑡; 𝑚, 𝑠) =  

1

𝑡𝑠√2𝜋
𝑒

−
1
2

(
ln 𝑡− 𝑚

𝑠
)

2

 (12) 

 
𝐹𝐿𝑁(𝑡; 𝑚, 𝑠) =

1

2
+

1

2
 𝑒𝑟𝑓 (

𝑙𝑛 𝑡 −  𝑚

𝑠. √2
) (13) 
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Moments of Log-normal distribution provided in (14) and (15): 

 
𝐸𝐿𝑁(𝑡) = 𝑒𝑚+

𝑠2

2  (14) 

 𝑉𝐿𝑁(𝑡) = 𝑒2𝑚+𝑠2
(𝑒𝑠2

− 1) (15) 

Generalized Pareto distribution 

Generalized Pareto distribution is often used to model tails of other distributions. This 

particular distribution is of special interest as it has shown plausible results when used in 

studies reported in literature for spectrum temporal distributions modeling. PDF and CDF 

of Generalized Pareto distribution are provided in the following: 

 

𝑓𝐺𝑃(𝑡; 𝑘, 𝑐, 𝜃) =  
1

𝑐
(1 + 𝑘

(𝑡 − 𝜃)

𝑐
)

−1−
1
𝑘

 (16) 

 

𝐹𝐺𝑃(𝑡; 𝑘, 𝑐, 𝜃) =  1 − (1 + 𝑘
(𝑡 − 𝜃)

𝑐
)

−
1
𝑘

 (17) 

Equations 18 and 19 describe moments of Generalized Pareto distribution: 

 𝐸𝐺𝑃(𝑡) = 𝜃 +
𝑐

1 − 𝑘
 (18) 

 
𝑉𝐺𝑃(𝑡)  =  

𝑐2

(1 − 𝑘)2(1 − 2𝑘)
 (19) 

Gamma distribution 

Gamma distribution is generally used to model the sum of exponentially distributed 

random variables. As such, it has been included in this work as a candidate distribution. 

Gamma distribution has shown favorable results for modeling Terrestrial Trunked Radio 
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(TETRA) idle-time distributions in literature [22]. The following formulas provide PDF 

and CDF of Gamma distribution: 

 
𝑓𝐺(𝑡; 𝑘, 𝑐) =  

1

𝛤(𝑘)𝑐𝑘
𝑡𝑘−1𝑒−

𝑡
𝑐  (20) 

 
𝐹𝐺(𝑡; 𝑘, 𝑐) =  

1

𝛤(𝑘)
𝛾(𝑘,

𝑡

𝑐
) (21) 

where; 𝛾(. ) is the lower incomplete Gamma function. 

Moments of Gamma distribution are described in (22) and (23): 

 𝐸𝐺(𝑡) =  𝑘𝜎 
(22) 

 𝑉𝐺(𝑡) =  𝑘𝜎2 
(23) 

Models evaluation metrics 

This section describes the metrics and methods used to evaluate the obtained 802.11 idle-

time distribution models. Two metrics, namely Kullback-Leibler divergence and 

Bhattacharyya distance, were employed in this research to evaluate idle-time distribution 

models. The following subsections provide a brief description of each metric. 

Kullback-Leibler divergence 

Kullback-Leibler divergence (𝐷𝐾𝐿) represents the relative entropy between two 

distributions [74]. 𝐷𝐾𝐿 is commonly used as a measure to evaluate whether or not a set of 

data follows a particular model. The symmetric 𝐷𝐾𝐿 is described in (24): 

 

𝐷𝐾𝐿
𝑠𝑦𝑚

=  ∑ 𝐹(𝑡𝑛) ln (
𝐹(𝑡𝑛)

𝐺(𝑡𝑛)
)

𝑁

𝑛=1

+ ∑ 𝐺(𝑡𝑛) ln (
𝐺(𝑡𝑛)

𝐹(𝑡𝑛)
)

𝑁

𝑛=1

 (24) 
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where; 𝐹(𝑡𝑛) is the evaluated model and 𝐺(𝑡𝑛) represents idle-time distribution. The 

smaller the 𝐷𝐾𝐿 value is, the more representative the evaluated model of the idle-time 

distribution. 

Bhattacharyya distance 

The Bhattacharyya distance (𝐷𝐵) is used as a measure of divergence between two 

distributions [75]. 𝐷𝐵 is provided in (25): 

 

𝐷𝐵 =  −ln (∑ √𝐹(𝑡𝑛). 𝐺(𝑡𝑛)

𝑁

𝑛=1

) (25) 

In this work, DB evaluates distribution F(tn) with mean μf and standard deviation σf, 

modeling idle-time distribution 𝐺(𝑡𝑛) with mean μ𝑔 and standard deviation σ𝑔 . 𝐷𝐵 can 

alternatively be described using (26): 

 

𝐷𝐵 =  
1

4
ln (

1

4
 (

𝜎𝑓
2

𝜎𝑔
2

+
𝜎𝑔

2

𝜎𝑓
2 + 2)) +

1

4
(

(𝜇𝑓 − 𝜇𝑔)
2

𝜎𝑓
2 + 𝜎𝑔

2
) (26) 

As can be seen from (26), the first term in 𝐷𝐵 represents the separation between the two 

variances belonging to the two distributions 𝐹(𝑡𝑛) and 𝐺(𝑡𝑛). The second term in 𝐷𝐵 

represents the distance between the mean values of the two distributions.  

Generally speaking, 𝐷𝐾𝐿 provides a stronger measure to assess target models when 

compared to 𝐷𝐵, as it evaluates information divergence between two distributions, rather 

than the distance between the two distributions’ moments. Therefore, 𝐷𝐾𝐿 was used to 

provide conclusions in the following section regarding which models best describe 
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802.11 empirical distributions. Nevertheless, both 𝐷𝐵 and 𝐷𝐾𝐿 have been implemented in 

this study for the sake of comparison. 

Empirical modelling results 

This section presents and evaluates idle-time models when compared with corresponding 

empirical distributions for 802.11b, g, and n single- and multi-pair transmissions. Minor 

fluctuation can be observed when examining 𝐷𝐾𝐿 and 𝐷𝐵 for different models at varying 

throughput values. Given a particular 802.11 combination, a single model was shown to 

outperform all other investigated models for most throughput value experiments for a 

corresponding combination.  

Furthermore, it is possible that different 802.11 combinations and various number of pairs 

are best modeled by different distributions. Figure 6-2 to Figure 6-13 provide 802.11n, 

nn, nnn, gn, bn, and bgn combinations models, along with the results of the models 

evaluation metrics serving as examples. These include DB and DKL metrics calculated for 

different distributions modeling empirical idle time CDFs at different throughput values. 

Mean DB and DKL of all throughput values for different 802.11 combinations were shown 

in the figures to highlight various distribution performances. An optimal match between 

a particular distribution and its model is achieve when mean DB and DKL asymptote “0”. 

As mean DB and DKL increase, the investigated model becomes less representative of the 

distribution. In this work, mean DB and DKL are used as relative measures to find 

particular models that best describe empirical distributions compared to others. The 

following notations are used to describe the studied distributions—E: Exponential, W: 

Weibull, LN: Log-Normal, GP: Generalized Pareto, and G: Gamma.   
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Figure 6-2 indicates that, according to DKL divergence metric, Gamma distribution 

outperforms others in describing 802.11n idle-time distribution. Gamma distribution 

ranks second with minimal difference over Log-Normal distribution, according to 

DBdistance. DKL divergence and DB distance metrics provided comparable conclusions 

for most 802.11 combinations. Both metrics are shown in the following graph. Notably, 

the analysis included only 𝐷𝐾𝐿 divergence to avoid unnecessary reiteration. The reason 

for adopting 𝐷𝐾𝐿 divergence was previously discussed in detail.  

 

Figure 6-2. 802.11n models evaluation metrics a) DB for various throughput values a) DKL for various 

throughput values c) Mean DB d) Mean DKL 

Figure 6-3 depicts 802.11n models overlaying their corresponding empirical distribution. 

Clearly, all models diverge from the empirical distribution for very low idle-time 

durations, which correspond to DCF minimum contention window. Note the logarithmic 

scale for idle-time duration in the presented graphs. Shorter idle-time duration 

distributions may be better described with discrete geometric distribution. Nevertheless 

presented models converge to the empirical distribution for higher idle-time duration. A 

more in-depth discussion of this phenomenon is provided later in this section to highlight 
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the significance of longer idle-time duration when compared with shorter durations, as 

well as to emphasize the need for accurate descriptions of their distribution. 

 

Figure 6-3.  802.11n models vs. empirical distribution for different throughput levels 

Figure 6-4 demonstrates that Weibull distribution best describes 802.11nn combination, 

slightly outperforming Gamma and Generalized Pareto distributions. Figure 6-6 shows 
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for the 802.11nnn combination; poorest results were observed for the 802.11gbn 

combination.  

 

Figure 6-4. 802.11nn models evaluation metrics a) DB for various throughput values, b) DKL for various 

throughput values, c) Mean DB d) Mean DKL 
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Figure 6-6. 802.11nnn models evaluation metrics a) DB for various throughput values, b) DKL for various 

throughput values, c) Mean DB d) Mean DKL 

 

Figure 6-7. 802.11nnn models vs. empirical distribution for different throughput levels 

As for heterogeneous 802.11 combinations, Figure 6-8 demonstrates that Generalized 

Pareto outperforms other distributions for 802.11gn combination. See Figure 6-10 and 

Figure 6-12 for 802.11 802.11bn and bgn combinations DKL and DB. Weibull distribution 

provided best results for 802.11bn combination and 802.11ggn combinations. 802.11bgn 

0.6 0.7 0.8 0.9 1

0.2

0.25

0.3

0.35

802.11nnn

Throughput

D
B

 

 
E

W

LN

GP

G

0.6 0.7 0.8 0.9 1
1

1.5

2

2.5

D
K

L

Throughput

 

 E

W

LN

GP

G

E W LN GP G
0

0.05

0.1

0.15

0.2

0.25
M

e
a

n
 D

B

Distribution
E W LN GP G

0

0.5

1

1.5

2

M
e
a
n
 D

K
L

Distribution

(b)(a)

(c) (d)

10
0

10
2

10
4

0

0.2

0.4

0.6

0.8

1

Idle time (us)

C
D

F

(a) Throughput: 0.5767

 

 

Emperical

E

W

LN

GP

G

10
0

10
2

10
4

0

0.2

0.4

0.6

0.8

1

Idle time (us)

C
D

F

(b) Throughput: 0.5767

 

 

Emperical

E

W

LN

GP

G

10
0

10
2

10
4

0

0.2

0.4

0.6

0.8

1

Idle time (us)

C
D

F

(c) Throughput: 0.74369

 

 

Emperical

E

W

LN

GP

G

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

Idle time (us)

C
D

F

(d) Throughput: 1

 

 

Emperical

E

W

LN

GP

G

802.11nnn



106 
 

and 802.11nng combinations were best modeled by a Log-normal distribution. 

Generalized Pareto outperformed the other studied models for all other 802.11 

heterogeneous combinations. Table 10 presents mean DKL for complete distribution 

models corresponding to all studied 802.11 combinations. 

 

Figure 6-8. 802.11gn models evaluation metrics a) DB for various throughput values, b) DKL for various 

throughput values, c) Mean DB d) Mean DKL 
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Figure 6-9. 802.11gn models vs. empirical distribution for different throughput levels 

 

Figure 6-10. 802.11bn models evaluation metrics a) DB for various throughput values, b) DKL for various 

throughput values, c) Mean DB d) Mean DKL 
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Figure 6-11. 802.11bn models vs. empirical distribution for different throughput levels. 

 

Figure 6-12. 802.11gbn models evaluation metrics a) DB for various throughput values, b) DKL for various 

throughput values, c) Mean DB d) Mean DKL 
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Figure 6-13. 802.11gbn models vs. empirical distribution. 

As previously discussed, the models presented were found to diverge from empirical 

distributions for low idle-time durations (i.e., those below DCF minimum contention 

window durations). Presented models converged to their corresponding idle-time 
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Table 10. Complete distibutions emperical modelling DKL results for 802.11 networks 

 Complete distribution DKL 

Exponential Weibull Log-Normal Generalized Pareto Gamma 

802.11b 5.47 3.88 4.13 4.37 3.78 

802.11bb 1.80 1.23 1.44 1.53 1.16 

802.11bbb 3.26 2.47 2.80 2.85 2.37 

802.11g 5.94 5.15 5.23 5.40 5.14 

802.11gg 2.31 1.59 1.70 1.61 1.68 

802.11ggg 2.85 2.74 2.99 2.82 2.78 

802.11n 4.85 4.66 4.81 5.17 4.61 

802.11nn 2.11 1.89 2.11 1.94 1.94 

802.11nnn 1.45 1.43 1.59 1.45 1.46 

802.11bn 7.53 6.99 7.01 7.82 7.01 

802.11gn 9.02 8.24 8.25 6.92 8.31 

802.11gb 7.88 7.60 7.44 5.65 7.68 

802.11bbg 9.10 8.79 8.68 6.12 8.86 

802.11ggb 8.73 8.45 8.32 5.86 8.54 

802.11bbn 8.99 8.30 8.16 7.94 8.40 

802.11nnb 9.01 7.73 7.67 7.59 7.81 

802.11nng 6.47 5.86 5.63 6.52 6.01 

802.11ggn 8.62 7.62 7.69 7.75 7.82 

802.11gbn 8.44 7.79 7.67 8.55 7.85 

2. Larger time durations might be practically used by other coexisting technologies 

to perform transmissions while minimizing collision risk with 802.11 

transmission. Notably, this solution is generally not feasible for lower 802.11 idle-

time durations. For example, an 802.15.4 ZigBee header is 25 bytes long. 
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Considering ZigBee data rate of 250kbps, the header would only require 800µs 

for transmission, which would not be feasible within a DCF time frame.  

Figure 6-14 to Figure 6-17 show idle time models compared with empirical distributions 

for 802.11nnn, bn, gn, and gbn combinations at medium throughput levels. Theses graphs 

represent previously discussed empirical distributions and their corresponding models for 

time durations higher than 0.8 milliseconds with linear idle-time duration axis scale. The 

figures show that there always exists a model that provides satisfactory representation for 

empirical idle-time distributions that correspond to various 802.11 combinations.  

 

Figure 6-14. Above minimum contention window802.11nnn models vs. empirical distribution 

 

Figure 6-15. Above minimum contention window 802.11bn models vs. empirical distribution 
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Figure 6-16. Above minimum contention window 802.11gn models vs. empirical distribution 

 

Figure 6-17. Above minimum contention window 802.11gbn models vs. empirical distribution 
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a wide range of throughput values. Two metrics, Kullback-Leibler divergence and 

Bhattacharyya distance, were employed to evaluate different models and how well they 

describe the actual idle time distributions.  

Results demonstrated that 802.11b and g homogeneous networks are best described using 

Weibull distribution whereas 802.11n networks can be best modeled with Log-normal 

models. Heterogeneous 802.11 networks combinations on the other hand were best 

modeled using Exponential distribution, Log-normal distribution or Generalized Pareto 

distribution depending on the combination. Nevertheless, it was observed that a 

heterogeneous distribution would generally follow a Generalized Pareto distribution 

whenever the medium includes transmission from one or more 802.11n pairs. 
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Table 11 presents mean 𝐷𝐾𝐿for all studied 802.11 combination distributions above 

minimum contention window (i.e., above 0.8ms). This table also provides mathematical 

expressions describing best model for each of the studied 802.11 combinations at a given 

saturation. 

Notably, homogeneous 802.11b and 802.11g for one-, two-, and three-pair combinations 

were best described using Weibull distribution. 802.11n homogeneous combinations are 

best modeled using Log-Normal distribution. 802.11n follows enhanced MAC-layer 

standards implementing frame aggregation, which explains the 802.11n variation from 

both 802.11b and g. With regard to heterogeneous 802.11 networks, all three-pair 

combinations containing 802.11n transmitter are best modeled using Generalized Pareto 

distribution. Two- and three–pair combinations containing only 802.11b and g 

transmitters follow an Exponential distribution. Adding a second 802.11b pair to the 

802.11bg network resulted in a sharper rise in CDF. Idle-time durations are further 

fragmented, and their number is reduced due to a long duration of the 802.11b frame, 

resulting from the standard’s lower data rate. Distribution parameters obtained in this 

work for different homogeneous and heterogeneous networks combinations can be found 

in Appendix I. 

Conclusion 

A comprehensive empirical modelling of 802.11b, g and n homogeneous and 

heterogeneous networks idle time distributions has been presented in this chapter. 

Experimental data was collected for a complete set of 802.11 networks combinations at 
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a wide range of throughput values. Two metrics, Kullback-Leibler divergence and 

Bhattacharyya distance, were employed to evaluate different models and how well they 

describe the actual idle time distributions.  

Results demonstrated that 802.11b and g homogeneous networks are best described using 

Weibull distribution whereas 802.11n networks can be best modeled with Log-normal 

models. Heterogeneous 802.11 networks combinations on the other hand were best 

modeled using Exponential distribution, Log-normal distribution or Generalized Pareto 

distribution depending on the combination. Nevertheless, it was observed that a 

heterogeneous distribution would generally follow a Generalized Pareto distribution 

whenever the medium includes transmission from one or more 802.11n pairs. 
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Table 11. Above minimum contention window emperical modelling for 802.11 networks 

Combination 

Above minimum contention window distribution DKL 

Best Saturation distribution 
Exponential Weibull 

Log-

normal 

Generalized 

Pareto 
Gamma 

802.11b 1.12 0.59 0.58 0.62 0.61 𝐹𝑤(𝑡) = 1 − 𝑒−(
𝑡

70.11
)

0.58

 

802.11bb 0.39 0.14 0.15 0.18 0.16 𝐹𝑤(𝑡) = 1 − 𝑒−(
𝑡

38.47
)

0.63

 

802.11bbb 0.18 0.04 0.06 0.10 0.06 𝐹𝑤(𝑡) = 1 − 𝑒−(
𝑡

45.76
)

0.65

 

802.11g 0.65 0.46 0.46 0.49 0.47 𝐹𝑤(𝑡) = 1 − 𝑒−(
𝑡

58.81
)

0.79

 

802.11gg 0.24 0.12 0.13 0.14 0.12 𝐹𝑤(𝑡) = 1 − 𝑒−(
𝑡

42.77
)

0.96

 

802.11ggg 0.03 0.01 0.01 0.01 0.01 𝐹𝑤(𝑡) = 1 − 𝑒−(
𝑡

43.36
)

0.97

 

802.11n 0.26 0.17 0.16 0.18 0.19 𝐹𝐿𝑁(𝑡) =
1

2
+

1

2
 erf (

ln 𝑡 − 3.58

1.25. √2
) 

802.11nn 0.08 0.05 0.05 0.05 0.06 𝐹𝐿𝑁(𝑡) =
1

2
+

1

2
 erf (

ln 𝑡 −  3.3

1.05. √2
) 

802.11nnn 0.01 0.00 0.00 0.00 0.00 𝐹𝐿𝑁(𝑡) =
1

2
+

1

2
 erf (

ln 𝑡 −  3.22

1.07. √2
) 

802.11bn 2.37 1.80 1.66 1.71 1.92 𝐹𝐿𝑁(𝑡) =
1

2
+

1

2
 erf (

ln 𝑡 −  6.11

2.1. √2
) 

802.11gn 1.45 0.77 0.69 0.21 0.93 𝐹𝐺𝑃(𝑡) =  1 − (1 − 0.57
(𝑡 − 0.5)

68.19
)

1
0.57

 

802.11gb 0.48 0.51 0.53 NA 0.50 𝐹𝐸(𝑡) = 1 − 𝑒
− 𝑡

328.85 

802.11bbg 1.29 1.34 1.35 NA 1.33 𝐹𝐸(𝑡) = 1 − 𝑒
− 𝑡

431.15 

802.11ggb 0.60 0.62 0.64 NA 0.61 𝐹𝐸(𝑡) = 1 − 𝑒
− 𝑡

334.41 

802.11bbn 3.97 3.30 3.02 1.82 3.52 𝐹𝐺𝑃(𝑡) =  1 − (1 − 0.67
(𝑡 − 0.5)

74.85
)

1
0.67

 

802.11nnb 4.85 3.45 3.19 1.94 3.69 𝐹𝐺𝑃(𝑡) =  1 − (1 − 0.16
(𝑡 − 0.5)

149.82
)

1
0.16

 

802.11nng 1.18 0.75 0.55 0.46 1.00 

𝐹𝐺𝑃(𝑡)

=  1 − (1 + 1.81
(𝑡 − 0.5)

26.57
)

−
1

1.81

 

802.11ggn 1.62 0.95 0.73 0.57 1.23 

𝐹𝐺𝑃(𝑡)

=  1 − (1 + 0.96
(𝑡 − 0.5)

26.93
)

−
1

0.96

 

802.11gbn 2.18 1.49 1.32 0.97 1.70 𝐹𝐺𝑃(𝑡) =  1 − (1 − 0.36
(𝑡 − 0.5)

108.03
)

1
0.36
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 Chapter 7: Applications and Case Studies 

Previous chapters have detailed temporal characterization of 802.11 networks in the ISM 

band. This chapter presents two applications of such characterizations: 1) 802.15.4 

ZigBee adaptive packet size, and 2) Wireless standards identification through machine 

learning [76]. Algorithm and measurement methods used to obtain spectrum occupancy; 

802.11 temporal distributions; and the empirical modelling of 802.11 idle time 

distributions are discussed.  

The first application aims at enhancing 802.15.4 ZigBee performance in the presence of 

802.11 interference by adaptively changing 802.15.4 ZigBee packet size to maximize the 

probability of coexistence, and thus duration, based on the mean value of 802.11g idle 

time distribution. Achieved results indicated reduced 802.15.4 ZigBee PER. The second 

application is to blindly differentiate among the various 802.11 standards and identify the 

number of transmitters with transmission range without demodulating 802.11 frames 

transmitted over the medium. This process was achieved constructing 802.11 

distributions using energy detection. Features extracted from these distributions were 

used by machine-learning algorithms to identify wireless networks and terminals. 

Notably, both experimental and simulation setups presented in Chapter 3 are employed 

in the work presented in this chapter to achieve the two aforementioned distributions. 

More details on the developed methodology to construct the applications and the obtained 

results are provided in the following sections. 
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Application 1: 802.15.4 ZigBee adaptive packet size 

This section presents a case study highlighting usability of channel temporal traffic 

pattern occupancy awareness for enhancing performance of wireless technologies 

coexisting with 802.11 networks. 802.15.4 ZigBee, referred to as ZigBee from this point 

forward, was used as an example of ISM band technology coexisting with 802.11g 

network in this application. For the purpose of this proof of concept, ZigBee simulation 

and 802.11g simulation were used. A validation of ZigBee simulation is first discussed, 

and then methodology and results of this application are presented in the following 

subsections. 

802.15.4 ZigBee simulation validation 

A set of experiments was designed and executed to compare ZigBee PER results obtained 

from experimental test to those obtained from simulation.  

Experimental setup included two 802.11g terminals (i.e., a transmitter and a receiver) 

placed equidistant from the ZigBee device under test (DUT), see Figure 7-1. Transmit 

power for 802.11g terminals was set to 16 dBm, and data was exchanged at varying DC—

from low values to saturation. ZigBee RSS was maintained at -70 dBm (±1 dB) for all 

tests to ensure that ZigBee receiver was situated at the edge of its cell with zero percent 

PER [7]. Test runs were performed in a 6.6m x 4m x 3m anechoic chamber to avoid 

unintended interference. For each test run, 1000 ZigBee packets were sent. 

To obtain ZigBee PER through simulation setup, 802.11g activity times were generated 

for one pair 802.11g network. ZigBee simulation was then run, wherein a packet was 

transmitted using the 802.15.4 CSMA/CA scheme. Both 802.11g and 802.15.4 ZigBee 
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simulations are described in greater detail in Chapter 3. ZigBee PER was collected for 

increasing 802.11g DC values.  

1 m

5.9 m

Wi-Fi
Rx

Wi-Fi
Tx

Zigbee
DUT

1 m

 
Figure 7-1. 802.15.4 ZigBee and 802.11g coexistence experimental setup 

A comparison of PER results for both the experimental setup and simulation is provided 

in Figure 7-2. Clearly, simulation PER results are comparable with experimental PER 

results. PER difference was higher for larger DC values; difference in PER did not exceed 

7% for all DC values.  

 
Figure 7-2. 802.15.4 ZigBee PER simulation vs. experimental results 
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Methodology and results 

This subsection offers the methodology for implementing adaptive ZigBee packet size, 

as well as obtained results from this investigation. ZigBee packet size was adaptively 

changed based on 802.11g idle time distribution using simulation setup. Mean 802.11g 

idle time value was calculated for a distribution region higher than the minimum 

contention window (i.e., third idle time distribution region, which was described in 

Chapter 4). ZigBee packet size was set to the immediate integer number of Bytes with 

time duration smaller than calculated 802.11g idle time distribution mean. Simulation 

implemented a worst-case interference scenario (i.e., any overlap between ZigBee and 

802.11 traffic renders a ZigBee packet corrupted).  

802.15.4 ZigBee standard limits maximum ZigBee packet size to 127 Bytes, including a 

25 Byte header. Adaptive packet size was constrained by the standard’s boundaries in this 

work: an upper bound of 127 Bytes and lower bound of 26 Bytes. ZigBee adaptive packet 

size PER and throughput were tracked for increasing 802.11g DC. Results were compared 

to ZigBee fixed packet size PER and throughput. Fixed packet sizes, including headers, 

were 125, 100, 75, and 30 bytes. Table 12 shows calculated adaptive ZigBee packet size 

for various throughput/DC values. 

Table 12. ZigBee adaptive packet sizes 

802.11G DUTY CYCLE (%) 802.11G THROUGHPUT (MBPS) ZIGBEE PACKET SIZE (BYTES) 

2.32 1 127 

7.09 3 127 

11.8 5 80 

16.6 7 58 

21.33 9 47 

26.2 11 39 

30.87 13 34 

35.59 15 30 

39.97 17 27 

44.87 19 26 
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Figure 7-3 and Figure 7-4 show ZigBee PER and throughput, respectively, for both 

adaptive (in black) and fixed packet sizes. Large fixed packet sizes exhibited a high 

throughput for low 802.11g DC and poor performance at high 802.11g DC. In contrast, 

small fixed packet sizes demonstrated poor performance for low 802.11 DC and improved 

performance for high DC. Results indicate a tradeoff between PER and packet payload-

to-header ratio. Large packet sizes perform better at low 802.11g duty cycle due to a high 

ratio of packet payload-to-header, whereas small packet sizes perform better at high 

802.11g DC given that they suffer fewer collisions.  

The adaptive packet size method introduced in this work demonstrates a throughput 

comparable to the highest fixed packet size performance, regardless of 802.11g DC value, 

as shown in Figure 7-3. The method revealed throughput improvement of up to 66% over 

fixed packet size of 30 bytes at low duty cycle of 2.3%. Moreover, the method showed 

significant improvement over fixed packet size of 125 bytes at medium and high 

utilization of channel DC.  

Adaptive ZigBee packet size also showed significant improvement in PER, as shown in 

Figure 7-4. For certain cases adaptive ZigBee packet size resulted in PER drop of up to 

25% when compared to the upper end fixed packet size of 125 Bytes. 



122 
 

 

Figure 7-3.  ZigBee throughput for fixed and adaptive packet sizes 

 

Figure 7-4. ZigBee PER for fixed and adaptive packet sizes 

Application 2: Wireless technology identification through machine learning  

This section presents identification of 802.11 standards and number of transmitters as an 

application of 802.11 temporal characterization. Identification was performed blindly 

using 802.11 idle time and activity distributions obtained via energy detection. Features 

characteristic of different standards and number of transmitters are first extracted from 

802.11 idle time and activity distributions. Features are then input into a trained machine-
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learning algorithm that is responsible for classifying a particular observation into 

corresponding standard and number of transmitters. Wireless technology identification 

enables situational awareness to improve coexistence and reduce interference among the 

devices. Details on the methodology and obtained results for this application are provided 

in the following subsection. 

Methodology 

This subsection details the methodology employed to perform wireless technology 

identification. Presented work is based on an energy detection technique with the 

following three stages: 

Stage 1, Data collection and processing: 

 Simple energy detection scheme is implemented to measure RSS. Collected 

measurements are compared with a pre-set threshold to determine time periods while the 

channel is active (i.e., transmission is detected) or inactive (i.e., channel is idle). Temporal 

characteristics consisting of activity and idle time distributions are then derived by 

constructing histograms of active time periods and idle time periods, respectively. Time 

bin widths used in the histograms were: 1) 1.25μs for idle time periods; and 2) 2.5μs for 

activity periods. Time bin duration was short  enough to accurately capture MAC layer 

temporal characteristics of the protocols under study (i.e., 802.11b/g/n). The lowest 

expected idle time period corresponds to the 802.11g/n MAC SIFS of 10μs, while the 

lowest expected activity period corresponds to 802.11b/g MAC acknowledgment (ACK) 

packet length of 30μs.  
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Stage 2, Feature extraction and data set construction: 

Distinguishing features are extracted from activity and idle time distributions in Stage 2. 

A dataset consisting of features extracted from multiple scans is constructed to train a 

specific classifier, and then to test its accuracy for identifying the wireless technology in 

use. The set of features extracted from each particular energy scan is referred to as an 

observation. A set of multiple observations for different wireless technologies is referred 

to as a dataset. 

Since each wireless standard/technology has a unique MAC and PHY protocol 

implementation, a distinguishable temporal traffic characteristic exist. Temporal traffic 

patterns in this work are described via activity and idle time distributions, which were 

constructed from energy scanning data, as discussed in great detail in Chapter 4. 

Specific features able to differentiate wireless technologies are then extracted from 

aforementioned distributions. A combination of features were used to make an 

identification decision on wireless technologies utilizing the spectrum. A set of features 

was extracted from each distribution for a specific test run representing a single 

observation. Examples of such features include frequency of idle time durations at specific 

distribution regions; distribution mean and its standard deviation; and mean and standard 

deviation of a specific region within the distribution. Observations from multiple test runs 

are then grouped into a single dataset for further analysis.  To clarify, a distribution region 

represents a specific time span in idle time or activity distribution. This time span contains 

information characteristic of a particular wireless technology (e.g., activity time region 

near 111μs representing 802.11b ACK). Frequency of 802.11b ACKs, along with other 
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characterizing features, can be employed to construct the dataset that can be used for 

wireless technology identification.  

A total of 596 tests for 802.11 networks were used to evaluate the proposed method in this 

work. The experimental setup for these tests is discussed in Chapter 3. 802.11 time 

distributions and specific features chosen to identify different 802.11 networks are 

discussed in the following sections. However, these features are not discussed in this 

section to purposefully maintain a generic methodology. Identification of 802.11 networks 

is intended merely as an example of the method’s functionality and presented as such. That 

said, the methodology presented in this work is applicable to different wireless 

technologies. 

Stage3, Wireless technology identification:  

Wireless technology identification is performed in Stage 3 using the scanned frequency 

channel. Figure 7-5 shows the overall structure of Stage 3. The dataset constructed in 

Stage 2 will train a classifier and assess its performance. This dataset is divided into two 

equal subsets—one for training purposes (i.e., training set) and the other to test 

identification accuracy rate (i.e., testing subset). Observations in testing set act as new 

scans for which the wireless device must perform technology identification. Note that 

Increasing the number of features is not associated with proportional increase in 

classification accuracy. On the contrary, additional features might result in poor 

identification accuracy because features from different classes that correspond to different 

technologies might overlap. As such, the classifier training process is iteratively repeated 

using different feature sets to select those that provide best performance. 
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Figure 7-5. Wireless technology identification stage 

Two types of classification techniques, namely naïve Bayes and K-nearest neighbor, were 

investigated in this research to build the classifier. Testing two machine-learning 

techniques aids in examining the classifier effect on the identification accuracy versus the 

extracted feature effect. Though machine-learning is not the focus of this work, a brief 

description is provided to aid in understanding utilized classification methods: 

Naïve Bayes classification method: 

Bayesian Networks or Belief Networks (BN) are hybrid of graph theory and probability 

theory. The aim of learning with BN is to determine structures and conditional 

probabilistic tables that distinguish between nodes via input training data [24, 25]. In a 

Bayesian network implementation, parent nodes (i.e., a class) represent a particular 

802.11 standard or number of transmitters while other nodes (i.e., continuous) represent 

features used to distinguish between classes. When using a Bayesian network for 
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classification purposes, probability of features that are conditional on parents are 

estimated using a training set. These probability functions are then used later to make a 

classification decision using a testing set [26]. This work utilizes a Naïve Bayesian 

classification method, which assumes conditional independence of a feature that is 

conditional on its parents [27]. Thus, probability of a particular 802.11 observation O =

 (𝑓1, 𝑓2, … , 𝑓𝑛)  conditional on class c is given by the following equation: 

𝑝(𝑓1, 𝑓2, … , 𝑓𝑛|𝑐) =  ∏ 𝑝(𝑓𝑘|𝑐)
𝑛

𝑘=1
  (27) 

The probability of a class c given observation O can be obtained by: 

  

𝑝(𝑐|𝑂) =  𝑝(𝑐|𝑓1, 𝑓2, … , 𝑓𝑛) 

                        =  
𝑝(𝑓1, 𝑓2, … , 𝑓𝑛|𝑐)𝑝(𝑐)

𝑝(𝑓1, 𝑓2, … , 𝑓𝑛)
 

           = 
∏ p(fk|c)n

k=1 p(c)

p(f1,f2,…,fn)
  

(28) 

Based on the value of adjacent class probabilities ratio, a classifier will make a decision 

on observation O. Notably, naïve Bayesian assumption of conditional independence of 

parents is inaccurate in most real life applications. However, this condition achieves a 

surprisingly superior performance. The reason being that it utilizes zero-one error 

function, which penalizes according to classification accuracy rather than accuracy of 

probability estimation. This means that given probability estimation is poor and 

classification is accurate, correct functionality is assumed [28]. 
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Naïve Bayes is a simple and widely used algorithm in machine learning based on a strong 

assumption of independence between features and classification. Despite the unrealistic 

assumption of independence, Naïve Bayes is considered plausibly efficient [77]. 

Supervised learning is used for training the algorithm in order to predict a class based on 

accumulated information evidence. Simply put, the algorithm provides a classification 

decision that attempts to select the most probable outcome. Applications of Naïve Bayes 

are diverse and span from image processing [78] and text classification [79] to networking 

[80]. 

K-nearest neighbor classification method: 

k-Nearest Neighbors algorithm (KNN) [81] is a non-parametric classification method 

wherein an algorithm polls neighbors of a data point, and then votes to assign a given class. 

Voting is carried out by weighting neighbor’ contributions. Neighbors that are closer to 

the point of interest will have higher participation than those farther away from the point. 

An obvious drawback of this method is the high dependence on the structure of the dataset. 

KNN has been used to detect anomalies in wireless sensor networks in [82], to perform 

medical data mining in [83], and to implement biometric recognition in [84]. 

Results 

This section details experimental wireless technology identification results obtained for 

802.11 homogeneous and heterogeneous networks. This works attempts to blindly identify 

number of 802.11 transmitters and the transmitters’ wireless technologies using statistical 

information obtained from 802.11 time distributions. Statistical information for a 

particular test run are used as input features for a machine-learning algorithm in an effort 
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to classify the number of wireless technologies and the number of transmitters used for the 

corresponding run.  

Choosing a greater number of features does not necessarily guarantee improved 

identification performance, as aforementioned. Features corresponding to different 

wireless technologies might be strongly overlapping. Thus, adding such features to the 

training/testing datasets will confuse the classifier, as well as reduce the probability of 

accurate classification.  

An example of overlapping features for homogeneous 802.11 technologies is 

depicted in Figure 7-6. Features are extracted from idle time distribution and are 

identified as “total idle time” and “mean of idle time region between 20μs and 180μs.” 

Both exhibit strong overlap between 802.11 observations corresponding to different 

technologies/standards.  

Notably, when “total idle time” was replaced by “mean of idle time region between 20μs 

and 305μs,” as depicted in Figure 7-7, separation between observations corresponding to 

different technologies was enhanced considerably. This feature was extracted from idle 

time distribution, as well. Consequently, including features such as “total idle time” would 

degrade classifier performance.  
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Figure 7-6. Overlapping idle time distribution features 

 
Figure 7-7. Idle time distribution features with improved technology separation 

 

A set of five features extracted from activity distributions was used in the identification 

process, see Table 13. Note that “frequency of occurrence” refers to the number of 

occurrences that a particular fragment was repeated during unit time. 
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Table 13. Features used for wireless standards identification 

Feature Distribution type 

Frequency of occurrences at 111μs Activity 

Frequency of occurrences between 150μs and 200μs Activity 

Frequency of occurrences between 200μs and 300μs Activity 

Frequency of occurrences between 300μs and 500μs Activity 

Frequency of occurrences between 1100μs and 1300μs. Activity 

 

A total of 13 features were used to perform number of transmitters identification, see Table 

14. 

 

Table 14. Features used for number of transmitters’ identification 

Feature Distribution type 

Highest frequency of occurrence Idle time 

2nd highest frequency of occurrence Idle time 

Time duration of 2nd highest frequency of occurrence Idle time 

3rd highest frequency of occurrence Idle time 

Time duration of 3rd highest frequency of occurrence Idle time 

Mean of region extending from 20us to 180us Idle time 

Mean of region extending from 180us to end of distribution Idle time 

Mean of region extending from 20us to 305us  Idle time 

Mean of region extending from 305us to end of distribution Idle time 

Standard deviation of region extending from 20us to 180us  Idle time 

Standard deviation of region two from 180us to end of distribution Idle time 

Most contributing idle time fragment duration to the total idle time Idle time 

Number of fragments at 36us (representing number of 802.11n block 

acknowledgments 

Activity 

Homogeneous 802.11 networks identification 

Technology identification for 802.11 homogeneous networks was performed using a 

dataset of 127 observations at variable throughput divided into training and testing sets. 

Frequency channel was scanned for duration of one minute per observation. One-, two-, 

or three-pair networks exchanged traffic at different throughput levels, ranging from low 

throughput to saturation. At low throughput, recorded channel utilization can be as low 

as 12%, whereas channel utilization can reach up to 98% for 802.11n saturation. 



132 
 

Figure 7-8 depicts identification accuracy obtained from both KNN and Naïve Bayes 

classifiers. An accuracy rate of 96.9% was achieved for homogeneous networks. Figure 

7-9 shows identified observations distribution for naïve Bayes classifier. Only two out of 

63 802.11g observations in the testing set failed correct identification. 

 

Figure 7-8. Homogeneous networks identification accuracy 

 

Figure 7-9. Distribution of identified observations for homogeneous networks 

Number of transmitters’ identification for homogeneous networks via energy detection 

was investigated and presented in this work, as well. An observation was classified as 
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one, two, or three transmitters. Maximum accuracy of 85.71% was achieved when 

directly implementing number of transmitters’ identification to a certain observation. See 

Figure 7-10. 

 

Figure 7-10. Number of transmitters’ identification accuracy 

A two-stage classifier can be implemented wherein a wireless technology/standard is 

identified at first, and then transmitter number is identified.  As a means to enhance 

accuracy, number of transmitter identification was investigated in two stages. The reason 

for this approach is the satisfactory accuracy rate obtained from homogeneous standards 

identification presented earlier.  Per-standard accuracy rates for two stages of transmitter 

identification is depicted in Figure 7-11.  

 
Figure 7-11. Per-standard, two stages, number of transmitters’ identification accuracy 
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Heterogeneous 802.11 networks identification 

This section provides identification results for a combined dataset comprised of both 

homogeneous and heterogeneous 802.11 networks. Heterogeneous 802.11 networks may 

consist of two- or three-pair networks operating on different 802.11 standards. A total of 

469 observations were collected and utilized to construct the dataset. Observations were 

collected at varying throughput values for the following combinations: 

- One-pair: 802.11b, g and n. 

- Two-pair: 802.11bb, gg, nn, bg, bn and gn. 

- Three-pair: 802.11bbb, ggg, nnn, bbg, bbn, ggb, ggn, nnb, nng and bgn. 

Figure 7-12 depicts achieved identification accuracy. An accuracy of up to 85.9% was 

obtained when using a Naïve Bayes classifier. Figure 7-13 shows distribution of identified 

observations over various 802.11 standard combinations.  

 

Figure 7-12. Heterogeneous networks identification accuracy 
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Figure 7-13. Distribution of identified observations for heterogeneous networks 

Figure 7-13 demonstrates that overlap occurred between combinations characterized with 

the same wireless technology. For example, a major overlap was observed between 

802.11n one-pair and two- and three-pair heterogeneous networks with 802.11gn 

combination. The overlap results from temporal parameter similarities between the two 

technologies at low 802.11n throughput values. Whenever 802.11n transmitter aggregates 

two sub-frames, it results in aggregated frame duration comparable to 802.11g frame size.  

Three-pair 802.11bgn combination observations were identified correctly at an accuracy 

rate of 100%. Observations for other combinations composed of two technologies were 

confused with the 802.11bgn combination, although error rate for these cases did not 

exceed 10%.  

Notably, Naïve Bayes classifier outperformed KNN classifier for all reported 

homogeneous and heterogeneous technology identification experiments. KNN classifier 

provided better results than Naïve Bayes only for homogeneous two-stage number of 

transmitter identification. 
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Conclusion 

This chapter presented two applications of 802.11 temporal characterization aimed at 

providing situational awareness to wireless technologies coexisting with 802.11 networks 

and enhancing their performance. Spectrum utilization awareness provides coexisting 

wireless devices with an opportunity to enhance performance. 

An application based on channel-timing parameters was investigated and presented 

wherein an adaptive rather than a fixed 802.15.4 ZigBee packet size was implemented. 

The method demonstrated superior performance over traditional fixed packet size.  

A novel method for wireless technology and number of transmitter identification using 

simple energy detection techniques was researched, as well. The presented method does 

not require demodulation, making its application feasible when using the majority of 

currently used transceivers. Experimental results have been provided to investigate 

applicability of the proposed identification method and to assess its performance. Various 

802.11 homogeneous and heterogeneous wireless networks were utilized in experimental 

assessment. Identification accuracy of up to 96.9% was achieved under homogeneous 

network conditions and up to 85.9% under heterogeneous condition. 
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 Chapter 8: Conclusion and Future Work 

An extensive temporal characterization of 802.11b, g and n spectrum occupancy and 

traffic patterns was presented in this dissertation. Applications that benefit from such 

characterization were introduced and implemented.  

Literature review was provided, including an overview of wireless technologies 

employed in this work. An energy detection methodology free from frame demodulation 

was provided and implemented. Presented results delivered critical information about 

channel utilization in terms of DC, throughput, activity distributions, and idle time 

distributions. 

Comprehensive empirical modelling of 802.11b, g and n networks was also presented in 

this work. Experimental data was collected for a complete set of 802.11 network 

combinations at a wide range of throughput values. Results demonstrated that 802.11b 

and g homogeneous networks are best-described using Weibull distribution; 802.11n 

homogeneous networks are best modeled with Log-Normal models. Heterogeneous 

802.11 network combinations were best-modeled using exponential distribution, Log-

normal distribution, or Generalized Pareto distribution, depending on the combination of 

standards employed. A heterogeneous distribution was found to generally follow a 

Generalized Pareto distribution when the medium included transmission from one or 

more 802.11n pairs. 

Two applications based on channel-timing parameters were also presented and discussed 

in an effort to highlight usability of 802.11 temporal characterization for enhancing 

coexistence in the ISM band. The first application introduced adaptive 802.15.4 ZigBee 
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packet size based on detected 802.11 temporal distributions. ZigBee packet size was 

changed adaptively to reduce interference with an 802.11g network and to take advantage 

of longer idle time durations. The method demonstrated superior performance over 

traditional fixed packet size. 

The second application presented a novel method for wireless technology identification 

using simple energy detection techniques. The presented application enables 

transceivers to identify wireless technology and the number of transmitters using the 

spectrum. Results of identifying 802.11 homogeneous and heterogeneous wireless 

networks were presented to prove the concept. Identification accuracy of up to 96.9% 

was achieved for homogeneous networks; 85.9% accuracy was achieved for 

heterogeneous networks. 

Future work 

Work presented in earlier chapters provided a comprehensive study of 802.11 temporal 

behavior in the 2.4GHz ISM band. The experimental setup was designed to focus on the 

core operational scenarios that would represent a wide range of spectrum temporal 

behavior variations for the investigated networks. Nevertheless, outlier scenarios may 

exist which could introduce changes to the investigated networks behavior. To 

accommodate for such scenarios, topology of the networks being studied in the 

experimental setup can be modified. Notably, when changes to the topology are 

introduced, we may start observing phenomena resulting for both PHY and MAC layers 

rather than only isolated MAC layer effects. Two test topologies, depicted in Figure 8-2 

and Figure 8-3 are proposed as future work. Test setup depicted in Figure 8-1 aims at 

investigating effects of hidden node on the spectrum behavior. It is of interest to observe 
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spectrum occupancy near the hidden node transmitter and receiver and the other 

transmitters in the network. 802.11 networks operate at frequency above 2.4GHz with 

limited transmit power leading to increased levels of attenuation. As such, spectrum 

temporal behavior may prove to be localized and demonstrate different results at either 

communication end. Figure 8-3 depicts a test setup intended for investigating over 

exposed node effects. Similarly, spectrum measurements shall be conducted at both 

802.11 transmitter and receiver to characterize the resulting spectrum temporal behavior. 

Realizing these test setups would obviously require changes to spacing between nodes 

and modification of transmit power for different transmitters to replicate the hidden node 

and exposed node problems. Details of the hidden node and over exposed node problems 

can be found in [85]. Investigating such test scenario is directly achievable using methods 

and tools presented in this dissertation. 

 

Figure 8-2. Proposed hidden node test setup 



140 
 

 

Figure 8-3. Proposed exposed node test setup 

Future work also includes performing a temporal and frequency characterization of 

coexisting wireless technologies in the ISM band. Wireless technology identification 

study can then performed for such wireless technologies similar to the one performed for 

802.11 networks. This helps in providing a holistic view and understanding of the ISM 

band spectrum occupancy. Also, it serves as a step to enable implementation of extensive 

cognitive functionality of coexisting devices in unlicensed bands based on temporal and 

frequency characterization. Such activities help in providing a better wireless devices 

performance and an efficient use of available spectrum. 

Extending these efforts to the 5.9GHz band is proposed as a future work as well. U.S 

Federal Communication Commission has allocated a 75MHz in the 5.9GHz band for 

Directed Short-Range Communications (DSRC). Wireless Access in Vehicular 

Environment (WAVE) is the base communication technology for V2X systems in the 

United States. PHY and MAC layers implementation for Wave is defined in IEEE 
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802.11p [86] and IEEE 1609 [87] standards. Wi-Fi alliance is expected to share this band 

as a secondary user [88]. Efficient use of the band while avoiding interference with V2X 

network shall be investigated. Work presented in this dissertation provides a method for 

characterizing available time and frequency in the 5.9GHz band to enable an improved 

coexistence between  

Also, these efforts can be extended to other unlicensed bands to investigate their spectrum 

occupancy in an effort to increase efficiency of spectrum utilization and improve 

performance of wireless technologies utilizing these spectrum bands.  
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 APPENDIX A 

This appendix provides distributions parameters that were obtained from the empirical 

modelling activities presented in this work. 

Table 15. Homogeneous networks idle time distributions empirical modelling distributions parameters 

Combination Throughput Scale Shape Location Distribution 

8
0

2
.1

1
b

 

0.140845 1151.251 0.31634 NA 

W
ei

b
u

ll 

0.28169 440.6714 0.331248 NA 

0.422535 288.5521 0.352516 NA 

0.56338 216.5685 0.38959 NA 

0.704225 150.3286 0.420093 NA 

0.84507 110.6426 0.457851 NA 

0.985915 80.31762 0.533705 NA 

8
0

2
.1

1
b

b
 

0.25641 454.4337 0.327704 NA 

W
ei

b
u

ll 

0.512821 154.6577 0.36692 NA 

0.769231 91.01028 0.429571 NA 

0.948718 56.419 0.532209 NA 

0.512821 137.558 0.371585 NA 

0.641026 112.3662 0.397244 NA 

0.897436 64.70541 0.486399 NA 

0.948718 54.43224 0.512986 NA 

0.769231 83.78105 0.435607 NA 

0.935897 42.97834 0.587049 NA 

0.948718 45.56229 0.578959 NA 

8
0

2
.1

1
b

b
b

 

0.395257 235.6976 0.358938 NA 

W
ei

b
u

ll 

0.922266 64.30312 0.552894 NA 

0.948617 58.17729 0.595449 NA 

0.948617 59.0059 0.579327 NA 

0.943347 47.31613 0.64903 NA 

0.961792 58.52603 0.57807 NA 

0.988142 45.27752 0.659201 NA 

8
0

2
.1

1
g 

0.177936 296.2906 0.401876 NA 

W
ei

b
u

ll 0.355872 188.0788 0.474716 NA 

0.533808 136.1997 0.545248 NA 

0.711744 94.95738 0.613136 NA 

0.907473 67.13438 0.720941 NA 



149 
 

8
0

2
.1

1
gg

 

0.20202 243.4112 0.420061 NA 

W
ei

b
u

ll 

0.3367 150.9766 0.459805 NA 

0.484848 92.07866 0.522523 NA 

0.673401 80.93936 0.582589 NA 

0.750842 57.12293 0.666552 NA 

0.37037 175.1613 0.4992 NA 

0.673401 87.96291 0.595932 NA 

0.838384 61.70147 0.69289 NA 

0.905724 49.57255 0.775471 NA 

0.538721 119.0187 0.581204 NA 

0.96633 43.87613 0.94169 NA 

0.707071 90.92134 0.645902 NA 

8
0

2
.1

1
gg

g 

0.505051 118.8617 0.524905 NA 

W
ei

b
u

ll 

0.673401 87.09919 0.60096 NA 

0.973064 46.49123 0.928603 NA 

0.96633 46.475 0.933612 NA 

0.841751 63.76732 0.718561 NA 

0.96633 43.60345 0.989488 NA 

0.96633 44.32544 0.975629 NA 

0.962963 43.71256 0.985164 NA 

0.969697 44.02202 0.968904 NA 

0.942761 44.77692 0.95326 NA 

0.912458 51.25997 0.807983 NA 

0.962963 44.60241 0.947918 NA 

0.976431 44.68183 0.951513 NA 

0.986532 43.60212 0.982651 NA 

0.979798 43.47336 0.97884 NA 

0.976431 43.22909 0.984923 NA 

1 44.22538 0.979422 NA 

0.983165 43.74223 0.978745 NA 

0.976431 43.30836 0.969737 NA 

8
0

2
.1

1
n

 

0.177305 2.069346 NA 4.203107 

Lo
g-

n
o

rm
al

 

0.35461 1.592815 NA 3.822592 

0.531915 1.211674 NA 3.534159 

0.707447 1.202277 NA 3.527166 

0.884752 1.204307 NA 3.533672 

8
0

2
.1

1
n

n
 

0.204461 1.945643 NA 4.148856 

Lo
g-

n
o

rm
al

 

0.371747 1.60833 NA 3.732821 

0.557621 1.201955 NA 3.382773 

0.743494 1.056183 NA 3.35401 

0.923792 0.970632 NA 3.410213 



150 
 

0.966543 1.043055 NA 3.324704 

0.390335 1.492385 NA 3.828994 

0.743494 1.007904 NA 3.401058 

0.921933 1.063105 NA 3.344005 

0.979554 1.053032 NA 3.311238 

0.576208 1.109256 NA 3.554679 

0.762082 1.117833 NA 3.554234 

0.901487 1.118302 NA 3.537706 

8
0

2
.1

1
n

n
n

 

0.576699 1.269116 NA 3.318556 

Lo
g-

n
o

rm
al

 

0.743689 1.232356 NA 3.188379 

0.860194 1.171053 NA 3.225668 

0.881553 1.189282 NA 3.195587 

0.850485 1.111687 NA 3.207965 

0.741748 1.189706 NA 3.226072 

0.879612 1.162332 NA 3.201583 

0.885437 1.092253 NA 3.197527 

0.891262 1.124227 NA 3.193137 

0.897087 1.098211 NA 3.200927 

0.838835 1.0693 NA 3.205014 

0.794175 1.082335 NA 3.187564 

0.825243 1.101089 NA 3.19606 

0.928155 1.11306 NA 3.218478 

0.88932 1.086084 NA 3.195579 

0.908738 1.068917 NA 3.211776 

0.757282 1.122891 NA 3.210936 

0.893204 1.112785 NA 3.206724 

0.924272 1.118681 NA 3.208861 

0.88932 1.098844 NA 3.223486 

0.926214 1.210991 NA 3.211035 

0.902913 1.140704 NA 3.222747 

0.92233 1.097092 NA 3.186204 

0.961165 1.104124 NA 3.18189 

0.912621 1.060313 NA 3.20389 

0.873786 1.083727 NA 3.192075 

0.906796 1.058571 NA 3.187935 

0.935922 1.063335 NA 3.200623 

0.897087 1.095473 NA 3.188811 

0.92233 1.070957 NA 3.176276 

0.933981 1.103175 NA 3.185043 

0.953398 1.13054 NA 3.203061 

0.945631 1.12596 NA 3.198065 



151 
 

0.920388 1.126939 NA 3.193299 

0.947573 1.113638 NA 3.184497 

 

 

Table 16. Heterogeneous networks idle time distributions empirical modelling distributions parameters 

Combination Throughput Scale Shape Location Mean Distribution 

8
0

2
.1

1
b

n
 

0.272682 1.10298 0 4.656476 0 

Lo
g-

n
o

rm
al

 

0.520575 1.069559 0 4.618012 0 

0.76351 1.295357 0 4.757562 0 

0.979177 1.908868 0 5.704975 0 

1 2.113918 0 6.109859 0 

0.366882 1.333006 0 5.227343 0 

0.547843 1.44634 0 5.363297 0 

0.783342 1.653392 0 5.498698 0 

0.884978 1.845906 0 5.751182 0 

0.840357 1.939403 0 5.778878 0 

0.371839 1.326488 0 5.231814 0 

0.540407 1.447206 0 5.356055 0 

0.701537 1.508741 0 5.405192 0 

0.946951 1.913603 0 5.810937 0 

8
0

2
.1

1
gn

 

0.285714 52.27314 -0.34669 0.5 0 

G
en

er
al

iz
ed

 P
ar

et
o

 

0.47619 52.9427 -0.33988 0.5 0 

0.666667 132.3694 -0.27529 0.5 0 

0.853333 167.4889 -0.03088 0.5 0 

0.952381 79.08634 -0.49533 0.5 0 

0.380952 58.46963 -0.49444 0.5 0 

0.571429 47.67757 -0.25662 0.5 0 

0.739048 37.33339 0.33333 0.5 0 

0.845714 27.90672 0.814537 0.5 0 

0.99619 70.99381 -0.57591 0.5 0 

0.502857 72.43361 -0.46505 0.5 0 

0.620952 73.51602 -0.17785 0.5 0 

0.75619 46.95976 0.132992 0.5 0 

0.857143 40.27006 0.485429 0.5 0 

0.980952 73.88522 -0.50547 0.5 0 

0.51619 58.16333 -0.37951 0.5 0 

0.6 45.64311 -0.13294 0.5 0 

0.739048 135.7636 -0.1678 0.5 0 

0.851429 28.60806 0.775861 0.5 0 

8
0

2
.1 1
g b
 

0.242915 0 0 0 240.6198 Ex
p

o
n

en
t

ia
l 
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0.445344 0 0 0 408.0854 

0.850202 0 0 0 445.5406 

1 0 0 0 197.1214 

0.404858 0 0 0 331.6408 

0.607287 0 0 0 341.6722 

0.615385 0 0 0 172.9214 

0.611336 0 0 0 336.0893 

0.453441 0 0 0 329.7796 

0.59919 0 0 0 169.3101 

0.623482 0 0 0 329.5189 

 


