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Abstract 

 
The Institute of Electrical and Electronics Engineers (IEEE) 802.15.4 

standard presents a very useful technology for implementing low-cost, low-power, 

wireless sensor networks. Its main focus, which is to applications requiring simple 

wireless connectivity with relaxed throughout and latency requirements, makes it 

suitable for connecting devices that have not been networked, such as industrial 

and control instrumentation equipments, agricultural equipments, vehicular 

equipments, and home appliances. Its usage of the license-free 2.4 GHz frequency 

band makes the technique successful for fast and worldwide market deployments. 

However, concerns about interference have arisen due to the presence of other 

wireless technologies using the same spectrum. Although the IEEE 802.15.4 

standard has provided some mechanisms, to enhance capability to coexist with 

other wireless devices operating on the same frequency band, including Carrier 

Sensor Multiple Access (CSMA), Clear Channel Assessment (CCA), channel 

alignment, and low duty cycle, it is essential to design and implement adjustable 

mechanisms for an IEEE 802.15.4 based system integrated into a practical 

application to deal with interference which changes randomly over time. Among 

the potential interfering systems (Wi-Fi, Bluetooth, cordless phones, microwave 

ovens, wireless headsets, etc) which work on the same Industrial, Scientific, and 

Medical (ISM) frequency band, Wi-Fi systems (IEEE 802.11 technique) have 

attracted most concerns because of their high transmission power and large 

deployment in both residential and office environments. 

This thesis aims to propose a methodology for IEEE 802.15.4 wireless 

systems to adopt proper adjustment in order to mitigate the effect of interference 

caused by IEEE 802.11 systems through energy detection, channel agility and data 

recovery. The contribution of this thesis consists of five parts. Firstly, a strategy is 

proposed to enable IEEE 802.15.4 systems to maintain normal communications 



0 

 

- ii - 

using the means of consecutive transmissions, when the system’s default 

mechanism of retransmission is insufficient to ensure successful rate due to the 

occurrence of Wi-Fi interference. Secondly, a novel strategy is proposed to use a 

feasible way for IEEE 802.15.4 systems to estimate the interference pattern, and 

accordingly adjust system parameters for the purpose of achieving optimized 

communication effectiveness during time of interference without relying on 

hardware changes and IEEE 802.15.4 protocol modifications. Thirdly, a data 

recovery mechanism is proposed for transport control to be applied for recovering 

lost data by associating with the proposed strategies to ensure the data integrity 

when IEEE 802.15.4 systems are suffering from interference. Fourthly, a practical 

case is studied to discuss how to design a sustainable system for home automation 

application constructed on the basis of IEEE 802.15.4 technique. Finally, a 

comprehensive design is proposed to enable the implementation of an interference 

mitigation strategy for IEEE 802.15.4 based ad hoc WSNs within a structure of 

building fire safety monitoring system. 

The proposed strategies and system designs are demonstrated mainly 

through theoretical analysis and experimental tests. The results obtained from the 

experimental tests have verified that the interference caused by an IEEE 802.11 

system on an IEEE 802.15.4 system can be effectively mitigated through adjusting 

IEEE 802.15.4 system’s parameters cooperating with interference pattern 

estimation. The proposed methods are suitable to be integrated into a system-level 

solution for an IEEE 802.15.4 system to deal with interference, which is also 

applicable to those wireless systems facing similar interference issues to enable 

the development of efficient mitigation strategies. 

 Keywords: WSN, Wi-Fi, Interference, Mitigation, Energy Detection, 

Home Automation, Building Monitoring. 
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Chapter 1 Introduction 
 

 

 

1.1 Background to the Research 

Over the last few years, the convenience that the capability of being able 

to connect devices without the use of wires has led to the increasing take-up of 

wireless technologies by the consumer goods industry (Willig et al., 2005). 

Primary wireless technologies which have been widely accepted for serving 

people in daily life include cellular phone, IEEE 802.11 networks (Wi-Fi), ZigBee 

(IEEE 802.15.4), Bluetooth (IEEE 802.15.1), Ultra-Wide Band (UWB), and Radio 

Frequency Identification (RFID) (Webb, 2007). If users need to connect to a 

network by physical cables, their movement is drastically restricted. Wireless 

connectivity suffers from no such restriction and provides significantly more 

freedom of movement for network users. Meanwhile, wireless networks can offer 

several advantages over wired networks, including ease and speed of deployment, 

flexibility, and installation cost (Gast, 2002). 

The development of wireless networking has increased significantly 

because of the increasing exchange of data in services such as the Internet, e-mail 

and data file transfer. The capabilities needed to deliver such services are 

characterized by an increasing need for data throughput (Gutierrez et al., 2003). 

However, the emergence of an “intelligent ubiquitous environment” has added a 

new concept to the development of wireless networking over recent years. The 

term “ubiquitous” means that the network computation has been extensively 

expanded and absorbed into the everyday living space, where computers integrate 
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seamlessly into the background environment to assist and provide services for 

users (Gill, 2009).  

Wireless Sensor Networks (WSNs) provide an emerging research area for 

studying “ubiquitous computing environments”. Applications for WSNs can be 

found in industrial automation, agricultural, vehicular, residential, medical 

sensors, and actuators that have more relaxed data throughput requirements 

(Howitt and Gutierrez, 2003). WSNs utilize micro wireless sensor nodes to enable 

information sharing in the same network by monitoring their surrounding 

environment. Like any sentient organism, ubiquitous computing environments 

rely first and foremost on sensory data from the real world (Lewis, 2004). 

Therefore the sensory data in WSNs normally comes from multiple sensors of 

different modalities in distributed locations, and relies on wireless transfer. Due to 

the characteristic of wireless communication, the wireless signals, which actually 

carry the content of sensor information, will be open while they are being 

transmitted. It is therefore common for WSNs’ communication to be interfered 

with by unexpected wireless interference. To achieve reliable transmission in 

WSNs, the design of anti-interference measures must be given special 

consideration while the development of the relevant system is in progress. 

The work outlined in this thesis primarily focuses on interference analysis 

and the development of mitigation strategies for IEEE 802.15.4 (IEEE 

Std802.15.4-2003, 2003) based WSNs. The implementation of WSNs does not 

specify the application of a specific protocol. Therefore, many WSN protocols 

have been proposed and are available in the literature (Demirkol et al., 2006).  To 

design an efficient medium access control (MAC) protocol, the following 

attributes should be considered: energy efficiency, scalability, fairness, latency, 

throughput and bandwidth utilization (Ye et al., 2002).  The IEEE 802.15.4 

standard is one example of a wireless communication protocol designed to 

achieve ultra-low complexity, cost, and power consumption for low data rate 

wireless connectivity between low cost fixed devices (Lu et al., 2004). It has been 

widely adopted by various industries to develop “ubiquitous” applications since 

the standard is open and has excellent compatibility ensured by the Institute of 

Electrical and Electronics Engineers (IEEE) (Zheng and Lee, 2004). 
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1.2 Wireless Interference in IEEE 802.15.4 Based 

WSNs 

IEEE 802.15.4 devices are designed to operate in the 2.4 GHz license-free 

frequency band for industrial, scientific and medical (ISM) use, which makes it 

widely acceptable in most countries. The ideal applications suitable for use with 

the IEEE 802.15.4 standard include industrial control and monitoring, asset and 

inventory tracking, intelligent home automation, and security. The IEEE 802.15.4 

standards can be configured to allow multiple hops to route messages from any 

device to any other device on the network, or an IEEE 802.15.4 ad hoc network 

can be constructed on the basis of a peer-to-peer topology. The standard is 

applicable for large-scale deployment. Due to the wide popularity of wireless 

products, it is important for designers of IEEE 802.15.4 applications to consider 

interference caused by other systems employing different wireless technologies 

but working in the same frequency band (Won et al., 2005).  

Since the 2.4 GHz ISM band has become particularly popular over the last 

few years, more and more commercial wireless products choose to operate in this 

band (ZigBee Alliance, 2007). A short list of possible users which might have 

effect on IEEE 802.15.4 networks includes 802.11b/g/n networks, Bluetooth Pico-

Nets, Cordless Phones, Home Monitoring Cameras, Microwave ovens, etc 

(ZigBee Alliance, 2007). Among these potential interferers, the IEEE 802.11 b/g/n 

networks are the typical wireless systems that cause interference on IEEE 

802.15.4 device operations. Primary research on the interference on IEEE 802.l5.4 

systems has been carried out, and the relevant results are stated in the literature 

(Petrova et al., 2006; Shin et al., 2007; Yuan et al., 2007). The IEEE 802.11b 

standard is the most frequently mentioned interferer in the interference studies, as 

it is one of the earliest published industry standards and commercialized 

techniques working in the 2.4 GHz band (IEEE Std802.11b-1999, 2003). The 

IEEE 802.11b standard is designed for extending the coverage of the local area 

network. The deployment of wireless networks conforming to the IEEE 802.11b 

standard has experienced immense growth in recent years and become the most 

widespread systems in the 2.4 GHz ISM band (Mishra et al., 2003). IEEE 802.11b 



0 

 

- 4 - 

compliant networks are often deployed to provide service for Internet access and 

multimedia applications. Typically, multiple IEEE 802.11b access pointes are 

deployed to construct a widely connected network for users roaming around the 

desired area. In the deployment of IEEE 802.15.4 ad hoc networks for large scale 

applications, e.g. environment monitoring or building lighting system, the IEEE 

802.15.4 network communications relying on multi-hop transmission frequently 

need to cross part of, or the whole target area (Wheeler, 2007). If both IEEE 

802.11b and IEEE 802.15.4 networks are deployed within the same area, 

interference will not be avoidable when they are in close proximity (Won et al., 

2005).  

The direct consequences of wireless interference are intermittent network 

connectivity, packet loss and low network throughput. The root causes can be 

classified into two broad categories: static and dynamic. The static causes mainly 

include relative location between the interferer and WSNs, transmission power, 

frequency, modulation, etc. The dynamic causes relate to factors, which cannot be 

anticipated at network design time, e.g. interferers temporarily emerge whilst 

WSNs are in operation (Mus˘aloiu-E et al., 2008).  

1.3 Research Challenges 

The research in this thesis investigates the effects of wireless interference 

on the operations of WSNs. The IEEE 802.15.4 standard and IEEE 802.11b 

standard are chosen for research to construct the WSNs and act as wireless 

interferer respectively.  The fact that wireless medium for communication is 

vulnerable to external interference presents a challenge to wireless system 

interference study. The level of interference is in general determined by the 

following factors of interference duration, interference density, and interference 

pattern which are difficult to predict in advance. In particular, the use of multi-hop 

transmission for IEEE 802.15.4 ad hoc network has a significant chance of being 

affected by interference, since the unsuccessful establishment of a communication 

link between any two hops can result in overall data transmission failure. 

Additionally, WNSs are resource limited and as such do not have sufficient 

hardware computation capability to implement complex anti-interference 
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algorithm, unlike more relatively powerful wireless systems, such as dynamic 

modulation switching in IEEE 802.11b devices (Heusse et al., 2003). 

1.4 Motivation for the Research 

As discussed, the use of WSNs extends people’s sensing capability by 

pushing the concept of the “intelligent ubiquitous environment” in the real world. 

In order to successfully implement the operations of WSNs, the associated 

interference challenges, which might affect the communication infrastructure of 

the WSNs, must be addressed. Additionally, in the field of interference study in 

WSNs, most existing research output has focused on analytical studies, whereas 

system-level solutions are relatively infrequent.  There remains a considerable 

demand for knowledge transfer in order to fill the gap between academic research 

and practical applications. The approach adopted in this thesis is to evaluate the 

effect of interference on IEEE 802.15.4 based WSNs, and then extend the 

knowledge obtained into practical applications in order to improve any developed 

system’s performance under interference. 

1.5 Research Objectives and Contributions 

1.5.1 Research Objectives  

The research objectives of this study are listed as follows: 

• Investigate the existing literature available on IEEE 802.15.4 based WSNs 

and the associated interference analysis. 

• Carry out research of the relevant literature on anti-interference measure 

for WSNs to obtain a better understanding of how to design effective 

strategies, and make further improvement. 
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• Propose and evaluate approaches for enhancing the capability of IEEE 

802.15.4 based WSNs to be maintainable and operable when being 

affected by unexpected interference. In particular: 

o Propose network communication models for IEEE 802.15.4 based 

WSNs using star topology and peer-to-peer topology, and evaluate 

the models to obtain the benchmark of the system.  

o Propose interference models according to different interference 

scenarios to present the interactions between IEEE 802.15.4 

network operations and IEEE 802.11b interference activity, mainly 

in order to address the issues which require consideration when 

designing IEEE 802.15.4 based WSNs and obtain the benchmark 

of interference effectiveness.  

o Propose a strategy to enhance IEEE 802.15.4 based WSNs network 

connectivity while suffering interference. 

o Propose a strategy to enable intelligent interference judgment for 

IEEE 802.15.4 based WSNs while suffering interference. 

o Propose a feasible mechanism to achieve reliable transmission and 

support data recovery in IEEE 802.15.4 based WSNs. 

o Evaluate the effectiveness of the proposed strategies by comparing 

with the benchmark obtained by interference models within the 

laboratory environment. 

o Evaluate the effectiveness of the proposed strategies by integrating 

them into typical applications and testing in a practical 

environment. 
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1.5.2 Contributions of the Research 

This thesis aims to develop a methodology for IEEE 802.15.4 based WSNs 

to make correct adjustments through energy detection, channel agility and data 

recovery in order to avoid or mitigate the effect of interference, especially 

interference from IEEE 802.11 systems. The contribution of this thesis consists of 

five parts. Firstly, a method is proposed to enable an IEEE 802.15.4 system to 

maintain normal communications by using the process of consecutive 

transmissions when the system’s default mechanism is insufficient to ensure 

successful transmission rates during a period of IEEE 802.11 interference. Most of 

the related work proposes a channel switch when the current IEEE 802.15.4 

communication channel is suffering interference. There are some non-overlapping 

channel settings, which exist for IEEE 802.15.4 system and IEEE 802.11 system, 

and channel switching to such a channel can obviously reduce the interference 

effect from an IEEE 802.11 system. However, it is still possible that all the 

defined communication channels in the IEEE 802.15.4 standard have been 

affected by multiple IEEE 802.11 networks, which means that such a simple 

mechanism of channel switching will be ineffective. Therefore, it is crucial to 

develop a method that can help WSNs maintain acceptable network connectivity 

under such circumstances without frequent channel switching.  

Secondly, a novel strategy is proposed for an IEEE 802.15.4 system to 

estimate the interference pattern, and accordingly adjust system parameters for the 

purpose of achieving optimised communication effectiveness during a period of 

interference. The strategy is feasible to implement, and requires neither hardware 

changes nor IEEE 802.15.4 protocol modification. In the study of interference, 

very few researchers emphasise interference pattern research, as typically the 

interfering signal is unknown to the victim, i.e. IEEE 802.15.4 system. However, 

by properly setting energy detection periods, the IEEE 802.15.4 device can sense 

the pattern of interference to a certain degree and further adjustment can be made 

on the basis of the interference information obtained. 

Thirdly, a hardware based reliable multi-hop transmission strategy is 

proposed. Since the deployment of IEEE 802.15.4 based WSNs may cover a 
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relatively large area, the adoption of multi-hop transmission within such an ad hoc 

network is necessary (Krishnamurthy and Sazonov, 2008).  Most WSN protocols, 

which includes IEEE 802.15.4 standard, only define the use of the physical layer 

(PHY) and medium access control (MAC) layer. The definition for network layer 

and transport layer are normally not specified due to limited computation resource 

carried by WSN nodes. Once some wireless communication links which have 

been established between WSN nodes suffer interference, the final data integrity 

will be affected due to the lack of higher layer supports. By adding additional 

control methods, and building up redundancy in the IEEE 802.15.4 based WSNs, 

the interference effect can be limited, and the lost data can be recovered as much 

as possible. 

The fourth contribution is an application design for integrating an IEEE 

802.15.4 based WSN into a home automation system. The use of WSN in home 

automation is mainly for providing environmental data, e.g. temperature, 

humidity, light, in order to develop a “smart house”. The IEEE 802.15.4 technique 

is suitable for establishing such a network since it was particularly developed for 

executing such low cost, and low complexity sensing tasks. However, the WSN 

operations can possibly be affected by other powerful wireless systems or signals 

working in the same frequency band, especially the IEEE 802.11b system, since 

many home users are using this system for their Wi-Fi broadband. The system 

designed for this home automation application emphasises the use of consecutive 

retransmission and channel switching to achieve the data provision for a home 

controller to ensure the desired home management. 

The fifth contribution presents a complete analysis and complete system 

design for an IEEE 802.15.4 based safety-monitoring system in the building 

environment. The use of WSN in a building environment needs to consider more 

issues, which includes static WSN deployment, dynamic interference issue, etc. 

The designed system has been tested and successfully implemented in a relevant 

research project. 
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1.6 Organization of the Thesis 

The structure of this thesis is as follows: Chapter 2 reviews the IEEE 

802.15.4 based WSNs and the types of interference that can affect the operations 

of the IEEE 802.15.4 networks. Chapter 3 gives a detailed review of the state-of-

art of research into the interference analysis in IEEE 802.15.4 based WSNs, and 

discusses the approaches proposed by other researchers to mitigate interference 

effects. Chapter 4 describes the proposed interference mitigation strategy for 

maintaining network connectivity in an IEEE 802.15.4 based WSN with a star 

configuration. Chapter 5 presents a novel approach for an IEEE 802.15.4 based 

WSN to intelligently sense the state of interference pattern on the basis of energy 

detection. Chapter 6 introduces a feasible data recovery strategy aiming at 

achieving reliable transmission in an IEEE 802.15.4 based ad hoc WSN. Chapter 

7 introduces the system design for deploying an IEEE 802.15.4 based WSN in a 

home automation application. Chapter 8 introduces the system design for 

deploying an IEEE 802.15.4 based WSN in a large-scale building environment 

monitoring application. Finally, Chapter 9 summarizes the main contributions of 

the research and concludes the thesis by identifying areas for future research. 
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Chapter 2 IEEE 802.15.4 Based 
WSNs 
 

 

 

2.1 Introduction 

This chapter provides a comprehensive review of IEEE 802.15.4 based 

WSNs, and explains the basic concepts of interference in wireless 

communications. The purpose of this chapter is mainly to conduct a thorough 

review of the development of WSNs and the IEEE 802.15.4 standard.  

2.2 Overview of Wireless Sensor Networks 

2.2.1  Wireless Sensor Networks 

One of the features of the post-PC era is the movement of computation 

from desktops and data centres into the physical world to achieve “ubiquitous 

computation” (Yao and Gehrke, 2002).  WSNs form one strand in this 

development. This post-PC era extends human beings’ capability to monitor and 

control the physical environment. 

Recent Integrated Circuit (IC) and Micro Electro Mechanical System 

(MEMS) have matured to the point where they enable the integration of wireless 

communications, sensors and signal processing together in one low-cost package 

(Schurgers and Srivastava, 2001). Such a package (i.e. sensor nodes) is equipped 

with data processing and communication capabilities. It is now feasible to deploy 



0 

 

- 11 - 

ultra-small sensor nodes in many kinds of areas to collect information. The 

sensing circuitry measures the ambient condition related to the environment 

around the sensor and transforms them into measurable signals. After necessary 

processing, the signals are sent to a pre-defined destination via a radio transmitter. 

All of these operations are powered by batteries for ease of deployment, since a 

traditional power supply (i.e. mains power) may not be applicable. 

WSNs consist of a number of sensor nodes. They are deployed inside or 

very closely to the phenomenon they are investigating. Under most situations, the 

topologies of the WSNs do not need to be engineered or pre-determined (Cardei 

and Wu, 2004). This allows WSNs to be deployed randomly.  For example, sensor 

nodes used to monitor a forest will be deployed by being dropped from a plane 

and thus it is impossible to locate their landing position accurately. This feature of 

random deployment also requires WSN protocols to possess capability to self-

organize. Another important feature of WSNs, which is different from traditional 

senor networks, is the integration of microprocessors (Vieira et al., 2003). 

Traditionally, the sensor nodes in a sensor network are designed to return the raw 

data when polled by the central controllers. Since a central controller does not 

physically control the sensor nodes in the WSNs through a cable, the on-board 

microprocessor must be capable of implementing information processing and 

relative complex communications wirelessly. The introduction of this computation 

capability makes WSNs more intelligent in comparison with wired sensor 

networks. Figure 2.1 shows the structure of a typical wireless sensor network. 
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Figure 2.1 Structure of a typical wireless sensor network (Akyildiz et al., 

2002) 

In Figure 2.1, a typical wireless sensor network is depicted. It includes 

sensor nodes, sink node, a connection to the Internet or satellite and a task 

manager node. Sensor nodes do not have a fixed location and most of them are 

randomly deployed to monitor a sensor field. Sensor nodes usually communicate 

with each other via an on-board radio system using a multi-hop approach. After 

primary processing, the data gathered from the sensor field is sent to a base station 

(sink) which is responsible for transferring data to another network. This function 

makes a sink similar to a gateway in a traditional network. Finally, the useful data 

are delivered to the task manager node and become available to the users 

(Akyildiz et al., 2002).  

2.2.2  Wireless Sensor Nodes 

Wireless sensor nodes are the basic component of wireless sensor 

networks. A generic sensor node hardware structure consists of several 

subsystems (see Figure 2.2): a microprocessor, data storage, sensors, actuators, a 

data transceiver, and an energy source (Benini et al., 2006).  
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Figure 2.2 Sensor node functional components (Benini et al., 2006) 

 

In Figure 2.2, the “Filtering & Signal Adapting” and “Sensing Unit” 

components are for implementing the sensing task. Usually sensors are only 

sensitive to the specified content.  “Filtering & Signal Adapting” can remove 

unwanted elements from the sensing target provided to the “Sensing Unit”. The 

“Interface electronics” part is mainly used for converting detected sensor 

information into the digital form. Sensor data can be easily read out by the 

connected controllers through a standard digital communication interface (e.g. 

Inter-Integrated Circuit, Serial Perioheral Interface Bus). The “Processing Unit & 

Memory” and “Communication Unit” parts are responsible for implementing 

local computation and establishing communication link with external controller 

that connects to the sensor. The “Power Management”, “OS & algorithm” and 

“Network protocols” provide the system with necessary software support (Benini 

et al., 2006). 

2.2.3 Design Challenges 

The features of WSNs make them suitable in a wide range of application 

areas. In military applications, WSNs are ideal for the task of battlefield 
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surveillance, because they provide a low risk level for personnel. For civilian 

applications, WSNs are often used for building environment monitoring, home 

automation, industrial control, and assets management in logistics industry, etc. 

By reviewing the characteristics of WSNs and the corresponding application 

areas, the challenges for developing WSNs can be concluded as follows: 

• Limited power supply. Since the deployment of WSNs is supposed to be 

random and requires little or no infrastructure involvement, the power 

supply for driving wireless sensor nodes is mainly provided by a battery 

(Qi et al., 2002). This is a most important factor which seriously limits the 

use of WSNs. WSNs are designed to work in unattended areas or, work 

alone over a considerable long period of time as frequent battery 

replacement might not easily be achieved.  

• Limited effective range of the wireless communication. The transmitter 

and receiver used by a wireless sensor node are normally powered by a 

battery. Among the typical components composing the wireless sensor 

node, the radio transmitter consumes the most energy. Since current 

technology cannot provide a long-term power supply without replacing the 

battery, WSNs often limit the transmission power as an effective way to 

save energy use on wireless sensor node (Cardei and Wu, 2006). 

Consequently, the effective transmission range of the WSN nodes is 

restricted. 

• Large number of wireless sensor nodes within a WSN. A wireless sensor 

network often consists of a large number of sensor nodes in order to 

provide an effective sensor field as required. They can easily cover a 

relatively wide area. This characteristic makes it impossible for users to 

maintain the whole network manually. Comprehensive management 

architecture is required to monitor the WSNs, configure network 

parameters and implement system updating (Wagenknecht et al., 2008).  

• Dynamic changes of the network formation. The topology of WSNs may 

not be static in the network area. Sensor nodes can easily die and new 

sensor nodes may be randomly added to the network. All of these require 
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that the sensor network should have the ability to adjust itself when the 

topology of the network has changed (Bharathidasan and Ponduru, 2003). 

• Management of data flow. In WSNs, each sensor node will generate 

sensory data and transfer to the specified task manager node for further 

processing. As a consequence of the characteristics of wide deployment 

and limited wireless communication range, the implementation of data 

acquisition and transfer require the involvement of dedicated 

communication protocols. The use of a strong strategy to manage 

distributed data flow, query and analysis is important to sensor networks 

(Elnahrawy, 2003).   

2.3 Overview of IEEE 802.15.4 Standard 

2.3.1 Wireless Personal Area Network  

Prior to WSNs, the primary research and industrial activities in the 

technology of wireless networking were mainly concerned with high data 

throughput and increasing communication range in applications, e.g. home 

entertainment, e-business, Internet browsing.  However, the need to construct 

networks to support “ubiquitous computation” has changed the focus of research. 

Limited bandwidth, flexible data throughput and low cost are the main features of 

“ubiquitous computation” network that differ from normal wireless techniques 

(Weiser, 1993).  

Although there are various wireless standards, including IEEE 

802.11a/b/g/n, WiMax, GSM, etc, most of these are not suitable to implement 

“ubiquitous computations” due to their high power consumption (Kim et al., 

2008). Wireless Personal Area Network, a new network paradigm based on short-

range wireless connectivity has attracted researchers and industrial attention in the 

last few years (Prasad et al. 2001). The definition of wireless personal area 

network (WPAN) is that “it is a simple, low-cost communication network that 

allows wireless connectivity in applications with limited power and relaxed 

throughput requirements”. The main objectives of a WPAN are ease of 
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installation, reliable data transfer, short-range operation, extremely low cost, and a 

reasonable battery life while maintaining a simple and flexible protocol (IEEE 

Std802.15.4-2003, 2003).  Figure 2.3 shows a comparison of operating 

characteristics of various wireless standards. 

 

 

Figure 2.3 Wireless communication standards and their characteristics (Benini et 

al., 2006) 

In Figure 2.3, the wireless standards are categorized according to the 

supported throughputs, communication range and application areas. The standards 

such as Wi-Fi, WiMAX, UltraWideBand, and 802.11a/g/n are normally used for 

high data throughput applications, and generally require main power supply, 

which make them unsuitable for WSNs. The systems constructed on the basis of 

Global System for Mobile Communications (GSM), General Packet Radio 

Service (GPRS), Enhanced Data Rate for GSM Evolution (EDGE), Universal 

Mobile Telecommunications System (UMTS) and High-Speed Downlink Packet 

Access (HSDPA) were for the purpose of achieving full mobility. The design of 

infrastructure for mobile system is not applicable for WSNs use as most WSNs 

are static during their lifetime. The Bluetooth standard was mainly developed for 

computer cable replacement. Its data rate (1 Mbit/s) and defined power 
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consumption are relatively high. Thus the Bluetooth standard is not a suitable 

choice for battery driven WSNs. 

The IEEE 802.15.4 and ZigBee standards, however, were developed for 

WSNs. The supported data rate ranges from 20 to 250 kbps, depending on the 

frequency band used.  Regarding the sensor readings whose data length is 

typically a few bytes, a low data rate can save energy and extend the systems’ 

lifetime, which is very important for WSNs.  IEEE 802.15.4 is a public standard 

developed for low data rate, low power consumption and low cost wireless 

protocol (IEEE Std802.15.4-2003, 2003). ZigBee technology is a global 

application protocol targeted towards automation and remote control application 

(ZigBee Alliance, 2007).  The communication protocol defined in the ZigBee 

standard is built on the basis the of the IEEE 802.15.4 standard.   

2.3.2  IEEE 802.15.4 Standard 

IEEE 802.15.4 technology is a low data rate, low power consumption, and 

low cost wireless networking protocol targeted towards automation and remote 

control applications (Ergen, 2004). The standard defines characteristics of 

physical and MAC layers for Low-Rate Wireless Personal Area Networks (LR-

WPAN).  The main advantages of LR-WPAN are ease of installation, reliable data 

transfer, short-range operation, extremely low cost, and a reasonable battery life, 

while maintaining a simple and flexible protocol stack (Baronti et al., 2007). 

The architecture of the IEEE 802.15.4 standard is defined in terms of a 

number of layers. Each layer is responsible for a specified task, and provides 

services to the higher or lower layers. As a ‘network-aware’ standard, the division 

of these layers can be described by the Open System Interconnection Reference 

Model (Freescale, 2007).  However, to achieve a low complex wireless 

communication protocol, only the PHY layer and MAC layer are defined in the 

standard. A comparison of the IEEE 802.15.4 architecture and open systems 

interconnection (OSI) Seven Layer Model is shown in Figure 2.4. 
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Figure 2.4 Architecture comparison of IEEE 802.15.4 and OSI Seven Layer 

Model (Freescale, 2007) 

In Figure 2.4, the PHY layer of the IEEE 802.15.4 standard is related to 

the PHY layer in the OSI Seven Layer model. The PHY layer describes the 

physical properties of the communication network, which can include the 

electrical properties and signalling properties of the medium, etc. The Medium 

Access Control Layer, Service Specific Convergence Sublayer (SSCS), and 

Logical Link Control (LLC) are related to the Data Link Layer in the Seven Layer 

model. The Medium Access Control generally determines the medium access. The 

Logical Link Control and Service Specific Convergence Sub -layer provide 

multiplexing of protocols transmitted over Medium Access Control, optional flow 

control, and any requested detection and retransmission of dropped packets. The 

other five additional layers in the OSI Seven Layer model are not supported by the 

IEEE 802.15.4 standard, as a “simple and flexible protocol” is the primary 

objective for the IEEE 802.15.4 task group (Freescale, 2007).  

• Physical Layer 

The IEEE 802.15.4 standard offers two PHY options for the frequency 

band. The supported data rates are 250 kbps at 2.4GHz, 40 kbps at 915MHz and 

20kbps at 868MHz. These frequency bands are all based on Direct Sequence 
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Spread Spectrum (DSSS). A total of 16 channels are available at 2.4 GHz, 

numbered 11 to 26. There is a single channel at 868 MHz, and 10 channels at 

915MHz. Since the IEEE 802.15.4 standard is intended to comply with 

established regulations in most countries, the unlicensed 2.4 GHz band is more 

popular (Kinney, 2003), and mainly considered in this thesis. The IEEE 802.15.4 

standard supports a 64-bit long address and a 16-bit short address, theoretically 

resulting in a single network being able to support a maximum of 000,65216 ≈

devices. 

Devices compliant with the IEEE 802.15.4 standard are required to control 

power output at around 0 dBm, and typically operate within a 10-meter range. The 

adopted transmission scheme and modulation technology are DSSS and offset 

quadrature phase-shift keying (O-QPSK) respectively.  Table 2.1 summarizes the 

properties defined in the IEEE 802.15.4 PHY layer. 

 

Table 2.1 Summary of PHY layer in IEEE802.15.4 standard (IEEE Std802.15.4-
2003, 2003) 

 

 

 

 

 

 

 

 

 

 

• MAC Layer 

The IEEE 802.15.4 standard defines an efficient low duty-cycle working 

style for devices designed to implement simple functions with minimal power 

consumption requirements. There are two types of devices supported in the IEEE 

802.15.4 standard: Full Function Device (FFD) and Reduced Function Device 

(RFD). A FFD can operate in an IEEE 802.15.4 network serving as a personal 

area network (PAN) coordinator, a coordinator, or a router device. A RFD can 

Property Range 

Frequency Band 
BPSK 

868 MHz 1channel        20 kb/s 

915MHz 10 channels     40kb/s 

O-QPSK 2.4GHz   16 channels     250kb/s 

Range 10-20 meters 

Addressing 16-bit short address or 64-bit IEEE address 



0 

 

- 20 - 

operate as a network device for implementing extreme simple functions. An IEEE 

802.15.4 network can be organized into one of two topologies: the star topology 

and the peer-to-peer topology (see Figure 2.5).  

 

 

Figure 2.5 Two supported topologies in the IEEE 802.15.4 standard 

 

In the star topology, a FFD serving as a coordinator is specified to be the 

central device, which is called the PAN coordinator, and starts the whole network. 

Other coordinators and network devices must join the network by associating 

themselves with the PAN coordinator. The PAN coordinator controls all network 

communications.  

The peer-to-peer topology also requires a PAN coordinator to initialize the 

network start-up procedure. However, the communications within a network are 

based on the peer-to-peer topology and are not limited by the PAN coordinator. 

Any device can freely talk to any other device so long as they are within an 

effective communication range.  

The IEEE 802.15.4 MAC layer allows the use of the superframe structure. 

A superframe is defined by the PAN coordinator and bounded by network 

beacons. The beacons are used to synchronize the devices attaching to the PAN 

coordinator. Each superframe is equally divided into 16 slots. Figure 2.6 shows 

the structure of a superframe. 
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Figure 2.6 Structure of superframe (IEEE Std802.15.4-2003, 2003) 

 

A superframe consists of two main sections: an active period and an 

inactive period. The active portion is divided into 16 equal time slots (slots 0 to 15 

in Figure 2.6) and contains a Contention Access Period (CAP) and Contention-

Free Period (CFP). The beacon frame is included in the first slot of the 

superframe. During CAP, network devices compete for channel access using the 

mechanism of slotted Carrier Sense Multiple Access with Collision Avoidance 

(CSMA-CA). In CFP, the PAN coordinator is responsible for administrating and 

assigning Guaranteed Time Slot (GTS), within which only the selected network 

devices can commence transmission without contending for channel access. A 

GTS can occupy more than one slot period. The length of the active period, 

Superframe Duration (SD), is denoted as follows (IEEE Std802.15.4-2003, 2003): 

symbolsionframeDurataBaseSuperSD SO2∗=                                      (2.1) 

where ionframeDurataBaseSuper  denotes the number of symbols (a symbol is a 

fixed time duration at 16 µs) forming a superframe when the SuperframeOrder 

(SO)  is equal to 0. According to the IEEE 802.15.4 standard, the value of 

ionframeDurataBaseSuper  is 960 symbols, which is equal to 15.36 milliseconds. 

SO describes the length of the active portion of the superframe, which ranges 

from 0 to 15. The BeaconInterval (BI) including active portion and inactive 

portion of a superframe is denoted as follows: 

symbolsionframeDurataBaseSuperBI BO2∗=                               (2.2) 
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where BeaconOrder (BO) describes the beacon interval ranges from 0 to 15. The 

values of SO and BO are related as follows: 140 ≤≤≤ BOSO . If

140 ≤<≤ BOSO , the difference between the SD and BI is an inactive period, in 

which all network communications remain idle until the arrival of the next 

beacon. In order to save energy, the devices’ transceivers can move into a sleeping 

mode during the inactive portion. If 140 ≤=≤ BOSO , the inactive portion is 

ignored, as the length of the beacon interval is equal to the active portion. If BO is 

equal to 15, the value of SO should be ignored and the superframe will not exist, 

which is used for non-beacon enabled networks. If the nonbeacon-enabled mode 

is in use, all network devices commence transmission with the mechanism of un-

slotted CSMA-CA. 

In a beacon-enabled network, the beacon frame is periodically transmitted 

by the PAN coordinator to allow all the network devices to synchronise with it. 

All network transactions are only permitted to begin during the active portion. 

Although the use of a beacon frame can establish a unified network device 

management, the synchronization in a large-scale deployment is difficult to 

achieve, as the effective radio sphere of the PAN coordinator is restricted.  As a 

result, the nonbeacon-enabled mode is more popular in existing applications 

(Koubaa et al., 2007). This thesis thus mainly focuses attention on nonbeacon-

enabled IEEE 802.15.4 network. 

2.4 Summary 

This chapter has provided an overview of IEEE 802.15.4 based WSNs. 

The basic idea of WSNs is to collect environment information by employing 

distributed sensor nodes and enable the achievement of “ubiquitous computation”. 

After simple processing, the sensory data are transferred to a specified sink node 

for further use. Generally, data transfer from the end sensor node to the sink node 

is implemented by using proper communication protocols. Since WSNs are 

originally designed to use radio signals to convey information, the wireless 

communication links established in the WSNs are vulnerable in the radio 

environment. Issues caused by wireless interference must be analyzed and dealt 

with.  
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Chapter 3 Interference Analysis in 
IEEE 802.15.4  
 

 

 

3.1 Interference Overview 

Multiple wireless systems working in close proximity might reasonably 

raise concerns about overcrowding in the unlicensed 2.4-GHz ISM band. 

Therefore, the performance of IEEE 802.15.4 based WSNs in the presence of 

interferers such as IEEE 802.11 and Bluetooth should be evaluated, particularly 

for applications in which resources and bandwidth allocation cannot be 

guaranteed (Jennic, 2008). 

The challenge for analyzing the effect of interference is the uncertainty of 

possible interference scenarios. There is no fixed interference model as different 

network sizes, configurations, interference sources and environmental conditions 

can produce different effects. The interference studies usually give consideration 

to various aspects, e.g. channel allocation, inter-packet delay, packet payload size 

and output power (Jennic, 2008). These aspects are usually combined during the 

process of interference analysis in order to determine the typical characteristics of 

an interferer and the expected traffic patterns in the network. This chapter will 

review the techniques used in the IEEE 802.15.4 standard in order to enable an 

IEEE 802.15.4 device to coexist with other wireless devices, and the relevant 

interference mitigation strategies proposed by researchers. 
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3.2 Basic Concept of Interference 

3.2.1 Interference Definition 

Interference in the context of wireless communication usually refers to one 

of the following two definitions: (1) multiple (more than two) simultaneous 

packet transmissions causing packets to collide at the receiver, (2) physical factors 

in the radio propagation channel (Golmie, 2006). Figure 3.1 illustrates the typical 

function block diagram of the transmitter and receiver in a wireless system. 

 

 

 

Figure 3.1 Typical components in physical layer (Golmie, 2006) 

 

In Figure 3.1, the input data passed from the upper layer of the system is 

sent into the “Modulation” function block. The “modulation” function converts 

the bit stream containing the input data into a waveform (i.e. Carrier in Figure 

3.1), which can be sent over an analog channel. The function of “Filtering” is 

designed to select the desired signal and minimize the effect of noise and 

interference. “Spreading” is a specialized function designed to deliberately 

transmit the signal over additional bandwidth with the specified pseudo-random 

noise (PN) sequence, using less power per frequency, but more frequencies. The 

“Tx” and “Rx” denote the use of a transmitter and receiver in communication. The 

“Channel” is a virtual concept that describes the range of radio frequency over 

which the wireless communication takes place. The implementation of the 
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functions “Demodulation” and “De-spreading” is the opposite process of 

“Modulation” and “Spreading”, by which the received wireless signal can be 

recovered. The “Detection” function is the last processing stage before the 

receiver obtains the effective binary data. Because the transmitted signal 

processed by the “Demodulation” function is a combination of N orthogonal 

waveforms, the receiver must make a comparison between the waveforms and the 

standard reference signals to determine the exact data that the waveforms contain. 

If multiple wireless signals simultaneously arrive at the receiver, the 

receiver will be unable to abstract any useful information since the desired signal 

and interfering signal overlap each other.  

The physical factor in the radio propagation channel is another challenge 

to wireless communication systems.  Various physical impediments, such as 

multipath propagation should be taken into consideration for system design. 

Multipath propagation means that a transmitted signal can reach the receiver via 

several different paths (e.g. reflections from house, windows, or walls). Figure 3.2 

shows an example of multipath propagation. 

 

Figure 3.2 Example of multipath propagation 

 

In Figure 3.2, the “signal on direct path” component between the 

transmitter and receiver is the desired wireless signal path, also called as “Line of 

Sight connection”. If some obstacle (e.g. like the wall in Figure 3.2) exists in the 

vicinity of the transmitter, the radio signal could be reflected and reach the 

receiver via the “reflected path”.  Since a simple receiver cannot distinguish 

multipath signals, it just adds them up. Consequently, the “signal on direct path” 

and “signal on reflected path” interfere with each other (Molisch, 2005).  
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In the context of this thesis, the discussion of interference in WSNs is for 

the purpose of designing a system-level solution. Thus, the form of interference 

caused by multiple simultaneous packet transmissions is the main focus. 

3.2.2 Performance Metric 

In IEEE 802.15.4 WSNs, the performance metric used to evaluate the 

wireless communication can be separated into two parts: PHY layer and MAC 

layer. 

A. PHY layer performance measures 

The commonly used metric in the PHY layer of a wireless system is the 

signal-to-noise ratio (SNR), which denotes the ratio of the average signal power to 

the average noise power and is measured in decibels (dB).  A radio system must 

transmit a modulated signal around a known frequency and receive it most of the 

time. If the SNR is less than the defined threshold, the receiver will fail to recover 

the desired signal (Chandra et al., 2007).  Another important metric is the bit error 

rate (BER), which expresses the number of incorrectly received bits on the 

receiver side against the total number of transferred bits during a transmission. 

Because of the use of different modulation schemes, the requirements of SNR and 

BER for achieving an acceptable performance are different in certain wireless 

systems. Figure 3.3 illustrates the simulation results of BER at different SNR for 

various wireless standards. 
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Figure 3.3 BER results for IEEE 802.11, IEEE 802.15.4, IEEE P802.15.3 and 

IEEE 802.15.4(IEEE Std802.15.4-2003, 2003) 

 

In Figure 3.3, a general tendency is that a low bit error rate can be 

obtained when SNR increases. For example, if the IEEE 802.15.4 system is 

required to achieve bit error rate at 1.0E-0.9, the corresponding SNR should be 

greater than 3 dB.  

B. MAC layer performance measures 

Although the PHY layer metrics such as SNR and BER are important in 

describing wireless communication performance, the interference evaluation is 

concerned with quantifying other data, for example how many packets are 

successfully transmitted.  The MAC layer consists of rules that regulate the 

mechanism of channel access and sharing. It is also responsible for assembling 

data packets sent to/from the PHY layer. In order to analyze the effect of 

interference in WSNs from a system level, the metrics of the packet error rate, 

transmission delay and throughput should be included (Shin et al., 2007).  
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• Packet Error Rate: Packet error rate is the percentage of packets lost, as the 

ratio between the number of packets, which fail to be received by the sink 

and all packets generated by the source node (Cuomo et al., 2007).  One of 

the consequences caused by interference in WSNs is the increase in the 

packet error rate. It is the most important metric to validate if the anti-

interference design is effective.  

• Delay and Throughput: The throughput is the amount of data transferred 

from one station to another station during a specified period of time (Shin 

et al., 2007). The occurrence of interference in WSNs will obviously cause 

an increase in the delay and reduction of throughput, which could be 

improved by the effective anti-interference design from the level of system. 

3.2.3 Factors Affecting Performance 

The performance of IEEE 802.15.4 based WSNs in an environment of 

interference can be affected by many factors, including channel utilization, 

transmission power, effective data payload, transmission interval, implementation 

of routing protocol, etc. Under different circumstances (i.e. different application 

requirements), the same factors will produce different effects according to their 

own characteristics. The relevant research on the interference effectiveness have 

been extensively studied and will be discussed in the next chapter. 

 

3.3 IEEE 802.15.4 Physical & MAC Layer 

Feature 

During the design of the IEEE 802.15.4 standard, the 802.15.4 task group 

cooperated with other Coexistence Task Groups, such as 802.15.2TM to ensure 

the standard’s coexistence capability with other wireless devices (IEEE 

Std802.15.4-2003, 2003). As a result, the IEEE 802.15.4 standard provides 

support for coexistence at both the PHY layer and MAC layer. At the PHY layer 

direct sequence spread spectrum is adopted, and at the MAC layer, Frequency 
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Divison Multiple Access (FDMA) and Carrier Sense Multiple Access (CSMA) 

anti-interference measures are adopted.  

3.3.1 Direct Sequence Spread Spectrum 

The license-free industrial scientific and medical (ISM) bands are crucial 

to the burgeoning market for wireless embedded technology. A short list of 

possible users and possible interferers includes: IEEE 802.11b networks, IEEE 

802.11g networks, IEEE 802.11n networks, Bluetooth Pico-Nets, IEEE 802.15.4 

networks, cordless phones, home monitoring cameras, microwave ovens and 

WiMax networks (ZigBee, 2007). The IEEE 802.15.4 standard adopts the 

technology of direct sequence spread spectrum (DSSS) to increase the 

opportunities for coexistence with multiple users.  

The modulation technique “spread spectrum” is designed to promote a 

radio system’s capability of coexistence and robustness in the presence of 

interference. The spread spectrum approach originally appeared in military 

applications. It is used because of a number of attractive properties, e.g. anti-

jamming performance, low probability of interception and multiple access 

communications (Fakatselis, 1996).  In normal conditions, even though the centre 

frequencies of narrow band signals (signals that encode and transmit information 

use a small band) are not exactly the same, it is still possible to have signal 

collision and data packet loss. The frequency allocation is restricted and 

controlled by regulators such as the U.S Federal Communications Commission. 

However, there is no compulsory requirement in the ISM bands. Thus wireless 

interference could happen to any wireless system operating with narrowband 

signal (IEEE Std802.15.4-2003, 2003).  Figure 3.4 illustrates collisions between 

two narrowband signals. 
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Figure 3.4 Narrowband signals (ZigBee, 2007) 

 

In Figure 3.4, two narrow band signals collide with each other. Since the 

main bodies of these two signals overlap, the information carried by the 

overlapping parts could be corrupted due to interference. To avoid uncontrollable 

interference between narrowband signals, the overlapping parts should be limited. 

The way of “spread spectrum” was designed to solve the problem. Figure 3.5 

illustrates the principle of “spread spectrum”. 

 

 

Figure 3.5 Principle of spread spectrum 
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In Figure 3.5, the two narrowband signals denote narrowband interference 

signal and narrowband desired signal (indicated by dashed line) respectively. The 

purpose of the “spread spectrum” approach is to use more bandwidth to convey 

the bit information originally carried by the narrowband desired signal. After 

spreading, only a small part of the original narrowband desired signal is affected 

by the narrowband interference signal (indicated by a fraction of gray cube in 

Figure 3.5). When the narrow band desired signal reaches the receiver, the system 

will abstract useful signals by taking action contrary to the “spread spectrum” 

(Figure 3.6).  

 

Figure 3.6 Direct spread spectrum at the receiver (Fakatselis, 1998) 

 

In Figure 3.6, the spread spectrum signal is recovered into the form of 

“unspread” after passing through the receiver filter, whose main function is to 

make the receiver only be senstive to the signals working on the specifed 

frequency . Although some parts of the narrowband interference signal would pass 

through the receiver filter as well, it is highly possible to obtain the desired 

narrowband signal correctly since only a small portion of the spread signal is 

affected by the interference. Theoretically, if more bandwidth is used to convey 

the spread signal, the more interference can be tolerated. A common measure used 

in spread spectrum is the processing gain G (Golmie, 2006): 

)/log(10 bc rrG =                                            (3.1) 
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where br  and cr  denote bit rate and chip rate respectively. In a DSSS system, the 

binary data br  is multiplied by a pseudorandom noise (PN) binary source with a 

constant chip (i.e. expression of PN sequence) rate to complete frequency 

spreading operation (Fakatselis, 1996). The benefit of processing gain is that the 

PN code spreads the transmitted narrowband desired signal and makes it less 

susceptible to narrowband interference signal within the employed bandwidth. 

The processing gain can be thought of as the ratio of signal to interference at the 

receiver after the dispreading operation (Figure 3.6). For example, a wireless 

system requires 10 dB ob NE /  (it is a normalized version of SNR, where bE

denotes the energy per bit, ON denotes the noise power spectral density) to 

achieve a satisfactory performance with an acceptable bit error rate. If the process 

gain is 4 dB, the system can maintain the required performance when the desired 

signal has 6 dB (10 dB – 4 dB) over the interference. In an IEEE 802.15.4 system 

working in 2.4 GHz, the chip rate is 2000 kchip/s, and the bit rate is 250 kb/s. 

Therefore, the processing gain for the IEEE 802.15.4 device is 9 dB.  

The use of DSSS in IEEE 802.15.4 systems adds the capability to 

effectively coexist with a narrowband wireless communication system (e.g. 

Bluetooth) whose bandwidth is smaller than the bandwidth of IEEE 802.15.4 

(IEEE Std802.15.4-2003, 2003).    

3.3.2 Frequency Division Multiple Access (FDMA) 

The use of FDMA in an IEEE 802.15.4 system divides the 2.4 GHz ISM 

band into 16 non-overlapping channels as depicted in Figure 3.7.   
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Figure 3.7 Channel allocation of IEEE 802.15.4 in 2.4 GHz band 

 

In Figure 3.7, a total of 16 channels are defined in the 2.4 GHz band 

starting from 2405 MHz. Each channel is 2 MHz wide and 5 MHz apart. The 

setting of non-overlapping channels allows multiple users to operate separately on 

different frequencies without worrying about hearing each other. However, it does 

not guarantee that other wireless systems employing different channel allocation 

schemes would not overlap with the IEEE 802.15.4 communication channels in 

the same 2.4 GHz ISM band. For the convenience of study, two typical wireless 

standards (IEEE 802.11b and Bluetooth) are selected from the potential interferer 

list to discuss how interference happens. The IEEE 802.11b technique employs 

the same DSSS method as the IEEE 802.15.4 technique to achieve wireless 

communications on 2.4 GHz band. The Bluetooth defines another typical medium 

access method: frequency hopping.  

• Wi-Fi System 

Wi-Fi (IEEE 802.11b) technique, which is also well known as the Wi-Fi 

system, has been rapidly deployed to construct wireless local area networks in 

recent years. The first version of the IEEE 802.11b standard was published in 

1999. The IEEE 802.11b standard defines a total of 14 channels. Each channel is 

22 MHz wide, 5 MHz apart in frequency. Due to the wide bandwidth, many IEEE 

802.11b communication channels overlap each other. In order to ensure multiple 

IEEE 802.11b networks simultaneously work in the same area, the frequency 

spacing between IEEE 802.11b communication channels must be at least 30 MHz 

.......

2405

2 MHz

11 12 13 26

2410 2415 2480
Frequency (MHz)

5 MHz



0 

 

- 34 - 

(So, 2004). Therefore, the IEEE 802.11 standard recommends that if multiple 

IEEE 802.11b networks are required to run in a close vicinity, three non-

overlapping channels can be employed. The settings of three non-overlapping 

channels are not the same in different geographical regions: channels 1, 6, 11 are 

recommended in China and North American while channels 1, 7, 13 are selected 

in European (IEEE Std802.11-2007, 2007). Figure 3.8 shows the IEEE 802.11b 

non-overlapping channel allocations comparing with the IEEE 802.15.4 channel 

setting. 

 

 

 

Figure 3.8 Non-overlapping IEEE 802.11b and IEEE 802.15.4 channel allocation 

 

In Figure 3.8, most of the IEEE 802.15.4 communication channels overlap 

with the Wi-Fi communication channels. Since both IEEE 802.11b and IEEE 

802.15.4 employs the technique of DSSS (with different PN sequence), the 

advantage of “spread spectrum” does not take obvious effect if the centre 

frequencies of IEEE 802.11b system and IEEE 802.15.4 system are close to each 

other. Additionally, the maximum transmission power of an IEEE 802.11b device 

can achieve 20 dBm (equivalent to 100 milliwatt), which is much higher than the 
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transmission power of IEEE 802.15.4 devices (i.e. 1 milliwatt). Once the IEEE 

802.11b signals affect the IEEE 802.15.4 receiver, the relative high output power 

will contribute to the noise part of SNR.  Figure 3.6 illustrates the transmit 

spectrum mask of the IEEE 802.11b signal.  

 

 

Figure 3.9 Transmit spectrum mask of IEEE 802.11b (IEEE Std802.11-2007) 

 

In Figure 3.9, the power spectrum concentrates on the centre frequency of 

the selected IEEE 802.11b communication channel. The increment of separation 

from the centre frequency causes the power contained in the IEEE 802.11b signal 

to decrease. In (Shin et al., 2007), a simulation was carried out to study the 

relationship between the interference and frequency offset. The result states that 

the IEEE 802.15.4 system can achieve an acceptable performance (i.e. PER less 

than 1%) when the frequency offset between the centre frequencies of these two 

systems is larger than 7MHz.  

 

• Bluetooth 

Bluetooth (IEEE Std 802.15.1, 2005) is a short-range wireless standard for 

exchanging data over a short range (about 10m) from fixed and mobile devices.  A 

total of 79 channels are defined by the Bluetooth standard in the 2.4 GHz ISM 

band, each channel has a bandwidth of 1 MHz and a channel separation of 1 MHz. 

Compared with the IEEE 802.11b, Bluetooth interference acting on an IEEE 

802.15.4 system is less significant due to two reasons:  

frequency hopping and narrow band signal (Jennic Application Note, 2008). 
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Unlike the technique of “spread spectrum” used in IEEE 802.15.4 and 

IEEE 802.11b, Bluetooth achieves communications by frequently changing 

frequencies over time to transmit narrow band signals, which is called frequency 

hopping. Both Bluetooth communication devices employ the same pre-determined 

pattern to keep frequency hopping synchronized. The maximum hop rate is 1600 

hop/s (IEEE Std 802.15.1, 2005). Due to the constant changes of communication 

channel, the duration of interference caused by Bluetooth device on IEEE 

802.15.4 systems is limited. The effect of interference will disappear very shortly 

as the Bluetooth transmitter has hopped to a different part of the spectrum (Jennic, 

2008).  

The IEEE 802.15.1 specification defines three power classes. The 

maximum output power can be 20dBm (i.e. 100 milliwatt) in class-1. However, 

many IEEE 802.15.1 devices are enabled by batteries. Therefore the class-2 power 

setting, whose maximum output power is less than 4 dBm (i.e 2.5 milliwatt), is 

more commonly used. The maximum output power defined in class-3 is 1 

milliwatt.  Since the output power of IEEE 802.15.1 devices is close to IEEE 

802.15.4 devices’ (class 2 & 3), and the bandwidth of the IEEE 802.15.1 signal is 

about half of the IEEE 802.15.4 signal, only a small portion of IEEE 802.15.1 

signal will fall in the IEEE 802.15.4 receiver bandwidth. Consequently, the 

interference effect is not critical (Sikora and Groza, 2005).  

3.3.3 CSMA-CA 

Since IEEE 802.15.4 devices have a high likelihood to coexist with 

different wireless network devices, including other IEEE 802.15.4 devices 

belonging to different networks, the IEEE 802.15.4 transmission protocol should 

take potential collisions into consideration. The IEEE 802.15.4 standard employs 

an approach known as CSMA-CA. The technique of CSMA-CA has been 

successfully used in the Ethernet for years. It employs a simple “listen before you 

talk” strategy. Before wireless transmission, a device listens on the channel and 

implements channel assessment. If the channel is idle, the transmission will be 

processed. If the channel is busy, the device will wait for a random interval before 

checking the channel again. With the increment of channel assessment failure, the 
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wait interval increases exponentially in order to avoid interference (ZigBee, 

2007).   

3.4 Analytical and Empirical Study 

The research into the interference effect in the IEEE 802.15.4 network can 

be briefly split into analytical and empirical studies. The analytical studies focus 

on modelling the PHY layer and MAC layer behaviour. Simulation is the major 

evaluation measure used by analytical studies. The empirical studies emphasize 

experimental tests using practical equipment in a real environment.   

3.4.1 Analytical Study  

The effective wireless communication range is mainly determined by the 

physical distance between the interferer’s transmitter and victim’s receiver. There 

are two parameters usually used to describe the performance of a radio system: 

output power and receiver sensitivity. The output power indicates the energy level 

of the output signal sent from the transmitter. The receiver sensitivity denotes the 

minimum energy level of radio signal which is detectable on the receiver. A 

receiver can recover the radio signal if the remaining energy level of the output 

signal is greater than the receiver sensitivity when it reaches the receiver. After 

propagation, the energy level of the output signal will attenuate with an increase 

in distance that the signal travels. When the interferer’s transmitter and victim’s 

receiver are separated by a certain physical distance, the interfering signal strength 

reaching the victim’s receiver can be reduced. If the remaining energy level of the 

interfering signal is less than allowed noise level, the victim’s receiver should be 

able to function normally. The signal strength reduction is classified as path loss. 

Path loss means the ratio of the total radiated power from a transmitter antenna 

times the numerical gain of the antenna in the direction of the receiver to the 

power available at the receiver antenna (Chandra et al., 2007).  According to 

different environment conditions, the path loss can be described into different 

models. The basic model is free space loss applicable to the simplest possible 
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scenario: a transmitter and a receiver in a free space. The model (Molisch, 2005) 

is given as 

2

2)4(
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L ==                                                                              (3.2) 

where: 

            L : Free space path loss 

TXP : Output power measured at the transmitter  

RXP : Receiving power measured at the receiver 

TXG : Gain of the transmitter antenna 

RXG : Gain of the receiver antenna 

λ : Wavelength of the transmission (m) 

d : Distance between the transmitter and the receiver (m) 

 

Equation (3.2) can be expressed in terms of dB (Yilmaz, 2002): 

45.32log20log20 ++= fdL          (3.3) 

where: 

d : Distance between the transmitter and the receiver in km 

f : Frequency of transmission in MHz 

In the environment of free space, assuming 1) the output power of 

interfering signal is 0dBm (i.e. 1 milliwatt), the sensitivity of the victim receiver is 

-82dBm. 2) The interfering signal and victim receiver work on 2410MHz and 

2430MHz respectively. 3) If the interfering power falling on the victim’s receiver 

is less than -82dBm, the interference effect can be ignored. Therefore, the allowed 

path loss on interfering signal is 0dBm- (-82)dBm = 82dB. According to Equation 

(3.3), the distance d is obtained as 125 meters, which can be thought as a safe 

distance for the victim to avoid interference (Rodriguez, 2005). In a practical 

environment, the calculation of path loss is affected by many factors, e.g. antenna, 

building structure, street layout.  

Shin et al. (2007) analyzed the interference in the IEEE 802.15.4 system 

caused by an IEEE 802.11b transmitter using a simple indoor path loss model as 

follows: 
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                                                                                                                                 (3.4)        

 

where d denotes the distance between the transmitter and receiver, 0d denotes the 

length of line-of-sight, which is normally 8 meters. The parameterλ  is equal to

Cfc/ , where c is the velocity of light and Cf is the carrier frequency, n denotes 

path loss exponent which is 3.4 in an indoor environment for distance over 8 

meters (Golime et al. 2005). For both IEEE 802.15.4 and IEEE 802.11b systems, 

if the output power is fixed, the received power on the receiver is obtained as 

follows (Shin et al. 2007): 
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where : 

TP : Transmission power measured on the transmitter  

RP : Received power measured on the receiver.  

)(dLP : The path loss of transmission power after distance d. 

The simulation was carried out by Shin et al. (2007) with assumptions that 

the output power of IEEE 802.11b (interferer) and IEEE 802.15.4 system (victim) 

are 30 mW and 1mW. The IEEE 802.11b system works at 11 Mbps with a 1500 

bytes payload size. The IEEE 802.15.4 works at 250 kbps with a 105 bytes 

payload size. The offset between centre frequencies of IEEE 802.11b and IEEE 

802.15.4 systems is 2 MHz. Consideration was also given to the non-uniform 

power spectral density distribution of the IEEE 802.11b signal. Simulations were 

performed using OPNET (OPNET, 2010). The results stated that the packet error 

rate of the IEEE 802.15.4 was smaller than 
510−
when the distance between the 

IEEE 802.15.4 receiver and the IEEE 802.11b transmitter was greater than 8 

meters. 

Another simulation study of IEEE 802.15.4 system performance under 

IEEE 802.11 interference was discussed by Yuan et al. (2007).  A coexistence 

model regarding variant transmission power is illustrated in Figure 3.10. 
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Figure 3.10 Coexistence ranges of IEEE 802.15.4 and IEEE 802.11b/g (Yuan et 

al., 2007) 

In Figure 3.10, the positions of IEEE 802.15.4 nodes are decided by the 

degradation of IEEE 802.11b/g signals. The interference area is classfied into 

three ranges: R1, R2 and R3. Within range R1, an IEEE 802.11b/g node and an 

IEEE 802.15.4 node can sense each other. In range R2, an IEEE 802.15.4 node 

can sense an IEEE 802.11b/g node, but not vice cersa. Within range R3, neither 

the IEEE 802.11b/g node nor the IEEE 802.15.4 node can sense each other. 

However, the IEEE 802.15.4 node still suffers IEEE 802.11b/g interference. The 

value of R1, R2, and R3 are shown in Table 3.1 for both IEEE 802.11b and IEEE 

802.11g nodes acting as an interferer. As the defined receiver senstivity for the 

receivers of IEEE 802.11b and IEEE 802.11g devices are different, the values for 

R1, R2, and R3 are different as well.   

 

Table 3.1 Coexistence Ranges of IEEE 802.15.4 and IEEE 802.11b/g (Yuan et al., 
2007) 

 

 

 

 

Assuming the receiver sensitivity and required SIR (signal to interference 

ratio) at an IEEE 802.15.4 receiver are -85dBm and 6dB respectively, if the 

interfering energy falling within the IEEE 802.15.4 receiver bandwidth is greater 

than (-85dBm)-6dB=-91dBm, the IEEE 802.15.4 signal will not be recognized by 

the IEEE 802.15.4 receiver. The transmission power of both IEEE 802.11b and 
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IEEE 802.11g signals is set as 20dBm. The receiver sensitivity of IEEE 802.11b 

and IEEE 802.11g is -76 dBm and -82 dBm.  Through the calculation of path loss 

accoridng to Equation (3.4), it can be obtained that both IEEE 802.15.4 and IEEE 

802.11b/g devices can sense each other within range R1. When the IEEE 802.15.4 

nodes are located within range R2, they can sense IEEE 802.11b/g nodes, but not 

vice versa. Within range R3, neither IEEE 802.15.4 nor IEEE 802.11b/g devices 

can sense the other.  

Simulations were also performed by OPNET. During the test, continuous 

User Datagram Protocol (UDP) packets were transmitted between two IEEE 

802.11b/g nodes. An IEEE 802.15.4 node sended data packet to another IEEE 

802.15.4 node where acknowledgement was required. The first simulation was 

taken in range R1. Compared with the normal condition (i.e. no interference), only 

5.56% IEEE 802.15.4 packets were successfully transmitted. When the simulation 

was taken in range R2, the success rate of IEEE 802.15.4 transmission degraded 

almost to 0. In the former simulation, both IEEE 802.11b/g and IEEE 802.15.4 

devices can sense each other. When the IEEE 802.11b/g nodes recognized the 

existence of IEEE 802.15.4 packet transmission, they will defer their attempt to 

access the medium, which leaves a few chances for IEEE 802.15.4 

communications. In the latter simulation, the IEEE 802.11b/g nodes cannot detect 

the existence of IEEE 802.15.4 packet transmission. Consequently, the IEEE 

802.15.4 packet transmissions were always affected as the IEEE 802.11b/g node 

will not defer. Yuan et al. (2007) concluded that the IEEE 802.15.4 packet 

transmission under IEEE 802.11 interference occured if either of the following 

conditions is satisfied: 1) when the IEEE 802.15.4 packet overlaps an IEEE 

802.11 packet, the in-band interference power from the IEEE 802.11 packet must 

be significantly lower than the useful signal power from the IEEE 802.15.4 packet 

at an IEEE 802.15.4 receiver, 2) the transmission time of an IEEE 802.15.4 packet 

is shorter than the inter-frame idle time between two consecutive IEEE 802.11b/g 

packets.       
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3.4.2 Empirical Study 

After analytical study, empirical studies are usually employed by 

researchers to investigate the effect of interference as a more practical approach.   

Sikora and Groza (2005) designed three coexistence tests for the IEEE 

802.15.4 standard with other devices working in the 2.4 GHz band. They used 

IEEE 802.15.4 devices based on the  CC2420 chip made by ChipCom. 

• Test 1: Test 1 is to measure the performance of IEEE 802.15.4 

system when interferer (i.e. IEEE 802.11b) works on a different channel. The test 

1 deployment is shown in Figure 3.11. 

 

Figure 3.11 Test 1 setup (Sikora and Groza, 2005) 

 

In Figure 3.11: the distance between an IEEE 802.11b transmitter (i.e. 

IEEE 802.11 Access-Point) and an IEEE 802.15.4 receiver (i.e. 802.15.4 RFD) is 

set as 1.5+1=2.5 meter. Since the test 1was to evaluate the relationship between 

the interference and frequency offset, the distance (i.e. 2.5m) between the 

interferer (i.e. access point) and victim (i.e. 802.15.4 RFD) is not important. The 

access-point continued to send packets to 802.11b client with packet size of 1446 

Bytes. The packet rate was approximate 290 packets /s. In this test, the IEEE 

802.15.4 system was operating at channel 16 (2440 MHz). The IEEE 802.11b 

system worked at various channels. The test result showed that an acceptable 

performance of IEEE 802.15.4 system (i.e. packet error rate is less than 1%) can 
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be achieved when the central frequency offset between IEEE 802.11b and IEEE 

802.15.4 is over 10 MHz. 

• Test 2: Test 2 was to test the impact of Bluetooth operation on the 

IEEE 802.15.4 system. Two pairs of Bluetooth devices were set to implement a 

large file transfer. One desktop made a file transfer protocol (FTP) transfer to a 

personal digital assistant (PDA), another notebook made a FTP transfer to a 

desktop PC. The observed Bluetooth data rates for these two transfers were 15 

kbps and 50 kbps respectively. Due to the working style of frequency hopping 

employed by Bluetooth, the frequency offset between the Bluetooth channel and 

IEEE 802.15.4 channel was not considered. The test result indicated that about 10% 

of the IEEE 802.15.4 packets are lost. The loss of 10% packets in an IEEE 

802.15.4 system is acceptable if the application layer retransmission is employed. 

However, the distance between Bluetooth devices and IEEE 802.15.4 device was 

not mentioned in the work of Sikora and Groza (2005). 

• Test 3: Test 3 was to evaluate the interference on IEEE 802.15.4 

systems caused by microwave ovens. The test result showed only 5 and 20 data 

frames out of 1000 are lost. 

These three tests were performed under worst-case scenarios. For test 1, 

the IEEE 802.11b systems ran with the highest possible rate. In test 2, the FTP 

transfers for Bluetooth did not consider any speed control. In test 3, the testing 

devices (i.e IEEE 802.15.4 devices) were put directly onto the top of the oven at a 

distance of 1 m. The main purpose of introducing strict testing conditions is to 

provide a baseline for high-level coexistence protocol design in the future. 

The work of Petrova et al. (2006) illustrated the design of a similar 

interference test to evaluate the coexistence issue of an IEEE 802.11 network and 

an IEEE 802.15.4 network. Figure 3.9 depicts the test bed. The hardware platform 

is constructed using the CC2420EB from Chipcon.    
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Figure 3.12 Test bed 

 

In Figure 3.12, the distance between two IEEE 802.15.4 devices and two 

IEEE 802.11b/g devices is equally set as 5 meters. The test was implemented with 

various frequency offsets between communication channels employed by the two 

systems, and various lengths of IEEE 802.15.4 packets. The result is shown in 

Figure 3.13. 

 

Figure 3.13 IEEE 802.15.4 PER when interfered by an 802.11 transmission 

(Petrova et al., 2006) 

 

In Figure 3.13, if the frequency offset between IEEE 802.15.4 and IEEE 

802.11 channels is over 7MHz, the packet error rate of IEEE 802.15.4 system can 

be acceptable (i.e. around 1%). A noticeable thing is that packets with larger size 

are more prone to errors.  
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Another interference study was conducted by Shuaib et al. (2007) within 

an office environment. The IEEE 802.15.4 (i.e. ZigBee) devices used in the 

experiment are Maxstream XBee-PRO (XBee, 2008) USB RF modems. Figure 

3.14 depicts the hardware deployment.  

 

 

Figure 3.14 Hardware deployment (Shuaib et al., 2007) 

 

In Figure 3.14, the two ZigBee (a technique which utilizes IEEE 802.15.4 

technique as communication part) devices are set to transmit data packets at a rate 

of 115 Kbps with an inter packet delay of 200ms.  The IEEE 802.11g device 

receives data sent from an IEEE802.11g router at a rate of 9.8 Mbps. Two 

experimental tests were conducted. 

Experiment 1: The IEEE 802.11g channel was set as Wi-Fi channel 11 

whose central frequency is 2462 MHz. The ZigBee devices were set to work on 

channel 11 operating at 2405 MHz. The distance between the IEEE 802.11g 

access point and IEEE 802.11g client is 10.5 meters, which is a reasonable 

separation in an office environment. The two ZigBee devices, with 1 metre 

separation, were located in the vicinity of IEEE 802.11g client (see Figure 3.15). 

 

 

Figure 3.15 Devices deployment in experiment 1 

IEEE 802.11g
Client

IEEE 802.11g
Access Point

10.5 meter

ZigBee
Device 1

ZigBee
Device 2

1 meter

2462 MHz 2462 MHz

2405 MHz 2405 MHz



0 

 

- 46 - 

Since the centre frequency offset between ZigBee network and IEEE 

802.11g network is 2462 MHz-2405 MHz = 57 MHz, there is no interference 

effect reported in the test. 

Experiment 2: Compared with the experiment 1, the channels of IEEE 

802.11g and ZigBee network were changed, and the distance between ZigBee 

devices were various (see Figure 3.16).  

 

 

Figure 3.16 Devices deployment in experiment 2 

 

In Figure 3.16, the IEEE 802.11g devices are set to work on Wi-Fi channel 

6 (2437 MHz). The ZigBee devices choose to work on ZigBee channel 17 (2435 

MHz). The centre frequency offset is 2 MHz, which is the worst case when 

channel allocation for IEEE 802.11and ZigBee systems is not guaranteed. 

Experiment 2 was conducted into three cases. In case 1, the two ZigBee devices 

were located with 1 meter separation, which was the same as in experiment 1. A 

10% ZigBee throughput drop is measured. In case 2, the two ZigBee devices were 

located with approximate 6 metres apart. Also, a 10% ZigBee through drop was 

measured. In case 3, these two devices were with 12 metres apart. A 22% ZigBee 

throughput drop was measured. 

The conclusions obtained from these two experiments are: 1) The 

interference effect from IEEE 802.11g signals can be ignored in a ZigBee network 

when the central frequency offset between these two systems is relatively large 

(e.g 57 MHz). 2) When a ZigBee device is located 3 meters or 6 metres away 

from an IEEE 802.11g interferer, the ZigBee throughput decrement between 10% 
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and 22% can  happen when the frequency offset between ZigBee network and 

IEEE 802.11g network is small (i.e. 2 MHz). 

3.5 Interference Mitigation Recommendations and 

Strategies 

Due to the fact that the interference problem in the IEEE 802.15.4 network 

is significant, especially when interferers have high output power and wide 

frequency band, a number of suggestions and strategies have been proposed in 

order to mitigate the effect of interference.  

3.5.1 Recommendations from IEEE 802.15.4 Standard 

The IEEE 802.15.4 task group has conducted research in order to develop 

general guidance for IEEE 802.15.4 systems to coexist with other wireless devices 

operating in an unlicensed frequency band.  

The mechanisms provided in the IEEE 802.15.4 standard that enhance the 

coexistence of IEEE 802.15.4 networks with other wireless systems are clear 

channel assessment (CCA), dynamic channel selection, modulation, energy 

detection (ED) and link quality indication (LQI), low duty cycle, low transmit 

power, and channel alignment (IEEE Std802.15.4-2003, 2003; IEEE Std802.15.2-

2003, 2003).   

CCA: The CCA is part of the CSMA-CA mechanism. There are three CCA 

methods available for use: energy detection over a certain threshold, detection of a 

signal with IEEE 802.15.4 characteristics, or a combination of these two methods. 

The IEEE 802.15.4 PHY can choose one of the CCA methods to implement 

channel assessment for detecting whether the channel is occupied by any device. 

Dynamic Channel Selection: IEEE 802.15.4 specification does not support 

direct frequency hopping. However, users can specify a certain mechanism in 

applications switch to manually to a suitable communication channel when 

interference is sensed on the current frequency.   

Modulation, ED, and LQI: The employed modulation scheme is O-QPSK, 

which is a power-efficient modulation method that achieves a low signal-to-noise 
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ratio. The ED and LQI are two measurement functions. The ED is used to detect 

the energy level within an IEEE 802.15.4 channel. Meanwhile, it can provide 

useful information for channel selection algorithm executed by a higher layer. The 

LQI measures the signal strength for each received packet, which is usually used 

as the indicator of signal quality.  

Low duty cycle is a kind of requirement for working style. For a single 

IEEE 802.15.4 device working within a WSN for environment monitoring, it is 

reasonable to report sensor readings (e.g. 1-byte temperature reading) every 

minute or longer. Briefly, assuming an IEEE 802.15.4 packet which contains a 22-

byte payload is transmitted with a data rate at 250 kbps every 1 minute, the 

required transmission time is 704.0250/8*22 =kbp  milliseconds. Then the duty-

cycle of this IEEE 802.15.4 device is %1017.1)1000*60*1/(704.0 3−×= . The 

transmitter is in an inactive state for the rest of the working period. By following 

the suggestion of low duty cycle, the chance for the IEEE 802.15.4 device to 

compete with interfering signals can significantly decrease. 

Low transmit power and channel alignment: Low transmit power is a 

mechanism mainly for promoting an IEEE 802.15.4 device’s capability to coexist 

with other wireless systems. Although Federal Communication Commission 

(FCC) rules allow transmit power up to 1 W in the 2400 MHz, IEEE 802.15.4 

devices likely operate with much lower transmit power (i.e. typically 1 mW) to 

minimize interference with other wireless devices. Channel alignment requires a 

proper separation between the IEEE 802.15.4 communication channel and the 

potential wireless systems, which can enable multiple wireless systems to work 

simultaneously without significant mutual interference.  

3.5.2 Existing Mitigation Strategies 

Swapping the current working channel of IEEE 802.15.4 based WSNs to a 

relative free frequency when interference occurs is an easy and effective way to 

combat interference. In this study, we review three typical existing mitigation 

strategies. 
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3.4.2.1 Adaptive Interference-Aware Multi-Channel Clustering 

Kang et al. (2007) proposed an adaptive interference-aware multi-channel 

clustering algorithm to avoid IEEE 802.11 interference in a ZigBee network. In 

the description of this algorithm, a stationary ZigBee network is assumed so that 

no topology change or mobile node is allowed (See Figure 3.17). 

 

 

Figure 3.17 ZigBee network with Intra and Inter clusters (Kang et al., 2007) 

 

In Figure 3.17, ZigBee devices are classified into a number of clusters. 

Except for the PAN Coordinator, each cluster has a cluster head (CLH) 

responsible for cluster management. A cluster identifier (CID) is used by devices 

in the same cluster to establish communication.  There are two channel settings: 

An intra-cluster channel for devices in the same cluster and an inter-cluster 

channel for a cluster header and a bridge device (BRD). A bridge device is a node 

directly connected to a cluster header of a neighbouring cluster. The use of Inter-

cluster is to increase the coverage area of a ZigBee network. 

The algorithm consists of two schemes: an interference detection scheme 

and an interference avoiding scheme.  

• Interference Detection Scheme: Once a device in a cluster detects the 

existence of IEEE 802.11 interference (e.g. loss of beacon synchronization, or loss 

of acknowledgement), it should broadcast a channel change broadcast message 

(CCBM) through the cluster, allowing the other devices in the same cluster to 

detect the interference. 
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• Interference Avoidance Scheme: On receipt of the CCBM, devices in the 

same cluster start to change their channel to a new channel. To ensure each device 

can move to the same channel without introducing additional cost, a combination 

of PAN identification, cluster ID, current channel and channel switch counter is 

used as a key to generate the next channel. Devices sharing the same parameters 

can obtain the same result. These parameters are inputted in a pseudorandom 

sequence generator (PRSG) (see Figure 3.18). 

 

Figure 3.18 Block diagram for pseudorandom sequence generator (Kang et al., 

2007) 

For the Inter-cluster connection, the cluster head periodically sends a test 

frame to the bridge node. If a number of acknowledgements are lost, the cluster 

head assumes that the Inter-cluster channel is experiencing interference. Then it 

sends out CCBM frame and moves to the next channel. For the bridge node, if a 

number of test frames are not received as scheduled, it also sends out CCBM to 

the cluster to which it belongs, and moves to the next channel. 

The evaluation test for “interference-aware multi-channel clustering” 

algorithm was implemented using 30 Chipcon CC2420 chips (CC2420, 2007) 

working on channel 23(i.e. 2465 MHz). The IEEE 802.11 traffic was configured 

to work on multiple channels, channel 11, channel 1, and channel 6. The test 

results were compared according to two situations: with algorithm (situation 1) 

and without algorithm (situation 2). When an access point worked on channel 11 

(2462 MHz), 1/3 of ZigBee devices were unable to communicate in situation 1. 

However, only 22% frames were lost in situation 2. It was also found that the 

proposed algorithm cannot resolve the overall problem that ZigBee frame delivery 

degrades with the increment of IEEE 802.11 access points on different channels.     
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3.4.2.2 Adaptive Radio Channel Allocation 

An adaptive radio channel allocation for supporting coexistence of 

802.15.4 and 802.11b was proposed by Won et al. (2005). The algorithm also 

focuses on IEEE 802.15.4 based WSN for large-scale deployment. The studied 

IEEE 802.15.4 network with interference presence is illustrated in Figure 3.19. 

 

 

Figure 3.19 Multi-hop IEEE 802.15.4 network with interference (Won et al., 

2005) 

In Figure 3.19, a deployed IEEE 802.15.4 sensor network using mesh 

topology is being interfered by IEEE 802.11b signals. The node named “Src” is 

set to send data packet to the node “Dst”. The routing path from the source node 

to the destination node has been pre-configured by following the solid arrows. The 

graded area is the part being affected by interference. If the source device can 

reselect a new route to bypass the affected area, the problem of interference can be 

solved. However, additional computation cost will be generated. Won et al. (2005) 

introduced a strategy to save the cost of additional route selection by enabling the 

nodes within the interfering area to switch communication channel temporarily. 

The strategy implementation consists of three steps: interference detection, group 

formation and tear-down. 

• Interference Detection 

Each IEEE 802.15.4 node in the mesh network keeps monitoring the data 

throughput and executing interference detection using the standard function of 

energy detection, or clear channel assessment. Once a sudden degradation of 

throughput is detected, and the energy detection returns a high level reading, the 
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node will enter into the procedure of group formation in order to form a temporary 

group in a clean channel. 

• Group Formation 

The node, which starts the procedure of group formation should message 

its immediate neighbours about the information of the channel to which it is going 

to switch. On receipt of the messages, the neighbour node will change its role to 

act as a border node, which establishes a bridge between the original mesh 

network and the nodes within the interference area. The border node will send a 

reply message on the new channel to the node from which it received the group 

formation message. The reply message is to confirm that the border node is aware 

of the situation change. Next, the border node switches back to the previous 

channel. If new data for the nodes that have joined the temporary group are 

received by the border node, it quickly switches to the channel used by the 

temporary group, and sends the data to the desired node. After completion of data 

sending, the border node returns to the original channel and continues to listen on 

it.  

• Tear-down 

The nodes in the temporary group keep checking the previous channel 

periodically. If the channel is measured to be clear, they will send a tear down 

message to all immediate neighbours, especially the border nodes. Consequently, 

the whole group will be torn down when the interference has completely 

diminished.  

In the work of Won et al. (2005), an experimental test was implemented to 

study the impact of IEEE 802.11b interference on the performance of IEEE 

802.15.4 networks. Meanwhile, a simulation test using the NS2 simulator was 

implemented to evaluate the effectiveness of the proposed strategy.  

In the experiment, two IEEE 802.11b network adaptors were configured in 

ad-hoc mode. One adaptor sent data packets to another adaptor using the 

maximum data rate of 11 Mbps. Two IEEE 802.15.4 Chipcon wireless modules 

were located close to IEEE 802.11b adaptors in a peer-to-peer configuration. One 

module periodically sent packets to another module at an interval of one second. 

The IEEE 802.11b adaptors worked on channel 6, whose centre frequency is 2437 
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MHz. The IEEE 802.15.4 network worked on two channels, channel 17 (i.e. 2435 

MHz), and channel 21 (i.e. 2455 MHz). If channel 17 is used, the success rate of 

IEEE 802.15.4 packet delivery was measured at 40% since the centre frequency 

offset between the IEEE 802.11b network and the IEEE 802.15.4 network is 2 

MHz. If channel 21 was used, the IEEE 802.15.4 packet delivery rate was 

sustained 99% to 100%. 

In the NS2 simulation experiment, the IEEE 802.15.4 network was 

deployed as depicted in Figure 3.19. The effectiveness of the proposed strategy 

was measured with two metrics: packet delivery success rate and delay. Since the 

strategy implementation was implemented once interference is detected, and the 

“adaptive channel allocation” can ensure the success of following packet 

transmissions, then most of the packets will not be lost. The measured packet 

delivery success rate sustained between 97% and 86%.  During periods of 

interference, the proposed strategy could still utilize the previous route without 

issuing a new route selection. However, more time was spent by the “border 

node” to implement channel switching. In comparison with the situation where no 

strategy was applied when interference happened, the packet delay measured in 

simulation tests with the strategy implemented was approximately 40% less. 

 

3.4.2.3 Adaptive Multi-Channel Utilization Scheme 

An interesting strategy called “Adaptive Multi-Channel Utilization 

scheme” was proposed by Hwang et al. (2009) to achieve coexistence of IEEE 

802.15.4 with other interfering systems. The strategy assumes the use of IEEE 

802.15.4 network is under beacon-enabled mode. If no strategy is specified, all 

IEEE 802.15.4 devices only work on the selected channel and are associated with 

the PAN coordinator by tracking the periodic beacons. Each beacon contains a 

superframe within which all synchronized devices can commence 

communications. The beacon signal is contained at the first part of the 

superframe. Once serious interference occurs in the current working channel, 

IEEE 802.15.4 communications will be interfered until the PAN coordinator 

restarts a new PAN in a clean channel with small energy level and completes re-

association requests from previous devices. To overcome the shortage of the 
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standard procedure, the proposed strategy utilizes all available channels to 

maintain multiple superframes on different channels. 

When a PAN coordinator is to start an IEEE 802.15.4 network, it first 

implements energy detection on all 16 IEEE 802.15.4 channels. The channels with 

energy level less than a certain threshold will be stored on the PAN coordinator. 

This is different from the normal IEEE 802.15.4 PAN coordinator which sends 

beacon only on the certain channel after the completion of the energy scan, the 

PAN coordinator used in “Adaptive Multi-Channel Utilization scheme “ sends 

beacon periodically on multiple channels which are stored as clean channels (see 

Figure 3.20).  

 

Figure 3.20 Multiple superframe structure by coordinator using multi-channel 

(Hwang et al., 2009) 

In Figure 3.20, the channel 1 7, 3, and 11 are chosen to implement 

multiple superframes transmission. For each single working period, normal IEEE 

802.15.4 devices on these 4 channels will be able to receive a superframe sent 

from the same PAN coordinator. When a normal IEEE 802.15.4 network device is 

going to join the network, it firstly implements passive detection on all channels 

by sequence. Once a superframe is received on a channel, the device will 

synchronize with the beacon and store the list of the clean channels (i.e. channels 

with less energy level). When the superframe appears on the same channel in the 

next loop, the device will send an association request to the PAN coordinator. On 

receipt of the reply from the PAN coordinator, the association is completed. Then 

the IEEE device stays on this channel and implements communications.  
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Once interference occurs on a channel, the IEEE 802.15.4 devices working 

in this channel will lose synchronization with the PAN coordinator, or the PAN 

coordinator will receive no acknowledgements. When such phenomena happens, 

the PAN coordinator and affected devices can simply cancel all transactions on the 

channel being interfered with, and work on the rest of the clean channels. Since 

the PAN coordinator and network devices maintain the same channel list, the 

transfer will be easy to achieve. The experimental test showed that none of the 

packets are lost until all scheduled channels are interfered.   

3.5.3 Comprehensive Suggestions from Industry 

In general, the cause of interference in IEEE 802.15.4 based wireless 

sensor networks can be categorized into two aspects: channel selection and 

transmission power. On the basis of these two characteristics, Jennic (2008) 

concludes a number of methods for reducing the effects of interference on an 

IEEE 802.15.4 network. 

Channel Selection: It is recommended to use channels 25 and 26 to avoid 

most of the IEEE 802.11b/g interference. If the system is deployed within an 

environment where pre-configuration of wireless systems is controllable, a 

channel centre-frequency offset of 7 MHz is better to reserve to ensure acceptable 

coexistence with IEEE 802.11 systems. 

Physical Separation: Ensuring a physical separation of at least 8 meters 

from an IEEE 802.11 access point is useful for coexistence. 

Mesh Networking: If applicable, an IEEE 802.15.4 network can be 

constructed on the basis of mesh topology which provides additional benefits of a 

self-organizing and self-healing capability. 

Network Layer Frequency Agility: By switching to a clean channel when 

interference occurs, an IEEE 802.15.4 network can effectively avoid performance 

degradation. The channel hopping is normally charged by high level protocols 

(e.g. network layer). The decision of dynamic channel selection should be made in 

terms of results of channel assessments (e.g. energy detection, link quality 

indicator). 
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Network Planning: Before deploying an IEEE 802.15.4 network, initial 

assessment such as a site survey can be performed to evaluate the radio frequency 

environment. The results provide important guidance for physical installation. 

During the period of system operation, the radio frequency environment 

evaluation can be periodically performed to monitor the changes of interference 

possibility. 

3.6 Summary 

As discussed before, it is evident that the performance of IEEE 802.15.4 

networks can be affected by wireless interference occurring in the same ISM 2.4 

GHz band. The level of the interference effect depends on the characteristics of 

the interferer, e.g. interfering power strength, system duty-cycle, interference 

frequency. The research on interference mitigation strategies for IEEE 802.15.4 

systems are in great demand as more and more wireless products using this 

technique are coming to the market.  

A complete research process regarding wireless interference consists of 

three steps: analysis for the cause of interference, interference mitigation strategy 

design, and data recovery strategy design. The idea is that the interference effect 

can be limited using the corresponding methods if the cause of the interference 

can be addressed, and the system’s performance can be further improved if the 

lost data can be efficiently recovered. These three steps also compose the 

methodology employed for the interference study in this thesis. 

3.6.1 Analysis for the Cause of Interference 

The unexpected interfering energy (e.g. IEEE 802.11 signal) is the essence 

of interference affecting an IEEE 802.15.4 based wireless sensor network. When 

interference signals overlap the desired signal, and the corresponding interfering 

energy reaching the IEEE 802.15.4 receiver is over the allowed noise level, the 

reception of the desired signal on the IEEE 802.15.4 receiver will fail. 

The difficulty for an IEEE 802.15.4 system in detecting the existence of 

interference at the physical layer, based on the literature review in this chapter, is 
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that the IEEE 802.15.4 radio system works under half-duplex mode, which means 

the transmitter cannot monitor the status of signals whilst the transmission is in 

process. On the other hand, the employed modulation/demodulation technique 

usually limits the maximum capability of the wireless system’s anti-interference 

capability. Some wireless standards e.g. IEEE 802.11b, allow the system to 

dynamically switch to a second choice of modulation/demodulation scheme when 

interference occurs, However, there is no universal modulation/demodulation 

scheme available for dealing with all situations.  

The analysis for the cause of interference on IEEE 802.15.4 based on 

WSN focuses on the effect of interference at a system level which is higher than 

the PHY layer (e.g. MAC layer, network layer, application layer), and provides 

information for the following interference mitigation strategy design.  

3.6.2 Interference Mitigation Strategy Design 

The IEEE 802.15.4 standard does not support hardware adjustment (i.e. 

switch modulation/demodulation) to obtain better performance when its system is 

under interference. However, if the adjustments are made at the MAC layer or 

above (e.g. reduce overlapping part between desired packet transmission and 

interference signals, switch communication channels, or implement new route 

selection), the possibility for the IEEE 802.15.4 network affected by interference 

to survive could increase.   

Many researchers propose their solutions to help IEEE 802.15.4 based 

networks overcome any interference by intelligently swapping working channel to 

avoid direct contact with harmful energy (Kang et al. 2007; Won et al. 2005; 

Hwang et al. 2009). The tests results indicate that the strategies can effectively 

increase IEEE 802.15.4 network performance when there are “clean” channels 

available for swapping if the current working channel is experiencing 

interference. However, the rapid development of personal wireless devices 

working on the same ISM 2.4 GHz band is forming a situation in which there 

might not be any clean channel to use within a given environment. For example, it 

is common for different departments in a company to set up private IEEE 802.11 

networks in the same open office environment. If three non-overlapping Wi-Fi 
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channels are not sufficient for use, some of the overlapping Wi-Fi channels must 

be used under this circumstance. Consequently, there will be no clean IEEE 

802.15.4 channel “isolated” from Wi-Fi networks (see Figure 3.5). The main 

research interest of this thesis is to discuss and design efficient and feasible 

strategies from a system level view using the information obtained from 

interference analysis. The strategies are mainly implemented at the IEEE 802.15.4 

MAC layer or above to maintain communications when interference occurs and 

channel switching is not applicable. 

3.6.3 Data Recovery Strategy Design 

Since the occurrence of the interference is unpredictable, some data loss is 

inevitable no matter how interference mitigation strategy is implemented. 

Consequently, a data recovery strategy is crucial if the lost data is important for 

the application. By utilizing the convenience provided by the peer-to-peer 

topology, it is feasible to construct redundancy in the IEEE 802.15.4 network, and 

enable data recovery when necessary. The data recovery strategy involved in this 

thesis mainly focuses on the finding of the lost data on the basis of hardware. 

Details will be given in Chapter 6.  

By combing the uses of interference mitigation and data recovery 

strategies, an IEEE 802.15.4 network can provide upper layers with a complete 

data service to ensure high system performance under interference.  
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Chapter 4 Interference Analysis 
and Mitigation  
 

 

 

4.1 Background and Motivation 

The basic topologies supported by the IEEE 802.15.4 standard are star 

topology and peer-to-peer topologies. The star topology is usually used for small 

area applications, as its coverage area is limited. In a star network, the network 

controller (i.e. IEEE 802.15.4 PAN coordinator) is in charge of all network 

operations, which means only one hop range is required for network 

communications. As the effective communication range of a star IEEE 802.15.4 

network is limited, both transmitter and receiver can be affected during periods of 

interference. In such a case, network communications can be affected when the 

default mechanism of CSMA-CA fails, or the desired acknowledgment is missed. 

Although the network communications might return to normal by enabling the 

PAN coordinator and network devices to switch to a different channel, it is more 

useful if the communications can be maintained on the current channel when it is 

not possible to apply channel switching, or other IEEE 802.15.4 channels are also 

being affected by interference.  

4.2 Analysis of Existing Interference Resources 

The basic idea of wireless communication is to provide connectivity 

through the wireless medium. Therefore, wireless systems are required to ensure a 

certain minimum transmission quality. The metric for measuring the transmission 
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quality is SNR at the receiver (Zhou et al., 2005). The noise, which is also called 

interference in this context, can consist of several components, as follows 

(Molisch, 2005): 

1. Thermal Noise: The thermal noise is generated by environmental 

temperature. Assuming the normal environment temperature is 300 K 

(around 26 Celsius). The power spectral density of thermal noise affecting 

the receiver bandwidth is calculated as 174dBm/Hz.  

2. Man-made Noise: Man-made noise can be distinguished into two types: 

a) Spurious emissions: It is common for many electric appliances to 

emit noise over a large bandwidth that includes the range within which 

the desired wireless communication systems operate. Car ignitions and 

other impulse sources are typical example sources of man-made noise. 

b) Other intentional emission sources: Several wireless 

communications systems in close proximity operate in unlicensed 

bands, particularly ISM 2.4 GHz band. In these bands, all members are 

allowed to emit electromagnetic radiation without restrictions 

compared with licensed bands. This interference phenomenon is 

serious (Chiasserini et al., 2002).   

3. Receiver Noise: The amplifier and mixers in the receiver are noisy and 

compose parts of noise power in the whole system. 

Among the listed noise resource, the thermal noise and receiver noise 

persist all the time and cross the whole available bandwidth. The noise resource of 

“spurious emission” also crosses the whole available bandwidth. This is an 

uncontrollable factor which is out of scope of this thesis.  The factor of “other 

intentional emission sources” is caused by wireless systems under control of 

corresponding protocols. Wireless systems working on the same 2.4 GHz ISM 

band are all potential interference source. 

IEEE 802.15.4 WSNs based on the star topology are suitable for home 

automation, personal computer peripherals, toys and games, and personal health 

care (IEEE Std802.15.4-2003, 2003). These application areas are quite common in 

domestic use.  For example, inside the home, several home appliances including 
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washing machine, radios, televisions, lighting control, automatic curtain etc, can 

be organized using a universal controller (Callaway et al., 2002). The IEEE 

802.15.4 technique can easily enable these devices to be wireless without 

worrying about the differences of physical characteristics.  

IEEE 802.11b based wireless local area networks have become popular in 

home, enterprise and public access areas due to the features of low cost, simplicity 

of installation and high data rates (Medepalli et al., 2004).  In areas with both 

IEEE 802.15.4 and IEEE 802.11b systems in operation, problems of coexistence 

must be considered. For example, an IEEE 802.15.4 enabled light sensor node 

serving a home automation network is located close to a window. A laptop 

equipped with an IEEE 802.11b network adaptor is set a few meters away from 

the window and used for audio application through the IEEE 802.11b network. 

Then the IEEE 802.11b interference could be harmful to the IEEE 802.15.4 

system (Latre et al., 2006).  

It has been proved that IEEE 802.11b wireless networks can have different 

degrees of interference on IEEE 802.15.4 communications (Sikora and Groza, 

2005; Petrova et al., 2006; Howitt and Gutierrez, 2003). Under normal 

circumstance, an IEEE 802.15.4 network can avoid interference from IEEE 

802.11b system by enlarging physical separation from an IEEE 802.11b 

transmitter, or selecting a different communication channel whose centre 

frequency is away from the frequency employed by the IEEE 802.11b system. 

However, these measures may not be applicable in practical applications due to 

two reasons:  

1. The capability of automatic channel switching for avoiding interference is 

not supported by the IEEE 802.15.4 standard. If channel switch is required, 

it should be carried out by application software with specific interference 

judgment procedure. 

2. IEEE 802.11b system is probably integrated into portable devices (e.g. 

laptop, personal digital assistant). Therefore, they can work anywhere. 

However, most IEEE 802.15.4 WSN devices are static after deployment 

since it is not originally designed for mobile applications. 
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If the IEEE 802.15.4 system can maintain communications on the current 

channel whilst IEEE 802.11b interference is occurring, the capability for the IEEE 

802.15.4 system to suffer interference can be significantly improved.  

4.3  Interference Modeling: Open Loop  

Although an IEEE 802.11 system can produce serious interference on an 

IEEE 802.15.4 receiver, it is still possible for the IEEE 80215.4 to communicate 

under the presence of interference. IEEE 802.11b wireless communication usually 

satisfies two characteristics: non-persistence and variable duty cycle. 

• Non-Persistence 

In wireless communication systems, the state of radio transmission is 

usually not persistent. Most communication protocols specify the maximum data 

payload length for each type of supported frame. For instance, an IEEE 802.11b 

MAC frame can contain a maximum of 2304 bytes as data payload (IEEE 

Std802.11-2007, 2007). In the case that the amount of desired data is larger than 

the maximum data payload size, the transmission must be processed packet by 

packet, which is called datagram fragmentation.   After the completion of a packet 

transmission, the system must consume some necessary time to adjust the 

transmitter state and process the next frame passed from the upper layers. 

Therefore, there is always a certain interval existing between each pair of packet 

transmissions. 

• Variable Duty Cycle 

Wireless communication systems usually work when required. For an 

IEEE 802.11 network, the network can be active when users start to access the 

Internet and initiate certain actions. For example, when the user presses a button 

on a webpage, the IEEE 802.11 adaptor equipped on the computer will send a 

request to the website through the wireless router, and display to the user the 

results when responses are received from the website through the wireless router. 

The IEEE 802.11 signals travelling between the computer and the wireless router 

create interference to other wireless communication. Once the process of request 
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and response is finished, the IEEE 802.11 network will be inactive until the next 

action is initiated. The duration of a transmitter working period is called the duty 

cycle. According to the level of utilization, the duty cycle can be various. 

When the IEEE 802.11 transmitter is idle or in a listening state, there will 

be no interference. From the viewpoint of system activity, this situation is called a 

“low duty-cycle”. It is possible that the communications of the IEEE 802.15.4 

system will be interfered with by powerful IEEE 802.11 signals, but if the time 

interval between any two IEEE 802.11 packets is large enough to enable 

completion of the IEEE 802.15.4 packets transmission, the effect of interference 

can effectively be reduced. There are two aspects which need to be analyzed: 1) If 

the time slot existing between two IEEE 802.11 packets is large enough to enable 

the transmission of IEEE 802.15.4 packets. 2) As the IEEE 802.11 system and 

IEEE 802.15.4 system are not able to interact with each other, is it possible to 

ensure that the IEEE 802.15.4 packet transmissions occur when the IEEE 802.11 

system is in an idle state.  

In this chapter, an IEEE 802.11b transmitter is assumed as the interferer. 

Figure 4.1 shows the basic access method of the IEEE 802.11b system. 

 

Figure 4.1 Basic access method of IEEE 802.11b (IEEE Std802.11-2007, 2007) 

 

In Figure 4.1, when an IEEE 802.11b device is to transmit a packet, it will 

monitor the channel until an idle period equal to or greater than a distributed inter-

frame space (DIFS) is detected. If the channel is busy, the device will keep 

deferring. After sensing an idle DIFS, the device selects a random number of “slot 
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time” (aSlotTime) and starts to backoff, which means the device waits for a 

specified period before starting the transmitting process. The random number is 

set as the counter. Once the backoff counter reaches zero, the device starts to 

transmit the packet. If the channel is detected to be busy during the period of 

backoff, the count temporarily suspends and resumes when a period of idle DIFS 

is detected.  

According to the IEEE 802.11b standard, DIFS and Backoff are defined as 

follow: 

aSlotTimeaSIFSTimeDIFS ×+= 2                                        (4.1) 

aSlotTimeRandomBackoff ×= ()                            (4.2) 

where aSlotTime denotes the Slot Time (in microseconds) that the IEEE 802.11 

MAC layer will use for defining DIFS periods, aSIFSTime denotes the nominal 

time (in microseconds) that the IEEE 802.11 MAC and PHY layer will require to 

process the received frame, the function ()Random generates an integer drawn 

from a uniform distribution over the interval [0, CW], where CW denotes 

contention window whose range is maxmin aCWCWaCW ≤≤ . The parameters 

of minaCW and maxaCW are PHY characteristics defined in the IEEE 802.11b 

standard. Table 4.1 summarizes the related parameters and values. 

Table 4.1 IEEE 802.11b parameter 
IEEE802.11b Parameter  aSlotTime aSIFSTime    aCWmin   aCWmax 

Value 20µs 10µs 31 1023 

 

In Table 4.1, aCWmin and aCWmax denote the minimum and maximum 

size of contention window (in units of aSlotTime) respectively. Theoretically, the 

interval biT 11.802_  between two connective IEEE 802.11b packets is obtained as 

follows: 

aSlotTimeRandomDIFST bi ×+= ()11.802_                                              (4.3) 

where [ ]() 0,Random CW∈ . Therefore, [ ]_802.11 0.67 ,20.51I bT ms ms∈ . 



0 

 

- 65 - 

Similarly, an IEEE 802.15.4 packet transmission also needs to follow 

certain rules. Figure 4.2 illustrates an IEEE 802.15.4 star network.  

 

Figure 4.2 IEEE 802.15.4 star network 

In Figure 4.2, an IEEE 802.15.4 PAN coordinator acts as the starter of the 

network. As mentioned in Chapter 2, any IEEE 802.15.4 network must have one 

and only one PAN coordinator to initiate key network parameters (e.g. network 

channel, network identification) and maintain network operations during the 

whole system lifetime. Other devices including IEEE 802.15.4 full function 

devices and IEEE 802.15.4 reduced function devices can join the established 

network by associating with the PAN coordinator. The difference between full 

function device and reduced function device is that a full function device is 

capable of relaying messages. However, relaying message is not required in a star 

network. If a network device is to send data to another device, the data must be 

sent to the PAN coordinator first, and then relayed to the destination device by the 

PAN coordinator. In other words, communications in a star network always 

happen between the PAN coordinator and one of the network devices. As 

mentioned in Chapter 2, the IEEE 802.15.4 star network supports two network 

modes: beacon-enabled and nonbeacon-enabled. Beacon-enabled network 

requires beacons generated by the PAN coordinator to synchronize all network 

devices, whereas nonbeacon-enabled network has no such limitation. For channel 

access, beacon-enabled and nonbeacon-enabled networks use slotted and 

unslotted CSMA-CA mechanism respectively. In this chapter, the analysis focuses 
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on nonbeacon-enabled mode. Figure 4.3 shows the flow chart of unslotted 

CSMA-CA mechanism.  

 

Figure 4.3 Unslotted CSMA-CA (IEEE Std802.15.4-2003, 2003) 

 

The analysis of unslotted CSMA-CA is for the calculation of time period 

which a standard data transmission requires. In Figure 4.3, when an IEEE 
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802.15.4 device is going to transmit a packet, it first implements CSMA-CA to 

determine if the channel is idle. If the channel is reported to be idle, the device can 

transmit the packet. If the channel is reported to be busy, the mechanism of 

CSMA-CA will continue to monitor the channel until the allowed number of 

detections has been tried. The detail procedures are described as follows: 

Step 1:  Initialize the parameters of NB and BE 

NB means the number of times the system will implement the backoff in 

the current transmission attempt. BE is the backoff exponent, which means how 

many backoff periods should be performed before attempting to assess the 

channel. NB and BE are initialized to be 0 and macMinBE respectively, where 

macMinBE is the minimum value of the backoff exponent in the CSMA-CA 

algorithm. The default value of macMinBE is 3. 

Step 2: Delay and Clear Channel Assessment Implementation 

After initialization, the system starts to delay a number of backoff periods. 

One backoff period is equal to aUnitBackoffPeriod, which is 320 µs. The size of 

the backoff period is randomly selected from 0 to 12 −BE (step 1) where the 

default value for BE is 3. When the delay is finished, the MAC layer of the system 

can perform CCA (step2).  Since the random delay is decided within the range of 

)12( −BE and complies with uniform distribution, it is reasonable to select variance 

4 for calculation. The implementation of CCA requires 128 µs. Then the time 

CCADelayT − consumed to implement random delay and CCA is calculated as follows: 

CCADelayT − = ( 12 −BE ) * aUnitBackoffPeriod+ CCA  

                 =4*320 µs + 128 µs = 1.408 (ms)                       (4.4) 

Step 3: Judgment of Channel Status 

If the channel is assessed to be busy, the system will increase NB by 1 and 

reselect BE from the lesser of BE+1 and aMaxBE, the maximum value of the 

backoff exponent defined in the CSMA-CA algorithm. If NB is greater than 

macMaxCSMABackoffs, which is the maximum number of backoffs that the 
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CSMA-CA algorithm will attempt to implement before declaring a channel access 

failure, the current attempt of accessing medium is announced to be failed and the 

MAC layer should issue a primitive of “CCA Failure” to the upper layer. If NB is 

less than macMaxCSMABackoffs, goes to step 1. If the channel is assessed to be 

idle, the MAC layer can immediately commence data transmission. If no 

interference is present, the channel should be idle, and the frame transmission can 

be commenced immediately, which requires TransmitT : 

)(250/_ mskbpsLT LengthPacketTransmit =                                                (4.5) 

where LengthPacketL _  denotes the length of the IEEE 802.15.4 packet to be sent out 

by the PHY layer. The parameter 250kbps is the data rate defined by the IEEE 

802.15.4 standard at 2.4 GHz frequency band. 

Step 4: Retransmission 

After sending out a data packet, the device requires a certain period called 

dTimeaTurnaroun equal to 0.192ms, to allow the radio system to switch the radio 

state from transmit to receive. 

SwitchT =0.192 (ms)                                                                                   (4.6) 

If an acknowledgement is required, the system shall wait for at most 

macAckWaitDuration, which is the maximum period of waiting for an 

acknowledgement to arrive following the transmission of a data packet. The value 

of DurationmacAckWait is equal to 0.864 ms. The length of an acknowledgement 

frame is fixed at 11 bytes. The minimum duration for acknowledgement frame 

transmission is 0.352 ms. Then the time ACKT used to wait for an 

acknowledgement is defined as follows: 

]864.0,352.0[ msmsTACK ∈                                                                      (4.7) 

 If the acknowledgement is received within macAckWaitDuration period, 

the transmission is considered successful. Then the MAC layer initiates a 

primitive of “MAC_ENMU_SUCCESS” to the upper layer. If the 

acknowledgement is not received, the system will automatically attempt to 

retransmit the packet for aMaxFrameRetries times, which has a default value of 3. 
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If the acknowledgement is still not received, the MAC layer should initiate a 

primitive of “NO_ACK” to the upper layer.  

Therefore, if there is no interference existing, the ACKT can select the 

minimum value. Meanwhile, the automatic retransmission is not needed.  

The total transmission time )( _ LengthPacketTotal LT is defined as follows: 

)(250/8952.1

352.0192.0250/8408.1)(

_

__

msL

LLT

LengthPacket

LengthPacketLengthPacketTotal

×+=

++×+=

           (4.8)                                                

The parameter LengthPacketL _  denotes the length of the outgoing packet. Its 

unit is in bytes.  Figure 4.4 illustrates the structure of data frame in the IEEE 

802.15.4 standard. 

 

Figure 4.4 IEEE 802.15.4 data frame structure (IEEE Std802.15.4-2003, 2003) 

 

In an IEEE 802.15.4 data frame, the packet length is controlled by the 

length of data placed in the “Data Payload” field.  The “Data Payload” range, 

which is also called a MAC Service Data Unit (MSDU) is defined as msduLength. 

The definition for msduLength is: 

            meSizeaMaxMacFramsduLength≤                                                    (4.9)  

verheadaMaxFrameOketSizeaMaxPHYPacmeSizeaMaxMacFra −=  

)(10225127 byte=−=                                                                  (4.10)
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where ketSizeaMaxPHYPac and verheadaMaxFrameO denote the maximum 

packet length which can be processed by the IEEE 802.15.4 PHY layer, and the 

maximum number of byte added by the IEEE 802.15.4 MAC layer to its payload 

respectively. Then, the maximum length of a data packet sent from the PHY layer 

of an IEEE 802.15.4 device is: 

])204(5[1)14(_ ntoPSDUPHRSHRL LengthPacket +++++=++=                 (4.11) 

where SHR, PHR and PSDU denote synchronization header, PHY header and 

PHY service data unit respectively (see Figure 4.4). 

If the addressing field uses the minimum allowed value, then LengthPacketL _ is 

defined as: 

]102,0[)(15_ ∈+= nbytenL LengthPacket                                       (4.12) 

where n denotes the data payload . 

Applying Equation (4.12) into Equation (4.8), the range of time required to 

complete an IEEE 802.15.4 packet transmission is obtained as: 

)(
250

8)15(
952.1)( _ ms

n
LT LengthPacketTotal

×++=                                (4.13) 

since ]102,0[∈n , the range of TotalT is ]696.5,432.2[ msms∈ .  

It is noticeable that the implementation of CCA has three modes. CCA 

mode 1 reports a busy medium if the detected energy level is above the energy 

detection threshold. CCA mode 2 reports a busy medium if a signal with the 

modulation and spreading characteristics of IEEE 802.15.4 is detected. CCA 

mode 3 reports a busy medium if a signal with the modulation and spreading 

characteristics of IEEE 802.15.4 with energy above a defined threshold is 

detected. When an IEEE 802.15.4 system is affected by IEEE 802.11b 

interference, CCA mode 1 will always report busy medium since the energy level 

of IEEE 802.11b signal is relatively high due to its high transmit power. 

Consequently, IEEE 802.15.4 system continues to defer transmission until 

transmission attempt failure. Therefore, CCA mode 2 is more suitable to be 
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applied if external interference is taking place. CCA mode 3 has a similar effect as 

CCA mode 2. 

The interference analysis here emphasizes the effect of interference acting 

on the IEEE 802.15.4 standard. An open loop analysis is suitable to analyze the 

interference at the IEEE 802.15.4 receiver while ignoring the interactions between 

the IEEE 802.15.4 system and interferer system. Figure 4.5 illustrates a 

comparison of IEEE 802.11b and IEEE 802.15.4 transmission procedures on the 

basis of the same time line. 

 

Figure 4.5 Comparison of IEEE 802.11b and IEEE 802.15.4 packet transmission 

 

In Figure 4.5, biT 11.802_ and bTT 11.802_  denote the time interval between two 

consecutive IEEE 802.11b packet transmissions and the time used to transmit an 

IEEE 802.11b data packet. 4.15.802_iT  and 4.15.802_TT denote the time interval between 

two consecutive IEEE 802.15.4 packet transmissions and the time used to transmit 

an IEEE 802.15.4 data packet. For example, if the length of an IEEE 802.11b 

packet is 1024 bytes, then bTT 11.802_  is about 74.01011/81024 6 =××  milliseconds 

if using 11Mbps data rate (the typical bit rate for IEEE 802.11b system). For IEEE 

802.15.4 communication, if IEEE 802.15.4 transmission operates within the 

period of 0.74 ms which is indicated as collision part in Figure 4.5, the IEEE 

802.15.4 receiver will be affected which leads to signal reception failure. 
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However, if IEEE 802.15.4 data transmission occurs within the period of biT 11.802_ , 

the IEEE 802.15.4 data packet will be successfully transmitted. As described in 

Equation (4.3), the rang of biT 11.802_ is [0.67 ,20.51 ]ms ms∈ . According to Equation 

(4.13), a complete IEEE 802.15.4 data transmission requires time consumption 

ranging from 2.432ms to 5.696ms.  It could be possible for an IEEE 802.15.4 

system to communicate when an IEEE 802.1b system is also in operation.  

4.4 Baseline Tests 

Determining the data transmission capability of an IEEE 802.15.4 system 

can give a baseline for interference mitigation strategy design. The baseline tests 

were carried out on a Jennic JN5139R1 platform (JN5139, 2009).   

4.4.1 Baseline Test I without Interference 

The baseline test I is used to evaluate the maximum transmission 

capability of the IEEE 802.15.4 system without the presence of interference. The 

test assumes that an IEEE 802.15.4 star network consists of an IEEE 802.15.4 

PAN coordinator, and an IEEE 802.15.4 network device (which is also a full 

function device) working in nonbeacon-enabled mode. The communication is 

initiated by the PAN coordinator, which transmits data requests continuously to 

the 802.15.4 network device. On receipt of the data request, the network device 

will send back an acknowledgement to the PAN coordinator. The maximum 

capability indicates how many such standard transactions can be completed by a 

pair of a PAN coordinator and normal network device within a certain period, e.g. 

1 second. In baseline test I, the data transmission employed unslotted CSMA-CA 

with CCA mode 2. 

Theoretically, the amount of IEEE 802.15.4 data packet, PacketN , which 

can be processed by the system per second (without interference presence) is 

obtained as: 

TotalPacket TN /1=                                                                                    (4.14)   
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where  TotalT  is the time required to complete an IEEE 802.15.4 packet 

transmission and calculated in terms of Equation (4.13). 

The baseline test without interference was performed between two IEEE 

802.15.4 devices as illustrated in Figure 4.6. 

 

 

 

Figure 4.6 Device deployment in baseline test I 

 

In Figure 4.6, the device acting as the IEEE 802.15.4 PAN coordinator is 

responsible for starting the wireless sensor network. Another IEEE 802.15.4 

device acting as a normal network device is an IEEE 802.15.4 full function 

device. The PAN coordinator is located 2 meters away from the normal network 

device. 

The PAN coordinator was set to continuously transmit data packets to the 

network device. The packets were generated by a software packet generator 

running on the PAN coordinator. The packet amount was decided by Equation 

(4.11) using different length of data payload allowed in the IEEE 802.15.4 

standard.  The 802.15.4 network device processed the received data packets and 

sends back acknowledgements to the PAN coordinator to confirm the reception. 

The test results are summarized in Table 4.2 and illustrated in Figure 4.7. 
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Table 4.2 Summary of time duration for IEEE 802.15.4 data packet transmission 

 

 

 

Figure 4.7 Results of baseline test I  

 

In Table 4.2, the column labelled “Theoretical” refers to the analyzed 

number of data packets, which can be processed by the IEEE 802.15.4 system 

with different data payload length in terms of Equation (4.14). The column 

labelled “Practical” means the actual amount of processed data packets obtained 

from the baseline test I by counting the received acknowledgements on the PAN 

coordinator. Figure 4.7 is the comparison of the practical and theoretical values.  

The curve with circle denotes the theoretical packet throughput between the two 

IEEE 802.15.4 devices without interference. The curve with triangles denotes the 

practical packets throughput obtained from the baseline test I. The horizontal and 

vertical axes denote the payload length and IEEE 802.15.4 packet throughput 

Data
Payload
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Theoretical Practical
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Payload
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2 401 361 62 226 198
12 355 290 72 211 184
22 319 264 82 198 176
32 289 245 92 186 166
42 265 227 102 176 156
52 244 209
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respectively. In Table 4.2 and Figure 4.7, the practical values are less than the 

corresponding theoretical values under the same conditions. Since the theoretical 

calculation does not include the time consumption required by software stack 

processing, it is reasonable to conclude that the practical results match the 

theoretical analysis. The following tests will use the result of the baseline test I as 

reference for the maximum transmission capacity of an IEEE 802.15.4 system. 

4.4.2 Baseline Test II with Interference 

The baseline test II is to evaluate the IEEE 802.15.4 system performance 

when interference is present.  Figure 4.8 shows the device deployment in the 

baseline test II. 

 

Figure 4.8 Device deployment in baseline test II with interference 

 

In Figure 4.8, a laptop is set to download a large capacity file from a FTP 

server running on a computer, which uses a cable connection to a Wi-Fi (IEEE 

802.11b) router. The test was carried out with four different FTP settings: no 

speed limit, speed limitation of 250KByte/s, speed limitation of 125KByte/s, and 

speed limitation of 62.5KByte/s.  The PAN coordinator transmitted data packets 

with different data payload to the 802.15.4 network device.  To illustrate the effect 

of interference, the IEEE 802.11b router and adaptor located with the laptop were 

set to work on 802.11b channel 6 (2437 MHz). The IEEE 802.15.4 network 

operated on 802.15.4 channel 18 (2440 MHz). The frequency offset between the 

IEEE 802.15.4 system and IEEE 802.11b system was 3 MHz. As the direction of 

IEEE 802.11b communications were mainly from the wireless router to the laptop, 

the interference was generated by the wireless router. The separations from the 
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IEEE 802.15.4 PAN coordinator and the network device to the wireless router are 

6 m and 8 m respectively, which were within the 802.11b interference area.  The 

data transmission of IEEE 802.15.4 network is the same as in baseline test I. The 

test results are shown in Figure 4.9. 

 

Figure 4.9 Test results of baseline test II with IEEE 802.11b interference 

 

In Figure 4.9, the horizontal axis expresses the different lengths of data 

payload contained in the IEEE 802.15.4 data packets. The vertical axis expresses 

the packet transmission rate of the IEEE 802.15.4 communication with various 

IEEE 802.11b traffics (e.g. 62.5 KB/s, 125 KB/s, 250 KB/s and no limit). It is 

obvious that the IEEE 802.15.4 system can still possibly achieve communications 

when the interference is serious (the most IEEE 802.11b traffic is observed at 500-

600 KB/s if it is not limited). The packet rate is obtained by comparing the 

amount of the received packets under the presence of interference with values 

derived from the column “Practical” in Table 4.2. The minimum successful rate 

(25%) occurs at the point where the data payload contained in the IEEE 802.15.4 

packet is 102 bytes and the speed of the Wi-Fi traffic is unlimited. The maximum 

successful rate (87%) is observed at the point where the data payload contained in 

the IEEE 802.15.4 packet is 2 bytes and the speed of Wi-Fi traffic is limited to 

62.5 KB/s. Therefore, we conclude that the success rate of IEEE 802.15.4 data 

transmission under various IEEE 802.11b traffic ranges from 25% to 87%. 
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4.5 Interference Mitigation Strategy 

Since it has been shown that IEEE 802.15.4 communication can maintain 

an effective data rate under interference, the mitigation strategy can start from the 

point whether it is possible for an IEEE 802.15.4 system, when it is suffering from 

interference, to maintain communications by using consecutive data transmission. 

The implementation of a mitigation strategy is divided into two components: one 

on the PAN coordinator and another one on the normal network device. 

PAN coordinator: The PAN coordinator is required to implement a regular 

check. Each time it sends out a data packet to the normal 802.15.4 network 

device, a sub-procedure for checking the result is trigged 1 second afterwards. The 

purpose is to check if acknowledgement has been received from the network 

device for the previously sent request. If the corresponding acknowledgement has 

been received, the task is considered to be successful. Otherwise, the PAN 

coordinator will assume the communication has failed. Assuming the success rate 

for the IEEE 802.15.4 devices communication under interference is ceInterferenR , and 

the system is achieving at least one successful communication at a probability of 

SuccessP  after consecutively sending n packets, the following equation should be 

satisfied: 

Success
n

ceInterferen PR ≥−− )1(1       (4.15) 

Then the number of consecutive data packets n can be derived by  

 
)1log(

)1log(

ceInterferen

Success

R

P
n

−
−≥                                         (4.16) 

where %]87%,25[∈ceInterferenR . Given a successful rate ceInterferenR , which is 

obtained from baseline test II, the number of consecutive data packet sending 

given by Equation (4.16) can guarantee the success of communication. For 

example, if the selected rate ceInterferenR is 25%, and the demanded probability 

SuccessP is 90%, the controller should send out 8 (i.e. packet number n) data request 

packets. If the desired acknowledgement is not able to be received after that, the 

PAN coordinator assumes the interference is serious. It will then send a number of 
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data packets consecutively for 1 second. The number of packets is decided by the 

data payload length. For example, if the requested packet contains a two-byte data 

payload, the number of packets will be 361 (refer to Table 4.2). If an 

acknowledgement is received during this period, the consecutive transmission 

should stop and the regular check is considered to be successful. Otherwise, the 

PAN coordinator should start energy detection and switch to a clean channel with 

the least energy activities.  Figure 4.10 illustrates the flow chart describing the 

strategy implementation on the PAN coordinator. 

Network device: The 802.15.4 network device implements connection-loss 

detection using a fixed interval. The process is: send a data packet requiring 

acknowledgement to the PAN coordinator every second. If the received 

acknowledgement matches with the outgoing packet’s sequence number, the 

connection is thought to be normal. If a number of acknowledgements are lost, the 

sensor device should try to search the network on all available channels, and if it 

can be located, join it again. The flow chart is illustrated in Figure 4.11 
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Figure 4.10 Flow chart of consecutive data transmission on PAN coordinator 
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Figure 4.11 Flow chart of strategy implementation on IEEE 802.15.4 device 
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4.6 Evaluation Test 

The evaluation test is designed to evaluate if the strategy is effective for an 

IEEE 802.15.4 network to achieve effective communications during the period of 

interference. The hardware deployment for the evaluation test is similar to that 

used for the base line test II. Two additional laptops are added to the scenario to 

generate more Wi-Fi traffic. Figure 4.12 shows the deployment. 

 

Figure 4.12 Device deployment for evaluation test 

 

In Figure 4.12, the laptops 2 and 3 connect to two IEEE 802.11b routers 

working on the Wi-Fi channels 1 and 11 respectively. The laptop 1 and the 

connected Wi-Fi router work on the Wi-Fi channel 6. Then the three suggested 

non-overlapping Wi-Fi channels are utilized to realize a normal case of IEEE 

802.11b networks usage. All three laptops are programmed to download large data 

files. The setting for the download speed is the same as in baseline test II that 

starts from no speed limitation and progresses to 62.5 KByte/s, 125 KByte/s, and 

250 KByte/s. The working channel of the IEEE 802.15.4 network is initially set at 

IEEE 802.15.4 channel 18, whose centre frequency is the closest to the Wi-Fi 

channel 6. During the evaluation test, the PAN coordinator was set to send data 
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packet and required acknowledgements from the 802.15.4 network device every 5 

seconds with three levels of data payload, 2 bytes, 52 bytes and 102 bytes. A total 

of 13 requests were used in the test. Therefore, the controller should complete the 

designed tasks in 60 seconds if no interference existed. If the loss of 

acknowledgement was detected on the PAN coordinator, the proposed mitigation 

strategy will be implemented. The IEEE 802.15.4 device kept implementing a 

connection test every second. If ten acknowledgements from the PAN coordinator 

were lost, the IEEE 802.15.4 network device should start to scan available 

channels to locate the network. Due to the uncertainty of interference, the 

selection of threshold did not have certain rules to follow. The smaller the 

threshold was, the quicker the response will be made by the network device, and 

vice versa. However, a small threshold possibly made the network device 

frequently search network, and a large threshold can lead to a long delay in 

response. In practical application, the selection of threshold should accord with 

system requirements. To make it convenient for comparison, the test was carried 

out with and without interference occurring respectively. The test results are 

shown in Figure 4.13 and Table 4.3. 

 

Figure 4.13 Probability of successful transmission in the evaluation test 
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In Figure 4.13, test results with three kinds of data payloads generated by 

the PAN coordinator are selected for comparison. The columns indicate the 

success rates for packets with different payloads under different IEEE 802.11b 

interference. The primary difference between the results obtained with and 

without 802.11b interference mainly occurs at the point where no speed limitation 

is applied to the IEEE 802.11b traffic. For data packets sent by the PAN 

coordinator, if no strategy is applied, the higher data payload contains the lower 

successful rate is obtained. For example, when no speed limitation is applied to 

the IEEE 802.11b traffic, and if data payload is 2 bytes, the success rate is 53.8%. 

If the data payload is 102 bytes, the success rate is 23%.  When IEEE 802.11b 

traffic is slower, the success rate of data transmission without strategy 

implementation is slightly less than the success rate with strategy implementation. 

No data transmission is lost when the strategy was applied as the system utilizes 

consecutive retransmission to ensure connectivity.  For other settings of IEEE 

802.11b traffic, the successful rates for both of the two situations were similar.    

Table 4.3 Result summary of evaluation test 

 

Table 4.3 gives a summary of the actual result obtained from the 

evaluation test. The column labelled as “Payload” denotes the payload length 

contained in packets sent by the PAN coordinator. The label “Data Rate” indicates 

the IEEE 802.11b traffic setting. The label “Channel Switch” indicates how many 

 With strategy Without strategy 

Pay load 

(Byte) 

Date Rate  Channel 

Switch 

Time 

(Second) 

Retry Success Channel 

Switch 

Time 

(Second) 

Retry Succ

ess 

2 No limit 1 97 520 13 0 60 0 7 

2 250KB/s 0 65 3 13 0 60 0 12 

2 125KB/s 0 65 0 13 0 60 0 11 

2 62.5KB/s 0 65 0 13 0 60 0 13 

52 No limit 1 98 468 13 0 60 0 6 

52 250KB/s 0 66 7 13 0 60 0 13 

52 125KB/s 0 65 0 13 0 60 0 13 

52 62.5KB/s 0 65 0 13 0 60 0 13 

102 No limit 1 95 238 13 0 60 0 3 

102 250KB/s 0 65 6 13 0 60 0 12 

102 125KB/s 0 65 3 13 0 60 0 13 

102 62.5KB/s 0 65 3 13 0 60 0 13 
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times the PAN coordinator switched channel when consecutive data transmission 

strategy was not effective. Column with label “Time” means how long the 13 data 

transmissions are completed. The label “Retry” means how many consecutive data 

transmissions were implemented with the given condition. The label “Success” 

means the number of successful data transmission of 13 designed packets. If no 

strategy is applied, the PAN coordinator will neither switch channel nor attempt to 

retransmit. When the IEEE 802.11b traffic is not limited, the data transmission 

with a 2-byte data payload has a success rate of 53.8% (which means 7 of 13 data 

transmission are successful), and a request with a 102-byte data payload has a 

success rate of 23% (which means 3 of 13 data transmission are successful). If the 

strategy is applied, the PAN coordinator will switch the channel once when the 

traffic has no limitation. For other IEEE 802.11b traffics (e.g. 250 KB/s, 125 KB/s 

and 62.5 KB/s), the PAN coordinator implements the consecutive data 

transmission for a few times, whereas channel switch is not used. 

Although the three typical non-overlapping channels specified in the 

definition of IEEE 802.11b have been occupied by the three Wi-Fi routers used in 

the evaluation test, the PAN coordinator is still able to switch to the last two IEEE 

802.15.4 channels (channel 25 and 26) which are isolated from the effect of the 

IEEE 802.11b communication channels. This is the reason why only one channel 

switch was needed during the test. According to the observation during the 

evaluation test, the maximum IEEE 802.11b data rate stays at around 500-600 

KBytes/s, which is thought to be close to saturation in a practical environment 

(Thonet et al. 2008; Xiao, et al 2002). Therefore, the PAN coordinator has to 

retransmit several times in order to maintain communications. When the 802.11b 

traffic is limited, the PAN coordinator might still need to retransmit a few times, 

but there is no need to switch channel. When the Wi-Fi traffic is reduced to 

62.5KByte/s, the IEEE 802.15.4 network is almost unaffected. The reason is that, 

if the 802.11b traffic is controlled at 250KByte/s or less, and assuming a typical 

802.11b packet length is 1024 bytes, the interval between two 802.11b packets is 

on average 3.4 ms or more. If the IEEE 802.15.4 packet length is 17 bytes (2 bytes 

for data payload, 15 bytes for packet header), the actual radio transmission time is 

mskbpsbits 544.0250/817 =× , which is small enough to be completed within an 
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IEEE 802.11b packet interval. Consequently the successful rate of the IEEE 

802.15.4 network communication will be higher if the IEEE 802.11b traffic rate 

becomes lower.  

The implementation time required for the mitigation strategy is longer than 

the one without strategy. When the PAN coordinator decides to change the 

working channel, the communication will be suspended until the network device 

re-associates with the PAN coordinator. The decision for the network device to 

start the procedure of re-association depends on the definition of connection-loss 

detection. If the network device selects a large counting value, for example, 100 

as the threshold to judge if the PAN coordinator has moved to other channels, it 

will start re-association only after the counter expires. 

The proposed strategy allows an IEEE 802.15.4 based star WSNs to 

maintain communications without frequently switching working channels when 

interference is occurring. It is probable that a Wi-Fi network is in stature state 

(e.g. IEEE 802.11b network with traffic over 600 KB/s) in a home environment, 

e.g. downloading file, multimedia applications. Therefore, the interference issue 

caused by a Wi-Fi system is becoming more and more important for IEEE 

802.15.4 networks. The increasing popularity of home appliances working on the 

2.4 GHz band, e.g. wireless monitoring camera, cordless phone, headset, will also 

probably result in the situation that  there is no “clean” channel for IEEE 802.15.4 

networks to switch. Therefore, the proposed strategy can be used to ensure 

acceptable network connectivity during the periods of interference.  

4.7 Summary 

The IEEE 802.15.4 based WSNs are suitable for home automation, 

personal computer peripherals, toys and games, and personal health care 

applications. When such kinds of wireless sensor networks are deployed in the 

vicinity of an IEEE 802.11b network, the 802.15.4 network communications 

could be affected when the IEEE 802.11b traffic is high. However, by utilizing the 

interval existing between 802.11b packets and consecutive data transmission with 

proper time control, 802.15.4 communication can still be achieved under 
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interference. The proposed mitigation strategy can provide the wireless sensor 

network with the greatest ability to maintain communications when saturated 

traffic from a Wi-Fi system occurs. Through maintaining the minimum and 

essential communications, the wireless sensor network can always remain in 

operation by the means suggested in this chapter, or another e.g. by switching to 

other channels.  

As most research outputs focus on the interference analysis and static 

deployment to mitigate interference effect, the proposed strategy is a practical 

solution to enable the system to implement anti-interference to a level. The 

detailed analysis and implementation of consecutive data transmission strategy for 

an IEEE 802.15.4 based home automation network will be described in Chapter 7 

as a case study. 
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Chapter 5 Interference Estimation 
According to Dynamic Energy 
Detection  
 

 

5.1 Background and Motivation 

In Chapter 4, an interference mitigation strategy was proposed for an IEEE 

802.15.4 based WSN to maintain communications under interference. Since the 

strategy is achieved through consecutively transmitting data packets, it is suitable 

for applications that have a small number data acquisition at relatively long 

intervals. Other applications may require data at relatively shorter intervals. As 

indicated in the IEEE 802.15.4 standard, a wireless sensor network is also suitable 

for applications such as personal computer peripherals, toys and games. 

Consecutive data are required in such applications for data sampling and control 

purposes. For example, if a pair consisting of an IEEE 802.15.4 transmitter and a 

receiver is adopted for a computer mouse, the transmitter should continuously 

send sampling data of the position of the sensor to the receiver, in order to display 

the movements of the mouse on the computer screen. As more and more 

computers are integrated with IEEE 802.11 network adaptors, the IEEE 802.11 

signals can cause interference that affect the use of the IEEE 802.15.4 peripheral 

devices operating in the same physical location. In this situation, employing 

consecutive transmissions for individual IEEE 802.15.4 data packets is unrealistic. 

Due to the low complexity of the IEEE 802.15.4 protocol stack, the 

standard does not specify physical layer strategies for mitigating the effect of 
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interference (i.e. modulation scheme switch or frequency agility). Although this 

lack of capability for implementing a sophisticated algorithm makes the IEEE 

802.15.4 system inefficient in responding to interference, it is possible to apply 

system level adjustments to maintain an acceptable level of performance.  An 

IEEE 802.15.4 transmitter can adjust the length of the data packets to reduce the 

chance of collision with interfering signals if a brief estimation of the interference 

pattern is detectable. In this chapter, a feasible mitigation strategy is proposed for 

IEEE 802.15.4 WSNs to estimate interference by detecting energy activities on 

the corresponding radio frequency, and make appropriate software adjustments 

without changing hardware settings. 

5.2  Interfering Signal and Energy Activity 

Different wireless systems usually employ different wireless techniques to 

achieve communications. For example, IEEE 802.11b uses a baseband modulation 

of differential binary phase shift keying (DBPSK) and differential quadrature 

phase shift keying (DQPSK) to provide wireless communication capability (IEEE 

Std802.11, 2007). Bluetooth and IEEE 802.15.4 employ Gaussian Frequency Shift 

Keying (GFSK) (IEEE Std802.15.1, 2005) and offset quadrature phase-shift 

keying (O-QPSK) respectively (IEEE Std802.15.4-2003, 2003). Therefore, 

wireless devices employing different techniques cannot establish direct wireless 

communication links. If an IEEE 802.15.4 WSN is experiencing interference, it is 

impossible for the 802.15.4 system to identify the origins of that interference by 

itself.  

This lack of knowledge about the characteristics of the interferer makes 

the victim (i.e. IEEE 802.15.4 WSN) unable to take the initiative in avoiding 

interference, e.g. arranging a special channel access mechanism by cooperating 

with interferers. However, a brief state of interference is possible to be estimated. 

In general, the progress of radio signal transmission is also the progress of energy 

radiation in space (Foschini et al., 1998). When interference happens, the IEEE 

802.15.4 receiver located within the same region as the source of interference can 

detect this change of energy level on the specified channel by implementing 

energy detection. As mentioned in chapter 2, an IEEE 802.15.4 receiver can be 
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functional if the measured SNR (Signal-Noise Ratio) is greater than a certain 

threshold, which means the allowed noise on the current communication channel 

should be less than a certain predefined level. If the detected energy level on the 

communication channel is higher than the permitted value, it can be concluded 

that the radio environment is being interfered with.  

As indicated by Petrova et al. (2006), the payload length of an IEEE 

802.15.4 packet can impact on the system performance when 802.15.4 

communications are experiencing interference. Employing a shorter payload on 

the 802.15.4 transmitter can effectively reduce the chance of a given data packet 

experiencing interference. Once the energy from the source of interference is 

detectable on the communications channel, the IEEE 802.15.4 transmitter can 

improve system performance by making appropriate adjustments on the system 

such as select a suitable data payload length, or change transmission interval.   

5.2.1 Interference Analysis 

The IEEE 802.15.4 technique employs DSSS in its physical layer to 

spread the desired signal over a wide frequency band in order to reduce the chance 

of being affected by narrow band signals (ZigBee, 2007). In addition to DSSS, the 

IEEE 802.15.4 standard divides the 2.4 GH ISM band into 16 non-overlapping 

channels. When IEEE 802.15.4 devices are in communication, the signals’ 

characteristic in the frequency domain is a continuous energy distribution within a 

range of frequency band (Beyer et al., 2006) (See Figure 5.1).  

 

Figure 5.1 Transmission power spectrum density of IEEE 802.15.4 (Beyer et al., 

2006) 
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In Figure 5.1, the power spectrum density measured on the 802.15.4 

transmitter describes the energy distribution on 802.15.4 channel 11, whose centre 

frequency is 2405 MHz. According to the requirement of the IEEE 802.15.4 

standard, the maximum output power is 0 dBm, which is equivalent to 1 milliwatt.  

With the increment of distance that signals travel, the level of energy attenuates. 

When two IEEE 802.15.4 devices are communicating with each other, the energy 

radiation persists till the signal transmission finishes. 

Among the other network standards operating in the 2.4 GHz ISM band, 

Bluetooth and IEEE 802.11b are two typical examples utilizing distinct channel 

access mechanisms. They also have similar characteristic on the transmission 

power spectrum density. The Bluetooth technique utilizes frequency hopping to 

establish wireless communication links. Each Bluetooth communication channel 

has a bandwidth of 1 MHz which is half of the IEEE 802.15.4 channel. A total of 

79 channels are defined in the Bluetooth standard. The output power is often less 

than 4 dBm, which is equivalent to 2.5 milliwatt. A Bluetooth device can achieve 

a hopping frequency of up to 1600 hop/s, which means it only operates in 1 

channel for 625µs. Even if the current Bluetooth channel overlaps with the IEEE 

802.15.4 channel, it will hop to another channel very soon. Therefore the 

Bluetooth standard will not severely affect 802.15.4 communications (Jennic, 

2008).  

The IEEE 802.11b utilizes DSSS like the IEEE 802.15.4 standard. Each 

IEEE 802.11b communication channel has a bandwidth of 22 MHz, which is 

much larger than an IEEE 802.15.4 communication channel with a bandwidth of 2 

MHz. In the IEEE 802.15.4 standard, the effect of the IEEE 802.11b interference 

signal on an IEEE 802.15.4 receiver is assumed to be similar to additive white 

Gaussian noise in the same bandwidth, which normally compose part of the noise 

measured on the IEEE 802.15.4 receiver. During periods when the IEEE 802.15.4 

devices are in communications, whilst the employed communication channel 

overlaps with the IEEE 802.11b channel, the IEEE 802.15.4 receiver will continue 

to suffer interference. The effect of interference is usually measured by two 

metrics: bit error rate and packet error rate (Petrova et al., 2006). The “bit error 

rate” is used to measure the probability of bit transmission error when the victim 

(e.g. IEEE 802.15.4 signal) overlaps with an interferer (e.g. IEEE 802.11b signal). 



0 

 

- 91 - 

The value of bit error rate is a variable depending on both the modulation 

techniques employed by the victim and interferer. The “packet error rate” 

indicates the probability for a packet received in error. We denote the bit error rate 

of IEEE 802.15.4 system by bB 11.802_4.15.802  when the interferer is IEEE 802.11b 

signal, and the packet error rate  byErrorP  .For an IEEE 802.15.4 packet to be error 

on the receiver, this value is defined as follows(Shin et al., 2007): 

DurationBitC TT
bError BP _/

11.802_4.15.802 )1(1 −−=                                  (5.1) 

where CT and DurationBitT _ denote the duration of collision for IEEE 802.15.4 and 

IEEE 802.11b transmissions, and the time required to transmit 1 bit of IEEE 

802.15.4 data. As specified by the IEEE 802.15.4 standard, the performance of an 

IEEE 802.15.4 network is acceptable if ErrorP is less than 1% (IEEE Std802.15.4-

2003, 2003). However, the packet error rate calculation shown in Equation (5.1) is 

not applicable when an IEEE 802.15.4 system is in practical use. One of the 

greatest difficulties in wireless interference studies arises from the victims’ (i.e. 

IEEE 802.15.4) inability to recognize the type of interfering signal due to the 

different modulation schemes employed. Hence the value of the bit error rate 

cannot be determined. CT is also undetectable since an IEEE 802.15.4 transmitter 

is unable to sense the existence of interference during the time of transmission. 

Figure 5.2 compares the packet transmission of IEEE 802.11b and IEEE 802.15.4 

systems.  

 

 

 

 

 

 

 

Figure 5.2 Comparisons of IEEE 802.11b and IEEE 802.15.4 packet transmissions 

 

In Figure 5.2, idlebT _11.802 denotes the interval between two IEEE 802.11b 

packets, bT 11.802 and 4.15.802T denote the time consumed to transmit an IEEE 802.11b 

802.11b packet

802.15.4
packet

idlebT _11.802

802.11b packet 802.11b packet

802.15.4
packet

4.15.802T

802.15.4
packet

802.15.4
packet

bT 11.802



0 

 

- 92 - 

signal and a IEEE 802.15.4 signal respectively. As analyzed in Chapter 4, if the 

IEEE 802.15.4 packet transmission is completed within idlebT _11.802 , the WSN 

communications can be achieved when the network is under interference. 

However, an IEEE 802.15.4 system is unable to know when the interferer’s 

transmission starts and how long it will last. A reasonable way to mitigate 

interference effects under such situations is to adjust the IEEE 802.15.4 packet 

length in order to increase the possibility for the 802.15.4 packet to be processed 

within idlebT _11.802 .  

5.2.2 Energy Detection 

Energy detection is usually used to detect the energy activity on the 

specified frequency band. An energy detection experiment was implemented in 

this study to verify if the IEEE 802.15.4 receiver could sense the existence of 

interfering energy and idle periods. During the energy detection test, an IEEE 

802.15.4 receiver and an IEEE 802.11b transmitter were set to work in close 

proximity (e.g. about 2 metres). The IEEE 802.15.4 receiver concentrated on 

energy detection with the specified parameters. The IEEE 802.11b transmitter 

continued to send out data packets with a fixed packet length. Figure 5.3 

illustrates the hardware used in the energy detection test. 

 

 

 

 

 

 

 

 

 

Figure 5.3 Hardware used in energy detection test 

 

In Figure 5.3, the wireless router is set to work under the IEEE 802.11b 

mode. The Jennic JN5139R1(JN5139, 2009) development board is configured as 
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an IEEE 802.15.4 receiver to periodically implement the energy detection and 

display the result on an liquid crystal display (LCD) screen. The IEEE 802.11b 

traffic is generated by the laptop and broadcast via the wireless router. Table 5.1 

and 5.2 summarize the testing parameters for the IEEE 802.11b traffic and IEEE 

802.15.4 energy detection. Figure 5.4 depicts the deployment of energy detection 

experiment. 

Table 5.1 IEEE 802.11b traffic setting in energy detection test 
 

Packet Length (Byte) 1024 

Transmission Rate (Mbps) 11 Mbps 

Traffic Rate (Packet/second) 600, 500, 400, 300, 200, 100, 10 

Working Channel 11 

Frequency Range (MHz) 2451<->2473 

Centre Frequency (MHz) 2462 

 

Table 5.2 IEEE 802.15.4 receiver setting in energy detection 
 

Single Sampling Period (µs) 128, 1024, 2048, 4096 

Sampling Resolution (MHz) 1 

Energy Detection Range (dBm) -11 <-> -98 

Sampling Frequency range (MHz) 2380<->2505 

 

 

 

Figure 5.4 Hardware deployments for energy detection test 

 

As depicted in Figure 5.4, the laptop connects to the IEEE 802.11b 

wireless router using a cable connection. The router works on the IEEE 802.11 

channel 11 whose centre frequency is 2462 MHz and the frequency convergence 
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ranges from 2451 Mhz to 2473 MHz. The length of the IEEE 802.11b packet is 

fixed at 1024 Bytes. A packet generator running on the laptop enables the wireless 

router continuously to broadcast IEEE 802.11b signals. The IEEE 802.15.4 

receiver listens on sampling frequency (from 2380 MHz to 2505 MHz) in turn and 

displays the result on the screen using a bar graph. Initially, the sampling period is 

128µs, which means the 802.15.4 receiver will listen on a frequency for 128µs 

and then move to the next frequency.  Figure 5.5 illustrates the flow chart of the 

energy detection experiment.  

 

 

Figure 5.5 Flow chart of the energy detection experiment 

 

In Figure 5.5, the IEEE 802.15.4 receiver firstly sets a timer DisplayT to 

regularly update the LCD. The energy detection range on the frequency is set 

between 2380 MHz and 2505 MHz. If DisplayT expires, the LCD screen will be 
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updated with the latest energy detection result. Otherwise, the energy detection 

function will be continuously implemented. Figures 5.6 to 5.12 illustrate the 

energy detection result shown on the LCD screen with the corresponding IEEE 

802.11b traffic rate. 

 

Figure 5.6 802.11b traffic 600 packet/second   

 

 

 

 

 

Figure 5.7 802.11b traffic 500 packet/second 

 

Figure 5.8 802.11b traffic 400 packet/second   

 

 Figure 5.9 802.11b traffic 300 packet/second 
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Figure 5.10 802.11b traffic 200 packet/second   

 

 

Figure 5.11 802.11b traffic 100 packet/second 

 

 

Figure 5.12 802.11b traffic 10 packet/second 

 

In the above figures, the parameter “mode” means the displayed content 

on the screen is the result of energy detection, “2380 to 2505 MHz” denotes that 

the energy detection is implemented on the radio frequency ranges from 2380 

MHz to 2505 MHz. From Figure 5.10 to Figure 5.12, the displayed bar chart 

becomes more and more sparse. This is due to the decrement of the IEEE 802.11b 

traffic. Take Figure 5.12 as an example, only a small fraction of the IEEE 802.11b 

energy activities is captured. The 10 packet/second traffic means a period of IEEE 

802.11b packet transmission which is equivalent to sMbpsByte µ74011/81024 =×
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should occur every 100 millisecond. Since energy detection is implemented by 

keeping the receiver listening on the specified frequency, a short sampling period 

will lead to fast frequency switching. Then, before the next time 802.11b packet 

transmission takes place, the energy detection function has completed tasks on 

several frequencies, and updated the graphic interface displaying a low level of 

energy activities. If the sampling period is relatively enlarged, the receiver will 

stay on each individual frequency longer, and the chance of experiencing 

interfering energy will be increased. Figures 5.13 to 5.15 show the energy 

detection result with different sampling periods.    

 

 

       Figure 5.13 802.11b traffic 10 packet/second, 802.15.4 sampling period 

1024µs 

 

 

 

 

 

 

Figure 5.14 802.11b traffic 10 packet/second, 802.15.4 sampling period 2048µs 

 

Figure 5.15 802.11b traffic 10packet/second, 802.15.4 sampling period 4096µs 
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As expected, the energy detection with an enlarged sampling period is shown 

to have more chance to determine the existence of interference energy on the 

frequency. By using different sampling periods, the results of energy detection can 

provide two kinds of information: the energy level of the interference on the 

specified frequency band and the interference frequency during the sampling 

period. Although a victim cannot establish direct communications with the source 

of the interfering signals, the above information revealed by energy detection 

provides a theoretical possibility that the victim can adjust its packet length to 

make use of idle periods existing within interfering signals, which aims to achieve 

an optimized performance under interference. In other words, if the sampling 

period of energy detection is equal to or greater than the transmission period of 

the desired packet, the IEEE 802.15.4 device should be able to estimate if the data 

transmission will be affected at the current time.  

5.3  Interference Mitigation Strategy with Energy 

Detection 

On the basis of the energy detection test results, a strategy has been 

proposed to help IEEE 802.15.4 based systems carry on working under the 

presence of interference. The idea is that if the IEEE 802.15.4 system can detect 

the length of the idle period between the interfering signals, and adjust its packet 

to a suitable length, then the chance for IEEE 802.15.4 packet transmissions to 

collide with interference packets can be reduced. Consequently, the interference 

can be mitigated to some extent. The energy detection test shows that when 

interference occurs, it will cause energy change in the radio frequency field. The 

change can only be detected when the interfering transmitter is working.  

5.3.1 Estimation of Interference Pattern  

When an IEEE 802.15.4 transmitter realizes that the data transmission is 

becoming unstable (e.g. too many acknowledgements are lost), it can start energy 

detection to scan the frequency currently being used and the adjacent radio 

frequencies. The energy detection ),,( NFFE ES
is defined as follows: 
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(5.2) 

 

 

 

 

where SF and EF denote the range of the frequency band (the lower band and the 

upper band) on which the victim will implement energy detection, N denotes the 

times of detection. The result of energy detection is an energy matrix, which 

reflects the status of energy distribution on the selected frequency range and time 

domain. Note that the selection of SF  and EF depends on the estimation of the 

frequency range within which the victim could be affected. Theoretically, a 2MHz 

scope can satisfy the use of IEEE 802.15.4 receiver as its receiver bandwidth is 

2MHz. However, the scope can be properly increased in order to cover the energy 

distribution over a wide frequency range. This is potentially useful if channel 

switching is required. The element of energy matrix jiFs
E ),( + expresses the 

detected energy level on the specified frequency i for the jth energy detection, 

where [ ]ESs FFiF ,)( ∈+  and ][ Nj ,1∈ . 

The energy matrix is used to express how powerful interference can be at a 

range of the possible interfering frequencies. Each element of the energy matrix 

records the maximum energy value detected on the specified radio frequency 

within the specified duration. However it does not mean any of these values is 

harmful to IEEE 802.15.4 transmissions. An IEEE 802.15.4 receiver can tolerate a 

certain level of interference if the required SNR is satisfied. For example, in the 

IEEE 802.15.4 standard, a normal IEEE 802.15.4 system requires the packet error 

rate to be less than 1%. Correspondingly, the required SNR is greater than 5 dB 

(IEEE Std802.15.4-2003, 2003). If the energy level of the IEEE 802.15.4 signal 

falling within a receiver bandwidth is -80dBm, the interference energy level 

which is greater than -85dBm (-80-5) is unacceptable. If the energy detection 

returns value over -85dBm, the current frequency might be unsuitable for IEEE 

802.15.4 communications, and -85 dBm can be set as a threshold ThresholdE  to 

determine if the current channel is suitable for the IEEE 802.15.4 
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communications. The interference means that a receiver is unable to be functional 

during periods of interference. Therefore the energy detection is useful if it is 

implemented at the receiver side. However, for short-range applications (e.g. 

motion sensor on game controller or wireless mouse), it is reasonable to have the 

transmitter implement energy detection for two reasons:  

1) IEEE 802.15.4 is a short-range technique for devices working within 10 

meters. The energy level detected on the transmitter could be close to the value 

measured on the receiver when the transmitter is relative close to the receiver.  

2) In such applications, IEEE 802.15.4 receiver usually works in passive 

mode, which means it is always in the state of receiving.  Logically, the receiver 

would not take the initiative in implementing energy detection unless specified.  

Once the threshold is determined, the processed energy matrix can be 

converted into a new binary matrix, which contains only the binary values 0 and 

1. The value 0 means the frequency is clean during that period if the energy level 

is less than the threshold. The value 1 means the frequency is not suitable for 

IEEE 802.15.4 communications. A typical binary matrix is shown as follows:  

 



















0100

1101

0110

0100

                                                                                 (5.3)         

5.3.2 Proposed Interference Mitigation Strategy 

The difficulty in analysis is that the value “1” only expresses the highest 

energy level sensed during the sampling period. The result does not record any 

details of the interfering signal, e.g. the duration of interfering signal transmission, 

when the interfering signal starts, and when it ends. The high energy level does 

not mean the remaining part of the sampling period is unsuitable for the victim’s 

communications. In contrast, in the binary matrix the value “0” shows that no 

unacceptable energy levels are detected during this sampling period. Such periods 

can be considered as an “idle slot” existing on the interfering transmitter, and the 
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detection of “idle slot” is the main objective for the implementation of energy 

detection. 

The length of the sampling period for energy detection depends on the 

length of the desired packet. For example, if the length of an IEEE 802.15.4 data 

frame outputted from the PHY layer is 47 bytes, the required sending time is 

(47*8)/250=1.504 milliseconds. To ensure the detected idle slot is long enough to 

complete the desired packet transmission, the detection period should be at least 

twice the required transmitting time. The ratio R of idle slot to interfering period 

can be obtained as follows: 

 

)/( busyidleidleR +=                       (5.4) 

 

where “idle” and “busy” denote the number of idle slots (i.e. “0”s) and busy slots 

(i.e. “1”s) obtained from the binary matrix. If the ratio is higher than a threshold

ThresholdR , the victim system can assume that the current idle slots are sufficient to 

enable the completion of data transmission with corresponding packet length. 

Otherwise, the victim should decrease the packet length and carry out a new 

energy detection. Since the length of idle slots is determined by the length of 

desired packets, and the objective of energy detection is to identify suitable 

communication slots, the pattern of interference and whether it is periodic or 

random, will not affect the energy detection result. ThresholdR is used by the system 

to make judgment on the ratio of idle slot is a customized value. It expresses the 

possibility of the occurrence of suitable idle slots. For example, if the detected 

ratio is 50%, the victim can conclude that on average every one of two desired 

packets can be sent successfully. The selection of threshold value depends on the 

application requirements.  

The interference mitigation strategy proposed in Chapter 4 is mainly for 

ensuring a single data packet to be successfully transmitted under the situation of 

interference. However, the strategy proposed in this chapter is to enable the victim 

system (i.e. IEEE 802.15.4 system) to locate a suitable packet length used by 

continuous data transfer for a relatively long period when interference is present. 
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5.4 Experiments 

The tests implemented in this chapter are divided into two aspects: 

baseline test and evaluation test.  The baseline test consists of hardware test and 

simulation. The purpose of the baseline test is to obtain the performance of IEEE 

802.15.4 network communication when it is under 802.11b interference. The 

evaluation test is used to evaluate if the strategy can help IEEE 802.15.4 devices 

determine a suitable packet length to improve packet transmission under 

interference. 

5.4.1 Baseline Test 

The device deployment of the baseline test is shown in Figure 5.16. 

 

Figure 5.16 Device deployment in baseline test 

 

In Figure 5.16, a desktop is connected to an IEEE 802.11b wireless router 

using a cable connection. A laptop with an IEEE 802.11b adaptor is located 5 

meters away from the wireless router. An IEEE 802.11b packet generator is set to 

run on the desktop to generate the required 802.11b traffic. The distance between 

the IEEE 802.11b wireless router and the IEEE 802.15.4 device PAN coordinator 

is 2 meters. The IEEE 802.15.4 network device continues to send packets to the 

IEEE 802.15.4 PAN coordinator with different payloads. The amount of packets is 

determined by the results from baseline test I in Chapter 4, which ensures that the 

amount of data packets to be processed does not exceed the hardware limitation. 
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As mentioned in Chapter 3, the physical distance between the victim 

system and the interfering system can also influence the effect of interference. For 

example, if the distance between the PAN coordinator and the Wi-Fi router is 

large than 8 meters (Shin et al. 2007), the degradation of the Wi-Fi transmission 

power may reduce its interference effect on the transmission of the IEEE 802.15.4 

data packet. The distance between the PAN coordinator and wireless router is set 

as 2 meters sufficiently short enough to enable the Wi-Fi transmission power to 

corrupt the IEEE 802.15.4 data packets. The wireless router works on IEEE 

802.11b channel 4 (2427 MHz). The IEEE 802.15.4 network works on IEEE 

802.15.4 channel 15 (2425 MHz). 

A simulation using MATLAB was also implemented to make comparison 

with the baseline test using practical hardware. In the MATLAB simulation, the 

only opportunity for a successful IEEE 802.15.4 data packet transmission was that 

the transmission can complete within the interval between two IEEE 802.11b 

packets under given IEEE802.11b traffic. If the 802.15.4 packet transmission 

happens when an 802.11b transmission was in process, the 802.15.4 packet 

reception was thought to be failed. Table 5.3 summarize the result of the baseline 

test. 

In Table 5.3, the column labelled “Wi-Fi Period” means the working 

period of the 802.11b system in milliseconds. Each 802.11b packet has a fixed 

packet length of 1024 bytes. For example, if the period is set as 3 milliseconds, 

the Wi-Fi generator will generate a packet every 3 milliseconds. Using 11 Mbps as 

a data rate, the Wi-Fi system will be in operation mode for (1024*8)/11000=0.744 

(ms), and be quiet for the rest of (3-0.744) =2.256(ms). The column labelled “Wi-

Fi Packet rate” corresponds to the value of the 802.11b period with unit of 

“packet/second”. The column labelled “P” and “S” denote the amount of 

successfully transmitted IEEE 802.15.4 data in bytes per second in the practical 

test and the simulation respectively. The first row expresses the different data 

payload of the IEEE 802.15.4 system varying from 2 bytes to 102 bytes.  
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Table 5.3  Practical and simulated processing capacity of IEEE 802.15.4 system in 
baseline test II with 802.11b interference 
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Some of cells in the column labelled “S” have zero values as the required 

IEEE 802.15.4 packet sending time is longer than the intervals existing in the 

802.11b traffic. Consequently, the simulator concludes that the 802.15.4 packet 

transmission could not succeed. In the practical test, the IEEE 802.11b transmitter 

may defer channel access if the energy activities of 802.15.4 packet transmission 

are detected. It is still possible for 802.15.4 systems to complete a few 

transmissions, even during the periods when 802.11b traffic is high. The results of 

the practical test are not exactly equal to the results obtained from the simulation 

test because of the hardware limitation in the practical environment. Both the Wi-

Fi and IEEE 802.15.4 systems will defer the medium access upon the detection of 

the busy medium, which is completely random under such a case. And this 

procedure is unable to be simulated by the MATLAB simulator. Therefore, it is 

thought that the practical test results are reasonable as they accord with the trend 

of the results obtained from the simulation. From Table 5.3, it is clear that most of 

the survived data packets are those accomplished within the intervals of 

interfering packet transmission. 

5.4.2 Evaluation Test 

The evaluation test is designed to evaluate the proposed strategy. Figure 

5.17 illustrates the hardware setting  

 

Figure 5.17 Evaluation test setting 

 

In Figure 5.17, the test setting is similar to the hardware deployment in the 
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a receiver to implement energy detection when it is requested. The device 

connects to the 802.15.4 network device using a Universal Asynchronous 

Receiver/Transmitter (UART) connection.  

Initially, the 802.15.4 network device starts to transmit data packets using 

the maximum data payloads (102 bytes), and acknowledgement is required. After 

a few seconds, the 802.11b traffic is implemented by the packet generator running 

on the desktop which connects to the Wi-Fi router. 

If the IEEE 802.15.4 transmitter has detected a number of continuous 

events, which are caused by “no acknowledgement reception” or “CCA failure”, 

the system will start to implement the designed strategy by asking the 802.15.4 

receiver to start energy detection. The centre frequencies of the IEEE 802.15.4 

network and the IEEE 802.11b network are set at 2425 MHz (IEEE 802.15.4 

channel 15) and 2427 MHz (IEEE 802.11b channel 4) respectively. The detection 

of the IEEE 802.15.4 receiver on the domain of frequency ranges from 2421 MHz 

to 2429 MHz, which can cover the whole IEEE 802.15.4 communication channel 

15 and part of IEEE 802.11b channel 4.  

As described in Section 5.3.1, the energy detection result is a matrix 

containing energy levels on the specified frequencies during a sampling period. 

For example, if the effective data payload of the IEEE 802.15.4 packet is 72 bytes, 

the energy detection sampling period is (72+15)*8*2/250kbps = 5.76 (ms), where 

15 denote the length of packet header and 250 kbps is the data rate of the IEEE 

802.15.4 system.  If the times of energy detection is 10 and current Wi-Fi packet 

rate is 200packet/second, the energy matrix which can be obtained from the test is 

as follows:  







































53- 53- 98- 98- 98- 98- 72- 72- 98-

 98- 98- 55- 55- 98- 98- 98- 98- 74-

 51- 98- 98- 98- 98- 63- 72- 98- 98-

 98- 53- 53- 98- 98- 98- 98- 72- 74-

 98- 98- 98- 55- 59- 98- 98- 98- 98-

 51- 53- 98- 98- 98- 65- 70- 98- 98-

 98- 98- 55- 55- 98- 98- 80- 74- 74-

 98- 98- 98- 98- 57- 63- 98- 98- 98-

 53- 53- 98- 98- 98- 98- 72- 72- 98-

 98- 98- 98- 55- 59- 98- 98- 98- 74-

                             (5.4) 
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Each element in the matrix expresses the maximum energy level detected 

on the selected frequency during the sampling period in the unit of dBm. The next 

question is how to select ThresholdE to determine if the detected energy level can 

cause interference on the PAN coordinator. If the required SNR is greater than 5 

dB, the threshold ThresholdE should be obtained as follows: 

5Re −= ceiverThreshold EE  (dBm)                         (5.5)  

where ceiverERe denotes the energy level of IEEE 802.15.4 signal falling within the 

bandwidth of PAN coordinator’s receiver. If the detected noise energy level is 

greater than ThresholdE , it will be thought of as a “busy slot”. However, there are two 

problems which require consideration: the distance between 802.15.4 transmitter 

and receiver, and the interfering signal’s power spectral density.    

 

• Distance between the 802.15.4 transmitter and receiver:  

Even in a short-range 802.15.4 wireless communication, the transmitter is 

unable to know the distance between itself and the receiver. Consequently, the 

transmitter cannot estimate the actual value of 802.15.4 signal power which 

arrives on the PAN coordinator’s receiver. In addition, the physical position of the 

IEEE 802.15.4 network device to the wireless router is further than the PAN 

coordinator in the practical test setting. Therefore the detected energy level is 

lower than the interference energy level which the PAN coordinator is suffering. 

• Interfering signal’s  power spectral density:  

 

Figure 5.18 IEEE 802.11b power spectral density (Shin et al. 2007). 
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In Figure 5.18, the IEEE 802.11b signal power concentrates on the centre 

frequency of the used IEEE 802.11b channel. With the increment or decrement of 

frequency, the energy gradually attenuates. On the IEEE 802.15.4 transmitter side, 

the results of energy detection follow the same trend. Then the energy levels 

detected on different frequency will be different, although they express the same 

802.11b signal.  

The conservative way to set ThresholdE is to use the minimum receiver 

sensitivity. It can be ensured that if any energy level detected on a channel is less 

than the minimum receiver sensitivity, the IEEE 802.15.4 communication can 

successfully be achieved.  Therefore, the energy threshold ThresholdE used in the 

evaluation test is set at -92dBm as it is the minimum receiver sensitivity specified 

in the used hardware manual. Then the energy matrix shown in Equation (5.4) can 

be converted into the binary matrix illustrated in Equation (5.5). 

 







































 1 1 0 0 0 0 1 1 0

 0 0 1 1 0 0 0 0 1

 1 0 0 0 0 1 1 0 0

 0 1 1 0 0 0 0 1 1

 0 0 0 1 1 0 0 0 0

 1 1 0 0 0 1 1 0 0

 0 0 1 1 0 0 0 1 1

 0 0 0 0 1 1 0 0 0

 1 1 0 0 0 0 1 1 0

 0 0 0 1 1 0 0 0 1

                                              (5.5) 

In Equation (5.5), the number of idle slots (zero value) and busy slots 

obtained from the binary matrix are 56 and 34. Then the ratio of idle slots to all 

detected slots is 56/ (56+34) =62.2%. If the critical ratio ThresholdR was set at 50% 

(it is a user defined value which can be specified according to actual application 

requirements), the system can stop attempting to evaluate the interference with 

other payload lengths. Figure 5.19 illustrates the evaluation test results 

corresponding to different 802.11b traffic rate.  
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Figure 5.19 Results of the evaluation test 

 

In Figure 5.19, the concluded data payload length given by the strategy 

increases with the decrement in the Wi-Fi traffic rate. The horizontal axis denotes 

the different Wi-Fi traffic generated by the wireless router. The vertical axis 

denotes the concluded payload length suitable for IEEE 802.15.4 packet use under 

corresponding Wi-Fi traffic. For example, when the Wi-Fi traffic rate is over 

500packet/second, there is very little chance for the strategy to locate idle slots. 

Consequently, the suggested payload length for the IEEE 802.15.4 system is 

always 2 bytes, with which a higher packet rate can be achieved. When the Wi-Fi 

traffic is less than 100 packet/second, the 802.15.4 packet can utilize the 

maximum payload length of 102 byte as the Wi-Fi duty cycle is too low to affect 

802.15.4 communications. When the Wi-Fi traffic is between 400 packets/second 

and 500 packets/second, the idle and busy slots are very difficult to determine 

because of the hardware limitation. In this situation the payload length suggested 

from the strategy has a small undulation. In general, if the Wi-Fi traffic rate 

becomes lower, the suggested 802.15.4 payload length increases accordingly. The 

reason is that more 802.11b idle periods are available under such situations.  

An important note for consideration is that the idle ratio calculated by the 

proposed strategy is not equal to the Wi-Fi system’s idle ratio. For example, the 

fixed length of a Wi-Fi packet in the evaluation test is 1024 bytes, the required 

sending time is (1024*8)/11Mbps = 0.74 milliseconds. When the Wi-Fi traffic is 

fixed at 200 packet/second and its working period is 5 milliseconds, the idle ratio 
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of Wi-Fi traffic is (5-0.74)/5=85.2%, which is larger than the idle ratio of 62.2% 

gained from the strategy. The reason is that the calculation in the proposed 

strategy is used to count the number of idle slots suitable for completing 802.15.4 

packet transmission with a given payload length. The idle ratio of Wi-Fi traffic 

denotes the idle time between 802.11b packet transmissions. However, the idle 

ratio in the proposed strategy rises proportionately to the Wi-Fi system’s idle ratio 

since the decrement in the Wi-Fi duty-cycle will introduce more idle time. 

5.5 Discussion 

The use of the proposed strategy is to enable the victim to understand the 

current interference status. It is clear that the interference existing in a real 

environment is a dynamic and complex phenomenon. In that case, the strategy is 

to help the victim make proper adjustments rather than precisely determine the 

interfering signals’ information. For example, according to the 2 bytes suggested 

payload when the Wi-Fi traffic is over 500 packet/second, the IEEE 802.15.4 

system is able to determine whether the interference is too high to enable 

transmission with large packet size to be successful. Figure 5.20 illustrates the 

comparisons of packet rates for different IEEE 802.15.4 packet payload lengths 

when Wi-Fi traffic is 500 packet/second. The values come from Table 5.3.  

 

Figure 5.20 Packet rate of IEEE 802.15.4 system under Wi-Fi traffic (500 

packets/second)  
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In Figure 5.20, the number of successfully received packet corresponding 

to short payload length is obviously higher than the packet with long payload 

within an unit time. On the basis of this trend, the IEEE 802.15.4 system can 

choose a short payload for each packet to maintain a high connection rate when 

serious interference is detected. Since the values used in Figure 5.20 are derived 

from the practical test, a small undulation (where payload length is between 40 

bytes and 80 bytes) could be caused by the hardware limitations. This will be 

investigated in the future work. 

If the Wi-Fi traffic is relative low, e.g. 200packet/second, the throughputs 

for packets with different payloads are considerably different. Figure 5.21 gives 

the graphic illustration of Table 5.3.  

 

Figure 5.21 Throughputs of IEEE 802.15.4 system when Wi-Fi traffic is 

200packet/second (refer to Table 5.3) 

 

In Figure 5.21, the throughputs of packets with payload length which 

range from 52 to 102 bytes are similar. The throughputs for those packets with 2, 

12 and 22 bytes payload length are quite low. If the IEEE 802.15.4 system can 

make dynamic adjustments by regularly implementing the strategy to monitor the 

interference status change, it can have a chance to increase the throughput once 

the level of interference decreases. 
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The disadvantage for using the proposed interference mitigation strategy is 

the difficulty of determining parameters. Due to the energy detection implemented 

on the side of the transmitter in communications, the key parameters of energy 

threshold ThresholdE  and idle ratio ThresholdR are difficult to determine. For example, if 

the IEEE 802.15.4 signal falling within the bandwidth of receiver is -50dBm 

which could be achieved when the physical distance between 802.15.4 devices is 

short, the receiver should be able to tolerate noise whose energy level is less than -

50dBm-(5dB)=-55dBm. With the conservative setting, using minimum receiver 

sensitivity (-92dBm in evaluation test), the interference energy level judgment 

will be over-restricted. When the strategy is applied for practical situations, 

systems can employ other ways to achieve information exchanges on both 

transmitter and receiver (e.g. a wireless mouse adaptor can regularly send 

information containing the received signal strength back to the wireless mouse). 

The selection of ThresholdR is highly dependent on the application requirements. The 

application should decide a certain ThresholdR  to ensure the concluded payload 

length is suitable for system performance under interference.  

Although the implementation of energy detection requires additional time 

consumption, it is unavoidable when a wireless communication system is under 

interference.  

5.6 Summary 

The proposed strategy in this chapter can be used as a complementary 

measure for IEEE 802.15.4 based WSN to mitigate the effect of interference. With 

the help of energy detection, the victim could locate the interval between two 

consecutive interfering signals and briefly estimate the pattern of interference 

generation. The means of enabling the desired packet transmissions within the 

interferer’s idle slots can effectively increase a data packet transmission chance. 

Particularly, the proposed strategy gives the systems facing similar situations 

guidance on how to dynamically adjust transmission parameters when 

interference occurs. The strategy is flexible and achievable on existing hardware 

since it is purely a software solution.  



0 

 

- 113 - 

 

Chapter 6 Reliable Multi-Hop 
Transmission in Ad Hoc WSNs 
 

 

 

6.1  Background and Motivation 

The deployment of WSNs often involves little or no infrastructure, which 

allows small, power-efficient, inexpensive solutions to be implemented for a wide 

range of devices (Gutierrez et al., 2003). For some applications, e.g. forest 

monitoring, multi-story building monitoring, star network is insufficient to 

establish an effective coverage area. With the ability to allow multiple hops to 

route message from any devices to any other devices on the network, IEEE 

802.15.4 based ad hoc WSNs can be constructed and applied for applications 

requiring large-scale deployment. Due to the wide popularity of wireless products, 

it is inevitable that IEEE 802.15.4 devices might be affected by other systems 

employing different wireless technologies that work on the same 2.4 GHz free 

frequency band. When planning the design of an IEEE 802.15.4 ad hoc network 

supporting multi-hop data transmission, special consideration must be given to 

ensure the reliability of transmission. In this chapter, a strategy is proposed to 

improve the success rate of multi-hop transmissions under interference and tested 

in an experimental study. The strategy is achieved by employing a transmission 

speed control and data recovery mechanism. It can be easily implemented for 

existing IEEE 802.15.4 based WSNs require large-scale deployment. 
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6.2 Ad Hoc Network 

The ad hoc network is a key factor in the evolution of wireless 

communications.  In ad hoc networks, wireless hosts can communicate with each 

other. These networks typically consist of equal nodes that communicate over 

wireless links without central control (Wu and Stojmenovic, 2004). In an ad hoc 

network, each network device operates not only as a host, but also as a router, 

forwarding packets on behalf of other nodes that may not be within direct wireless 

transmission range of their destinations. If properly configured, an ad hoc network 

can be dynamically self-organized and self configured, with the devices in the 

network, and automatically establishing and maintaining mesh connectivity 

among themselves (Akyildiz et al., 2002). 

However, one of the most important challenges in ad hoc networks comes 

from effectively maintaining reliable communications. The requirement of reliable 

multi-hop transmission is difficult to achieve due to the impact of interference 

(Tang et al. 2005). The multi-hop transmission is on the basis of peer-to-peer 

communications. If one or more communication links on the multi-hop 

transmission route are affected by interference, the desired data will not reach the 

destination. 

The IEEE 802.15.4 standard supports both simple star network topology 

and peer-to-peer network topology. The star topology is mainly for applications 

operating within a short range. The peer-to-peer topology allows any device to 

communicate with other devices as long as they are in the effective wireless 

communication range. By adding an intelligent management system and 

capability for routing messages, devices that are compliant with the IEEE 

802.15.4 standard can be used to construct self-organizing and self-healing ad hoc 

networks on the basis of communication infrastructure provided by the peer-to-

peer topology (IEEE Std802.15.4-2003, 2003). 
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6.3 Multi-Hop Transmission and Interference 

Model 

An ad hoc network applied for large-scale applications usually consists of 

a number of autonomous network devices. If the destination device of data 

communication is not within the effective communication range of the source 

device, the autonomous network devices existing between the destination device 

and source device can be organized in a certain way that provides service of 

message relay (i.e. implementation of routing protocol). The IEEE 802.15.4 

technique offers peer-to-peer network topology for the use of device-to-device 

communication protocol in an ad hoc network. The technique of transmitting 

messages through multiple devices in an ad hoc network is called multi-hop 

transmission (Gomez et al., 2006). 

6.3.1 Multi-Hop Transmission in IEEE 802.15.4 Ad Hoc Network 

Under normal circumstances, an IEEE 802.15.4 data packet can be 

successfully received by the destination device through multi-hop transmission 

when both of the following two conditions are satisfied: 

Condition 1: The route from the source device to the destination device 

has been selected.  

The backbone of an IEEE 802.15.4 ad hoc network is composed of FFDs 

which are capable of implementing the complete protocol set.  As specified in the 

IEEE 802.15.4 standard, a FFD can talk to RFDs or other FFDs, whereas an RFD 

can only talk to an FFD. Since each of the devices in a multi-hop transmission 

should be capable of establishing a communication link with its previous hop and 

next hop on the route, RFDs are not suitable to be involved in multi-hop 

transmission because of the communication limitations. 

 The selection of a route means some FFDs in the network are chosen and 

configured to act as intermediate devices. Each intermediate device relays the 

received data to the next intermediate device till it reaches the destination. The 

implementation of a routing protocol is normally the responsibility of the network 
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layer, which is above the IEEE 802.15.4 standard. For simplicity, it is assumed 

that the route selection has been completed before multi-hop transmission 

commences in the following sections of this chapter. Figure 6.1 illustrates a 

typical IEEE 802.15.4 network which is implementing multi-hop transmission. 

 

 

 

Figure 6.1 An IEEE 802.15.4 network with multi-hop transmission 

 

In Figure 6.1, device E acts as the PAN coordinator responsible for starting 

an IEEE 802.15.4 network. Each RFD connects to the network by associating 

with a FFD. Once an RFD successfully joins the network, it can only talk to the 

FFD with which it associates. For example, device G can communicate with other 

devices in the network by means of device F, the FFD through which it joins the 

network. If other devices wish to establish communications with device G, the 

messages must be first sent to device F, and then relayed to device G. The FFDs in 

Figure 6.1 form the backbone of the IEEE 802.15.4 ad hoc network. Since a FFD 

can freely talk to other FFDs, multi-hop transmission can be achieved when the 

destination device is not within the communication range of the source device. 

For example, when FFD A is to send data to FFD D, the messages can be sent by 

travelling through devices B, C, and D, which are indicated in Figure 6.1 by the 

dotted line. Therefore, three hops are involved to complete the multi-hop 

transmission. The detail of the hop selection is normally scheduled by the network 

layer protocol. 
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Condition 2: Each intermediate device on the route can successfully 

implement data reception and relay.  

The data reception and relay on an intermediate device is the main body of 

multi-hop transmission.  In a non-beacon-enabled IEEE 802.15.4 network, each 

FFD listens on the selected working channel continuously. Once a data packet is 

received, the device will check the packet header to determine what action should 

be taken. If the packet requires relay, the device should find out the network 

address of the next hop and send the packet out. If there is no interruption existing 

during the implementation of multi-hop transmission, the data packet will be 

relayed hop by hop until it reaches the destination. The detailed procedure of 

sending data from one hop to another hop has been described in Section 4.3. 

With the help of multi-hop transmission, data acquisition in an ad hoc 

network will not be limited by the radio’s communication range. It is particularly 

useful for WSNs to enlarge the coverage area in monitoring applications. 

However, multi-hop transmission is sensitive to the effect of interference since the 

communication link failure on any hop can result in failure of the whole 

transmission. 

6.3.2 Interference Model  

When an interfering resource is physically located in the vicinity of an 

IEEE 802.15.4 FFD on the route of multi-hop transmission, it will affect the 

operation of the IEEE 802.15.4 receiver. From the view of the system level, the 

interference effect can be expressed as frequent packet losses. Figure 6.2 

illustrates the multi-hop transmission being affected by a fixed source of 

interference. 
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Figure 6.2 Multi-hop transmission affected by interference 

 

In Figure 6.2, the multi-hop data transmission starts from device A to 

device D. The devices B and C are intermediate devices. Acknowledgement is 

required to confirm that the data packet is received by the next hop. An interfering 

resource is located close to device C.  Assuming that only device C is affected by 

the interferer. If the multi-hop transmission is affected by the interfering resource, 

two situations will occur.  

Situation 1: The expected acknowledgements sent from device C to device 

B are continuously lost, as the data sent from device B to device C are corrupted 

due to the effect of interference.  

Situation 2: The number of acknowledgements sent from device D to 

device C decreases due to the same reason encountered in situation 1. 

The main concern comes from situation 1. When the data are sent from 

device A to device B, the reception of acknowledgements is normal because 

device B is not affected by the interfering resource. If the acknowledgements are 

received, device A will clean the data from its buffer. When the data are relayed 

from device B to device C, the interference makes the data reception on the 

receiver of device C prone to failure. As the responsibility of device B in the 

multi-hop transmission is to relay message rather than processing, it will discard 

the unacknowledged data if there is no action specified. In such cases, it will be 

impossible to recover the data since the source device A has no copy left.  
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Figure 6.3 abstracts the situation of multi-hop transmission in an IEEE 

802.15.4 ad hoc network when part of the selected route is affected by 

interference. 

 

 

Figure 6.3 Interference model for IEEE 802.15.4 multi-hop transmission 

 

In Figure 6.3, the affected intermediate nodes in the multi-hop 

transmission can be concluded into a special area, called “Interference Area”. 

When the “Interference Area” emerges, the acknowledgement receptions on the 

intermediate device which is one hop before the interference area will 

considerably decrease. Under such a circumstance, if the unacknowledged data 

can be temporally held on the intermediate device, and wait to be retrieved by 

other devices through a “secure” route not affected by interference, a reliable 

multi-hop transmission will be achieved. If multiple areas of interference exist in 

a practical network, the one which is the closest to the source device on the multi-

hop transmission route will be taken into consideration since it is the first point 

from which data transmission becomes unstable.  

IEEE 802.15.4
FFD

Source Node

Destination Node

Interference
Area

Acknowledgement
reception failure



0 

 

- 120 - 

6.4 Reliable Multi-Hop Data Transmission 

Achieving reliable multi-hop data transmission in an IEEE 802.15.4 ad-

hoc network means the whole transmission progress can be properly controlled 

and the lost data can, to a certain extent, be recovered.  

6.4.1 Multi-Hop Transmission Control 

When multi-hop transmission is required in an IEEE 802.15.4 ad hoc 

network, particularly for large volume data transfers, the setting of the 

transmission interval is the key point which decides the success of transmission. 

Compared with the procedures for implementing data transmission between a 

single pair of devices, multi-hop transmission has more factors to consider. Figure 

6.4 illustrates a simplified model of multi-hop transmission.  

 

 

Figure 6.4 Simplified model for multi-hop transmission 

 

In Figure 6.4, the model of multi-hop transmission can be described as a 

chain from the view of logic. The device A is the source device. The device D is 

the destination device waiting for data from device A. The metric used to measure 

the performance of multi-hop transmission is “Arrival Rate (AR)”. The AR 

expresses the ratio of data that successfully reaches the destination device to the 

total data sent from the source device. 
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Step 1: Implement CSMA-CA to detect if the channel is clear for data 

transmission 

Step 2: Send data to the next hop. 

Step 3: Wait for acknowledgement from the next hop.  

Devices B and C acting as intermediate devices on the route require four 

steps to complete the task of relay. 

Step 1: Receive data sent from the previous node on the route, send back 

acknowledgement if required. 

Step 2: Implement CSMA-CA to detect if the channel is clear for data 

transmission. 

Step 3: Send data to the next hop 

Step 4: Wait for acknowledgement from the next hop. 

The device D, which is the destination device of the multi-hop 

transmission, needs to receive the data relayed from device C, and send back 

acknowledgement if required. A description of multi-hop transmission based on 

the same time line is illustrated in Figure 6.5. 

 

Figure 6.5 Completed multi-hop transmission based on the same time line 

 

Figure 6.5 gives a comparison for actions taken by all involved devices in 

a multi-hop transmission on the same timeline. Theoretically, if the data have been 

successfully passed to device C by device B, the source device A can start a new 

data transmission for the following data packet. However, packet collisions will 

happen if the transmissions are not well scheduled. Wireless communication has 
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an important restriction that only one radio transceiver is allowed to emit radio 

signals within a given period if multiple transceivers exist in the same area 

(Golmie, 2006). It is well known that the conflict that happens during wireless 

communications has been concluded as the issues of “hidden node” and “exposed 

node” (Hwang et al. 2005; Koubaa et al., 2006). The situation in IEEE 802.15.4 

ad hoc networks is different. The deployment of an IEEE 802.15.4 network in 

some application areas might be random, and there is no rule to follow. For 

example, an environment monitoring application needs the wireless devices to be 

located relatively close to each other in order to produce an effective monitoring 

area. Although the IEEE 802.15.4 standard specifies that the communication 

range for 802.15.4 devices is within 10 meters, the performance of actual products 

is far better than this limitation. For instance, the Jennic platform compliant with 

the IEEE 802.15.4 standard can provide typical receiver sensitivity at -96dBm, 

which can achieve effective communication range over distances of up to 50 

meters within an indoor environment (Jennic Press Information, 2009). In 

addition, to ensure the reliable connectivity in the mesh network, it is unlikely to 

place adjacent devices in a 50 meter distance.  In other words, routing protocols 

usually take various factors into consideration in the route selection, e.g. signal 

strength, device response time delay, the distance from the candidate to the 

destination device. Therefore, it is possible that intermediate devices selected for a 

route are within the same communication range from each other. In this chapter, 

the study focuses on the worst-case scenario in which all FFD devices involved in 

a multi-hop transmission are within a 1-hop communication range. Figure 6.6 

illustrates an example IEEE 802.15.4 network deployment under the worst 

conditions.  

 

 

Figure 6.6 Deployment of IEEE 802.15.4 network under worst condition 
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In Figure 6.6, the radio communications range of device A covers a circle 

with the centre point of A, and the effective communication radius is R. The 

intermediate devices B, C and the destination device D are all within the range of 

this circle. By following the same process in Figure 6.5, if device A starts to send 

the second packet, whilst the first packet is being transferred from device C to the 

destination device D, it is possible that both of these two packet transmissions will 

fail in the worst case.  Figure 6.7 shows the collision occurring under this 

circumstance.   

 

Figure 6.7 Packet collisions in multi-hop transmission 

 

In Figure 6.7, the source device A starts to transmit packet 2 at the time 

point where device B has completed packet 1 relay.  Since all devices are in the 

effective communication range with each other, it is possible for the transmission 

of packet 2 sent by the source device A to collide with packet 1 when the packet 

1is being relayed from device C to the destination device D. Another possible case 

is that the action “Packet 1 Relay” starting from device B to device C and the 

action “Packet 2 Transmission” will cause channel contention. Then one of them 

should defer channel access and wait for a random delay before making the next 

attempt. If the transmission interval is not controlled properly on the source 

device A (e.g. interval is too small), the following packet transmission could cause 

a greater delay. The default retransmission mechanism for the IEEE 802.15.4 

standard is less effective under such circumstance as it is implemented for the 

scenario where an expected acknowledgement is not received after data 

transmission. If more intermediate devices are involved in multi-hop transmission, 
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the collision and channel contention will be more complicated and unpredictable. 

The uncertainty of multi-hop transmission must be considered in the transmission 

protocol design. 

To ensure the success of multi-hop transmission, the source device should 

control the interval between each packet transmission at a minimum level which 

should be equal to the time required by a packet travelling from the source device 

to the destination device.  If the subsequent data transmission starts after the 

reception of previous data on the destination device, there will be little chance for 

collision and channel contention. The minimal interval is defined as follows 

HopsTotalervalMinimumInt NLTT ∗= )(                                                        (6.1) 

where )(LTTotal  from Equation (4.13) denotes the time consumed to send an L 

bytes packet from one device to another device in a single hop transmission. The 

HopsN means the number of hops involved in the multi-hop transmission.  By 

cooperating with the upper layers (e.g. the network layer and the application 

layer), it is easy for the MAC layer to set the minimum interval between each two 

consecutive source packets. 

6.4.2 Hardware Based Data Recovery 

One of the purposes of this research is to design a feasible data recovery 

strategy for an IEEE 802.15.4 ad-hoc network, in a situation where some of the 

data packets have been lost during multi-hop transmissions due to interference. 

Unlike the normal strategies which utilize the specified software algorithm to 

recover the data, the data recovery strategy mentioned in this thesis is hardware 

based, which focuses on the recovery of the lost data due to commination failure. 

If interference occurs, the device whose physical location is one hop away 

from the interference area will be the first device to sense the situation change. If 

the desired packet has been successfully sent out by the device in front of the 

interference area, the next hop located within the interference area could have 

failed on packet reception. Consequently, no acknowledgement will be issued. 

Because of the half-duplex transceiver design, the IEEE 802.15.4 PHY layer is 

unable to detect whether the transmitted packet is corrupted or not.  
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The frequent indication of “NO_ACK” is the useful symbol for the system 

to judge if interference exists. When the primitive of “NO_ACK” is issued from a 

MAC layer on an intermediate device, its MAC layer should decide how to deal 

with the unsuccessful packets. Normally the MAC layer can have three options: 

simply discard the packet, attempt to retransmit, or request a higher layer to 

discover a new route and then attempt to retransmit.  

Discard packet: Although discarding unsuccessful packets is the easiest 

way for the MAC layer to deal with such situations, if the content contained in the 

packet is important, the system will lose the chance to implement data recovery.  

Attempt to retransmit:  Since the primitive of “NO_ACK” is issued due 

to the failure to receive the expected acknowledgement frames, the success of 

retransmission is not assured. More importantly repeating the transmission of a 

packet during a period of multi-hop transmission might block subsequent packets.  

Request higher layer interruption: Route discovery is normally 

performed by the source device rather than the intermediate devices employed on 

the route. If one of the intermediate devices can issue route discovery requests 

once a transmission problem is detected, the whole transmission would encounter 

considerable delay. Since the main function of the IEEE 802.15.4 MAC layer is to 

implement medium access and achieve peer to peer communications, the network 

layer on the source device should make the decision for new route discovery.  

As discussed above the three options cannot achieve data recovery if they 

are implemented independently.  Consequently, an adaptive speed control with a 

data recovery strategy working on the IEEE 802.15.4 MAC layer to provide 

reliable multi-hop transmission is proposed here. To make the lost packets 

recoverable and limit the used method to frequently require interruption from the 

upper layers, the strategy consists of two steps: slowing down transmission speed 

and retrieving packets which are not successfully transmitted. 

Slow down transmission speed: Once the amount of unacknowledged 

packets exceeds a defined threshold on an intermediate device, the software 

running on its MAC layer will store the data packets, and issue a slowing down 

command to the previous intermediate device from which the unacknowledged 

data packet is received. This command will be passed back until it reaches the 
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source device. By slowing down the whole transmission speed, two objectives can 

be achieved:  

 

1) If some intermediate devices are too busy to send out 

acknowledgements, the relative low transmission speed can allow more 

time for the system to handle the necessary processing.  It is common for 

the MAC layer when more automatic retries are needed due to interference. 

The intermediate devices located within the interference area are often in a 

difficult situation to receive acknowledgements from the next hop. If the 

acknowledgements are not received within the defined time period, the 

system will retry transmission until the maximum retransmission time has 

been reached. Therefore, the outgoing queue will be occupied. As a 

consequence, the acknowledgement for the packets received from the 

previous hop in front of the interference area will be delayed, or even 

discarded if the queue is full. A low data transmission speed can give each 

intermediate device on the route more time to process these transactions. 

 

2) If the interference is serious, the action of slowing down 

transmission speed can help the system reduce the data loss before 

scheduling a new route, which will subsequently increase the success rate 

of data recovery. 

 

Retrieve lost packets:  Although the intermediate devices can store the 

unacknowledged data packets in the local memory, the source device should stop 

using the affected route at an appropriate time point, reschedule a new route, and 

enable the destination device to request for the lost packets. Upon the 

establishment of a new route, the source device can inform the destination the 

number of packets which have been sent out. In comparison with the 

identification of the received packets on the local memory, the destination device 

should be able to determine how many packets were actually lost during previous 

multi-hop transmission, and then enquire the network about the lost packets. Once 

the intermediate devices on the old route receive the requests, they can send those 
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packets through an unaffected route.  Figure 6.8 depicts the model of the proposed 

data recovery strategy. 

 

 

Figure 6.8 Proposed data recovery strategy 

 

In Figure 6.8, the data communications between the source device and the 

destination device is completed by using multi-hop transmission. A virtual link is 

created at the application layers on both the source and destination devices. The 

default MAC layer acknowledgement in the IEEE 802.15.4 standard can indicate 

to an IEEE 802.15.4 device whether a packet previously sent by it has been 

successfully received by the next hop. If the network communication employs a 

multi-hop transmission, the source device will not know if the destination device 

has received the packet. The virtual link is responsible for helping the source 

device to monitor if the data packets are successfully delivered by asking the 

destination device to send an acknowledgement to the source device following the 

same multi-hop way. Acknowledgements sent by the destination device through 

the virtual link should be received by the source devices as a regular task to 
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confirm that a certain number of data packets have been successfully processed. 

Different from the acknowledgements at the MAC layer, the acknowledgement on 

the virtual link is based on the application layer, and requires application software 

to handle the acknowledgements. If a number of virtual link acknowledgements 

are missed, the source device must decide to reschedule a new route.  Although 

the network layer is not defined in the IEEE 802.15.4 standard, for most 

applications requiring large-scale deployment, an appropriate network layer is 

necessary. It is assumed in the following test that the network layer is functional, 

and the implementation of routing protocol for multi-hop transmission is always 

available.  

There are four types of information exchanging among the intermediate 

devices, which compose the main body of the proposed strategy:   

• Acknowledged Data Transmission: It is used for normal multi-hop data 

transmission.  

• Slowing Down Command: Once the amount of unacknowledged data 

packets increases, the MAC layer of the intermediate node automatically 

send out a slowing down command, which will be relayed to the source 

device. On receipt of the slowing down command, the MAC layer of the 

source device will increase the time interval for sending data packets. 

• New Route Selection. It is implemented by the network layer on the source 

device when a number of acknowledgements on the virtual link are lost. 

• Request Lost Packets. Intermediate devices will store the unacknowledged 

data packet in a local buffer. When a new route has been scheduled, the 

source device will inform the destination device how many packets have 

been sent out. After comparing with local memory, the destination device 

will send data requests to the network. If the previous intermediate nodes 

storing these demanded packets receive the requests, they will send the 

stored data using normal multi-hop data transmission, the route selection 

will be handled by the network layer on those intermediate devices. The 

requests sent by the destination device for retrieving the lost data can be 

handled by the network layer. To make it simple, broadcasting is used as 

an alternative method. After that, the source device can resume the data 
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transmission. The system starts the procedures for interference detection 

and data recovery again.  

Except for the necessary support from the network layer, the proposed 

multi-hop transmission control and data recovery strategy requires no extra 

resource. The existing IEEE 802.15.4 stack can easily be programmed to achieve 

the desired purposes. The following tests use a practical IEEE 802.15.4 

development kit to evaluate the proposed strategy.  

6.5 Experimental Studies 

The experimental studies consist of three tests: baseline test, interference test 

and data recovery test. The baseline test and interference test are mainly for 

addressing the transmit capability of multi-hop transmission in an IEEE 802.15.4 

based ad hoc network with and without the presence of Wi-Fi interference. The 

data recovery test is designed to evaluate if the proposed strategy can improve the 

performance of multi-hop transmission by comparing with the results obtained 

from the baseline test and interference test.  All experiments are carried out on the 

Jennic JN5139R1 platform (JN5139R1, 2009). 

6.5.1 Baseline Test: Transmission Control on Multi-Hop 

Communications 

In the analysis of multi-hop transmission, it is mentioned that a minimal 

interval between each transmission is needed to avoid overloading on intermediate 

devices. The baseline test is designed to validate if the setting of interval impacts 

the performance of multi-hop transmission.   

• Test Bed Description: 

The type of IEEE 802.15.4 devices used in the baseline test is a full function 

device. The deployment of test devices is illustrated in Figure 6.9. 
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Figure 6.9 Hardware deployments in baseline test 

 

In Figure 6.9, device A is a PAN coordinator responsible for starting an 

IEEE 802.15.4 network. Device B is the source device, which has data to send to 

the PAN coordinator. The devices located between device A and B are 

intermediate devices for relaying data. The transmission route has been manually 

scheduled and programmed into the intermediate devices. The source device B 

will send data by following the sequence of hops indicated in Figure 6.9 (Hop 1-

>Hop2->…->Hop n) until reaching the device A. In this test, the number of hops 

ranges from 2 to 6 hops. The software running on device A records the number of 

received data. When the data transmission is completed, device A will calculate 

how many no repeated data packets have been received. By comparing with the 

amount of data sent from device B, it is easy to figure out the arrival rate on 

device A.  

To make it convenient for comparison, the payload length of each IEEE 

802.15.4 packet is fixed at 50 bytes, which is half of the maximum MAC layer 

data payload length (aMaxMACFrameSize = 102 bytes) defined in the IEEE 

802.15.4 standard. According to Equation (4.13), the time used to send a packet 

from one device to another device is determined as 4.032 milliseconds.  

The total amount of data payload sent from device B is fixed at 1 MBytes, 

which means there will be 20,000 IEEE 802.15.4 data packets sent from device B. 

Figure 6.10 and 6.11 illustrate the baseline test results. 
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Figure 6.10 Results of baseline test 

 

Figure 6.11 Comparison of estimated time intervals and practical results 

 

In Figure 6.10, the horizontal axis expresses the time interval set on the 

source device for separating data transmission. The vertical axis expresses the 

corresponding data arrival rate measured on device A. The test result verifies that 

the arrival rate is obviously related to the number of hops involved in the multi-

hop transmission. For example, to achieve a satisfied arrival rate (over 99%) for a 

2-hop transmission, the minimal time interval is approximately 10 milliseconds, 

whereas a multi-hop transmission with 4 hops requires at least 19 milliseconds. It 

is clear that if more hops are employed in multi-hop data transmission, more time 

separation should be specified before sending the next data packet on the source 

device. Figure 6.11 shows the comparison between the analyzed time intervals 

0%

20%

40%

60%

80%

100%

120%

1
 m

s

3
m

s

5
m

s

7
m

s

9
m

s

1
1

m
s

1
3

m
s

1
5

m
s

1
7

m
s

1
9

m
s

2
1

m
s

2
3

m
s

2
5

m
s

2
7

m
s

2 Hops

3 Hops

4 Hops

5 Hops

6 Hops

Interv

al 

(millis

econ

d)   



0 

 

- 132 - 

estimated according to Equation (6.1) and the practical results from the baseline 

test where the number of hops varies.  

It is particularly important to consider the transmission interval when a 

large amount of data is needed to be sent to the destination device within a short 

period. Under this circumstance, the sender needs to arrange the data transmission 

with suitable interval, rather than continuously sending the packets.    

6.5.2 Interference Test 

When the parameter of interval between each packet transmission has been 

properly set, it is reasonable to assume that packet loss which happens during 

periods of multi-hop transmission is due to the consequence of interference. The 

interference test is designed to validate the effect of interference on the arrival rate 

of multi-hop transmissions. In the interference test, an IEEE 802.11b router was 

located close to one of the intermediate devices, and broadcast IEEE 802.11b 

signals using a fixed packet rate (e.g. 10packet/second, 100packet/second). 

During the period of IEEE 802.15.4 multi-hop transmission, every intermediate 

device recorded the amount of packets they successfully received. By comparing 

with the total number of packets sent from the source device, it will be clear how 

the interference affects multi-hop transmission. Figure 6.12 illustrates the 

hardware deployment in the interference test. 

 

 

Figure 6.12 Hardware deployment in interference test 
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In Figure 6.12, an IEEE 802.11b Wi-Fi router working on communication 

channel 13 (2472 MHz) is connected to a laptop. A dedicated software based 

packet generator is set to run on the laptop. Due to the fact that the pattern of 

interference encountered by normal users in daily life has no fixed rules to follow, 

the packet generator broadcasts IEEE 802.11b signals with fixed rates as an 

alternative interference pattern to affect device E. During the interference test, the 

IEEE 802.15.4 ad hoc network uses 4 hops to complete multi-hop data 

transmission. To enable the wireless interference to take effect, the physical 

distance between the wireless router and the intermediate device E is 7 metres. 

The test conditions are: the IEEE 802.11b wireless router broadcasts signals, with 

the packet rate from 10 packets / second to 600 packets / second. The length of 

each IEEE 802.11b packet is 1024 Bytes.  Four hops are employed by the IEEE 

802.15.4 multi-hop transmission. Each IEEE 802.15.4 packet contains 50 bytes 

data payload. The total number of IEEE 802.15.4 packets sent from the source 

device is 20,000, the same setting as in the baseline test. The interval between 

each packet transmission on the source device is 22 milliseconds, which can 

achieve around 99% arrival rate in the baseline test. In this interference test, the 

intermediate device E is to be interfered by the IEEE 802.11b router. The IEEE 

802.15.4 network works on communication channel 23 (2465 MHz), whose centre 

frequency is 7 MHz away from the centre frequency of the communication 

channel used by the IEEE 802.11b router. Figure 6.13 shows the test result from 

the interference test.  
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Figure 6.13 Result of interference test 

 

In Figure 6.13, the horizontal axis expresses the IEEE 802.11b data rates 

generated by the packet generator. The vertical axis expresses the measured 

arrival rate on the destination device A. The result indicates that the interference 

coming from the IEEE 802.11b wireless router can cause considerable decrement 

on the IEEE 802.15.4 ad hoc network arrival rate when the IEEE 802.11b signal is 

working with a heavy duty-cycle. The number of successfully received data 

packets on each IEEE 802.15.4 device is recorded in Table 6.1. 

 

 

 

 

 

 

 

 

 

 

 

IEEE 802.11b Packet Rate 

 



0 

 

- 135 - 

Table 6.1 Summary of packet received on each device involved in IEEE 802.15.4 
multi-hop transmission 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Table 6.1, the column labelled “IEEE 802.11b packet rate” means the 

level of traffic generated for the test. The second column “IEEE 802.15.4 Device 

B (packet)” denotes the number of packets sent from the source device B. 

Columns labelled “IEEE 802.15.4 Device X Arrival Rate” denote the number of 

successfully received packets on the measured device (C, D, E, A) and the 

corresponding arrival rate by comparing with the total packets sent from the 

source device. All devices except for the source device B are affected by the IEEE 

802.11b interference due to its high power output. The number of successfully 

received data packets on each device decreases in different degrees. In a practical 

environment, it is unlikely that a 0% packet error rate (PER) will be achieved 

(Jennic AppNote1035). Usually, most IEEE 802.15.4 applications would be able 

to tolerate a PER between 1 and 10% if the application level retransmission are 

employed (Jennic, 2008). Therefore, the packet arrival rate measured on devices C 

and D are thought to be acceptable. However, it is clear that the obvious 

decrement starts from device E, which is supposed to be surrounded by the 

“Interference Area”.  The worst situation is observed in the condition when the 

IEEE 802.11b Packet
Rate

(packet/seconds)

IEEE  802.15.4 Device
B (packet)

IEEE 802.15.4 Device
C (packet)

Arrival Rate

IEEE 802.15.4 Device
D (packet)

Arrival Rate

IEEE 802.15.4 Device
E (packet)

Arrival Rate

IEEE 802.15.4 Device
A (packet)

Arrival Rate

10 20000 19950
(99.75%)

19950
(99.75%)

19690
(98.45%)

19620
(98.1%)

100 20000
19999

(99.99%)
19974

(99.87%)
19798

(98.99%)
19382

(96.91%)

200 20000 19506
(97.53%)

19460
(97.3%)

18605
(93.03%)

18258
(91.29%)

300 20000 19608
(98.04%)

19552
(97.76%)

18331
(91.66%)

17870
(89.35%)

400 20000
19760

(98.8%)
19655

(98.28%)
14412

(72.06%)
13758

(68.79%)

500 20000
19478

(97.39%)
19301

(96.51%)
9810

(49.05%)
8812

(44.06%)

600 20000
19956

(99.78%)
19823

(99.12%)
9497

(47.49%)
8515

(42.58%)
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wireless router works at 600 packets / second, and the corresponding arrival rate 

measured on the destination device A is only 42.58%.  

If an acknowledgement is required for each transmission, the intermediate 

device D which is one hop away from the interference area will be the first device 

sensing the interference. The reason is that device E will send fewer 

acknowledgements for the packets relayed from device D to device E under the 

presence of interference.  

6.5.3 Data Recovery Test 

The data recovery test is implemented by integrating the proposed strategy 

into IEEE 802.15.4 application software to determine if the system can effectively 

retrieve the lost packets when interference occurs.  The hardware deployment is 

illustrated in Figure 6.14. 

 

Figure 6.14 Hardware deployments in data recovery test 

 

In Figure 6.14, the experiment device settings are the same as in the 

interference test except for the intermediate device F. The device F is also an 

IEEE 802.15.4 FFD device, and programmed to be an alternative to device E. 

Consequently, two routes are available in this test, Hop1->Hop2->Hop3_1-

>Hop4_1 and Hop1->Hop2->Hop3_2->Hop4_2. The distance between the 

wireless router and device F is 8+7=15 meters. If the virtual link between the 

source device and the destination device is thought to be broken, i.e. a number of 
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desired virtual link acknowledgements are lost; the source device will switch the 

route to maintain multi-hop transmission. After changing the hop, the system still 

needs to sense interference during data transmission. Once interference is detected 

again, route change and data recovery will be implemented correspondingly. The 

purpose for such settings is to verify if data recovery can be achieved when route 

switching is frequent. The settings of the IEEE 802.11b wireless router and the 

IEEE 802.15.4 network are the same as in interference test. The initial interval 

between each packet transmission on the source device is still set as 22 

milliseconds. Other parameters are listed in Table 6.2.  

In Table 6.2, “Initial interval” is used for normal multi-hop transmission. It 

is also used by the source device each time it has completed a route switch and 

starts multi-hop transmission. When an intermediate device has detected that the 

number of unacknowledged packet has reached the threshold (i.e. “MAC layer 

acknowledgement counter”), it will notify the previous hop to increase the 

transmission interval. On receipt of the slowing down command, the source will 

increase the interval as indicated by “Interval increment rate” till the “Maximum 

interval” has been reached. The “Virtual link acknowledgement set” means the 

source device puts requirement for virtual link acknowledgement every 20 

packets. Then it waits for a “Virtual link waiting period” to confirm whether the 

acknowledgement from the destination device has been received or not. If a 

number of virtual link acknowledgements are not received (i.e. “Route switch 

threshold”), the source device will switch route, and inform the destination device 

on the new route, how many packets have been sent out. Then the source device 

waits for a “Waiting period” before resuming multi-hop transmission. Table 6.3 

shows the result of data recovery test where the interference intensity varies. 
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Table 6.2 Parameter setting in data recovery test 
 

Parameter Value Description 

Initial interval 22  

millisecond 

Interval for normal multi-hop 

transmission 

Maximum interval  1 second The maximum interval allowed on the 

source device 

Interval increment rate 2 The ratio for increasing interval when 

the source device is notified by 

intermediate devices 

MAC layer 

acknowledgement 

counter  

10 packet For an intermediate device, if the 

number of consecutive 

unacknowledged packet has been 10, it 

will notify the previous hop in order to 

reduce interval, i.e. slow down the 

transmission 

Virtual link 

acknowledgement set 

20 packet The source device sets an virtual link 

acknowledgement every 20 packets 

Route switch threshold 3 If 3 consecutive virtual link 

acknowledgements are lost, the source 

device will switch its route 

Virtual link waiting 

period 

1 second If the source device requires virtual 

link acknowledgement, it will wait for 

1 second to check if acknowledgement 

is received 

Buffer size 50  The maximum number of 

unacknowledged packets which can be 

stored on an intermediate device 

Waiting period  3 second The period for the source device to 

wait before resuming multi-hop 

transmission on a new route.  
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Table 6.3 Results of data recovery test 

 

 

In Table 6.3, the column “IEEE 802.11b Packet Rate” means the traffic 

made by the wireless router in order to generate interference. The column “IEEE 

802.15.4 Arrival Rate (without recovery strategy)” means the measured packet 

arrival rate on the destination device A without using the proposed strategy. The 

values in this row are obtained from the previous interference test. The column 

“IEEE 802.15.4 Arrival Rate (with recovery strategy)” means the measured IEEE 

802.15.4 packet arrival rate on the destination device A when the proposed 

strategy is used to enable data recovery.  The column labelled “Recovery Rate” 

denotes the increment of data arrival rate by comparing the second and the third 

columns in Table 6.3. The proposed recovery strategy has less effect when the 

IEEE 802.11b packet rate is less than 200 packets / second. The reason is that the 

duty-cycle of the interference signal is relatively low which would not cause 

serious interference on the IEEE 802.15.4 network communications. When the 

packet rate of IEEE 802.11b signal is higher than 200 packets / second, the chance 

for the IEEE 802.11b signal to interfere with the IEEE 802.15.4 receiver 

increases. By using our strategy, the final arrival rates measured on the destination 

device arise to varying levels compared with the results of the previous 

IEEE 802.11b Packet Rate
(packets/second)

IEEE 802.15.4 Arrival Rate
(without recovery strategy)

IEEE 802.15.4 Arrival Rate
(with recovery strategy)

Recovery Rate

10 98% 98% 0%

100 97% 98% 1%

200 91% 97% 6%

300 89% 98% 9%

400 69% 95% 26%

500 44% 86% 42%

600 43% 82% 39%
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interference test. The maximum recovery rate (42%) is measured when IEEE 

802.11b packet rate is 500 packet/second.  

6.5.4 Discussion 

Similar work carried out by Won et al. (2005) has been mentioned in the 

literature review in Chapter 3. In their work, the authors proposed that devices 

located within the interference area could temporarily change their 

communication channel once interference is detected. Since these devices cannot 

talk to other devices working on the previous communication channel, some 

special devices located around the interference area will frequently switch channel 

to exchange data for the devices affected and unaffected by interference. The 

measured success rate is between 97% and 86%, which is close to the success rate 

achieved in this work. However, it should be noticed that the IEEE 802.15.4 

packet transmission rate employed by Won et al. (2005) is 1 packet / second, 

which is far slower than the rate used in our test, and their work was mainly on the 

basis of software simulation (i.e. NS2 simulator). Our strategy is more suitable for 

large volume data transmission required in a short period. The effeteness of the 

proposed strategy is verified by the hardware based experiment tests.  

 

The performance of the data recovery strategy depends on many factors, 

which can be categorised into four aspects: 

 

1. The range of interference area. In Section 6.3, the interference is assumed 

to affect some of the links existing on the IEEE 802.15.4 multi-hop 

transmission. If all communication links of IEEE 802.15.4 networks are 

being interfered with, multiple intermediate devices will try to store the 

unacknowledged data packets, and attempt to send these packets when the 

destination device requests. Consequently, unexpected collisions between 

these IEEE 802.15.4 devices will happen.  As we have observed from the 

interference test, all of the intermediate devices are affected by the 

wireless router more or less. However, if a wide IEEE 802.15.4 network 
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deployment is applicable, the routing protocol running on the source 

device could find a new route to avoid the interference area. 

2. Local buffer management. For intermediate devices which first sense the 

interference, the system may not be able to provide enough space to store 

the unacknowledged packets due to limited resource. In the data recovery 

test, each intermediate device is allowed to store up to 50 unacknowledged 

packets. In the data recovery test, if the local buffer is full, the new 

generated packets will simply be discarded. The buffer will be empty 

when the stored packets are retrieved by the destination device. 

3. Redundant device searching. In the data recovery test, if the destination 

device is informed by the source device that some packets were lost, it will 

broadcast a data request command to the network. It is known that 

broadcasting to the network is normally not efficient, and probably causes 

more network collisions. If the intermediate devices holding the required 

data do not receive the requests, data recovery will fail. Since the IEEE 

802.15.4 standard does not specify the use of a routing protocol, it is 

difficult effectively to complete this task on the MAC layer.  However, if 

the routing protocol is integrated into an IEEE 802.15.4 based application, 

the destination device can locate the address of the intermediate devices on 

the previous route, and send date recovery requests to those devices on 

purpose. 

4. Network deployment and data transmission setting. In the data recovery 

test, the interfering resource and IEEE 802.15.4 devices are deployed 

manually to meet test requirements (e.g. radio frequency separation, 

interference area range). The settings used in practical situations are 

usually full of uncertainty. Then the parameters listed in Table 6.2 should 

be adjusted accordingly. The data setting (i.e. 22 milliseconds interval, 1 

MByte data capacity) in the test is set for the typical case. The IEEE 

802.15.4 technique is not designed for high speed data transmission. 

Therefore, in practice a longer interval could be employed (e.g. a regular 

data packet required every 1 second). The objective of the test is to 

evaluate and demonstrate the proposed strategy when the system is 

experiencing a worst-case scenario. 
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At this point, the proposed strategy is suitable to work with the existing 

IEEE 802.15.4 stack as a supplementary mechanism to enhance multi-hop 

transmission reliability. When the strategy is integrated with an advanced network 

layer, and provided with essential information, e.g. the number of hops and the 

address of the intermediate devices containing the wanted packets, the success 

rate of data recovery can be further improved. 

6.6  Summary 

In this chapter, the process of multi-hop transmission in an IEEE 802.15.4 

ad hoc network and the effect of interference on the IEEE 802.15.4 network 

communication links have been analysed in detail.  It is observed from the 

interference test that once part of the communication link experiences 

interference, the data arrival rate of the IEEE 802.15.4 multi-hop transmission is 

affected. Since the failure of multi-hop transmission is normally detectable on the 

intermediate device close to the “Interference Area”, the proposed strategy fully 

utilizes the mechanism of acknowledgement provided by the IEEE 802.15.4 

standard to sense the occurrence of interference, temporarily store the 

unacknowledged data, slow down the transmission speed, and help the destination 

device recover the lost data with best effort, which are also the major 

contributions of the research in this chapter. According to the results of the data 

recovery test, the effectiveness of the data recovery strategy was evaluated, and 

the result is positive. The whole strategy requires no change on the IEEE 802.15.4 

standard. Therefore, the integration of our strategy into a practical IEEE 802.15.4 

application is technically feasible.  

 

However, the performance of the strategy does have some limitations. For 

example, the implementation of the strategy requires the involvement of other 

available intermediate devices unaffected by the interference to create a new 

route. And more potential issues need further investigation, including buffer 

management for storing unacknowledged packets, redundancy device searching 

for data recovery, and energy cost for strategy implementation. The objective of 

the research is to show that the strategy design is fundamentally feasible. The 
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future work focuses on the optimization of the strategy according to the 

requirements of practical applications.  
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Chapter 7 Application in Home 
Automation 
 

 

 

7.1 Background and Motivation 

The interference mitigation strategies proposed in Chapters 4 and 5, 

including consecutive data transmission and dynamic energy detection have been 

evaluated in the preliminary tests. However, many uncertain factors, such as 

system deployment, specific application requirements, should be taken into 

consideration when these strategies are adopted in a practical application.  

An IEEE 802.15.4 based home automation system was developed and 

implemented as part of a Technology Strategy Board (TSB) funded project called 

“IndeedNET” (Integration and demonstration of energy efficient dwelling 

networks) (IndeedNET, 2007).  The author was a member of the team responsible 

for designing and developing the technical part of the system. In particular, the 

author’s contributions are focused on low level hardware driver development (e.g. 

smart sensors, miniature actuators, and wireless communication), system 

architecture, and software development. Other members of the IndeedNET team 

are responsible for hardware manufacturing, security mechanism development 

and end user interactions. The overall development is reviewed in the following 

sections that aim to provide a comprehensive understanding of the use of the 

IEEE 802.15.4 technique in a practical wireless sensor network. Since a home 

automation system usually employs the star topology to construct the 

communication network, the interference mitigation design in the IndeedNet 
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system adopts the strategy of consecutive data transmission proposed in Chapter 

4, which is also the contribution 1 of this thesis.  

7.2 Home Automation System 

The idea of home automation is not a new concept. It has been used in 

day-to-day life for decades.  Home automation consists of comprehensive 

categories, including environment monitoring, security, energy management, 

appliance control, and communications (Tidd, 1995). More specifically, the 

development of a home automation system is to devise a set of intelligent home 

appliances that can provide an awareness of the users’ needs, providing them with 

a better home life experience (Park et al., 2003).  

7.2.1  Existing Home Automation Technologies 

There are many existing technologies for promoting the development of a 

home automation system. The X-10 system, which is achieved on the basis of 

“Powerline Communication”, was developed in the late Seventies. It sends a 120 

KHz signal at every zero crossing on a 60 Hz AC line with an effective baud rate 

of 60. The disadvantages of the X-10 system are relatively slow speed and non-

effective noise immunity (Shwehdi and Khan, 1996). A java based home 

automation system was proposed by Al-Ali and Al-Rousan (2004), which utilizes 

the powerful Java language to construct communication link between remote 

users and a local system. However, the internal communications between the 

home server and home appliances still depend on complicated and high cost wired 

installation. In the work of Sriskanthan et al. (2002), a Bluetooth based home 

automation system with a relevant control protocol was proposed. The system 

includes a Bluetooth host device and several client devices. Both host device and 

client devices compose a Piconet within which the home automation commands 

can be exchanged using wireless communication. Considering the cost of the 

Bluetooth module, multiple device controllers are connected to a Bluetooth client 

device in order to reduce the number of Bluetooth devices employed. Each device 

controller can control more than one attached device (AD) using inter-integrated 
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circuit (I2C) bus. Although the primary communication in such a system can be 

completed with Bluetooth communication, the connection between home 

appliances (i.e. AD) is still complicated, and relies on wired installation.  

7.2.2 IEEE 802.15.4 Technique in Home Automation 

A home automation system usually requires a number of sensors and 

actuators to construct a communication network. For example, a single 

temperature sensor can only be sensitive to a small area around itself. 

Consequently, it is reasonable that more than one sensor is needed to generate a 

wide and effective monitoring area. Therefore, a low selling price for such 

application (i.e. home automation system) is crucial (Reinisch et al., 2007). The 

use of a wired system is becoming less attractive because of its high installation 

cost, especially when a large number of sensors are to be installed (Callaway et 

al., 2002).  

Wireless home automation systems are becoming popular and moving 

from early research into practical application (Wheeler, 2007). Without the need 

to rely on cables as the communication carrier, a wireless network can reduce the 

installation price and maintenance cost. More importantly, physical location is no 

longer a restriction. From the view of technology, wireless home automation 

systems are facing the challenge of providing extremely low power consumption 

which is needed since frequently replacing batteries for sensor and actuator 

devices is impractical and uneconomical for domestic users. It is obvious that 

IEEE 802.11 and Bluetooth techniques are unsuitable for home automation 

systems due to their high power consumption. 

The IEEE 802.15.4 technique originates in response to the need for robust, 

low-cost and low-power wireless control networks. It is widely supported by 

semiconductor manufacturers, including Ember, Freescale, Texas Instruments, 

California Eastern Laboratories (Howell, 2009).  

The IndeedNet project selected the Jennic JN5139 (JN5139, 2009) module 

which is compliant with the IEEE 802.15.4 (2003) standard. Figure 7.1 illustrates 

a JN5139R1 wireless module.  
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Figure 7.1 JN5139R1 module 

In Figure 7.1, JN5139R1 manufactured by Jennic is a complete system-on-

chip (SoC) module which integrates microcontroller, modulation/demodulation 

module, and antenna into a single small printed circuit board (PCB).The SoC 

design is quite suitable for applications which do not require radio design as a 

core objective. The wireless communication module supporting IEEE 802.15.4 

standard (2003) has the features of small size, low power consumption (operable 

with battery with active current at 37mA), and low cost (a minimum production 

cost can be less than $5)  (Jennic Press Information, 2007).  

7.2.3 IndeedNET Home Automation System Architecture 

The main purpose of the IndeedNET project is to construct a home 

monitoring and control network in order to control energy consumption for 

domestic users. Based on this purpose, the system requirements can be classified 

into two main aspects: low-level hardware design and high level information 

processing system. The low-level hardware design mainly includes sensors 

actuators design, and wireless communications between sensors actuators and 

control unit.  The high-level information processing system refers to smart control 

algorithms which are implemented according to the home environment changes. 

 The emphasis here is how to achieve reliable communications in such a 

wireless home automation system. Figure 7.2 illustrates the home automation 

system architecture designed for the IndeedNET system. 
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Figure 7.2 System architecture of home automation system (Fang et al., 2008) 

 

In Figure 7.2, the first layer “Smart Sensor & Actuator” is responsible for 

information acquisition and actuator control. Modern micro-electro-mechanical 

system (MEMS) technology has accelerated the emergence of low-cost, highly 

reliable and easy programmable sensors. The benefits offered by such smart 

sensors include adopting the environmental changes and convenient home status 

monitoring. The selection of sensors depends on the purpose of the application. In 

the home environment, temperature, humidity, light level, and gas sensors are the 

most common types encountered. Many advanced miniature sensors can be 

powered by batteries that are vital for small sensor module design in a home 

automation system. 

Actuators are the main mechanical parts in the home automation system to 

execute adjustments on home appliances. In the IndeedNET system, actuators are 

categorized into two groups: mechanical actuator and electronic actuator. Some 

home appliances’ adjustments can be achieved by applying mechanical force. For 

example, a radiator valve is driven by a motor. In addition to the mechanical 

actuator, some home appliances can be controlled by electronic actuators. A 

simple example of an electronic actuator is the use of a relay to control a light 

switch (see Figure 7.3).  
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Figure 7.3 A light controlled by a relay 

 

In Figure 7.3, a light is controlled by a relay located on its power circuit. On 

receipt of user instructions, the relay can execute the actions of switching the light 

on or off.  

The second layer defined in the system architecture is the “Home 

Automation Network Transfer”. The function of this layer is to connect individual 

components within the home automation system. A home automation network can 

be constructed using either wired or wireless connectivity. Some home automation 

systems employ a wired network. However, the installation and maintenance cost 

will be higher comparing to a wireless system. In the IndeedNET system, the 

“Home Automation Network Transfer” layer is achieved wirelessly by the IEEE 

802.15.4 technique as it features low power consumption, low installation and 

maintenance cost.  

Upon the receipt of data from the “Home Automation Network Transfer” 

layer, the designed control algorithm running on the “Data Processing” layer is 

able to analyze home environment information, make decision for system 

adjustment, and then send out instructions to the relevant actuators & sensors. 

Domestic users are also given the capability of manually controlling the home 

automation system locally and remotely through the “User Interface” layer. The 

instructions from the remote users can be sent to the local home automation 

system through any kind of public network (e.g. Internet). Before being 

implemented in the local system, remote instructions will be first verified by the 

function of “Virtual Home” to ensure safety & security. (Yang et al., 2006) 
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In summary, in the architecture shown in Figure 7.1, the “Smart Sensor & 

Actuator” layer is responsible for sensor reading and actuator driving, the “Home 

Automation Network Transfer” delivery system instructions or sensor & actuator 

information to the desired destination. The layers “Data Processing”, “User 

Interface”, and “Virtual Home” are software relevant. The achievement of “Public 

Network Transfer” is based on the Internet or other public networks. Among these 

function layers, the “Home Automation Network Transfer” layer has direct 

connection with local wireless communications, which might possibly be affected 

by wireless interference in the home environment. Therefore, the research carried 

out in this chapter emphasizes the design and implementation of reliable wireless 

communication for home automation systems.  

7.2.4 IndeedNET Home Automation System Components and 

Test-Bed 

As part of the outcome from the IndeedNET project, a set of hardware was 

produced to complete sensing and adjustment tasks needed by the home 

automation system. It also offers a practical and complete test  bed on which the 

interference and mitigation strategy evaluation tests could be carried out. The 

developed components which compose the IndeedNET home automation system 

are illustrated in Figures 7.4 to 7.10. 

 

 

Figure 7.4. PAN coordinator 
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Figure 7.5 Local controller 

 

 

Figure 7.6 Device with temperature, humidity, and light level sensor 

 

Figure 7.7 Device with carbon monoxide sensor 
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Figure 7.8 Light switch actuator 

 

 

Figure 7.9 Radiator valve actuator 

 

 

Figure 7.10 Power meter  

 

In Figure 7.4, an IEEE 802.15.4 PAN coordinator with a LCD screen is 

used to start and maintain the whole wireless home automation network. As the 

network maintainer must operate without interruption, the PAN coordinator 

requires main power supply. Another IEEE 802.15.4 module together with some 

function keyboard and LCD screen is employed as a local controller to facilitate 

interactions between the home automation system and users (Figure 7.5). It is a 

battery-driven device. There are two sensor modules designed to execute 

environment monitoring tasks. One sensor module is equipped with temperature 
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sensor, light sensor, and humidity sensor (Figure 7.6). Another module is 

integrated with carbon monoxide sensor for safety monitoring purpose (Figure 

7.7). These two sensor modules are also battery driven. A light switch (Figure 7.8) 

and a radiator valve (Figure 7.9) are developed to demonstrate how the normal 

home appliances can be adopted into the wireless home automation network. 

Figure 7.10 shows a power meter used to record the power consumption. Each 

sensor device or actuator device has an onboard Jennic IEEE 802.15.4 chip, by 

which the device can easily join the established IEEE 802.15.4 home automation 

network. 

The IndeedNET project is designed to demonstrate wireless 

sensor/actuator networks for energy saving in a smart home environment. 

Therefore, periodical sensor reading and actuator status reporting compose the 

main body of the wireless communication (See Figure 7.11). 

 

 

Figure 7.11 IndeedNET home automation network 

 

In Figure 7.11, individual IndeedNET components connect to the network 

coordinator to construct a star home automation network. Except for the light 

switch, power meter, and PAN coordinator, other wireless sensor network devices 

are powered by battery. To conserve energy, the IEEE 802.15.4 modules 
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connecting to sensors and actuators are set to stay in  a sleeping mode for most of 

time, and wake up to execute the designed task periodically. As a wireless module 

which is in sleeping mode most of time will not respond to radio communication, 

the network coordinator cannot directly contact these modules when it is 

requested. Therefore, the initiative of sending a sensor reading and an actuator 

status is controlled by the wireless modules. The local controller does not “talk” to 

a network device due to the same reason that an IEEE 802.15.4 communication 

module will not respond if it is in a sleeping mode. When a local controller is to 

request sensor reading, it asks for the PAN coordinator to obtain the latest record 

sent by the sensor device. If the local controller is to adjust an actuator, the 

instruction will be stored on the PAN coordinator. The actuator will ask for the 

PAN coordinator if there is any pending instruction for it when it wakes up. Some 

actuators are not restricted by power supply such as the light control actuator 

which is powered by mains power. The IEEE 802.15.4 communication module 

can share the same power source with the actuators to keep uninterrupted 

operations. The network coordinator can immediately relay instructions to such 

actuators. However, to ensure all network devices can follow the same 

communication rules, both battery and main power driven sensor/actuator devices 

will send their information to the PAN coordinator for recording. Figure 7.12 

illustrates the information flow in the IndeedNET system. 

 

 

Figure 7.12 Information flow in the IndeedNET home automation network 
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In Figure 7.12, sensor devices are responsible for sending sensor readings 

to the PAN coordinator. Actuator devices also send actuator status to the 

coordinator, whilst they receive instructions sent by the PAN coordinator. The 

local controller directly sends data & instruction request to the PAN coordinator, 

and also receives the feedback from the PAN coordinator.   

7.2.5 IndeedNET System Specification 

The IndeedNET system consists of sensors and actuators used to monitor 

and control home environment. Table 7.1 summarizes the parameters used to 

configure sensors and actuators. 

Table 7.1 defines the parameters for sensors and actuators. The 

temperature sensor, ambient light sensor, humidity sensor and carbon monoxide 

sensor are required to implement sensing task and send sensor readings to the 

central controller every ten minutes. Additionally, sensors implement self-

checking every 1 minute to make sure that environment changes can be properly 

monitored. The self-checking result will not be sent to the network coordinator 

unless certain conditions are met (e.g. danger temperature is detected). Since 

temperature, humidity and light level sensors are integrated on the same wireless 

module, at least 9 bytes data size are needed for radio transmission. 
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Table 7.1 IndeedNET system parameters 
 

Sensor 

& Actuator 

Data 

Size 

(Byte) 

Sampling Period Description 

Temperature 

Sensor 

(DS18B20) 

3 • 1 minute for self 

checking 

• 10 minutes for system 

checking 

• Measures temperature 

from -55°C to 125 °C 

• 1 byte for sensor reading 

• 2 bytes for control 

command 

Ambient 

Light 

Sensor 

(TSL2500) 

 

3 

 

• 1 minute for self 

checking 

• 10 minutes for system 

checking 

• Ambient light is divided 

into 7 levels ranges from 0 

to 6 

• 1 byte for sensor reading 

• 2 bytes for control 

command 

Humidity 

Sensor 

(SHT11) 

3 • 1 minute for self 

checking 

• 10 minutes for system 

checking 

• Humidity reading ranges 

from 0% to 160% 

• 1 byte for sensor reading 

• 2 bytes for control 

command 

Carbon 

monoxide 

Sensor 

(TGS5042) 

    4 • 1 minute for self 

checking 

• 10 minutes for system 

checking 

• Sensor reading ranges 

from 0ppm to 10,000ppm 

• 2 byte for sensor reading 

• 2 byte for control 

command 

Lamp 

Controller 

2 • Always on • 1 byte for lamp status 

• 1 byte for control 

command 

Radiator 

Valve 

Controller 

3 • 10 minutes for self 

adjustment and 

communication with 

• 1 byte for temperature 

reading 

• 1 byte for set point 
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central controller • 1 byte for control 

command 

Smart 

Power 

Meter 

6 • Always on • 2 byte for current 

• 2 byte for voltage 

• 2 byte for accumulated 

power consumption 

Network 

Coordinator 

N/A • Always on • Starts network, accepts 

network device, stores and 

relays message 

Local 

Controller 

N/A • When requested by 

users 

• Display home information 

and used by users to send 

commands 

 

The lamp controller and smart power meter are connected to the main power and 

will be always on. Consequently their operations do not need to consider power 

consumption. Another similar component is a network coordinator, which is the 

PAN coordinator and it is an IEEE 802.15.4 based WSN. It should be connected 

to the main power to keep working as the message in a star network must be 

relayed by the network coordinator. The radiator valve controller communicates 

with the network coordinator to determine if a new set-point is sent by users, then 

makes adjustment according to the current temperature and set point. Except for 

the data size listed in Table 7.1 for sensor and actuator operations, more data size 

for additional settings (e.g. error correction, packet identification, reserved 

payload for system use, security setting) is also needed. Cosequently, packet 

transmission in the IndeedNET system takes 50-byte as a standard data size. 

7.3  Interference Analysis in Home Automation 

System 

The wireless interference issue has been considered in the development of 

the IndeedNET system. Most concerns come from the use of IEEE 802.11 devices 

which are well known as Wi-Fi. During the development period, the effect of 
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wireless interference was actually noticed. The distinct characteristic of 

interference phenomena is that the local controller often has a response from the 

PAN coordinator after a significantly long delay, or even loses a response when a 

Wi-Fi router is working nearby. The sensor device and actuator device encounter 

the same problem which is unable to be displayed on the local controller as they 

communicate with the PAN coordinator directly. 

7.3.1 Home Automation Network Topology 

An IEEE 802.15.4 star network can cover a typical house as depicted in 

Figure 7.13. 

 

Figure 7.13 Star home automation network 

 

In Figure 7.13, if the PAN coordinator has started and completed network 

initialization, other IEEE 802.15.4 devices will automatically join the established 

network by associating with the PAN coordinator. In other words, the individual 

devices do not need to consider deployment location. This is also the most 
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important advantage offered by the wireless technique. However, it is possible for 

these wireless home automation devices to be located in the vicinity of the 

interference source. 

7.3.2 Wi-Fi Interference Source 

According to the analysis in Chapter 4, the interfering source which can 

actually affect IEEE 802.15.4 network is the IEEE 802.11b/g network (i.e. Wi-Fi) 

working at a high duty cycle. Its relative wide bandwidth and high output power 

are essential factors causing the interference.  

As wireless broadband is quite popular in the consumer market, many 

households prefer wireless networking as their home Internet access, which means 

the interference of Wi-Fi to IEEE 802.15.4 wireless sensor networks could be 

inevitable. Most Internet applications for domestic users work mainly in a 

downlink mode (e.g. Internet browsing, file downloading). The uplink mode is 

usually used to send a small number of data for requesting service (e.g. request a 

web page, or send an email). Consequently, the wireless router is the main 

interference resource under this situation. Normally, a household will have one 

wireless router.  

There is another serious interferer, domestic wireless security camera, 

which usually employs the IEEE 802.11b/g technique. Unlike the wireless router 

connecting to the Internet, the domestic wireless security camera keeps working 

all the time and it might be requested to send video stream to the central server for 

monitoring purpose. The continuous IEEE 802.11b/g signal transmissions could 

continuously generate interference on the IndeedNET system.  

7.3.3 Challenge in Home Automation System Installation 

One of the challenges of avoiding interference in the home automation 

system is that the system installation should not impose too many “technical 

requirements” to users. In a business environment, a wireless system deployment 

can be done by professional staff and have an advance field test in order to ensure 

a safe distance between wireless devices. Domestic users are the end users of 

indeedNET system and most of them are not network experts. They are not likely 
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to have similar technology and knowledge for a proper radio environment 

measurement. Therefore, it is unrealistic to require end users to pay attention to 

deploying wireless network, e.g. where is a safe position unaffected by 

interference, how to allocate a channel. Consequently, the components of a home 

automation system might be put at any place in a house, which potentially 

increase the possibility for the IndeedNET system to be interfered by Wi-Fi.  

The physical locations of the IndeedNET system devices are decided by 

the attached sensors or actuators. For instance, the radiator valve controller must 

fit on the radiator valve whose location was determined when the house was 

constructed. The sensor devices can be put anywhere in the house to monitor 

environment changes and provide the control algorithm running on the PAN 

coordinator with useful information. Therefore, their position will not be changed 

after installation. When Wi-Fi interference happens (e.g. Wi-Fi network channel 

moves to the frequency close to the home automation network channel), applying 

physical distance separation to avoid interference is usually not applicable. The 

strategy designed to mitigate interference should emphasise on software 

adjustment which does not require user interruptions.  

7.4  Interference Mitigation Strategy  

The interference mitigation strategy designed for the indeedNET system is 

on the basis of consecutive data transmission proposed in Chapter 4.  

7.4.1  Interference Effect 

The interference mitigation strategy is designed according to the 

characteristics of the IndeedNET system. The IndeedNET system is primarily for 

saving energy consumption for domestic users. Therefore, sensor and actuator 

devices are required to report the environmental data to the home network 

coordinator or execute appliance adjustments at a regular interval. To enlarge the 

lifetime of sensors and actuators, including the connected IEEE 802.15.4 wireless 

modules, the battery driven IndeedNET components need to keep in a deep 

sleeping mode in order to reduce power consumption during the period of “off 
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duty”. In other words, battery driven IndeedNET components should keep a 

relative low duty cycle which can enlarge battery life. Consequently, domestic 

users do not have to frequently replace a battery. Figure 7.14 shows the state chart 

of an individual battery driven IndeedNET component. 

 

 

Figure 7.14 State chart of battery driven IndeedNET component 

 

In Figure 7.14, an IndeedNET component starts to implement a regular 

task after the completion of system initialization. Then it will keep in the deep 

sleeping mode until the time for the next regular task. During the sleeping mode, 

the IEEE 802.15.4 module (i.e. transmitter and receiver) is inactive, which makes 

it completely untouchable from the PAN coordinator. If the PAN coordinator is 

sensitive to the emergence of interference, it cannot notify those components 

which are in the sleeping mode. 

When the component wakes up from the deep sleeping mode, it will first 

implement the desired function (sensing task or appliance adjustment) and then 

report to the PAN coordinator. After that, the component should enter into the 

sleeping mode again to save energy. If the data transmission to the PAN 

coordinator failed, the component usually has two options: implement network 

rejoining procedure by scanning all available channels and then associate with the 

addressed PAN coordinator, or apply retransmission to make more tries on the 

current channel.  

• Rejoining Network. According to the IEEE 802.15.4 standard, the network 

device which has lost connection with the PAN coordinator should issue an active 

scan by sending a beacon request command on a channel. Then the device enables 

its receiver and records the information contained in each received beacon.  The 
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active scan should terminate on a channel when either condition is satisfied: the 

number of received PAN information has reached the maximum value (the 

maximum value is an implementation-specified number decided by 

manufacturers), or the specified scan period has expired. The definition for 

specified scan period scanactiveT _ is  (IEEE Std802.15.4-2003, 2003): 

symbolsionframeDurataBaseSuperT n
scanactive )]12(*[_ +=         (7.1) 

In Equation (7.1), scanactiveT _  is the scan period in the unit of symbol (a 

symbol is equal to 16 µs), ionframeDurataBaseSuper  is a constant value equal to 

the number of symbols (i.e. 960 symbols) forming a superframe when the 

superframe order is equal to 0, n is a value between 0 and 14. Then

]6.251673,72.30[_ msmsT scanactive ∈ . If the minimum scan period is used (i.e. 

n=0), the total time consumed to scan all 16 channels on 2.4 GHz ISM band is 

equal to =16*72.30 491.52 millisecond. Usually, to ensure that the waiting time 

is long enough to receive PAN information, the scan period n will be set as 3. 

Then the maximum time consumed to scan all 16 channels will be 2211.84 

millisecond. Table 7.2 lists the required time to scan all channels when the 

exponent n ranges from 0 to 5. 

 

Table 7.2 Time consumption for IEEE 802.15.4 device to scan channels 
 

n Scan Period for 16 Channels  

(millisecond) 

0 491.52 

1 737.28 

2 1228.8 

3 2211.84 

4 4177.92 

5 8110.08 

 

 
In Table 7.2, column lapelled with “n” denotes the exponent in Equation 

(7.1). The second column is the calculated time consumption for IEEE 802.15.4 
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device to scan all channels with corresponding n value. Obviously, a large value 

of n will lead to a long scan period. Since the current consumption for using IEEE 

802.15.4 transmitter and receiver is the same when the communication module is 

active, a long scan period will consume considerable battery energy. 

Energy consumption is the most important metric to measure our strategy. 

As most of the IndeedNET components implementing sensing and actuator 

adjustment tasks are powered by batteries, the interference mitigation strategy 

should consume energy as little as possible.  

• Applying retransmission at the application layer: Retransmission is a 

reasonable way for sensor/actuator devices to take when the expected 

acknowledgement is not received from the PAN coordinator within a certain time. 

However, it is difficult to determine an optimized value to be the maximum 

retransmission time, especially when the system is under interference.  

7.4.2 Interference Mitigation Strategy 

In Chapter 4, it has been evaluated that utilizing consecutive data 

transmission can significantly increase the success rate for a pair of IEEE 

802.15.4 devices even under serious interference caused by a Wi-Fi transmitter. 

This strategy is suitable for the design of the IndeedNET system since the 

communications in the IndeedNET system only occurs between the network 

controller (i.e. PAN coordinator) and the network device. Additionally, the regular 

task to collect sensor information or adjust the actuator is needed every few 

minutes Applying a certain number of data retransmissions will not cause network 

congestion. A small modification is made in the original strategy proposed in 

Chapter 4. In the original strategy, an IEEE 802.15.4 device will select a small 

number as the maximum retransmission time after the first time failure of data 

transmission. If data retransmissions with the small maximum retransmission 

limitation still failed, the sender will choose to consecutively transmit data packets 

for 1 second. In the IndeedNET system, once the fist data transmission from a 

sensor / actuator device to the PAN coordinator failed, the sender will directly try 

to continue to send a data packet for 1 second. The interval between consecutive 
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transmissions is calculated according to the length of data packet. The purpose of 

modification is to limit the time consumed to implement retransmissions.   

In the original strategy, the sensor device will regularly (for example. 

every 1 second) send a connection detection packet requiring acknowledgement to 

the PAN coordinator. If a certain number of acknowledgements are lost, the device 

will start to scan all channels in order to rejoin the network. In the IndeedNET 

system, the transmission of connection detection packet is not achievable by 

sensor/actuator devices as its transmitter is in a sleeping mode. To solve the 

problem, the PAN coordinator in the IndeedNET system sets a timer to monitor 

the data reception. If the expected data are not recorded during the specified 

period, the PAN coordinator will initiatively switch network channel to the one 

with least energy level. Figures 7.15 and 7.16 illustrate the flow charts of the 

strategies implemented in the IndeedNET system to mitigate interference.  
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Figure 7.15 Flow chart of interference mitigation strategy implemented on 

sensor/actuator devices 
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In Figure 7.15, the workflow of the sensor/actuator device starts from 

system initialization. After successfully joining the network, the sensor/actuator 

will implement initial configuration. Then the device enters into the sleeping 

mode. When the wake timer expires, the device should execute the desired 

functions, including reading sensors or adjusting the actuator. The result of regular 

tasks will be sent to the PAN coordinator to make a record. If the confirmation 

from the PAN coordinator is received, the device can enter into the sleeping mode 

until the wake timer expires again. If the confirmation is not received, the device 

starts to send the packet to the PAN coordinator in the way of consecutive 

transmission. The transmission interval is decided by the length of the packet. For 

example, in the IndeedNET system, each data packet employs a fixed payload 

length whose size is 50 byte. According to Equation (4.13), the minimum time 

used to transmit such a packet is 4.032 millisecond. Therefore, the retransmission 

interval is 4.032 millisecond. If a confirmation is received from the PAN 

coordinator within the 1 second retransmission period, the device can stop 

retransmission and enter into the sleeping mode. If no acknowledgement is 

received and the 1 second retransmission period expires, the device should start to 

scan all channels in case the PAN coordinator has switched to other channels. If 

the PAN coordinator is located, the device should associate with it and complete 

the data transmission. Otherwise, the device should enter into the sleeping mode 

for a certain interval in order to save energy (we choose 1 minute here), and then 

wake up to search for the PAN coordinator. The procedure of “sleep for a short 

period and then search for PAN coordinator” will be repeated by the 

sensor/actuator device until it successfully joins the network.  
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Figure 7.16 Flow chart of interference mitigation strategy implemented on the 

PAN coordinator 

As shown in Figure 7.16, after initial configuration, the PAN coordinator 

sets a timer which is longer than the sensor/actuator device’s working period. For 

example, if the sensors are required to report to the PAN coordinator every 10 

minutes, the timer on the PAN coordinator can be 11 to 12 minutes, which is 

mainly for allowing errors of the timer running on sensor/actuator devices. When 

the timer expires, the PAN coordinator will check if expected data from all 

devices have been recorded during the last working period. If data have been 

recorded, the PAN coordinator can start the timer again. If some data are lost, the 

PAN coordinator should implement a channel scan and move the network to a 

clean channel which has the least energy level. Since sensor/actuator devices will 

implement the procedure of rejoining network 1 minute after the failure of 

communicating with the PAN coordinator, the home automation network will re-

establish very quickly.   
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7.5 Evaluation Test 

The test was carried out in a test house to evaluate the developed indeedNET 

system performance under interference. The deployment area is within a detached 

house locating in Holywell Park, Loughborough University (UK). It is a two-story 

house with complete home appliance settings. Figure 7.17 illustrates the test 

house. 

 

 

Figure 7.17 Test house located in Loughborough University 

 

Since the objective of this thesis is to discuss and study interference in a 

wireless sensor network, the main objective here is to evaluate the performance of 

wireless communication in such a home automation network when it is under 

interference.   

7.5.1 Deployment of IndeedNET System in the Test House 

The test house is a dedicated property built for research purposes. The 

Internet access is provided by an Asymmetric Digital Subscriber Line (ADSL) 

connection. The ADSL modem connects to a wireless router to establish a Wi-Fi 

network in the house. A laptop equipped with Wi-Fi adaptor is used as the client 

of the wireless router.  

Since the test area is a two-story house, the central controller, which is also 

the PAN coordinator, is located on the ground floor. A lamp controller and a 

radiator valve controller are located in the longue. Two environment sensors are 

located in the kitchen and toilet respectively. A wireless camera, a wireless router 

and a laptop are also put in the lounge. A power meter is located on the first floor.  

Figures 7.18 to 7.26 illustrate the devices loations in the test house. 
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Figure 7.18 PAN coordinator locates on the ground floor 

 

Figure 7.19 Wireless camera in lounge 

 

Figure 7.20 Wireless router in lounge 

 

 

 

Figure 7.21 Local controller and laptop in lounge 
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Figure 7.22 Light controller in lounge 

 

Figure 7.23 Radiator valve controller in lounge 

 

Figure 7.24 Environment sensor in kitchen 

 

 

Figure 7.25 Environment sensor in toilet 
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Figure 7.26 Power meter on the first floor 

7.5.2 Measurement Methodology 

The evaluation tests are performed with two components in the 

IndeedNET system. One component is the PAN coordinator to start the home 

automation network. Another component is an original sensor/actuator device in 

this system. Two locations are selected for this normal device. On the ground 

floor, we set it at a position which is 6 metres away from the coordinator. This is 

the average distance between devices on the ground floor to the coordinator. 

Another position is on the first floor. Figure 7.27 shows the deployment for the 

device at these two positions. 

 

Figure 7.27 Deployment for the normal device at two positions 

6 meter

5m

6 meter

Home automation central
controller (IEEE 802.15.4

PAN coordinator)

Sensor deviceGround Floor

First Floor Sensor device

Wireless IP
canera

WirelessRouter

2m



0 

 

- 172 - 

In Figure 7.27, the wireless router, a wireless IP (Internet Protocol) 

camera, a laptop, a home automation network coordinator and a sensor device are 

located at the ground floor. The distance between the wireless router and the 

network coordinator is 6 metres. Meanwhile, the wireless camera is set 5 metres 

away from the network coordinator. The distance of the sensor device located on 

the ground floor is 6 metres away from the network coordinator. The sensor 

device located on the first floor is about 2 metres from the network coordinator at 

the vertical direction. 

After joining the established home automation network, the sensor device 

regularly sends sensor reading to the PAN coordinator every 1 minute. If the data 

transmission is successful, the sensor device enters into the sleeping mode and 

wakes up after 1 minute in order to execute its regular task. The tests are divided 

into two scenarios if data transmission is unsuccessful: 1) the sensor device enters 

into sleep without any action, or 2) the sensor device implements the proposed 

strategy described in Section 7.4. The test lasts for 20 minutes. A total of 20 

sensor data packets were sent from the sensor device to the coordinator. The 

selection of interference sources adopts two devices: a web camera and a Wi-Fi 

router.  

The tests run with three interference traffics: visiting wireless camera, 

browsing web page, and downloading file. 

A. Web camera 

The wireless router is set to work under the infrastructure mode, which 

means the acquired video stream generated on the web camera will be firstly 

relayed to the wireless router, and then sent to the laptop by the wireless router. In 

the web camera test, three different data rates supported by IEEE 802.11b 

standard (i.e. 2 Mbps, 5.5 Mbps and 11 Mbps) are used. Because such monitoring 

camera usually keeps working all the time for security purpose, it is probable that 

the wireless router will adapt the bit rate sometimes in order to support a noisy 

environment. Table 7.3 shows the settings for the wireless camera, the router, and 

the IEEE 802.15.4 network created by the PAN coordinator. The test result is 

shown in Table 7.4. 
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 Table 7.3 Setting for the wireless camera, the router and the IEEE 802.15.4 
network 

Characteristics of Web Camera and 

Router 

Description 

Web camera 

manufacturer 

LinkSYS ---- 

Effective 

Bandwidth on the 

router 

2 Mbps, 5.5 Mbps and 

11 Mbps 

Configuration is made on the 

wireless router 

Wi-Fi Mode on the 

wireless router and 

the camera 

IEEE 802.11b The camera only supports IEEE 

802.11b mode 

Wi-Fi Channel 11 Centre frequency 2462 MHz, ranges 

from 2451 MHz to 2473 MHz 

IEEE 802.15.4 

network channel 

23 Centre frequency 2465 MHz, ranges 

from 2464 MHz to 2466 MHz 

 

As indicated in Table 7.3 the wireless camera works at the IEEE 802.11b 

mode. The used Wi-Fi channel is 11, whose center frequency is 3 MHz from the 

channel used by the IEEE 802.15.4 network. 

In Table 7.4, the column labelled “Data rate set on the wireless router” 

denotes different data rates configured on the wireless router. The columns 

labelled “Success rate of sensor device on the ground floor” and “Success rate of 

sensor device on the first floor” denote the success rate of data transmission from 

the sensor device located in different positions. The rate is obtained by counting 

the number of data packets whose transmissions are acknowledged by the 

coordinator. The row labelled “Without strategy” means the implementation does 

not include the proposed strategy. The row labelled “With strategy and 

retransmission time” means the consecutive retransmission strategy is 

implemented if data transmission failed. The value surrounded by brackets is the 

average retransmission time implemented by the sensor device when its first 

transmission after waking up from the sleeping mode was unsuccessful. 
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Table 7.4 Results of test using the wireless camera to generate interference 
 

Data rate set on Wi-Fi router Success rate of sensor 

device on ground 

floor 

Success rate of sensor 

device on first floor 

2 Mbps Without strategy 30% 25% 

With strategy and 

retransmission time 

100% (44) 95% (142) 

5.5 Mbps Without strategy 55% 50% 

With strategy and 

retransmission time 

100% (40) 100% (30) 

11 Mbps Without strategy 85% 75% 

With strategy and 

retransmission time 

100% (10) 100% (23) 

 

For example, when the data rate of the wireless router is set at 2 Mbps, the sensor 

device located on the ground floor can achieve successful communication of a data 

packet by implementing 44 times retransmissions on average.  The result shows that 

when a small data rate is set on the wireless router, the IndeedNET device requires more 

retransmission time. Since the retransmission interval set on the sensor device is 4.032 

millisecond (refer to Section 7.4), the maximum retransmission time which will be 

attempted by the sensor device within 1 second is about 248032.4/1000 = times. 

According to the measured success rate (with strategy implementation) listed in Table 

7.4, the sensor device can achieve communication under most situations. The worst 

situation is that when the sensor device is located on the first floor and the Wi-Fi data 

rate is 2 Mbps, 5% data packets are still lost. However, the network coordinator moves 

to another channel very quickly when it detects that the data reception fails during the 

monitoring period. Consequently, the following data transmissions become normal. In 

other situations, a channel switch is not needed. 

B. Browsing web page 

In this test, the laptop is used to execute normal network operations, including 

browsing web page, sending/receiving email. The wireless router uses 11Mbps data 
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rate. The test result is shown in Table 7.5. No interference is found and retransmission 

strategy is not required. 

 
Table 7.5 Result of test using normal Wi-Fi network operation to generate interference 
Data rate set on Wi-Fi router Success rate of sensor 

device on ground 

floor 

Success rate of sensor 

device on first floor 

11 Mbps Without strategy 100% 100% 

With strategy and 

retransmission time 

100% (0) 100% (0) 

 

C. Downloading File 

An additional computer is added into this test. The computer connects to 

the wireless router using a cable connection and has a file transfer protocol (FTP) 

server running on it. The laptop runs a FTP client to download a large capacity file 

from the FTP server. Different Wi-Fi traffic is generated by setting a download 

speed limit on the FTP server. The test result is shown in Table 7.6 

In Table 7.6, the data transmission failure starts when Wi-Fi traffic rate is 

over 100Kbyte/second.  The minimum success rate, which is 50%, is measured on 

the sensor device located on the first floor when Wi-Fi traffic is 

500KBbyte/second. The retransmission strategy enables success rate to be 100% 

at most 37 retransmission times for a single packet. 
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Table 7.6 Result of test using FTP downloading to generate interference 
 

Wi-Fi Traffic (KB/second) Success rate of 

sensor device on 

ground floor 

Success rate of 

sensor device on 

first floor 

 

10 

 

Without strategy 100% 100% 

With strategy and 

retransmission time 

100% (0) 100% (0) 

100 

 

Without strategy 100% 95% 

With strategy and 

retransmission time 

100% (0) 100% (21) 

200 Without strategy 95% 90% 

With strategy and 

retransmission time 

100% (6) 100% (21) 

300 Without strategy 85% 75% 

With strategy and 

retransmission time 

100% (20) 100% (37) 

400 Without strategy 70% 65% 

With strategy and 

retransmission time 

100% (25) 100% (23) 

500 Without strategy 60% 50% 

With strategy and 

retransmission time 

100% (16) 100% (23) 

 

7.5.3 Discussion 

In the test A- Web camera, the results show that the Wi-Fi traffic with low 

data rate causes significant interference on IEEE 802.15.4 network operation. The 

reason is that Wi-Fi packet requires more time to transmit if low data rate is 

employed. For example, if the Wi-Fi packet length is 1024 Byte. The wireless 

router needs ms096.4)10*2/()8*1024( 3 = to complete transmission if data rate is 
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2 Mbps. If the data rate is 11 Mbps, the transmission time is

ms744.0)10*11/()8*1024( 3 = , which is about one fifth of the time used by Wi-Fi 

transmitter with 2 Mbps data rate setting. As mentioned in Section 7.3, wireless 

security camera is a home appliance working at all time. Unless specified, the 

wireless router, which is the controller of a Wi-Fi network, may dynamically 

switch the Wi-Fi channel or shift the modulation scheme in order to maintain 

network performance when Wi-Fi network is under interference. Potentially, 

wireless camera has more chance to affect the developed IndeedNET home 

automation system. And we have encountered this problem in the field trial of the 

IndeedNET project.  

For test B and test C, only 11 Mbps is chosen as the data rate setting on the 

wireless router. In test B, the Wi-Fi network does not generate obvious 

interference on the IndeedNET system during normal Internet operations 

(browsing web page, sending/receiving email, online chatting), which only require 

small data throughout. In test C, for the convenience of comparisons, fixed speed 

limits are applied on the FTP server. The test result indicates that the effect of 

interference caused by the Wi-Fi network becomes serious with the increment of 

download speed limit. During tests A, B, and C, our strategy has indicated that it 

can significantly increase the success rate of data transmission in the IndeedNET 

system. 

The use of the consecutive data transmission strategy helps the home 

automation network device with the capability of maintaining communication 

whilst the battery consumption is also controlled. For example, in test C, when 

FTP speed limit is set as 300 KB/second, the sensor device located on the first 

floor needs 37 times retransmission to complete a data transmission. As the time 

consumed for each transmission is about 4.032milliseconds, the total operation 

time is 149.184 milliseconds. Table 7.7 lists the comparisons of time consumed by 

the sensor device with and without strategy implementation. 
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Table 7.7 Comparisons of time consumed by a sensor device with and without 
strategy implementation 

 

Without Strategy Implementation With Strategy Implementation 

First transmission 4.032  

millisecond 

First transmission 4.032 

millisecond 

Network rejoining 

(n=3) 

2211.84  

millisecond 

Consecutive 

transmission for 

37 times 

149.184 

millisecond 

Data transmission 

after rejoining 

4.032  

millisecond 

N/A N/A 

Total time 

consumption 

2219.904 

millisecond 

N/A 153.216 

millisecond 

 

In Table 7.7, columns labelled “Without Strategy Implementation” and 

“With Strategy Implementation” denote the two situations that the sensor device 

will face when data transmission fails. If no strategy is used, the sensor device 

will scan all 16 channels and associate with the network coordinator again. The 

total time consumed for data transmission and network rejoining are 2219.904 

millisecond. If the strategy is used, the communication will be achieved after 37 

retransmissions which cost 153.216 millisecond. Therefore, the strategy 

implementation only requires %9.6904.2219/216.153 =  of time compared with 

the situation when no strategy is included. Consequently, 93.1% battery energy 

can be saved if the wireless module is active. 

7.6 Summary 

In this chapter, the proposed interference mitigation strategy was 

integrated into a practical home automation system in order to improve the system 

capability of maintaining communications during the times of interference. The 

strategy is specifically designed according to the characteristics of the home 

automation system. By applying consecutive data retransmission strategy, the 

sensor devices can effectively keep communications with the network coordinator 
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even under a serious interference condition, whilst the energy consumption is 

reduced compared with the normal procedures (e.g. scan channel and rejoin 

network) when the sensor device failed to send out a data packet. 
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Chapter 8 Application in Fire 
Safety Protection 
 

 

 

8.1 Background and Motivation 

In 2007, the local authority fire and rescue services attended 804,100 fires 

or false alarms in the United Kingdom. There were 445 fire-related deaths, 

including six fire fighters in 2007, and 268 fire fighters were injured during rescue 

service. The most common identified cause of death from a fire incident is being 

overcome by gas or smoke. In 2007, the fire and rescue service reported that 193 

people died this way, accounting for 44% of all deaths. A further 88 (20%) deaths 

were attributed jointly to both burns and being overcome by gas or smoke, whilst 

115 (26%) were due to burns alone”. Figure 8.1 illustrates the overall statics of 

cause for fire-related death (Fire Statistic, 2007). 

 

 

Figure 8.1 Overall statics of cause for fire-related death (Fire Statics, 2007) 
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The key point for effectively and efficiently implementing a fire rescue 

service and protecting fire fighters is to enable the command officer to clearly 

understand the emergency situation, by accessing real-time information collected 

from the scene of the fire incident (e.g. smoke distribution, gas density, 

temperature, and fire fighters’ location). The best way is to deploy an innovative 

wireless sensor network to sense environment changes and report to on-site 

commanders before sending rescue personnel.   

The Secure Ad hoc Fire & Emergency safety NETwork (SafetyNet, 2006) 

is a TSB funded project which provides an integrated first-responder support 

system achieving real-time data about the building and hazard conditions, 

including monitoring of responder location, floor-plan provision and critical 

conditions of environment changes. The author was a member of the technical 

team responsible for designing and implementing wireless communication 

module. Similar to the home automation system described in Chapter 7, the low 

level sensor information collection is accomplished by an IEEE 802.15.4 based 

wireless sensor network. The difference is that the SafetyNet system requires that 

the WSN should be applicable for large-scale deployment as the scope of a 

commercial building environment is usually unable to be covered by a single-hop 

star network. Therefore, WSN in the SafetyNet system employs a mesh network 

to achieve the purpose of adopting a large number of sensor nodes distributed 

within a given area into an integrated network, whilst the construction of such a 

network requires no infrastructure to be involved. The mesh network was 

developed based on the ZigBee technique (ZigBee, 2007). 

It is common for offices in commercial buildings to have multiple Wi-Fi 

networks in daily work. As Wi-Fi networks work on the same 2.4 GHz ISM band, 

interference from these co-located networks becomes an increasing problem for 

ZigBee/IEEE 802.15.4 based WSNs.  During the development of the SafetyNet 

system, interference issues were proposed by researchers and industrial partners 

from the point of view of practicality. It is concluded that the design challenges 

arise from uncertainty of interfering resource channel allocation, difficulty in 

predicting interference due to the wide coverage area of WSN in mesh topology, 

and existence of multiple interfering resources (i.e. multiple Wi-Fi networks). 

However, by monitoring the success rate of data transmission on sensor devices 
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and implementing districted energy detection, the controller of the SafetyNet 

system can determine the most suitable communication channel when WSN is 

under interference and then take further adjustment. The interference situation 

monitoring and multi-hop data transmission have been comprehensively studied 

in Chapters 5 and 6 as the contributions 2 and 3. An event driven strategy for 

interference detection and channel switch in the ZigBee network is proposed in 

this chapter with the adoption of contributions 2 and 3 in order to improve system 

performance under interference. The process of strategy design discussed in this 

chapter is also an overview of interference analysis and comprehensive utilization 

of measures in relation to moderating interference in WSNs. 

8.2 Building Environment Monitoring System 

Utilizing sensor networks to monitor building environments has been a 

mutual technology used in everyday life. It is quite common to have large 

numbers of smoke sensors, temperature sensors, etc installed in every corridor of 

buildings. Most of them are connected through a wired system to a central 

controller. The emergence of wireless sensor networks is accelerating the 

development of such a building monitoring system by reducing installation cost 

and improving deployment flexibility. To the best of the author’s knowledge, the 

SafetyNET project was a first attempt to integrate smart wireless sensors, 

including environment sensors and location tracking sensors, into building 

monitoring for fire safety protection purpose. Figure 8.2 illustrates the 

infrastructure of the SafetyNET system (Yang and Frederick, 2006).  
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Figure 8.2 SafetyNet system infrastruture (Yang and Frederick, 2006) 

The SafetyNet system provides an information structure to enable 

buildings, fire fighters, fire tenders, and their control centre to communicate 

efficiently during natural or man-made disasters by using sensor networks, 

wireless communications, Digital Audio Broadcasting (DAB) and 3rd generation 

(3G) technologies. The novel information infrastructure is comprised of three 

layers, as shown in the illustration above. 

In Figure 8.2, the bottom layer comprises a robust wireless sensor network 

installed in the building. The sensor network utilizes robust sensor "motes" to 

detect any changes in the environment at specified locations. The sensor network 

can take the place of the existing fire alarm networks. Information collected from 

sensor devices flows over the sensor network and will then be transmitted to the 

fire tender network. 

The middle layer comprises a vehicle-mounted mobile network installed 

on the fire tenders. It is achieved by upgrading the newly introduced vehicle-

mounted mobile data systems (VMDS) and adding not only the up-link with the 

control centre but also the down-link with the sensor network. The real time 
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information about the building, occupants, and the locations of the fire fighters is 

collected from the sensor network, transmitted to and presented at the fire tender 

network. Up-to-date information about the building such as the floor plan and 

hydrant status is downloaded from the central database located at the control 

centre to the fire tender's network on their way to an incident. DAB is employed 

between the bottom and middle layers in order to maintain a time critical one way 

communication channel between the tenders and emergency personnel. 

At the top layer is the central facility located at the control centre of a fire 

brigade. An emergency response management system at the control centre will 

provide the fire-fighters with up-to-date critical information and remotely monitor 

the latest development of incidents. The national FireLink radio communication 

system for the fire and rescue services will be connected with the top layer in the 

information infrastructure. The connection with FireLink allows the real-time 

situation in emergency situations to be available nationally. 

According to the design plan, the IEEE 802.15.4 based ZigBee wireless 

sensor network will be deployed in the interior of building, and responsible for 

monitoring critical environment conditions. 

8.3  IEEE 802.15.4 Based ZigBee Wireless Sensor 

Network in SafetyNet System 

When a wireless sensor network is deployed in a large-scale application, 

the capability for network devices to automatically route messages is essential. 

Since the IEEE 802.15.4 standard does not support the network layer, SafetyNet 

system employs the ZigBee technique to implement wireless mesh sensor network 

construction.  

8.3.1 ZigBee Standard 

The ZigBee is a worldwide open standard (ZigBee, 2005). The main 

objective of ZigBee is to provide an open standard suitable for wide range of 

applications that perform monitoring or control functions.  
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ZigBee standard is an enhancement of IEEE 802.15.4 standard. Figure 8.3 

illustrates the system architecture of ZigBee standard (ZigBee, 2005). 

 

 
 

Figure 8.3 ZigBee stack architecture (ZigBee, 2005) 

 

As shown in Figure 8.3, the ZigBee stack consists of four layers: PHY and 

MAC layers are defined by the IEEE 802.15.4 standard, the network and 

application layers are defined by ZigBee Alliance.  

• PHY and MAC layers: The use of PHY layer and MAC layer in the 

ZigBee stack is to provide a ZigBee system with the capability of low power 

consumption wireless communication. 

• Network Layer: ZigBee network layer is responsible for network topology 

construction and routing protocol implementation. The ZigBee standard utilizes 

the IEEE 802.15.4 standard to compose wireless communication part. The 

supported network topologies of ZigBee illustrated in Figure 8.4 are the extension 

of IEEE 802.15.4 infrastructure: star, tree, and mesh. 
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Figure 8.4 Supported topologies in ZigBee networks 

 

The ZigBee standard defines three kinds of devices: ZigBee coordinator 

responsible for starting and maintaining the network, ZigBee router responsible 

for relaying network messages, and ZigBee end device responsible for 

implementing sensing or control tasks. In a ZigBee star network (Figure 8.4 a), 

either ZigBee router or ZigBee end device joins a ZigBee network by connecting 

to the ZigBee coordinator. Similar to the IEEE 802.15.4 star network, the network 

communications in a ZigBee star network is managed by the ZigBee coordinator. 

For example, if device A tries to send data to device B, the data must be sent to the 

ZigBee coordinator first, and then relayed to device B.  

In a ZigBee tree network (Figure 8.4 b), a ZigBee router or a ZigBee end 

device router joins the ZigBee network through the ZigBee coordinator or the 

nearest ZigBee router which has already joined the network. The message 

transmission in a ZigBee tree network follows the route similar to the form of a 

tree. For example, if device C tries to send data to device F, the data must be sent 

to the device E, which is the common ancestor device of device C and F. Then 

device E relays the data to device F. 

The process of forming a ZigBee mesh network is similar to the ZigBee 

tree network. The difference between the tree network and the mesh network is 
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the selection of message transmission route. In a ZigBee mesh network (Figure 

8.4 c), if end device G tries to send data to device J, the data must be sent to the 

ZigBee router device H, through which end device G joined the network. Then the 

router device H can implement a routing protocol to find a route leading to device 

J. In Figure 8.4 c, the possible routes can be H->K->J, H->I->J, H->L->K->J, etc. 

All ZigBee router devices are completely equal in a mesh network, and capable to 

relay message. ZigBee end devices are not involved in any routing protocol.  

The ZigBee network layer employs the same address mode inherited from 

the IEEE 802.15.4 standard, which uses a 16-bit short address to identify each 

device. Theoretically, around 65,000 devices can be contained in a single ZigBee 

network. 

• Application Layer: The main objective of the ZigBee standard is to 

provide a standardized base set of solutions for monitoring and control systems 

(Kinney, 2003). Therefore, the design of the application layer introduces the 

concept of “Endpoint” applicable for a general purpose. Endpoint is a particular 

component which logically exists within a ZigBee stack. Each ZigBee device can 

have up to 240 such components. An endpoint can be used to identify a particular 

application running on a ZigBee device. Figure 8.5 illustrates the use of endpoints.  

 
 

Figure 8.5 Use of Endpoint in ZigBee devices (Yao et al., 2008) 

 

Figure 8.5 shows there is a ZigBee enabled power extension with multiple 

sockets. If other ZigBee devices want to communicate with a certain socket, the 
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communication message will reach the ZigBee power extension via a 16-bit 

address, and then use an endpoint identifier to locate the particular socket.  

In a practical application, users only need to define the content of 

application (such as reading sensors and controlling actuators). The 

communications between different devices will be well managed by the ZigBee 

stack. 

8.3.2   Wireless Sensor Nodes  

The function of a ZigBee wireless sensor network is to provide real-time 

information within a building when required. According to the feedback obtained 

from the interviews with command officers, four types of sensor are essential for 

fire safety monitoring: temperature sensor, smoke sensor, flame sensor, and 

carbon monoxide sensor. Figures 8.6 to 8.9 show the sensors used. Figures 8.10 to 

8.11 show the developed ZigBee router and ZigBee adaptor used to establish 

communication between computer and Zigbee network. Figure 8.12 illustrates the 

prototype of a sensor board integrating with these four sensors.  

 

 

Figure 8.6 DS18B20 temperature sensor 

 

 

Figure 8.7 Infrared smoke sensor 
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Figure 8.8 Infrared flame sensor 

 

Figure 8.9 Carbon monoxide sensor 

 

 

Figure 8.10 ZigBee router 

 

 

Figure 8.11 ZigBee adaptor 

 

 

Figure 8.12 Prototype of the ZigBee sensor board with four environment sensors 
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8.3.3 ZigBee WSN Deployment  

A ZigBee wireless sensor network deployed within a commercial building 

for monitoring the environment is supposed to be able to adopt hundreds of sensor 

nodes. Meanwhile the effective communication range between a single pair of 

ZigBee devices is about 20-30 meters within an indoor environment. The star 

topology is not suitable for this application. Both the tree topology and mesh 

topology can generate a wide coverage area in a building environment. However, 

message transmission in a tree network might cause considerable delay as the data 

must be sent to the common ancestor of both source device and destination 

device, and then relayed to the destination device by following the branch of the 

tree. Therefore, we chose the mesh topology for the SafetyNet system. Figure 8.13 

illustrates the developed ZigBee wireless sensor network in the SafetyNet system. 

 
 

 

Figure 8.13 ZigBee wireless sensor network deployment  

 

In Figure 8.13, a ZigBee coordinator and multiple ZigBee routers form a 

ZigBee mesh network, and are deployed inside a building. Each router can freely 

talk to other routers within its radio communication range. ZigBee end devices 

integrated with those four environment sensors join the ZigBee network through 

the nearest ZigBee routers. As mesh network does not have strict limitations on 
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physical locations of individual network nodes, ZigBee end devices can be 

installed at any position where at least one ZigBee router device is in its radio 

communication range. When sensor information is required by the monitoring 

room or the external fire engine, the corresponding ZigBee end device will send 

data to its parent device, i.e. the ZigBee router through which the end device joins 

the network, and then the ZigBee router takes responsibility of routing sensor 

information to the destination.  

8.4  Interference in A ZigBee Mesh WSN  

8.4.1 Interference Source 

The most serious interference of WSN within a building environment is 

the coexistence of the ZigBee monitoring network and the IEEE 802.11 network. 

Typically there are multiple IEEE 802.11 networks existing in a building 

environment. To enable the convenience for employee or visitors to access 

networks (e.g. Internet, Intranet) inside offices, many IT services have made Wi-

Fi networks as standard accessories of building network systems. In consideration 

of security and independency, it is quite common to have multiple IEEE 802.11 

networks to work in the same area as required by different organizations, or 

departments. Figure 8.14 illustrates the deployment of multiple access points to 

meet the requirement of allowing multiple users to access a network over a large 

coverage area. 
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Figure 8.14  Multiple access points on a wired LAN (Ross, 2003) 

 

In Figure 8.14, laptops connect to an Ethernet through wireless access 

points. In the office environment, mobile laptops usually work under the 

“downlink mode” in most cases, which means most IEEE 802.11 communications 

are issued from the access points to the laptops (e.g. browsing web page, email, 

ftp downloading). A possible interference scenario is illustrated in Figure 8.15. 

 

Figure 8.15 Interference scenario in ZigBee mesh network 

In Figure 8.15, two Wi-Fi interference sources are located close to the 

ZigBee device C and device B. The receivers of device C and B will be affected 

by the Wi-Fi signals. If device F is to send data to device G connecting to 
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>G, and F->D->G etc. The former two routes will be discarded by the routing 

protocol as devices B and C are unavailable due to interference. The 

communication can be achieved on other routes. However, if more ZigBee routers 

are affected by the Wi-Fi interference source, ZigBee communications in the mesh 

network still possibly fail due to the failure of route establishment. According to 

the purpose of the SafetyNet project, the developed ZigBee wireless sensor 

network is to monitor all areas in a building. It is inevitable to have some ZigBee 

devices coexist with Wi-Fi routers or access points.  

Usually, Wi-Fi routers or access points are often static after installation. 

Therefore, ZigBee routers composing the backbone of the monitoring network can 

be located away from Wi-Fi transmitters with a safe physical distance. 

Meanwhile, proper centre frequency separation between the Wi-Fi interferers and 

the ZigBee network can also be helpful in interference avoidance.  

8.4.2 Physical Distance and Channel Allocation 

To reduce harmful interaction between Wi-Fi transmitters, proper physical 

and frequency separation is often taken into consideration when Wi-Fi networks 

were deployed. Usually, neighbour Wi-Fi routers are separated over 20 metres and 

employ different communication channels whose centre frequency separation is 

over 22 MHz, which is equal to the width of a complete Wi-Fi communication 

channel. As suggested in IEEE Std802.11b (2007), channels 1, 6, 11 or 1, 7, 13 are 

commonly used when multiple Wi-Fi routers are deployed. Figure 8.16 illustrates 

a possible Wi-Fi routers’ deployment for the ZigBee mesh network. 
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Figure 8.16 Wi-Fi routers deployment 

 

 In Figure 8.16, multiple Wi-Fi routers are deployed with a certain physical 

distance separation and channel separation. If a ZigBee device is located in the 

vicinity of a Wi-Fi router, it needs to consider the possible Wi-Fi interference 

avoidance from two aspects: distance separation and channel overlapping. The 

level of interference is decided by the signal strength of the interfering signal 

falling within ZigBee receiver’s bandwidth. A Wi-Fi transmitter has a strong 

output power much higher than a ZigBee transmitter. According to the IEEE 

802.11b standard, the initial output power on a Wi-Fi transmitter is around 20 

dBm (i.e.100 milliwatt) whilst a ZigBee transmitter employs 0 dBm (i.e. 

milliwatt) output power. As the increment of propagation distance, Wi-Fi signal 

power will attenuate. If the remaining Wi-Fi power reaching a ZigBee receiver is 

still higher than the allowed noise level, the interference will affect the ZigBee 

communication. Channel allocation is also in relation to interfering energy 

attenuation.  Figure 8.17 depicts Wi-Fi and ZigBee channel allocations on 2.4 

GHz band. 
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Figure 8.17 Wi-Fi and ZigBee channel allocations on 2.4 GHz band 

 

 Although ZigBee WSN can use up to 16 communication channels defined 

at 2.4 GHz band, a ZigBee network can only use one communication channel at 

any given time as it is not a frequency hopping technique similar to Blutooth.  

When the distributed Wi-Fi routers utilize non-overlapping channel settings 

(channel 1, 7, 13 as shown in Figure 8.17), some of the ZigBee channels will be 

affected. As most of the energy of the Wi-Fi signal concentrates on the central 

frequency of the employed Wi-Fi communication channel, a certain frequency 

separation between a Wi-Fi channel and a ZigBee channel can effectively reduce 

interference energy for ZigBee systems.  

As the positions of Wi-Fi routers existing in a building environment are 

usually fixed, ensuring physical distance and channel separation for a ZigBee 

network to avoid Wi-Fi interference are achievable. 

8.4.3  Dynamic Interference Source 

After eliminating the possibility for static Wi-Fi routers to cause serious 

interference to a ZigBee sensor network, the interference source requiring sensor 

network developers to guard against is a dynamic interference source emerging 

during daily work. For example, a temporary Wi-Fi FTP server can be set up in an 

office as requested by a research project and keeps long term operations. These 

unexpected interference devices are not scheduled in the original Wi-Fi 

deployment and are not considered when establishing the ZigBee system. Due to 

the wide node distribution of the ZigBee sensor network, the ZigBee PAN 
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coordinator could be hundreds of meters away from the devices being affected by 

a dynamic interference source, which means the PAN coordinator is unable to be 

sensitive to the emergence in the dynamic interference area.  Furthermore, the 

duration and level of interference caused by the dynamic interference source is 

unknown to the sensor network. Consequently the whole system cannot respond 

to interference in time without an effective mechanism.  

In the following sections, the interference detection and mitigation strategy 

design is divided into two steps: for static interference detection and mitigation, 

and dynamic interference detection and mitigation. 

8.5 Static Interference Detection and Mitigation 

Strategy Design 

As mentioned in Section 8.4, the locations of most Wi-Fi routers or access 

points in a building environment are static during day-to-day operation. Then the 

ZigBee devices can avoid interference by being installed at positions which are a 

safe distance away from those Wi-Fi transmitters, and employing a suitable 

communication channel. It has been reviewed in Chapter 3 that generally if a 

ZigBee device is physically at least 7 meters away from Wi-Fi routers, or channel 

frequency separation between a Wi-Fi channel and a ZigBee channel is over 

7MHz, the IEEE 802.11 signals reaching ZigBee receivers is tolerable. 

Consequently, the interference effect from the IEEE 802.11 signals can be ignored 

no matter what IEEE 802.11 traffic is.  

A reasonable channel allocation is achievable as both Wi-Fi networks and 

ZigBee networks can be manually configured at the initial installation stage. The 

“safe distance” is not a fixed value as building layouts in different practical 

environments might be different. Before the installation of the SafetyNet system, 

measurements for detecting Wi-Fi routers’ interference range were implemented.  

The measurement methodology explores the impact of different 

parameters on the SafetyNet system, including frequency offset and physical 

distance separation. At the application layer of communication protocol, packet 

loss is the direct consequence visible to the software developers. Therefore it is 



0 

 

- 197 - 

used as the main metric. The purpose of designing interference energy 

measurement is to determine an optimized physical and frequency separation for 

the ZigBee mesh network to avoid interference from the static Wi-Fi network.  

The installation of the ZigBee sensor mesh networks should not require 

changes on the locations of the Wi-Fi routers that have already been deployed in 

the same building. Therefore, the measurement starts from the point that the pre-

installed Wi-Fi routers are static and have a limited interference range. Assuming 

the distance between a Wi-Fi router and a ZigBee receiver is fixed, the success 

rate of ZigBee communications will vary by changing the distance between the 

ZigBee transmitter and the ZigBee receiver. Frequency separation between the 

ZigBee and Wi-Fi networks are also considered. Figure 8.18 illustrates the set-up 

layout for the measurement testing. 

 

 

 

Figure 8.18 Devices deployment in static interference measurement 

 

In Figure 8.18, the Wi-Fi interference source is fixed, and continues to 

transmit Wi-Fi signals in order to make the radio environment filled with the 

interference energy. The ZigBee device A and B are all ZigBee routers, and act as 

ZigBee receiver and transmitter respectively. The measurement is for testing the 

success rate of data transmission between device A and B. The distance X 

between Wi-Fi interference source and device A is fixed at 10 meter. The distance 

Y between device A and device B varies during measurement.  The distance 

between the Wi-Fi interference source and device B is not considered here as the 

effect of interference on the receiver of device A is decided by the remaining 
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energy level of the interfering signal and desired signal. The measurement is 

divided into three steps: measuring Wi-Fi energy distributes on 2.4 GHz, 

measuring ZigBee signal strength falling within the ZigBee receiver bandwidth, 

and measuring the ZigBee communication success rate under the Wi-Fi 

interference with different distance Y. 

A) Measuring the Wi-Fi energy distribution on the 2.4 GHz band 

The experiment of measuring the Wi-Fi energy distribution on the 2.4 GHz 

band is to identify the Wi-Fi interfering energy level on each ZigBee 

communication channel when a Wi-Fi transmitter is in operation. In this 

experiment, the Wi-Fi interference source was set to work on Wi-Fi channel 11, 

whose centre frequency is 2462MHz.  An energy detector compliant with the 

ZigBee/802.15.4 standard was placed at the side of device A, which is 10 meters 

away from the Wi-Fi router. The detector listened on 16 ZigBee channels and 

recorded the highest energy level on each ZigBee channel. Table 8.1 shows the 

measured results. 

 

Table 8.1 Recorded energy level caused by Wi-Fi signal on all ZigBee channels 
 

 

 

In Table 8.1, the row labelled “ZigBee Channel (Centre Frequency)” 

denotes the ZigBee communication channel and corresponding radio frequency on 

which the detector is listening. The row labelled “Measured Energy” means the 

highest energy level detected by the detector on a specified channel. Figure 8.19 

shows the detected Wi-Fi interfering energy level on each ZigBee channel using 

the form of a bar chart.  

ZigBee Channel
(Centre Frequency)

11
(2405 MHz)

12
(2410 MHz)

13
(2415 MHz)

14
(2420 MHz)

15
(2425 MHz)

16
(2430 MHz)

17
(2435 MHz)

Measured Energy
(dBm) -95 -96 -96 -92 -88 -82 -80

18
(2440 MHz)

19
(2445 MHz)

20
(2450 MHz)

21
(2455 MHz)

22
(2460 MHz)

23
(2465 MHz)

24
(2470 MHz)

25
(2475 MHz)

26
(2480 MHz)

-76 -65 -59 -36 -26 -20 -38 -57 -76
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Figure 8.19 Wi-Fi interfering energy level 

 

As shown in Figure 8.19, it is obvious that the detected Wi-Fi interfering 

energy level is higher in the ZigBee channels which are closer to the centre 

frequency of Wi-Fi channel (i.e. 2462 MHz).  

B) Measuring ZigBee signal strength without Wi-Fi interference 

The second measurement is to detect the ZigBee signal strength falling 

within the ZigBee receiver’s bandwidth when no Wi-Fi interference is present. By 

changing the distance Y, the effective ZigBee signal strength measured on the 

receiver of device A is different. The measurement is taken by enabling device B 

to continue to send ZigBee packets to device A, whilst the energy detector records 

the average energy level at the side of the receiver of device A. According to the 

work of Rodriguez (2005), the attenuation of ZigBee signal strength can be 

calculated using Equation (8.1) as follows:  

44.32)(20)(20 ++= dLogfLogL                                         (8.1) 

where:  

L is the path loss in dB that the ZigBee signal strength will attenuate 

f is the frequency in MHz that the ZigBee network works on 
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d is the distance in km between the ZigBee transmitter and ZigBee 

receiver 

Then, the energy level measured on ZigBee receiver can be calculated as: 

 

LEE Initialmaining −=Re                                                (8.2) 

where RemainingE is the energy level in dBm which finally reaches the 

ZigBee receiver after attenuating.InitialE  is the output power from the ZigBee 

transmitter in dBm. In this experiment, InitialE  is set at 0 dBm. Although the 

Equation (8.2) can be used to calculate the energy attenuation of the ZigBee signal 

strength after travelling over a certain distance, the practical situation is different 

as this equation is conducted on the basis of “Free-space”, which means the effect 

of the indoor environment is not considered. Therefore, the Equation (8.2) is used 

in this experiment for the purpose of reference.  For the convenience of 

comparison, the actual measured energy value and calculated energy level 

according to Equation (8.2) are listed in Table 8.2. Both the ZigBee devices A and 

B work on channel 23 (2465 MHz). 

 

Table 8.2 Energy level on ZigBee receiver after attenuating 
 

 

 

 

 

 

 

In Table 8.2, the row labelled “Distance Y” denotes the distance between 

the devices A and B. The row labelled “Measured Energy Level” means the 

energy level measured by the energy detector. The row labelled “Calculated 

Energy Level” is the value obtained according to Equation (8.2). The experiment 

was taken place in an office environment. By considering the effect of indoor 

environment, such as shadow and reflection, the “Measured Energy Level” is 

thought to accord with the practical situation as a small error is reasonable.  

Distance Y
(meter) 2 4 6 8 10

Measured
Energy Level

(dBm)
-47 -51 -53 -55 -57

Calculated
Energy Level

(dBm)
-46.30 -52.31 -55.84 -58.34 -60.28
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C) Measuring ZigBee communication success rate under Wi-Fi interference 

with different distance Y 

The experiment C is to determine at which level the Wi-Fi energy can 

cause significant interference on ZigBee communications when the distance 

between the Wi-Fi interference source and the ZigBee receiver is fixed at 10 

meters.  

In the experiment C, the Wi-Fi traffic is generated by a software packet 

generator. No limitation was applied on the packet generator in order to make Wi-

Fi interference uninterrupted. ZigBee device B was set to send data packets to 

device A with a fixed packet rate at 200 packet/second. The ZigBee packets 

contained a fixed payload length at 50 bytes. ZigBee transmission lasts for 50 

seconds, which means a total of 10,000 packets will be sent.  The test results are 

shown in Table 8.3. 

In Table 8.3, the column labelled “ZigBee Channel (MHz)” denotes the 

ZigBee communication channels on which the experiment C was carried out. 

Columns labelled “Distance Y”, “Centre Frequency Offset”, “Wi-Fi Energy on 

ZigBee Receiver” and “ZigBee Energy on ZigBee Receiver” denote the distance 

between device B to device A, the centre frequency offset between the Wi-Fi 

router and the ZigBee network, the measured Wi-Fi energy on the ZigBee receiver 

and the measured ZigBee signal energy on the ZigBee receiver respectively. 

Values in the columns of “Wi-Fi Energy on ZigBee Receiver” and “ZigBee 

Energy on ZigBee Receiver” are derived from the Tables 8.1 and 8.2 respectively. 

The column labelled “ZigBee Communication Success Rate” means the ratio of 

the received ZigBee packets to the total ZigBee packet number sent by device B. 

When the ZigBee network works on channels 23 and 24, the success rates are 

relatively low as the Wi-Fi energy falling within the ZigBee receiver’s bandwidth 

is always higher than the ZigBee signal energy. When the ZigBee network works 

on channel 25, the success rates are still relatively low when distance Y is 8 or 10 

meters, although the ZigBee signal energy is equal or 2 dB higher than the Wi-Fi 

energy. Once the distance decreases and the ZigBee signal energy is higher than 

the Wi-Fi energy at least by 5 dB, the success rates become nearly 100%. It 

accords with the simulation results conducted by the IEEE 802.15.4 standard that 
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when the ZigBee signal measured on the receiver is about 4-5 dB greater than the 

noise level, the packet error rate will be less than 1% (IEEE Std802.15.4-2003, 

2003).  On the ZigBee channel 26, no interference was observed.  

The conclusion drawn from experiments A, B, and C is that if a ZigBee 

router is installed 10 meters (i.e. distance X) away from the nearby Wi-Fi router, 

and the ZigBee network employs the communication channel whose centre 

frequency is at least 13 MHz away from the Wi-Fi communication channels, other 

ZigBee devices can be installed around the ZigBee router within a range of 8 

meters. Although the success rate is about 89.9% when distance Y is 8 meters, the 

employment of data retransmission at the application layer can easily improve 

system performance. Figure 8.20 shows a possible deployment which is made 

according to the conclusion. 

 

Figure 8.20 ZigBee router installation with safe distance 

 

In Figure 8.20, the ZigBee router A is installed 10 meters away from the 

Wi-Fi interference source. Whilst the frequency offset between the ZigBee 

network and Wi-Fi router is greater than 13 MHz. A ZigBee end device 

connecting to multiple environment sensors is installed close to the ZigBee router 

with distance Y which is less than 8 meters. Under such circumstance, the success 

rate of data transmission from the ZigBee end device to the ZigBee router will not 

be less than 89.9%.   
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Table 8.3 Success communication rate of ZigBee devices during the period of 
interference   

Wi-Fi Channel 11 (2462 MHz) 

ZigBee 

Channel 

(MHz) 

Distance  

Y (meter) 

Centre  

Frequency 

 Offset 

(MHz) 

Wi-Fi 

Energy  on 

ZigBee 

Receiver 

(dBm) 

ZigBee 

Energy on 

ZigBee 

Receiver 

(dBm) 

ZigBee 

Communicati

on Success 

Rate 

 

 

 

23 

(2465 MHz) 

2 3 -20 -47 5.26% 

4 3 -20 -51 4.58% 

6 3 -20 -53 3.21% 

8 3 -20 -55 0.23% 

10 3 -20 -57 0.07% 

24  

(2470 MHz) 

 

2 8 -38 -47 9.21% 

4 8 -38 -51 9.16% 

6 8 -38 -53 7.05% 

8 8 -38 -55 0.80% 

10 8 -38 -57 0.49% 

25 

(2475 MHz) 

 

2 13 -57 -47 99.85% 

4 13 -57 -51 99.71% 

6 13 -57 -53 99.67% 

8 13 -57 -55 89.9% 

10 13 -57 -57 44.87% 

26 

(2480 MHz) 

2 18 -76 -47 100% 

4 18 -76 -51 100% 

6 18 -76 -53 100% 

8 18 -76 -55 100% 

10 18 -76 -57 100% 

 

The 10 meters physical separation and 13 MHz channel separation has been used 

as the basic criteria to design the SafetyNet system deployment scheme. 
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If the distance X (i.e. 10 meters) is changed, other parameters should be 

changed accordingly by following the same measurement methodology.  

8.6 Dynamic Interference Detection and 

Mitigation Strategy Design 

The physical distance separation and proper channel allocation can help 

ZigBee devices mitigate interference caused by static interference sources. 

However, the strategy design for detecting dynamic interference caused by 

unexpected IEEE 802.11 interferers faces new challenges, which can be 

concluded into three aspects: 1) Uncertainty of global interfering signal channel 

allocation. 2) Determination of interference level and 3) ZigBee network 

synchronization. 

 

8.6.1 Uncertainty of Global Interfering Signal Channel Allocation 

The unexpected interference source may operate on any ZigBee channel. 

If multiple interference sources employing different Wi-Fi communication 

channels emerge at different locations of a ZigBee network, the situation will 

become complicated (see Figure 8.21).  

 

Figure 8.21 Multiple interference sources operating on different Wi-Fi channels 
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In Figure 8.21, Wi-Fi interference source A working on Wi-Fi channel 11 

is interfering with the ZigBee network operating on ZigBee channel 23 as the 

centre frequency offset between two system is 3MHz. If the ZigBee PAN 

coordinator has sensed the interference caused by Wi-Fi interference source A, it 

might decide to switch to ZigBee channel 17 (2437 MHz) to avoid interference. 

However, another interference source, Wi-Fi interference source B, is working on 

Wi-Fi channel 6 (2437 MHz) and located in the vicinity of ZigBee device C. The 

interference avoidance for the ZigBee network might fail since the newly chosen 

ZigBee channel is too close to the frequency used by the second Wi-Fi 

interference source B. ZigBee network channel switch will be less effective if 

more interference sources are introduced. 

8.6.2 Determination of Interference Level 

Dynamic interference source could be temporary, or work at low duty-

cycle which is insufficient to cause serious interference on ZigBee network 

operations. The strategy design should take interference tolerance into 

consideration in order to avoid overreaction. For example, a Wi-Fi interference 

source works at a relatively low traffic rate (e.g. less 100 KB/second). Even 

though the Wi-Fi signal can cause interference on ZigBee communications, 

ZigBee application software can easily overcome difficulty by employing 

retransmission at application layer.  

8.6.3 ZigBee Network Synchronization 

If the ZigBee PAN coordinator decides to move the network to an 

alternative channel when the current channel becomes noisy and communication 

becomes problematic, other ZigBee network devices also need to switch their 

network channel for the continuous sensor network communication.  Unlike the 

beacon-enabled IEEE 802.15.4 network, a ZigBee mesh network does not employ 

beacon signal to synchronize network devices as spreading the beacon signal in a 

distributed mesh network is difficult to achieve. Therefore, a simple 

synchronization mechanism at the application layer is needed. In the SafetyNet 

system, each ZigBee device, including the ZigBee router and ZigBee end device, 
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is required to regularly send a detection packet requiring acknowledgement to its 

parent device, which previously allowed them to join the network. If a number of 

acknowledgements are lost, the ZigBee device shall restart the network joining 

procedure as the parent device has probably moved to a new channel due to the 

network channel switch. Figure 8.22 shows the flow chart of ZigBee device 

synchronization.  
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Figure 8.22 Flow chart of ZigBee device synchronization 
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In Figure 8.22, each ZigBee device sets a timer and counter, AckLostN _ to 

count the number of lost acknowledgements. When the timer expires, the ZigBee 

device will send a short packet requiring acknowledgement to its parent device. If 

the acknowledgement is received after 1 second, the counter will be reset to 0. If 

the acknowledgement is not received, the counter will be added by 1. If the 

counter has exceeded the threshold ackLostThresholdN __ , the ZigBee device should start 

the procedure of rejoining the network. If the counter is less than the threshold, 

the timer will be reset, but the counter value will remain.  

8.6.4 Mitigation Strategy Design for Dynamic Interference  

In order to the address the challenges concluded in the above sections, a 

comprehensive strategy was proposed during the development of the SafetyNet 

system to effectively improve the ZigBee network performance when dynamic 

interference occurs. The strategy consists of three steps: regular energy detection, 

employment of data retransmission and channel switch. 

A) Regular Energy Detection 

Each ZigBee router device is programmed to execute energy detection on 

all 16 channels as a regular task. Since the purpose of energy detection is to 

evaluate if the detected channels are available for ZigBee network 

communication, the strategy proposed in Chapter 5 can be used here after a proper 

modification. There are two parameters needed to implement energy detection: 

energy detection period DetectionP on a single ZigBee channel and energy threshold 

ThresholdE which is used to determine if the detected channel is suitable for use. The 

energy detection period is decided by the length of data packet. The longer the 

packet length is, the longer the detection period is needed. The value of DetectionP

can be calculated using Equation (4.13). In experiment C of Section 8.5, if the 

interfering energy level (i.e. the Wi-Fi signal strength) falling on a ZigBee channel 

is over -57 dBm, the ZigBee channel can be marked as a bad channel unsuitable 

for the ZigBee communication. Then the parameter ThresholdE  is set at -57 dBm in 

the SafetyNet system. The value of ThresholdE  depends on the practical system 
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setting (i.e. the distance between the ZigBee router to the Wi-Fi router). The 

regular energy detection results will be sent to the sink node located at the 

monitoring room to construct an up-to-date record for the whole ZigBee network. 

Figure 8.23 shows the flow chart for implementing energy detection on a ZigBee 

router. 

 

 

Figure 8.23 Flow chart of energy detection on a ZigBee router. 
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channels using detection period )(LT , which is equal to the time required to send 

a L byte length packet from a ZigBee device to another ZigBee device. The 

parameter )(LT is derived from Equation (4.13). On the completion of energy 

detection, the router will mark the bad channels unsuitable for ZigBee 

communication and send the results to the sink node located in the monitoring 

room to build radio environment information. Then the router device sets a new 

timer and starts energy detection again when the timer expires. 

B) Employment of Data Retransmission 

The direct consequence of interference which is visible to application layer 

developers is packet loss. After successfully sending out a data packet, a ZigBee 

device is unable to know if the transmission is actually successful until an 

application layer acknowledgement is received.  Therefore, the ZigBee device 

should wait for a certain period WaitingT and then check whether the 

acknowledgement has been received.  

In ZigBee specification 2004 (ZigBee, 2005), a simple method named as 

“KVP_ACKNOWLEDGEMENT” (KVP stands for Key-Value Pair) is proposed 

to enable the recipient to issue an application layer acknowledgement to the 

sender on receipt of data frame. Figure 8.24 illustrates the use of 

“KVP_ACKNOWLEDGEMENT”. 

 

 

Figure 8.24 ZigBee data frame requesting KVP acknowledgement 
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In Figure 8.24, the sender puts the command 

“KVP_ACKNOWLEDGEMENT” into an outgoing data frame. On receipt of the 

data frame, the recipient will determine if the acknowledgement command is 

defined. If it is defined, the recipient will issue an acknowledgement and send it 

back to the sender through the multi-hop way.  

A reasonable waiting period for a sender to check acknowledgement 

should be defined in the application layer. The waiting period is decided by the 

number of hops that the data frame and acknowledgement frame will experience. 

However, the route selection is invisible to the system developers. ZigBee 

protocol specifies a transmission parameter “RadiusCounter” to limit the 

maximum number of hops the router discovery operation should follow. 

Consequently, the number of hops experienced by actual data transmission will 

not exceed the value defined by “RadiusCounter”. Therefore, WaitingT can be 

defined as follows: 

terRadiusCounLTTWaiting ××≥ )(2                      (8.3)    

where )(LT derived from Equation (4.13) denotes the time needed to send a L 

bytes ZigBee packet from a ZigBee device to another ZigBee device. There are 

two possible reasons for the sender to lose acknowledgement: data frame is not 

successfully received by the recipient due to interference, or the 

acknowledgement frame is corrupted on the way to the sender due to interference 

as well. Therefore, a few settings should be made to help system analyze the 

situations.   

When a sender is to send a data frame to the recipient, two elements 

should be put into the message: a unique packet sequence number and the number 

of retransmissions which have been tried till now. Under normal circumstance, the 

data packet should successfully reach the recipient, and the source device will 

receive an acknowledgement at the application layer after WaittingT . On receipt of the 

data packet sent from the same source device with the same sequence number, the 

recipient will discard the duplicated one. However, the value of “number of tries” 

will be checked before discarding in order to determine if the packet is generated 

due to retransmission.  
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By analyzing the number of retries, the recipient can estimate that parts of 

the route employed by the sender to deliver the data frame might experience a 

difficulty. Assuming the factors of hardware failure and ZigBee signal collisions 

can be eliminated, the recipient can conclude that a possible interference area is 

emerging.  When two conditions are satisfied: the number of retransmission for 

the same packet is over a threshold ontransmissiThresholdN Re_ , and the number of different 

packets sent from the same sender employing retransmissions is over threshold

PacketThresholdN _ , the recipient should try to contact the ZigBee PAN coordinator to 

switch channel in order to avoid the interference area. The value of 

ontransmissiThresholdN Re_ and PacketThresholdN _ are related to application requirements. 

Recommended value for ontransmissiThresholdN Re_ and PacketThresholdN _  in the SafetyNet 

system will be concluded in the corresponding evaluation tests. Figure 8.25 shows 

the flow chart for a sink node to follow when multiple retransmission from the 

same sender are detected. 

In Figure 8.25, the sink node sets a counter for each sender. Its default 

value is 0. If a data packet is received from this sender, the content of the packet 

will be checked to determine is retransmission is employed. If retransmission is 

not used, the counter will be reset to 0. If retransmission is used, the sink will 

check if the retransmission times has exceeded threshold ontransmissiThresholdN Re_ . If it 

is not over the threshold, the counter will be reset to 0. If it is over threshold, the 

counter will be added by 1. If the counter value is greater than PacketThresholdN _ , 

which means there are a certain number of different packets have employed 

retransmissions, the sink node will request the ZigBee coordinator to switch 

channel. 
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Figure 8.25 Flow chart of interference judgement on sink node when 

multiple retransmission are detected 
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Figure 8.26 ZigBee network with strong interference 

 

In Figure 8.26, ZigBee devices B, C, D, and E are all affected by Wi-Fi 
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Figure 8.27 Flow chart of interference judgement on a sink node when 

some of senders are lost during a certain period 

In Figure 8.27, the sink node sets a timer to implement a regular check. 

When timer expires, the sink node will check the number of received sensor 

readings before timer expiring. If a certain percentage ( SenderLostP _ ) of sensor 
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the timer is reset. The determination of sendersLostP _ is decided according to the 

application requirements. 
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C) Channel switch 

The ZigBee PAN coordinator executes the function of channel switch on 

the basis of global ZigBee network information. The information comes from the 

regular energy detection implemented by all available ZigBee routers not having 

been affected by interference. On the basis of a regular radio environment scan, an 

up-to-date radio environment information table is maintained on the central 

computer. A set of simple rules is proposed to assist the alternative channel 

selection by analyzing the recent energy detection results sent from the routers: 

1. If the energy level of a channel is over thresholdThresholdE , the channel 

should be eliminated from available channel list. 

2. If multiple channels remain in the available channel list, randomly select 

one channel as the alternative channel. 

3. If there is no channel remaining in the available channel list, select the one 

with least energy level among all 16 channels. 

By combining the detection strategies, the SafetyNet system can have a 

better performance when it is under dynamic interference.  

8.7 Evaluation Tests 

In the evaluation test, the sink node is also the ZigBee PAN coordinator 

for the convenience of operations. Three evaluation tests were implemented: data 

transmission in ZigBee network under interference without retransmission (test I), 

data transmission in ZigBee network under interference with a maximum 10 time 

retransmission (test II), and data transmission in ZigBee network under 

interference with proposed dynamic interference detection and mitigation 

strategies (test III).  

8.7.1 Test I: Data Transmission in ZigBee WSN under 

Interference without Retransmission 

Test I is for evaluating how serious a Wi-Fi interference source can affect 

ZigBee mesh network communications when the retransmission is not employed 



0 

 

- 217 - 

at the ZigBee application layer. The employment of retransmission in a ZigBee 

application can be categorized into two types: automatic retransmission 

implemented by the ZigBee stack and manual retransmission implemented by the 

application layer. The ZigBee stack will automatically implement retransmission 

for a few times when the requested acknowledgements for the outgoing packets 

are not received within a certain period. However, this type of retransmission is 

managed by the encapsulated ZigBee stack and invisible to the application 

developers. Therefore, we choose to focus on the use of retransmission at the 

ZigBee application layer. Figure 8.28 illustrates the test set-up. 

 

 
 

Figure 8.28 Test deployment in test I 
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ZigBee network created by the ZigBee PAN coordinator. Device A sends a 50 byte 

length packet to the PAN coordinator every 10 seconds. A total of 20 packets are 
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channel 23 (2465 MHz), the Wi-Fi router works at channel 11 (2462 MHz) with 

data rate at 11 Mbps. The centre frequency offset between the two systems is 3 

MHz. The distance between the Wi-Fi router and the PAN coordinator is 2 meters. 

A desktop connects to the Wi-Fi router and has a FTP server running on it. A 

laptop connects to the router through a Wi-Fi adaptor and downloads a big 

capacity file from FTP server. The Wi-Fi traffic is controlled by the FTP server. 

Table 8.4 summarizes the test I result. 

Table 8.4 Test I result 
 

Wi-Fi Traffic ZigBee Packet Success Rate  

 

 

 

 

 

 

 

 

100 KB/second 100% 

200 KB/second 100% 

300 KB/second 100% 

400 KB/second 90% 

500 KB/second 70% 

600 KB/second 70% 

700 KB/second 30% 

No limitation 25% 

 

In Table 8.4, the columns labelled “Wi-Fi Traffic” and “ZigBee Packet 

Success Rate” denote the generated Wi-Fi traffic on the Wi-Fi router and the 

ZigBee communication success rate measured on the ZigBee PAN coordinator. 

With the increment of the Wi-Fi traffic, the success rate of ZigBee communication 

decreases as expected. 

8.7.2 Test II: Data Transmission in ZigBee WSN under 

Interference with Retransmission  

The test II is for evaluating whether or not the employment of 

retransmission at the ZigBee application layer can be effective to the success rate 

of the ZigBee communications under interference. The test set-up is the same as 
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in test I (See Figure 8.28). Once the “KVP_ACKNOWLEDGEMENT” is not 

received by the sender, it will continue to send out packets till the maximum retry 

times is reached, or a “KVP_ACKNOWLEDGEMENT” is received. The 

retransmitted packets contain two parameters: sequence number, and number of 

retransmission which has been tried. The interval WaittingT for separating 

retransmissions is set at 500 millisecond, which is long enough to complete data 

transmissions and “KVP_ACKNOWLEDGEMENT” transmissions. In this test, 

the maximum retry number ontransmissiNRe is set as 10, the number of ZigBee packets 

sent by device A is 20. Table 8.5 summarizes the test II results. 

Table 8.5 Test II result 
Wi-Fi  

Traffic 

Total 
Packet 

 

Received 

Packet 

Total  

Retry 

 Times 

Average  

Retry 

 Times 

ZigBee 
Packet 
Success Rate 

100 KB/second 20 20 0 0 100% 

200 KB/second 20 20 0 0 100% 

300 KB/second 20 20 0 0 100% 

400 KB/second 20 20 9 0.45 100% 

500 KB/second 20 20 12 0.6 100% 

600 KB/second 20 20 15 0.75 100% 

700 KB/second 20 17 29 1.7 85% 

No limitation 20 17 50 2.9 85% 

 

In Table 8.5, the columns labelled “Wi-Fi Traffic”, “Total Packet”, and 

“Received Packet” denote the generated Wi-Fi traffic on the Wi-Fi router, the total 

number of packets sent from the sender, and the total number of packets 

successfully received by the PAN coordinator respectively. The column labelled 

“Total Retry Times” denote the total retransmission times measured by counting 

the value of the parameter, “number of retransmission” contained in each received 

ZigBee packet on the PAN coordinator. The column “Average Retry Times” 

denotes the average retransmission times used to send a data packet from the 
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sender. The value in this column is derived from the columns “Received Packet” 

and “Total Retry Times”. For example, when the Wi-Fi traffic is 700 KB/second, 

the number of the received packet with unique sequence number on the PAN 

coordinator is 17, the total retry times obtained from this 17 packets are 29. 

Therefore, the average retry times are 29/17=1.7. Through test II, it is reasonable 

to conclude that parameter ontransmissiThresholdN Re_ at 3 as the maximum average 

retransmission times measured in test II is 2.9. Therefore, if the PAN coordinator 

receives the packets containing the same sequence number from the same sender 

for more than 3 times, it can conclude that possibly interference is affecting the 

ZigBee network. 

8.7.3 Test III: Data Transmission in ZigBee Network under 

Interference with Interference Detection and Mitigation Strategies  

The aim of the test III is to evaluate if the ZigBee network can correctly 

respond to interference with the proposed strategies. When the PAN coordinator 

recognizes that the number of received data packets is less than the expected 

value, or a number of consecutive data retransmission is received, it can start a 

channel switch on the basis of regular energy detection executed by the ZigBee 

routers in the network. Once the channel switch is successfully completed, the 

success rate of ZigBee communication will become normal. Whether or not the 

PAN coordinator can select the most suitable alternative channel is the focus in 

test III. All routers implement energy detection every 5 minutes. Figure 8.29 

illustrates the test III set-up layout. 
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Figure 8.29 Test III deployment 

 

In Figure 8.29, ZigBee router A acts as a sender to send data packets to the 

PAN coordinator. The ZigBee network works at channel 15 (2425 MHz). Two Wi-

Fi interference sources, W1 and W2, are located 4 meters away from the vicinity 

of ZigBee routers B and E. W1works at Wi-Fi channel 3 (2422 MHz) and W2 

works at channel 11 (2462 MHz). As the distance between the ZigBee router A 

and router C is 40 meters which is close to the maximum communication range, 

the data transmission issued from device A will employ device B as the next hop 

as it has stronger signal strength compared with device C. Other ZigBee devices 

are all out of the communication range of device A (It was tested and confirmed 

before implementing test III).  
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network, it did not affect the ZigBee network communication. After 10 minutes, 
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later, the PAN coordinator detected that three different packets have employed 

more than 3 times retransmissions. Then the PAN coordinator checked the energy 

detection results.  ZigBee routers C and D reported that all channels were 

available. However, devices B and E reported that some channels were marked as 

bad channels. Table 8.6 and 8.7 show the energy detection results obtained from 

device B and E. 

 

Table 8.6 Energy detection result from device B 
 
 
 
 
 
 
 
 
 

 
 

Table 8.7 Energy detection result from device E 
 
 
 
 
 
 
 
 
 
 

 
In Table 8.6, row labelled “Measured Energy” indicates the energy level 

detected by router B on each ZigBee channel.  The channels marked with a grey 

colour means they are unsuitable for ZigBee network communications. Since the 

Wi-Fi interference source located in the vicinity of device B works on channel 3 

whose centre frequency is 2422 MHz, ZigBee channels unsuitable for 

communications are all found close to this frequency. Similar to Table 8.6, Table 

8.7 is the result obtained from router E. Because the Wi-Fi interference close to 

device E works on Wi-Fi channel 11 (2462 MHz), the marked bad ZigBee 

channels are all around this frequency.  Through analyzing the energy detection 
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results, the PAN coordinator can easily find out a suitable ZigBee channel from 

those channels not marked by gray colour. By using the proposed rules in Section 

8.6.4, ZigBee channels 11, 17, 18, 19, 20, 25, 26 are all potential alternatives.  

8.8 Discussion 

The proposed interference detection and mitigation strategies consist of 

two aspects: strategies for static interference and strategies for dynamic 

interference.  

The strategies designed for static interference focuses on the reasonable 

arrangements for deploying wireless systems. Installing a ZigBee WSN inside a 

building to monitor environment changes usually requires hundreds of sensor 

nodes to be involved. As the increasing usage of Wi-Fi systems in commercial 

office areas for convenient network access service, the statically deployed Wi-Fi 

access points or Wi-Fi routers become serious interference sources for any ZigBee 

WSN. However, static Wi-Fi access points or Wi-Fi routers can only affect a 

limited area due to wireless signal attenuation. Our strategies help the ZigBee 

WSNs locate the range of the interference areas, and then utilize physical distance 

separation and frequency separation to avoid interference. Since both Wi-Fi 

networks and ZigBee WSN are static after first installation, these measures are 

effective and easy to use. 

The strategies designed for dynamic interference focuses on the analysis of 

events caused by interference and the design of a reasonable channel switch 

algorithm.  Dynamic interference is the most serious interference source for any 

kind of wireless system as it is unpredictable and uncontrollable. The current 

method available to detect the existence of dynamic interference is to monitor the 

specified events relating to dynamic interference. In the SafetyNet case, the events 

are multiple data retransmissions, i.e. some ZigBee devices failed to send sensor 

readings and then resend them within a certain period. As the ZigBee mesh 

network is distributed inside the building, the ZigBee coordinator is unable to 

detect the position and strength of dynamic interference. Therefore, we propose 

dynamic energy detection, data retransmission monitoring, and percentage of lost 

ZigBee devices within a certain period, and channel switch to cooperate together 
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to detect and mitigate effect caused by dynamic interference in ZigBee WSN. It is 

difficult to evaluate the use of these strategies by numerical metrics. For example, 

for a ZigBee WSN affected by multiple dynamic interference sources, many other 

ZigBee devices are possibly to be interfered as well. Under such circumstance, 

monitoring the number of retransmissions might be less effective as those 

interfered devices are unable to complete data transmission successfully. Then the 

ZigBee PAN coordinator will not be sensitive to the existence of interference until 

a certain percentage of ZigBee devices are not recorded within a certain period. 

However, the threshold used to determine if such percentage is meaningful is 

purely dependent on user requirements. Other parameters proposed in the 

strategies have similar situations.  

The SafetyNet system is designed for monitoring building environment 

changes, and provides real-time sensor information to users who are demanding 

such information. It can be used under either normal circumstance or in an 

emergency situation. However, when an emergency happens, the main power of 

the building is usually cut off automatically. Therefore, interference caused by Wi-

Fi networks or similar wireless techniques are not analyzed in such a case.  

8.9 Summary 

The SafetyNet system is a comprehensive application which requires 

consideration for many practical factors, including static interference source, 

dynamic interference source, system requirements, etc. The proposed interference 

detection and mitigation strategies in this chapter fully consider the interference 

characteristics. Through arranging network deployment, enabling dynamic 

interference energy detection, and setting up corresponding adjustments, the 

interference inside a ZigBee WSN deployed within the building environment can 

be properly monitored, discovered, and responded to. The contribution in this 

chapter is to propose complete and feasible strategies for system developers’ 

reference when they are designing WSNs which possibly encounters interference 

during the operations. 
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Chapter 9 Conclusions and Future 
Work 
 

 

 

9.1 Contributions and Future Work 

This thesis aims to enhance the operational capability of wireless sensor 

networks under interference. The research tasks of this thesis are to investigate the 

basis of interference, and design approaches to help wireless sensor networks 

avoid interference, or mitigate the effect of interference. The main contributions 

and findings from the research are listed below: 

1. The design of a consecutive data transmission mechanism to 

improve the wireless sensor network’s capability to maintain communication 

without frequently changing network channel.  

Switching network channel is usually employed by wireless systems to 

avoid interference. However, if the whole frequency band is being interfered, the 

capability to sustain network communications via the currently employed channel 

is essential. Through proper control over the data transmission with a suitable 

interval, a consecutive retransmission mechanism can significantly increase the 

success rate of a wireless sensor network communication since the interval 

between interfering packets can be utilized to enable the completion of desired 

packet transmission. For particular applications such as home automation and 

industrial control, an extremely low duty cycle is usually employed. By applying 

consecutive data transmission, the network connectivity can be maintained when 

it is under interference. In the evaluation test, the wireless sensor network 
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communication can achieve almost 100% success rate until the interference 

reaches saturation. 

2. The design of dynamic energy detection approach to help 

wireless sensor network device to estimate the status of interference and 

accordingly adjust transmission parameters to achieve optimized 

communication effectiveness.  

During the period of interference, the affected wireless sensor devices are 

unable to recognize the type of interferers due to the different 

modulation/demodulation schemes. However, the energy activities generated by 

interferers can be captured by wireless sensor devices utilizing an energy 

detection function. This approach makes the wireless sensor device detect the idle 

slots existing between interfering packets, and identify an appropriate packet 

length with which the wireless sensor network communications can have a higher 

success rate. This approach is useful for applications that require consecutive data 

over a short period (e.g. computer mouse, toy controller, motion sensor). The 

evaluation test shows that energy detection can effectively express the change of 

interference traffic and provide wireless sensor devices with an estimation of 

packet length. 

3. The design of an approach to enable reliable data transmission 

in an ad-hoc wireless sensor network.  

The communication in an ad-hoc network relies on multi-hop transmission 

since the source device and destination device are usually not within effective 

radio communication range of each other. Interference which happens to any hop 

on the route from the source device to the destination can lead to the failure of the 

whole transmission. When interference occurs in an ad-hoc wireless sensor 

network, the interference effect will be undetectable by a single wireless sensor 

device. Consequently, the final data integrity will be affected. The proposed 

approach adds proper control to the MAC layer of a wireless sensor network to 

monitor the failure of data transmission, and uses redundancy to assist the 

implementation of data recovery. According to the calculation for the evaluation 

tests, up to 42% of the lost packet can be possibly recovered under certain 

conditions. 
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4. Implementation of the consecutive data transmission 

mechanism in a home automation application.  

During the development of a home automation system, the proposed 

consecutive data transmission mechanism is adopted in order to improve the 

short-range wireless home automation network’s capability to coexist with 

wireless interference within the domestic home environment. The implementation 

of strategy significantly increases the success rate of a wireless sensor network 

communications whilst the energy consumption is reasonably controlled.   

5. A complete analysis and interference detection and mitigation 

strategies design in a practical WSN-based large-scale building monitoring 

system.  

In the application of a building environment monitoring network, the 

widely distributed wireless sensor network dramatically increases the difficulty to 

design an effective strategy to sense the emergence of interference. A complete 

analysis was proposed for interference in such a wireless sensor network by 

starting from static installation to dynamic situation changes. The designed 

strategies fully consider the possible situations caused by unexpected interference 

source and make proper response according to interference situation. The process 

of analyzing interference and designing interference mitigation strategies can also 

be used by researchers to implement system design in similar areas. 

In summary, this thesis has achieved all of the proposed objectives 

described in Chapter 1. Future work in studying interference in wireless sensor 

networks should focus on enhancing the analysis of interference characteristics in 

different scenarios (e.g. multiple interferers simultaneously affect the operations 

of WSNs), and designing approaches with more intelligence and efficiency for 

various applications. An optimal solution for deploying a large-scale WSN 

employing hundreds of wireless sensor nodes in a complex indoor environment 

and achieving a minimum interference and best performance are also particularly 

interesting in future study. 
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9.2 Summary 

The concept of a sensor network is something that provides the end users 

with the capability to obtain environment information. The rapid development of 

microelectronic techniques in recent years enables the emergence of wireless 

sensors, which can be powered by battery and easily deployed without any 

restriction imposed by the need for cables.  Typical applications requiring the use 

of wireless sensor networks include a building environment monitoring system, 

home automation system, location tracking system and asset management. The 

deployment of wireless sensor networks involving no fixed infrastructure can 

achieve the concept of “ubiquitous computation” which significantly improves the 

capability for human being to interact with the physical environment. However, 

communications over wireless signals are usually easily subject to interference as 

the communication medium, air, is available to potential wireless interferers and 

consequently such systems have no effective protection against interference unlike 

wired system. It is the major problem which obstructs the development of wireless 

sensor networks. 

Recent research has developed theoretical analysis and primary tests to 

identify the factors that can cause interference on the operations of wireless sensor 

networks. Through the design and implementation of interference mitigation 

strategies, including keeping physical and frequency separations between the 

victim system and interferers, employing effective routing protocols, and allowing 

dynamic frequency agility etc., the possibility to overcome interference under 

certain conditions has been demonstrated. The analysis and approaches presented 

in this thesis are mainly based on experimental work and practical applications.  
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