32 research outputs found

    Synthetic Aperture Radar (SAR) Meets Deep Learning

    Get PDF
    This reprint focuses on the application of the combination of synthetic aperture radars and depth learning technology. It aims to further promote the development of SAR image intelligent interpretation technology. A synthetic aperture radar (SAR) is an important active microwave imaging sensor, whose all-day and all-weather working capacity give it an important place in the remote sensing community. Since the United States launched the first SAR satellite, SAR has received much attention in the remote sensing community, e.g., in geological exploration, topographic mapping, disaster forecast, and traffic monitoring. It is valuable and meaningful, therefore, to study SAR-based remote sensing applications. In recent years, deep learning represented by convolution neural networks has promoted significant progress in the computer vision community, e.g., in face recognition, the driverless field and Internet of things (IoT). Deep learning can enable computational models with multiple processing layers to learn data representations with multiple-level abstractions. This can greatly improve the performance of various applications. This reprint provides a platform for researchers to handle the above significant challenges and present their innovative and cutting-edge research results when applying deep learning to SAR in various manuscript types, e.g., articles, letters, reviews and technical reports

    Evaluation of Multi-frequency Synthetic Aperture Radar for Subsurface Archaeological Prospection in Arid Environments

    Full text link
    The discovery of the subsurface paleochannels in the Saharan Desert with the 1981 Shuttle Imaging Radar (SIR-A) sensor was hugely significant in the field of synthetic aperture radar (SAR) remote sensing. Although previous studies had indicated the ability of microwaves to penetrate the earth’s surface in arid environments, this was the first applicable instance of subsurface imaging using a spaceborne sensor. And the discovery of the ‘radar rivers’ with associated archaeological evidence in this inhospitable environment proved the existence of an earlier less arid paleoclimate that supported past populations. Since the 1980’s SAR subsurface prospection in arid environments has progressed, albeit primarily in the fields of hydrology and geology, with archaeology being investigated to a lesser extent. Currently there is a lack of standardised methods for data acquisition and processing regarding subsurface imaging, difficulties in image interpretation and insufficient supporting quantitative verification. These barriers keep SAR technology from becoming as integral as other remote sensing techniques in archaeological practice The main objective of this thesis is to undertake a multi-frequency SAR analysis across different site types in arid landscapes to evaluate and enhance techniques for analysing SAR within the context of archaeological subsurface prospection. The analysis and associated fieldwork aim to address the gap in the literature regarding field verification of SAR image interpretation and contribute to the understanding of SAR microwave penetration in arid environments. The results presented in this thesis demonstrate successful subsurface imaging of subtle feature(s) at the site of ‘Uqdat al-Bakrah, Oman with X-band data. Because shorter wavelengths are often ignored due to their limited penetration depths as compared to the C-band or L-band data, the effectiveness of X-band sensors in archaeological prospection at this site is significant. In addition, the associated ground penetrating radar and excavation fieldwork undertaken at ‘Uqdat al-Bakrah confirm the image interpretation and support the quantitative information regarding microwave penetration

    Statistical and Machine Learning Models for Remote Sensing Data Mining - Recent Advancements

    Get PDF
    This book is a reprint of the Special Issue entitled "Statistical and Machine Learning Models for Remote Sensing Data Mining - Recent Advancements" that was published in Remote Sensing, MDPI. It provides insights into both core technical challenges and some selected critical applications of satellite remote sensing image analytics

    Applications of Remote Sensing Data in Mapping of Forest Growing Stock and Biomass

    Get PDF
    This Special Issue (SI), entitled "Applications of Remote Sensing Data in Mapping of Forest Growing Stock and Biomass”, resulted from 13 peer-reviewed papers dedicated to Forestry and Biomass mapping, characterization and accounting. The papers' authors presented improvements in Remote Sensing processing techniques on satellite images, drone-acquired images and LiDAR images, both aerial and terrestrial. Regarding the images’ classification models, all authors presented supervised methods, such as Random Forest, complemented by GIS routines and biophysical variables measured on the field, which were properly georeferenced. The achieved results enable the statement that remote imagery could be successfully used as a data source for regression analysis and formulation and, in this way, used in forestry actions such as canopy structure analysis and mapping, or to estimate biomass. This collection of papers, presented in the form of a book, brings together 13 articles covering various forest issues and issues in forest biomass calculation, constituting an important work manual for those who use mixed GIS and RS techniques

    Advanced Geoscience Remote Sensing

    Get PDF
    Nowadays, advanced remote sensing technology plays tremendous roles to build a quantitative and comprehensive understanding of how the Earth system operates. The advanced remote sensing technology is also used widely to monitor and survey the natural disasters and man-made pollution. Besides, telecommunication is considered as precise advanced remote sensing technology tool. Indeed precise usages of remote sensing and telecommunication without a comprehensive understanding of mathematics and physics. This book has three parts (i) microwave remote sensing applications, (ii) nuclear, geophysics and telecommunication; and (iii) environment remote sensing investigations

    Radar Imaging in Challenging Scenarios from Smart and Flexible Platforms

    Get PDF
    undefine

    Deep Learning based data-fusion methods for remote sensing applications

    Get PDF
    In the last years, an increasing number of remote sensing sensors have been launched to orbit around the Earth, with a continuously growing production of massive data, that are useful for a large number of monitoring applications, especially for the monitoring task. Despite modern optical sensors provide rich spectral information about Earth's surface, at very high resolution, they are weather-sensitive. On the other hand, SAR images are always available also in presence of clouds and are almost weather-insensitive, as well as daynight available, but they do not provide a rich spectral information and are severely affected by speckle "noise" that make difficult the information extraction. For the above reasons it is worth and challenging to fuse data provided by different sources and/or acquired at different times, in order to leverage on their diversity and complementarity to retrieve the target information. Motivated by the success of the employment of Deep Learning methods in many image processing tasks, in this thesis it has been faced different typical remote sensing data-fusion problems by means of suitably designed Convolutional Neural Networks

    A Deep Learning Framework in Selected Remote Sensing Applications

    Get PDF
    The main research topic is designing and implementing a deep learning framework applied to remote sensing. Remote sensing techniques and applications play a crucial role in observing the Earth evolution, especially nowadays, where the effects of climate change on our life is more and more evident. A considerable amount of data are daily acquired all over the Earth. Effective exploitation of this information requires the robustness, velocity and accuracy of deep learning. This emerging need inspired the choice of this topic. The conducted studies mainly focus on two European Space Agency (ESA) missions: Sentinel 1 and Sentinel 2. Images provided by the ESA Sentinel-2 mission are rapidly becoming the main source of information for the entire remote sensing community, thanks to their unprecedented combination of spatial, spectral and temporal resolution, as well as their open access policy. The increasing interest gained by these satellites in the research laboratory and applicative scenarios pushed us to utilize them in the considered framework. The combined use of Sentinel 1 and Sentinel 2 is crucial and very prominent in different contexts and different kinds of monitoring when the growing (or changing) dynamics are very rapid. Starting from this general framework, two specific research activities were identified and investigated, leading to the results presented in this dissertation. Both these studies can be placed in the context of data fusion. The first activity deals with a super-resolution framework to improve Sentinel 2 bands supplied at 20 meters up to 10 meters. Increasing the spatial resolution of these bands is of great interest in many remote sensing applications, particularly in monitoring vegetation, rivers, forests, and so on. The second topic of the deep learning framework has been applied to the multispectral Normalized Difference Vegetation Index (NDVI) extraction, and the semantic segmentation obtained fusing Sentinel 1 and S2 data. The S1 SAR data is of great importance for the quantity of information extracted in the context of monitoring wetlands, rivers and forests, and many other contexts. In both cases, the problem was addressed with deep learning techniques, and in both cases, very lean architectures were used, demonstrating that even without the availability of computing power, it is possible to obtain high-level results. The core of this framework is a Convolutional Neural Network (CNN). {CNNs have been successfully applied to many image processing problems, like super-resolution, pansharpening, classification, and others, because of several advantages such as (i) the capability to approximate complex non-linear functions, (ii) the ease of training that allows to avoid time-consuming handcraft filter design, (iii) the parallel computational architecture. Even if a large amount of "labelled" data is required for training, the CNN performances pushed me to this architectural choice.} In our S1 and S2 integration task, we have faced and overcome the problem of manually labelled data with an approach based on integrating these two different sensors. Therefore, apart from the investigation in Sentinel-1 and Sentinel-2 integration, the main contribution in both cases of these works is, in particular, the possibility of designing a CNN-based solution that can be distinguished by its lightness from a computational point of view and consequent substantial saving of time compared to more complex deep learning state-of-the-art solutions

    Remote Sensing

    Get PDF
    This dual conception of remote sensing brought us to the idea of preparing two different books; in addition to the first book which displays recent advances in remote sensing applications, this book is devoted to new techniques for data processing, sensors and platforms. We do not intend this book to cover all aspects of remote sensing techniques and platforms, since it would be an impossible task for a single volume. Instead, we have collected a number of high-quality, original and representative contributions in those areas

    Polarimetric Synthetic Aperture Radar, Principles and Application

    Get PDF
    Demonstrates the benefits of the usage of fully polarimetric synthetic aperture radar data in applications of Earth remote sensing, with educational and development purposes. Includes numerous up-to-date examples with real data from spaceborne platforms and possibility to use a software to support lecture practicals. Reviews theoretical principles in an intuitive way for each application topic. Covers in depth five application domains (forests, agriculture, cryosphere, urban, and oceans), with reference also to hazard monitorin
    corecore