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Multidimensional and Temporal SAR Data Representation and
Processing based on Binary Partition Trees

ABSTRACT

This thesis deals with the processing of different types of multidimensional SAR data for dis-
tinct applications. Instead of handling the original pixels of the image, which correspond to very
local information and are strongly contaminated by speckle noise, a region-based and multi-
scale data abstraction is defined, the Binary Partition Tree (BPT). In this representation, each
region stands for an homogeneous area of the data, grouping pixels with similar properties and
making easier its interpretation and processing. The work presented in this thesis concerns the
definition of the BPT structures for Polarimetric SAR (PolSAR) images and also for temporal
series of SAR acquisitions. It covers the description of the corresponding data models and the
algorithms for BPT construction and its exploitation.

Particular attention has been paid to the speckle filtering application. The proposed tech-
nique has proven to achieve arbitrarily large regions over homogeneous areas while also pre-
serving the spatial resolution and the small details of the original data. As a consequence, this
approach has demonstrated an improvement in the performance of the target response esti-
mation with respect to other speckle filtering techniques. Moreover, due to the flexibility and
convenience of this representation, it has been employed for other applications as scene seg-
mentation and classification.

The processing of SAR time series has also been addressed, proposing different approaches
for dealing with the temporal information of the data, resulting into distinct BPT abstractions.
These representations have allowed the development of speckle filtering techniques in the spa-
tial and temporal domains and also the improvement and the definition of additional methods

for classification and temporal change detection and characterization.
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If you knew what you are doing, it wouldn’t be called re-

search.

Albert Einstein

Introduction

REMOTE SENSING allows the extraction of information about a distant object or phenomenon
without having direct contact with it. This may be achieved thanks to the interaction with the
matter of some type of propagated signal as, for instance, electromagnetic waves or also sonic
waves. Human beings and many other types of animals may achieve this aim though their senses
of sight, hearing or smell. However, they provide a limited amount of information that rapidly
became insufficient to our natural human curiosity, resulting in the emergence of a large num-
ber of technologies devoted to gather additional data from our environment. Nowadays, the
term remote sensing generally refers to a wide set of techniques dedicated to collect information
about different Earth features and their dynamics. This concept comprises the whole process

of acquisition, processing and interpretation of the data.

The visibility and attraction of remote sensing technologies has experienced an exponential
growth in the latest years, specially through its ability to gather information about the Earth
from the space at global scales employing sensors on board satellites or spaceships. Remote
sensing can be very helpful to many fields of great interest today as, for instance, map generation,
cartography and digital terrain models generation, but the amount of information that can be

extracted does not end here and constantly new applications are appearing. Currently, remote



sensing techniques are employed to perform weather and ocean forecasting, to predict natural
disasters, for biological and biophysical monitoring, etc. Moreover, it is also possible to monitor
the environmental effects produced by the human beings as the evolution of the urban areas,
forest inventory information and biomass measures, desertification control, climate change, etc.
The global concern about this matter is illustrated by the Kyoto Protocol to the United Nations
Framework Convention on Climate Change, intended to prevent dangerous human-induced

interferences to the climate system [107].

Different criteria may be employed to classify the distinct technologies employed in Earth
remote sensing. On the one hand, they may be categorized depending on the electromagnetic
source employed for illumination. Accordingly, those systems having their own illumination
source are also called active systems, while others systems that just measure the radiation emitted
or reflected by the target from an external source, are called passive systems. On the other hand,
another classification may be performed according to the electromagnetic spectrum range em-
ployed as, for instance, microwave, infrared or optical systems. According to this categorization,
this thesis deals with Synthetic Aperture Radar (SAR) systems or imaging radars, which may

be classified as active systems working at microwave frequencies.

The origin of the SAR technology dates from the beginning of the ’sos, when an important
improvement in the spatial resolution of the radars was achieved in the flight direction through
a coherent registration and processing of the returned radar echoes [111]. SAR systems, thus,
employ the relative motion of the platform on which they are mounted on in order to regularly
record a set of observations of the scene at different positions. These measurements are coher-
ently processed together in order to simulate the acquisition of a larger virtual antenna array,
the synthetic aperture, resulting into a substantial increase in the radar resolution in the azimuth
direction. The SAR sensors have become more popular over the years since they can produce
reflectivity images of the scene, which may attain up to planetary coverage when mounted on
board a satellite platform, while presenting a high spatial resolution. Moreover, the data ac-
quired by SAR systems are almost independent of most of the weather conditions and the night
and day cycles, thanks to the fact that they are active sensors operating at the microwave frequen-
cies, for which the atmosphere is almost transparent. Formerly, SAR systems only operated at
one frequency and polarization but, since then, the technology has evolved greatly with the in-
troduction of multidimensional sensors. These sensors are capable of acquiring simultaneously
different images of the scene by changing some parameter (frequency, polarization, spatial po-
sition, etc), which has empowered the emergence of the SAR polarimetry and interferometry

technologies.

The electromagnetic waves polarization makes reference to the vectorial nature of the elec-



tric and magnetic fields [21]. This nature allows the generation of waves having the electric
field moving over different planes and, consequently, presenting a different interaction with the
targets depending in their physical structure [123]. Polarimetric SAR systems (PolSAR) ob-
tain multidimensional images by combining different polarizations of the incident and reflected
waves [33]. PolSAR has demonstrated, specially during the last decade, its usefulness for the
study and characterization of the Earth surface, due to its ability to retrieve biophysical and
geophysical information from the scene [76][49]. This thesis has been developed in the con-
text of polarimetric SAR data processing, analysis and characterization. Indeed, nowadays there
is a great interest on PolSAR technology, which may be deduced by the large number of future
space-borne polarimetric SAR missions planed, like SENTINEL-1 (C-band), BIOMASS (P-
band), ALOS 2 (L-band), RADARSAT Constellation Mission (RCM) (C-band), NOVASAR-
S (S-band), SAOCOM (L-band) and the PAZ together with TerraSAR-X and TanDEM-X (X-
band).

In most of the cases in SAR systems, the size of the resolution cell is much larger than the
wavelength and, thus, the measured echo is, under the Born approximation [58], a coherent
combination of all the individual target echoes within that cell. This coherent combination may
be constructive or destructive, and it appears over the SAR images with a characteristic granu-
larity known as speckle [40][102]. Although the speckle is real electromagnetic measure, from
the point of view of the acquisition system it is considered as noise, since it can not be predicted
accurately and is contaminating the measure of the reflectivity of the resolution cell. The useful

information, then, must be extracted from the statistics of the data [73].

There are a wide number of techniques to extract these statistics and eliminate, as far as pos-
sible, the contaminant effect of the speckle term in SAR images. The most basic technique is to
average the image values over the image using a particular window, usually a rectangular win-
dow, which is also known as the multilook filter [ 119]. In fact, this estimation corresponds to
the Maximum Likelihood Estimator (MLE) of the reflectivity [ 56]. Then, by applying the mul-
tilook, the reduction factor of the speckle is proportional to the number of samples averaged
and inversely proportional to the resulting resolution. In this sense, this filter poses a signifi-
cant inconvenience, since it implies a spatial resolution loss which is one of the most valuable

advantages of the SAR systems.

Newer speckle filtering techniques are focused towards a different direction. Statistically it
makes only sense to consider pixels over the image belonging to the same statistical distribu-
tion, that is, over homogeneous areas. Some speckle filtering techniques, as the adaptive Lee
filter [74][80], proposed the adaptation of the averaging window to the morphology of the

image. To do so, a set of predefined windows are defined and the one containing the more ho-



mogeneous sample set is selected for filtering. The Intensity Driven Adaptive Neighborhood
(IDAN) filter [ 125] improves the adaptation capability by defining an arbitrary homogeneous
neighborhood around each pixel. However they have some limitations in the amount of pos-
sible spatial structure adaptation, resulting into some degree of spatial resolution loss, or they
introduce some distortion or bias over the estimated data. In order to overcome these limita-
tions, some newer techniques have proposed breaking away with the idea of spatial locality, as

the Non-Local means [28][42], in order to further increase the available samples for estimation.

If it were possible to delimit correctly the homogeneous areas over the image, then it would
be possible to average only the samples within them, obtaining results with higher quality and
also preserving the spatial resolution. Nevertheless, this work may be complex since arbitrary
structures of different sizes may be found over the image, as they reflect the complexity of the
scene. Different strategies have been developed to tackle with this issue from different points
of view. Some examples are the multiresolution representations, such as wavelets [88][115].
However, this approach has clear limitations as it is a linear processing technique, resulting into
a limited resolution preservation. On the other hand, non-linear processing techniques may be
employed for data segmentation and denoising, as the Markov Random Fields (MRF) models,
employed to represent the sample contextual information [85]. The main difficulty of MRF is
that its computational complexity rapidly becomes intractable for most models, requiring some

approximation techniques.

Moreover, remote sensing techniques are continuously evolving, increasing in terms of data
quality and quantity. Very high spatial resolution SAR systems are every day more precise and
even they can operate at different frequency bands and/or spatial baselines simultaneously. This
fact increases the amount of potential information that may be extracted from the observed
scene, but it also involves a dramatic increment in terms of data volume and, consequently, in

computational demands for processing it.

There are, however, other implications not so obvious for the exploitation of these large
datasets. As the number of collected samples gets increased, the amount of information ob-
tained may not grow in the same proportion, resulting into that neighboring samples may not
be considered as independent, as their scale of representation is far too low with respect to the
content scale [14]. The classical pixel-based approaches, based on the assumption that each
pixel may be processed independently, are becoming less efficient in this scenario, as they are

unable to exploit this interrelationship properly.
In this thesis, a different non-linear approach is proposed for data processing, based on the
assumption that neighboring samples having similar properties may be modeled and grouped

together into an entity named region. The pixel-based signal representation is replaced by a



region-based representation, composed of a set of regions with lower cardinality. Then, un-
der this assumption, instead of processing each of the original pixels of the data, these obtained
regions are processed individually. This concept automatically encompasses the sample inter-
relationship within these entities and scales naturally to high resolution sensors.

With this idea in mind, the Binary Partition Tree (BPT) [109] image representation was
defined with the intention of being generic enough to support a wide range of applications.
The BPT is a region-based and multi-scale data abstraction that has been employed for image
processing [ 109], achieving good results, but it needs an adaptation to be able to process and
model PoISAR data.

Then, the objectives for this thesis are the design, the implementation and the evaluation of
the BPT representation for processing different types of multidimensional SAR data, encom-
passing PolSAR images and temporal series. This involves the adaptation of the BPT concepts
and algorithms for multidimensional SAR data modeling, in order to be able to generate prop-
erly their corresponding BPT representation and to perform the consequent BPT exploitation
for different applications. In this work, a particular focus is devoted to the speckle filtering and,
consequently, this application will be analyzed with a great level of detail. However, other appli-
cations are also considered as, for instance, scene segmentation and data classification. The ex-
ploitation of the temporal dimension of the data in SAR polarimetry is a difficult task that is now
starting to be studied and developed, and this thesis sheds some light in this direction, analyzing
the target modeling in the temporal dimension for PolSAR time series. Some approaches are
proposed to study the temporal evolution of the data and the scene dynamics. When these ap-
proaches are employed in combination with the BPT, the time information allows the improve-
ment of some previously defined methods, as the polarimetric estimation or the classification
techniques. Moreover, this supplementary information allows the development of additional

applications, such as the detection and characterization of the scene changes.

STRUCTURE OF THE THESIS

This manuscript has been divided into eight different chapters that are described briefly in the
following.

The first chapter, as an introduction, puts the reader in position to the scope of this work and
its objectives. The second chapter makes a brief description of the basic concepts behind the
SAR systems, on which this work is focused on. The wave polarimetry notion is presented and
the most relevant concepts of SAR polarimetry (PolSAR) are introduced. In this chapter, spe-
cial attention is paid to the statistics of SAR and PolSAR data, particularly the polarimetric Gaus-



sian model to describe the distributed scattering mechanism. The Entropy (H), Anisotropy (A)
and averaged Alpha angle (@) polarimetric decomposition is also described as a tool for the in-
terpretation of the polarimetric information. The central application of this thesis is speckle
filtering and, consequently, this chapter also describes and briefly analyzes some relevant mul-
tidimensional speckle filtering techniques, as the adaptive Lee [74][80] or the IDAN [125]
filters. Finally, some polarimetric classification techniques are also described, as it composes

other of the applications developed during the course of this thesis.

Chapter 3 describes the Binary Partition Tree (BPT), which is the data abstraction employed
in this work for data processing. Its structure is defined in detail, including the rationale and the
motivation for this representation, and a generic BPT based processing scheme is proposed.
The algorithms for its construction and exploitation are defined and analyzed in this chapter.
For the generation of the BPT structure an efficient iterative method in a bottom-up approach
has been proposed, based on the divide and conquer strategy. Once it has been constructed,
a tree pruning mechanism is performed for its exploitation, which may be interpreted as the
extraction of the useful or interesting regions for a particular application. Finally, an analysis of
the processing complexity is briefly described and some additional thoughts are provided on

the BPT limitations as a data abstraction.

The generic BPT processing scheme previously depicted is adapted to process PolSAR data
in Chapter 4. A statistical region model is proposed for this data, based on the sample covari-
ance matrix. For the BPT construction algorithm, some dissimilarity measures are defined in
this region model space, some of them being capable of exploiting the whole polarimetric infor-
mation under the Gaussian hypothesis. Distinct BPT pruning strategies are defined to exploit
this structure for the speckle filtering application. As it corresponds to the central application of
this thesis, an extensive analysis of this application may be found in this chapter, including stud-
ies with real and simulated PolSAR data. Additionally, the coastline detection application based
on the BPT is briefly described and analyzed, in order to give a wider idea of the usefulness of

this representation for PoISAR data processing.

This thesis also deals with another type of multidimensional data: temporal series. The BPT
based processing approach is extended to process PoISAR time series in Chapter 5. The process-
ing of these datasets is still a challenge that is now starting to be developed. Then, this chapter
describes two different approaches for dealing with the temporal dimension of the data. These
approaches differ in the way a target is characterized among this additional dimension. Two
distinct BPT representations are obtained according to these two concepts which are studied
in this chapter. The exploitation of these two structures is also defined by an extension of the

same techniques employed for PolSAR data in the context of the speckle filtering application.



Additionally, an additional application is developed specifically to exploit the temporal infor-
mation and describe the dynamics of the scene: change detection and characterization. These
applications are analyzed and evaluated with real PoISAR datasets over urban and agricultural
areas.

Some of the previously detected limitations in various aspects of the proposed BPT based
processing scheme are addressed in Chapter 6. To overcome these drawbacks, a technique is
proposed for filtering and matrix regularization and some concepts are defined for the polari-
metric change analysis and interpretation. Additionally, a new region model is proposed in
order to improve the characterization of heterogeneous regions, including a mixture of differ-
ent targets or texture. Moreover, all these proposed improvements are defined in terms of the
same concepts on which the BPT is based, contributing to the completeness of this approach.

Chapter 7 is devoted to the BPT based classification application. Supervised and unsuper-
vised classification methods over PolSAR images and polarimetric time series are proposed,
employing the same models and dissimilarity measures previously mentioned in Chapters 4 to
6. Consequently, this chapter also contributes to the analysis and evaluation of the these con-
cepts, from a different point of view. The performance of the proposed classification techniques
is evaluated with real PoISAR time series data for which some ground truth information is avail-
able, in order to verify the ability of these approaches to identify and separate the distinct areas
of the scene.

Finally, Chapter 8 presents the most relevant conclusions after the research work performed
during the course of this thesis and some possible future research lines are outlined.

Additionally, in the Appendix A, a complementary analysis of the stability in front of the
speckle noise of the sample covariance matrix eigenvectors, eigenvalues, and the Entropy (H),
Anisotropy (A) and averaged Alpha angle (@) parameters may be found. This analysis is based
on the employment of the matrix perturbation theory [129] in order to model the estimation
errors due to speckle [91]. Appendix B presents some additional results that have not been
analyzed in as much detail as the other results in the previous chapters, but they may serve to
demonstrate the usefulness of the BPT to process other types of data as L-band ALOS data,
very high resolution X-band FSAR data or dual-polarimetric TerraSAR-X time series. Finally, a
compilation of all the publications carried out during the course of this thesis may be found in

Appendix C.






Ifyou can’t explain it to a six years old, you don’t understand
it yourself.

Albert Einstein

Multidimensional Synthetic Aperture Radar

THIS CHAPTER IS INTENDED to give a general introduction of the Synthetic Aperture Radar
(SAR) framework on which this PhD thesis is developed. It does not aim to be an exhaustive
review of SAR state-of-the-art, but a brief review of the general concepts involved in this work,

in order to produce a self-contained manuscript.

First, in Section 2.1, the basic concepts of SAR are introduced, devoting special attention to
data description and statistics. On Section 2.2 electromagnetic wave polarimetry is introduced
and its application to radar and SAR is described. The statistical analysis of the previous section
is also extended to the multidimensional systems. Additionally, some additional information is

included on the interpretation of the polarimetric SAR radar response.

Finally, Sections 2.3 and 2.4 are devoted to describe some state-of-the-art techniques for two
particular applications that are strongly related with this work: speckle filtering and data classi-

fication.



2.1  SYNTHETIC APERTURE RADAR

A SAR system is a type of remote sensing imaging sensor capable of obtaining high resolution
information about the scene. Specifically, SAR measures the complex reflectivity of the scene at
the microwave region of the spectrum. The most salient feature of SAR, with respect to other re-
mote sensing sensors, as optical imaging, is that it is an active sensor, in the sense that it produces
its own source of illumination. This, in combination with the fact that the atmosphere may
be considered almost transparent at microwave frequencies, makes SAR independent of most
of the atmospheric effects, as the night and day cycles and the weather conditions. Moreover,
since they are working at microwave frequencies, they are sensitive to different target proper-
ties than other techniques, working at distinct frequencies. As a consequence, SAR is a valuable

complement to other remote sensing methods.

2.1.1 Basic CONCEPTS

Typically, on a radar system, a pulse is transmitted as an electromagnetic wave by means of an
antenna. When this pulse hits a target, a fraction of the power associated with the pulse is re-
radiated towards the receiver, which is also known as radar echo. This echo may be captured by
the receiver antenna, where it may be detected and processed.

On SAR systems, a high resolution reflectivity image of the scene is obtained by means of
a coherent processing of different radar echoes obtained at distinct positions. Consequently,
SAR systems are typically on board a moving platform, usually an airplane or a satellite. In this
context, the azimuth direction is defined as the flight direction, which defines the movement of
the radar. The radar beam is slanted from the nadir direction to a direction perpendicular to the
flight direction, known as range direction. The thickness of the strip generated by the footprint
of antenna beam due to the radar movement is referred to as swath, as represented on Fig. 2.1

In an imaging system, the resolution § may be seen as the minimum separation of two targets
to be detected and distinguished as two different targets at different positions. SAR systems, as
two dimensional imaging systems, may present different resolution values for the range §, and
the azimuth §, dimensions. In the range dimension the resolution is closely related with the

pulse duration 7, requiring a shorter pulse in order to obtain a better resolution

5, = cE (2.1)

2

where ¢ stands for the propagation speed of the electromagnetic waves in vacuum.

However, to attain both a good level of Signal to Noise Ratio (SNR) and a good resolution,
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Figure 2.1: Synthetic aperture radar acquisition geometry.

a large amount of energy has to be transmitted in a short period of time. This approximation is
not practical as real transmitters are not able to produce short pulses having high energy at the
same time. Alternatively, a pulse compression technique may be applied to solve this problem. It
is based on transmitting a long modulated pulse and processing it afterwards by a matched filter
[31][122]. With this technique, the large pulse may be compressed to a duration equivalent to
1/B
c
5= (2.2)

where B represents the bandwidth of the transmitted pulse.

In the azimuth direction, the radar resolution depends on the antenna angular beam width

6., which is proportional to

0, o Di (2.3)

a
where A refers to wavelength and D, is the antenna length in the azimuth direction. As a conse-

quence, the resolution in the azimuth direction §, will be

A
Su - rol_l)u (2-4)

where r, represents the range distance between the antenna and the target. Note that for radars
on board a satellite platform, good azimuth resolution, in the order of meters, can only be ob-
tained with very large antennas, in the order of kilometers length in the azimuth direction, which

is completely unfeasible.
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In order to increase the resolution in the azimuth direction, the concept of synthetic aperture
may be applied [40][27][48]. Not surprisingly, this concept is applied in SAR to exploit the
movement of the platform in order to synthesize an antenna array with an effective length much
larger than the physical length of the receiver antenna. The synthetic antenna is conformed by
alinear array, following the path of the moving platform, where each element of this array is the

original antenna.

Consequently, when employing the synthetic aperture concept, the angular beam width 0,
of the corresponding synthetic antenna will be proportional to the length of this antenna L,.

Then, the obtained azimuth resolution with synthetic aperture radar §,, will be

A
2L,

(2.5)

Ssa =1,

Note that the maximum length of the synthetic aperture L, is bounded by the set of positions
on which the same target gets illuminated by the antenna beam. Therefore, it depends on the
beam width of the original antenna 6, which depends on its azimuth dimension D,, and on the

distance to the target r,

A,
L, < DL. (2.6)

a

This bound on the maximum length of the synthetic aperture also defines a limit on the az-

imuth resolution §,,, .. that may be achieved with this technique

SAmax

D,
Ssamax = - (2'-7)

2

It is worth noticing that, for a SAR system, the attainable azimuth resolution §, does not de-
pend neither on the distance to the target r, nor the wavelength A. This maximum azimuth res-
olution only depends on the antenna size in the azimuth dimension D, and, as a consequence,
the smaller the antenna the higher the resolution. This surprising result is caused by the fact that,
the smaller the antenna, the larger is the angular beam width 6,, and also the time on which the
target is illuminated by the antenna is enlarged, making possible a larger synthetic aperture. The
same idea can be applied to the distance to the target r,, having larger synthetic apertures for
further targets. In practice, some limitations apply, specially those related to the achieved SNR,
since a smaller antenna implies a smaller received pulse energy. However, spatial resolutions in

the order of meters or even smaller have been achieved from space-borne SAR systems.
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2.1.2  SAR SYSTEM IMPULSE RESPONSE

During the data acquisition process of a SAR system, the received echo for each transmitted
radar pulse at each position is recorded. This data are referred to as raw data and can not be
directly related with the reflectivity of the scene. On raw data, the information of each scene
target is spread among all the echoes that conform the synthetic aperture. In order to obtain
the radar reflectivity of the scene, the information of each target may be effectively combined in

the so-called focusing process, resulting in a reflectivity image of the scene.

For a good understanding and characterization of the SAR imaging system, the impulse re-
sponse of the system must be known, that is, the response of the system to a single point target,
including both processes: the data acquisition and the image focusing process. On this simpli-
fied scenario, having only one target at a given location, is assumed to be present on the scene,
which will produce only one radar echo. Once this impulse response has been characterized,
the complete image of the scene may be understood as a combination of the contributions of

an arbitrary number of single targets, considering the superposition theorem.

The complex SAR image obtained after the acquisition and focusing processes for a point

target at coordinates (xo, ro) is [40]

S(x, 1) = 04(xo, o) - exp (j%(r - ro)> sinc (@) - sinc (@) (2.8)

where o(x,, r, ) refers to the complex Radar Cross Section (RCS) of the target [112][30][ 124]
and §, and §, represent the range and azimuth resolution, respectively. From (2.8), it can be
seen that the SAR system impulse response, including the acquisition and focusing stages, is

proportional to a phase term multiplied by two sinc functions
h(x,r) o exp <]% ) - sinc <%) - sinc (g—j) . (2.9)

Then, from (2.9), the impulse response of the SAR system can be seen as a rectangular fil-
ter with a bandwidth in the range dimension equal to 2B/c and 2/D,, in the azimuth direction
[40][52][84]. Additionally, from (2.9) the phase term associated with the range delay can be

related to the scene, instead of to the SAR system, resulting in an impulse response proportional

h(x,r) o sinc (?) - sinc (?) . (2.10)
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2.1.3 SAR IMAGE STATISTICS

Once the SAR system impulse response has been described, as stated in (2.10), it may be seen
as a low pass filter over the scene radar reflectivity. However, in the previous section only one
point target has been assumed. Nevertheless, in a real situation, many targets may be found
over the scene. Then, the concept of resolution cell may be introduced tightly related with this
interpretation of the impulse response. It may be seen as the area within a cell of size §, by §,
in range and azimuth dimensions, respectively. Note that, according to the previous definition
of the resolution notion, all the targets within this area may not be distinguished by the radar.
Typically, the azimuth and range resolution are significantly larger than the wavelength A and,
as a consequence, many individual or point targets may be present within the resolution cell, as

represented on Fig. 2.2.

Scene

Resolution Cell Point scatterer

Figure 2.2: Resolution cell representation having multiple individual targets within.

In this scenario, the retrieved signal is the coherent combination of all the echoes of the indi-
vidual targets within the resolution cell, which has been represented on Fig. 2.3. The amplitude
and phase of each target may depend on the targets themselves and also on their orientation and

distribution within the resolution cell. This complex coherent sum for a given resolution cell,
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represented as r exp(j0) is also known as the random walk, and may be expressed as [95][44]

N

rexp(jf) = ZA,C exp(jOr) (2.11)
k=1
N

R{S} =) Ay cos(j6y) (2.12)
k=1
N

{8} = Apsin(j6) (2.13)
k=1

where N represents the number of targets within the resolution cell and R{-} and J{-} repre-

sent the real and imaginary part, respectively.

Figure 2.3: The received echo for a resolution cell is the coherent combination of the
echoes of the individual targets within this cell.

Unfortunately, most of geophysical terrains as, for instance, rough surfaces, vegetation, ice,
snow, etc... have a very complicated structure and composition. In such cases, the complete
knowledge of the scattered electromagnetic field, when illuminated by an incident wave, is only
possible with a complete description of the terrain geometry and composition. In practical situ-
ations, this type of information is completely unattainable for obvious reasons. Then, the char-
acterization of this reflection processes may only be performed through a statistical analysis
[124] [93][101]. Since these targets are composed by a large number of individual targets dis-
tributed around the resolution cell, they are called distributed targets, as opposite to point targets,

as suggested in Section 2.1.2.
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For the statistical characterization of the complex SAR image S(x, ), some considerations

are taken into account related to the elementary targets A, exp(jfx) [23][59]:

o The amplitude A, and phase 0y of the k-th phasor are statistically independent from each
other and from the other phasors. This means that the scattering center of the elemental

targets are uncorrelated and that the amplitude is not dependent on the phase.

« The phase of each one of the individual targets are uniformly distributed in the interval
(—m, 7). This may also be interpreted as having all the individual targets uniformly dis-

tributed within the resolution cell.

Additionally, if the resolution is much larger than the wavelength, thatis, §, > Aland §, > A,
then the Central Limit Theorem [104] may be assumed as N — oo. Under this assumption

R{S} and I{S} are following a zero-mean Gaussian distribution [23][59][104][58].
E{R{S}} =) E{Arcos(6i)} = >  E{A}E{cos(8)} = o (2.14)
k=1 k=1

E{S{S}} =) E{Asin(6)} = Y E{AJE{sin(6;)} = o (2.15)

where E{-} refers to the statistical expectation operator. Similarly, the variance of #{S} and

3{S} may also be computed
(RS} = 3 B{A}B{cos*(80)} = (A} (2.16)

N
N
E{3°{S}} = > E{A}E{sin*(00)} = “E{4}}. (217)
k=1
The real and imaginary parts of S are uncorrelated

E{R{S}S{S}} =D ) E{AA}E{cos(6)) sin(6))} = o. (2.18)

k=1 I=1
To simplify the notation, R{S} may be renamed to x and 3{S} to y; then, their probability
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density functions can be expressed as

px(x) = \/;T‘Zexp (— (;)2> x € (—oo, oo) (2.19)
R == (-(2)) el (220)

where 0* /2 = (N/2)E{A}}. As it may be seen, p(x) and p(y) are following a zero-mean Gaus-
sian distribution, also expressed as \ (o0, 0*/2).

The probability density function of the amplitude p_(r) and phase p,(6), considering r =
v/** +y*and 0 = arctan(y/x), can also be obtained

a0 = ow () (221)

20> o>

0-2

p6(9) = — 0 € (—m (2.23)

)= 2ee () reloc) (222)

As it can be seen, the amplitude and phase distribution are separable. The distribution p, (r)
is also referred to as a Rayleigh distribution, whereas p, () is a uniform distribution in (—, x|.
This means that the phase 0 of a distributed target has no information about the target itself. For

a Rayleigh distribution, like p (), the mean value and its variance are

¢

o>

E{r} = S (2.24)

o = (1 - Z) o, (2.25)

Another statistical parameter usually employed in SAR is the coefficient of variation (CV),
defined as the relation between the standard deviation and the mean [ 102 ]. From the previously
defined expressions, it can be derived as /% — 1forr.

Generally, the study of SAR data is interested in the intensity I, rather than the amplitude r,
defined as I = r?, which pdf can be expressed as

pi(D) = - exp (ll> 1€ Jo, 50) (2.26)

and consequently, I is following an exponential distribution. Therefore, its mean value will be
E{I} = o*and its variance 07 = o*. It is worth to mention that the CV of the intensity for a

SAR image, then, will be equal to 1.
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2.1.4 MULTIPLICATIVE MODEL FOR SAR SPECKLE NOISE

As indicated in (2.26), the probability density function of the SAR image intensity has been

identified as an exponential distribution. For simplicity, the identity
I=o0z (227)
may be introduced on (2.26) and, then, the distribution of p_(z) may be expressed as
p,(z) = exp(—2) z € [0, 00). (2.28)

Equation (2.27) shows that the intensity of a SAR image pixel can be considered as a deter-
ministic value, containing information about the incoherent reflected power (¢), multiplied by
the speckle noise (z), having an exponential distribution, as expressed in (2.28), with mean and
variance values equal to one. This is one of the main reasons why the speckle noise is usually
considered as a multiplicative noise respect to the SAR image intensity [58][73][87][40]. It
should be noted however that the speckle noise is not a random process, as it is an electromag-
netic measure of the interactions of all the individual targets. Nevertheless, due to the complex-
ity of the reflection process, it can not be predicted for a given pixel and then, it is interpreted
as a random process corrupting the deterministic component o°.

With the previous assumptions, all the useful information about the scene reflectivity is con-
tained within the term ¢?, and the phase has no information, as stated before. Then, the SAR

image S(x, r) can be described over an homogeneous area as

S(x,r) = onexp(j0) (2.29)

where n denotes the multiplicative component of the speckle noise in amplitude, following an
exponential distribution and characterized by E{n} = 1and var{n} = 1. On the other hand,
the phase 0 is following a uniform distribution, as mentioned before. Then the useful informa-

tion about the scene is contained in o, independently of the speckle noise term n exp(j0).

2.2  SAR POLARIMETRY

Polarimetric SAR (PolSAR) systems are multidimensional SAR systems that may obtain ad-
ditional information about the scene by exploiting the vectorial nature of the electromagnetic
waves. This vectorial nature may be employed to imbue different polarizations on the transmit-

ted and received echoes that interact in a different manner with the targets on the scene. As a
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consequence PolSAR sensors will acquire different SAR images or channels according to the
different polarization states of transmitted and received radar echoes. Moreover, if two orthog-
onal polarization states are employed for transmission and reception, the polarization synthesis
[24] may be applied in order to explore the target response at any other polarizations state, con-

forming a valuable source of information.

2.2.1 WAVE POLARIMETRY

Electromagnetic waves were firstly postulated by James Clerck Maxwell as a solution to the
Maxwell equations, and subsequently confirmed by Heinrich Hertz. This solution may be ex-
tracted from the electric and magnetic equations, representing the energy transportation from
one plane to another [21]. Employing the classical Cartesian coordinates [X, y, Z] to describe

the electric field of a wave propagating on the z direction, it can be obtained as
E(Z,t) = E,(Z, )x + E,(Z,t)y = Eox cos(wt — kz — 8,)X + Eo, cos(wt — kz — §,)y (2.30)

where §, and §, are two constant phase terms, E,, and E,, represent the electric field amplitude

at directions X and y and k is defined as

k=22 =

T (2.31)

w
c

For compactness, the expression in (2.30) may also be expressed in the vectorial form

E(Z,t) = = cos(wt — kz ) . (2-32)
E, E,y cos(wt — kz — §,,)

The components E, and E, are related through the expression
(i) + (&) 2, —oo )
where § = §, — §,.

The previous expression (2.33) defines the geometric figure described by the electric field

vector E(Z, t) along the temporal dimension for any value of z. As it may be seen, this figure,
in the most general case, is following the shape of an ellipse, also known as the polarization
ellipse. Note that the aspect of this ellipse does not depend neither the space nor the time and,

consequently, it is characteristic of the electromagnetic wave. The polarization ellipse and its
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Figure 2.4: Generic polarization ellipse for an electromagnetic wave propagating on z di-
rection.

parameters are represented in Fig. 2.4.

Consequently, the polarization state of an electromagnetic wave can be defined by the fol-

lowing parameters describing its direction of propagation and the polarization ellipse

20

Orientation in the space of the plane containing the polarization ellipse. It is determined
by its normal vector, which is the propagation direction of the electromagnetic wave. On

Fig. 2.4 it has been assumed as z.

Orientation angle ¢ of the major axis of the ellipse with respect to the x direction. The

values for this parameters are in the interval [=%, Z].

Ellipticity angle 7, representing the aperture of the ellipse and having values in the interval

553

Polarization direction, indicating the turning direction of the polarization ellipse. It is
expressed by the sign of the ellipticity 7. It is determined by the IEEE convention; when
looking to the wave towards the propagation direction, if the electric field vector is rotat-

ing in clockwise direction then 7 < o, if it is rotating counter-clockwise then 7 > o.

The amplitude of the polarization ellipse A, defined as A = v/a*> + b*, where a and b are

the amplitude of the major and minor axis of the ellipse, respectively.



Linear horizontal | Linear vertical | Circular clockwise | Circular counter-clockwise
i1 /4 —n T
¢ 0 3 7, 7] [, 7]
T o o -z z
4 4

Table 2.1: Some typical polarization states and its associated parameters

« The initial phase a with respect to the phase origin for t = o, defined in the interval

(==, 7.

Asan example, Table 2.1 shows the values of ¢ and 7 defining the polarization ellipse for some

typical polarization states.

2.2.2 SCATTERING POLARIMETRY

As mentioned before, when an electromagnetic wave encounters an object, part of its energy
gets re-radiated towards the radar receiver. The polarization state of the scattered wave would
depend on the target and its geometry and, consequently, polarimetry may contribute to the
characterization of the target.

In the more general scenario, the SAR system may be considered as a system having two
antennas, the transmitting antenna and the receiving antenna, that may be located at different
positions. When this is the case, the scattering process is called bistatic, whereas when both an-
tennas are placed in the same position, as when the same antenna is employed for transmission
and reception, it is called monostatic. Additionally, in a bistatic scenario, when the receiver an-
tenna is located behind the target in the same line defined by the transmitter antenna and the
target, a particular configuration process is obtained called forward scattering.

Consequently, a convention has to be defined for the Cartesian coordinate system [x,y, Z|
that will be assumed for transmitted and received waves. Generally, the transmitted wave coor-
dinates are defined with respect to the transmitting antenna, whereas the received wave may be
expressed in the same coordinates or in those defined by the receiving antenna.

The electric field vector can be completely described by two orthogonal polarization states
[103]. In the following, these two orthogonal polarization states will be assumed as the linear
horizontal h and linear vertical v polarization states, conforming the polarization basis {fl, v}.
Following this notation, the incident electric field may be expressed in terms of two compo-
nents E} and E! over this basis, and its coordinate system is centered on the transmitting antenna
[ﬁi, Vi, IA(,} On the other hand, for the scattered electric field, expressed in terms of the coordi-
nates [ﬁs, Vs, Rs] , there are different conventions depending on the SAR system type. One con-

vention may be the Forward Scattering Alignment (FSA), which employs the same coordinate
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system than the incident wave for the scattered wave. Another convention, called Backward
Scattering Alignment (BSA), defines the scattered wave in terms of the coordinates of the re-

ceiving antenna. Fig. 2.5 shows both conventions for the incident and scattered electric waves.

Scatterer Scatterer

Scattered wave 4,
coordinates

/~ Scattered wave hs
Incident wave 9; %Fks  coordinates Incident wave ¥

coordinates coordinates

(a) FSA (b) BSA

Figure 2.5: Incident and scattered electric field coordinate reference conventions.

As it may be seen, the equivalence of the different conventions can be extracted easily for the
incident and scattered electric waves. In the case of the BSA convention fls = fli, v, = v;and
IA(S = Ri, whereas for the FSA convention ﬁs = —ﬁi, v, = v; and Rs = —ﬁi. In the following,
the BSA convention will be employed, since the monostatic case is the most common for SAR
systems. Employing the selected polarization basis {fx, v}, the incident and scattered waves can

be expressed as

E = Eh; + E¥, (2-34)
E° = Eh, + Ev.. (2.35)

The relation between the incident and the scattered waves, assuming the far field hypothesis,
may be expressed by the 2 by 2 scattering matrix S. As it is a relation between the two electric
fields, S is a complex dimensionless matrix, which is characteristic of the target [76]

EZ exp(—jkr) Shh Shv Elh

i = —r S, S g (2.36)
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or, equivalently, in matrix notation

exp(—jkr)

r

E = SE! (2:37)

where r represents the distance between the receiver antenna and the target.

In the monostatic case, applying the reciprocity theorem [123][121], the following identity
applies
Soh = Shy (2-38)

for the BSA convention and, consequently, for the FSA convention

Svh = _Shv- (2'39)

2.2.3 DISTRIBUTED SCATTERING

The scattering matrix S defined in (2.36) characterizes the scattering process for the employed
acquisition geometry and frequency. However, this information is only useful for point scatter-
ers, as described in Section 2.1.3, having only one dominant scatterer within the resolution cell
and, thus, a deterministic response. In general, since the spatial resolution is usually consider-
ably larger than the wavelength, a wide number of targets are present within each resolution cell

and the retrieved scattering echo is the coherent combination of their individual responses.

In this case, in the presence of speckle noise, the scattering matrix S is a random variable and
the target information should be extracted from its statistics. To simplify its manipulation and
statistical characterization, usually the matrix S is vectorized to form the scattering vector, usually

denoted as k. It may be expressed through a vectorization operator V(S) [26][32]
k, = V(S) = ~tr(SH) = [k, k., k;, k" (2.40)
2

where tr() denotes the matrix trace, T is the vector transpose and H is a complex 2 by 2 orthog-

onal matrix base. The simplest matrix base may be the lexicographic base H,

HL = ) ) ) ) (2"41)

which ends up with the lexicographic scattering vector k,,

k4L = [Shh7 Shva Svha va]T . (2'42‘)
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Another typical matrix base for the scattering vector is the Pauli base

HP = \/5 ) \/z ) \/z ) \/z ., ) (243)
o 1 o —1 1 0 j o
which generates the Pauli scattering vector k,p
1
k4P - % [Shh + vaa Shh - Smn Shv + Svhaj(shv - Svh)]T' (2-44-)

The advantage of the Pauli scattering vector is that its components may be easily related with
the elementary or canonical physical scattering mechanisms. The first component may be re-
lated with surface scattering, the second component may be associated with double bounce
scattering whereas the third and fourth correspond to volume scattering.

An important property of the scattering process is the total amount of reflected energy in
relation with the incident one, expressed as ||S||, also known as the Span. Note that this is an
important attribute for target characterization and, therefore, it should be maintained in the
scattering vector as ||k||. This is the reason why the constant factors are included in (2.41) and
(2.43).

For the monostatic case, the previous scattering vectors may be simplified according to (2.38)
or (2.39), depending on the convention employed. In this situation, the scattering vectors con-
tain only three complex components and, then, it will be denoted as k;. Assuming the BSA

convention, these two simplified scattering vectors may be expressed as

ke = [Sun, /25, SW}T (2.45)
k;p = % Sk + Suws S — Swws 28m)] " - (2.46)
As mentioned in Section 2.2.3, the scattering matrix is only useful to characterize point scat-
terers that have a deterministic response. For distributed scattering, the target information has
to be extracted from the statistics of this matrix. Then, the scattering vector k, defined as a vec-
torization of the scattering matrix, may help to simplify this statistical characterization.

A polarimetric SAR system measures all the elements of the scattering matrix for each reso-
lution cell. The S matrix, then, may be considered as 4 individual SAR images, corresponding to
the scattering measurement at each combination of polarization states. As mentioned in Sec-
tion 2.1.3, for a distributed scattering scenario, each one of these images will be following a
zero-mean complex Gaussian distribution. However, the ability of a PolSAR system to mea-

sure all this information simultaneously and coherently allows the exploitation of an additional
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source of information: the correlation between the different SAR images.

Then, for distributed targets the scattering vector k may be defined by a multidimensional
zero mean complex Gaussian distribution. This distribution is characterized by its covariance

matrix C [77][117][66] .

e
7 |C|

pi(k) = xp(—k"C k) (2.47)

where p corresponds to the dimension of the scattering vector and ¥ denotes hermitian trans-
pose of complex vectors and matrices. This distribution may be denoted as A/ (o, C) and it is
completely characterized by its covariance matrix, as all of its higher statistical moments may
be derived from C [100] [106]. Moreover, this matrix is Hermitian and positive semi-definite

[104], and it may be defined as

E{SuSin} E{SmSp} E{SmSu} E{SmS;}
E{Shv Zh} E{ShvSZv} E{Shvsrh} E{Shvsru}
E{SuSi} E{SuSi,} E{SuSy} E{SwS.}
E{S,Sint E{SwSi} E{SwSu} E{SwS;}

C= E{k4Lki} = (2.48)

E{SuSi}  V2E{SmSi,}  E{SwS,,}
C=E{kykii} = | V2E{SwSp} E{SwS;} V2E{SwS,} (2.49)
E{SwSi}  V2E{SwS;,}  E{S.S,}

for the bistatic and for the monostatic cases, respectively.

Similarly, the coherence matrix T may be defined as the covariance matrix of the Pauli scat-

tering vector
T = E{k4pkfp} (2.50)
T = E{k3pkﬁ,} (2.51)

respectively. Again, the advantage of this coherence matrix is that its values may be related with
canonical scattering mechanisms easily. Nevertheless, since the lexicographic scattering vector
k,; and the Pauli vector k,p represent the same information, expressed in a different polarization

basis, the covariance and coherence matrices also contain the same information. In fact, they
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are related by the following expression [35]

1 0 o 1 1 1 0 o
1|1 0 o -1 o o 1 j
T=- C (2.52)
2101 1 o o o 1 —j
o j —j o 1 —1 0 O
1 o 1 1 1 o
1
T=-]1 o —1|C|lo o +2]. (2.53)
2
o V2 o | |1 —1 o

These matrices contain, in the diagonal elements, the RCS value of the distributed target in
the different channels, that is, the retrieved power at each combination of polarization states,
but, additionally, in the off-diagonal elements they contain information about the correlation
between the different elements of the scattering matrix, that are very useful for the PolSAR data

interpretation.

2.2.4 POLSAR DATA STATISTICS

In a distributed target scenario, as stated in the previous section, the useful information of the
target scattering process has to be extracted from its statistical characterization. The covariance
and coherence matrices have been defined in order to perform this characterization but, in a
real situation, these matrices have to be estimated from the data. Usually, the estimation of
the covariance matrix is performed by spatial averaging the matrices of n pixels, and is called
multilook. In the following, the estimated covariance matrix, also known as sample covariance

matrix, will be denoted as Z, and can be expressed as [102][77][117][60]
1 n
7 = (kk'), = - kkE. .
(k") = — ; i (2.54)

This matrix Z estimated over n samples is also referred to as n-look PolSAR data. Due to the
presence of speckle noise in the data, the sample covariance matrix Z will differ from the ideal
covariance matrix C, as defined in (2.48) or (2.49). It is worth to mention that the multilook
estimator corresponds to the Maximum Likelihood Estimator (MLE) of the covariance matrix.
The number of averaged pixels n also plays an important role here, as a large n value will produce
a better estimation of the ideal covariance matrix that characterizes the target [119]. On the
other hand, this spatial averaging may also be seen as alow-pass filtering in the spatial dimension

resulting, thus, in a spatial resolution loss. More specifically, this averaging only makes sense,
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from a statistical point of view, over homogeneous samples since spatial stationarity is assumed.
When it is performed over non stationary areas, a spatial resolution loss is obtained, as may
happen near contours or point scatters. Unfortunately, real data is strongly inhomogeneous,
as it reflects the complexity of the scene under observation and, then, a compromise between

speckle filtering and spatial resolution loss has to be made when applying the multilook.

Assuming that the scattering vector k is following a zero-mean complex Gaussian distribu-
tion, the probability distribution of the sample covariance matrix Z can be expressed as a com-
plex Wishart distribution. This distribution is characterized by the true covariance matrix C

and the number of samples averaged 1, and may be expressed as W(C, n) [60]

npn|z|nfp
p(2) = —=——

= |C|”fp(n) etr(—nC'Z) (2:55)

where etr(X) is the exponential of the matrix trace and

p
T,y(n) =z [[T(n—i+1). (2.56)
where p is the dimension of the k vector and I is the gamma function.

It is worth noticing that this distribution is only valid for full-rank Z matrices, as its determi-
nant \Z| appears on the numerator, which is zero for any degenerate matrix. As a consequence,
the Wishart distribution is only valid for n > p, requiring, thus, an averaging of, at least, p dif-

ferent samples.

In Section 2.1.4, the speckle noise has been described as a multiplicative noise over the single
channel SAR intensity image. The same concept may be extended to each element of the sample
covariance matrix Z. Following the same notation, each element of the scattering matrix S,,,, or

equivalently, of the scattering vector k may be expressed as

S; = /N exp(j6,) (2.57)

where N refers to the speckle noise, 0} is the local RCS and I refer to the polarization state index

of the scattering vector k. Then, for the estimated covariance matrix elements (S;S;)
(5:52) = (/5755 explj(61 — 0)) (NINT). (259)

According to the multiplicative speckle noise model previously stated for single channel SAR

image in Section 2.1.4, the component (N;N;) must have an expectation E{N;N;} = 1 when
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| = q. If it is assumed that this expectation is equal to zero for all other pairs | # g, then it will

result in a diagonal covariance matrix, which is generally not true [102].

This observation reveals that this expectation may not be considered as zero. In fact, this in-
formation is what allows a polarimetric interpretation of the covariance matrix by extracting the
different scattering mechanisms present in a distributed target, as it will be seen in the following
sections. An extension of SAR multiplicative speckle noise may be found in [88] for the polari-
metric case, based on the study of the complex hermitian product of a pair of SAR images. With

the same notation, each element of the single-look covariance matrix Z may be defined as
88y = 18, exp (j(61 — 85)) = zexpjo) (2.59)
which amplitude z and phase ¢ are following the probability distributions [117]

) = 4z 2|plz 2z 6o
P = G (<P(1 - W)) K (w - |p|2>> (2.60)
o () Y

w | G-ppr F

where p is the complex correlation coeflicient between the pair of images, ¢ represents the av-
erage power from both channels, calculated as ¢ = /010y, being 07 and o, the backscattering
coeflicients of the images S; and S, B is defined as p = [p| cos(¢p — ¢,) with ¢_ as the effec-
tive phase difference between the image pair, I, is the modified Bessel function of the first kind

whereas K is the modified Bessel function of the third kind.

Analyzing the speckle noise model for the difference phasor [79][77] it may be observed that
real and imaginary parts of the hermitian product of a pair of SAR images can be divided into

three additive terms
zexp(jp) = [zN. + (zv] + jzv,)] exp(jo_). (2.62)

Considering separately the contribution to the global noise of each one of the terms, a more
detailed speckle noise model can be derived for the hermitian product of a pair of SAR images,

as proposed in [88]

SIS; = ¢N.Z,ny, eXP(i‘Px) + ¢(lp| — Nez) eXP(j‘Px) + ¢(nar + jtai) (2.63)

where n,, is a multiplicative noise component associated with the first term, n,, and n,; are ad-

ditive noise components associated with the real and imaginary parts of the hermitian product,
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z, is the expected value of amplitude normalized of the hermitian product, obtained for the case
¢ = 1,and N, contains approximately the same information as the coherence |p|. Note that the

terms of (2.63) may be classified as

SISZ = ¢ONczyt, eXP(]"PxZ + ?(lP’ — Nez,) exp(jo, ) + ¢(na, + j"ai)j : (2.64)
Multipli;;ive term Addit;e term

Consequently, the first term of (2.63) is called multiplicative term, since the useful signal is
multiplied by a multiplicative speckle term n,,. The second and third terms are contaminated
by the additive components of the speckle noise n,, and n,;.

Finally, note that (2.63) may be considered as a generalization of the speckle noise model
obtained in Section 2.1.4, by making | = ¢, and, consequently, |p| = 1and ¢_ = o radians.
Then (2.63) is simplified to

S8, = |Si]* = ¢niy (2.65)

where ¢ = E{|S;|*}. As it can be seen, this result is consistent with the multiplicative speckle

noise model defined in Section 2.1.4.

2.2.5 THE PrRODUCT MODEL

The Wishart distribution, described in (2.5 5 ), characterizes the variability of the samples due to
the speckle term. However, more complex models have been defined in the literature in order to
take into account the effect of the texture, which represents the spatial variation of the scattering
parameters of the targets that are not perfectlyhomogeneous [ 16]. The most widely used model
for characterizing this additional variability is the product model [ 120][ 55 ]. This model assumes

that the obtained matrix Z may be expressed as a product of two independent random variables

Z=TW (2.66)

where W is following a Wishart distribution W ~ W(C, n), as described in (2.55), represent-
ing the variability due to the speckle noise, and T stands for the texture, being independent of
the polarization state and common for all the channels.

Note that the probability distribution of Z depends on the distribution of the texture T Dif-
ferent families of distribution may be employed for T, resulting into different types of distribu-
tions [16]. In [55], the generalized inverse gamma distribution is proposed for T, resulting into
the G° distribution. Other authors have proposed the employment of the gamma distribution
[78] or the Fisher-Snedecor [25], defining the K and the U/ distributions, respectively. Nev-

ertheless, although these distributions may represent more accurately textured areas, they are
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more difficult to estimate than the Wishart, as they are more complex and have a larger amount

of parameters, requiring more samples for a proper initialization and characterization.

2.2.6 H/A/a POLARIMETRIC DECOMPOSITION

Asmentioned in Section 2.2.3, the covariance matrix C or, in practice, its estimation, the sample
covariance matrix Z, characterizes the distributed targets scattering process under the Gaussian
hypothesis. However, these matrices may be difficult to interpret directly in order to relate their
information with physical target properties. Different polarimetric decomposition techniques
may be found on the literature for this purpose as, for instance, the Huynen [65 ], the Krogager
[72], the Cameron [29], the Freeman-Durden [54] or the TSVM [118] decompositions.
Another polarimetric decomposition, proposed by Cloude and Pottier [36], is based on the

projection of the coherence matrix T into the polarimetric base generated by its eigenvalues

p p
T = Z livivf{ = Z AT (2.67)

where A, > 1, > ... > A, are the ordered eigenvalues and v; are the corresponding eigenvec-
tors.

According to (2.67),the 3 by 3 coherence matrix, in the monostatic case, may be expressed as
a sum of three rank-one matrices formed by its unitary eigenvectors v,, v,, v;. Note that these
eigenvectors are expressed in the Pauli basis and, according to the eigendecomposition theo-
rem, the polarimetric basis they conform diagonalizes the covariance matrix. Consequently,
they correspond to the three statistically independent scattering mechanisms that may be found
within the distributed target and the eigenvalues correspond to their backscattering power.

Then, the Entropy H and Anisotropy A parameters can be defined as

3
H=> —Plog P, (2.68)
A, — A
A=223 6
Lo, (2.69)

where the pseudo-probabilities P; are defined as

A;
3 1

j=1%]

b, = (2.70)

Therefore, the Entropy H parameter indicates the degree of randomness of the scattering
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process, being equal to 1 when all the mechanisms are equally probable, that is, all of them have
the same reflected power, and equal to o when only one mechanism is present. On the other
hand, Anisotropy A gives an idea of the dominance of the second eigenvalue versus the third
one, in terms of the reflected power, as shown in (2.69). It ranges from A = 1 when there is no
reflected power for the third mechanism to A = o when the second and the third polarimetric

mechanisms have the same power.

The third parameter of the decomposition, the mean Alpha angle a refers to the weighted
average of the three different pure scattering mechanism angles a;. These angles come from the

first component of the eigenvectors, as expressed in
) ) ) T
v, = &% [ cosa; sina;sin ,Bl.efs" sin a; cos 3,7 (2.71)

fori =1,2,3.

Then, the mean Alpha angle a is defined as

3
a= ZP,’(X,’ (2.72)
i=1

where the angle a; refers to the type of reflection, from surface scattering a; = o° to volume
scattering a; = 45° and double bounds in conductive surfaces a; = 90°. Here a; refers to the
angle of the i-th eigenvector v; with the first component of the Pauli basis, as expressed in (2.71),

corresponding to surface scattering [36].

2.3 A REVIEW OF POLSAR SPECKLE FILTERING TECHNIQUES

As described in previous sections, for distributed targets, the sample covariance matrix Z has to
be employed to describe the polarimetric behavior of the targets of the scene. However, in order
to obtain a well defined (full rank) and reliable estimation of this matrix some degree filtering
is required. This estimation process is also known as speckle filtering, as it reduces the effect of
the speckle noise and provides a better estimation of the polarimetric information related with

these targets.

In this section some of the most well-known state-of-the-art speckle filtering techniques are

presented.
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2.3.1 BOXCAR / MULTILOOK FILTERING

The multilook filtering has been presented in Section 2.2.4 in the context of the sample co-
variance matrix estimation process from the data employing n different pixels, as described in
(2.54). Since it employs a rectangular window it is also called Boxcar filter. It is based on as-
suming local stationarity around the given pixel in order to average n pixels in the neighboring
window [119].

Boxcar filter is the fastest and the simplest speckle filter and, additionally, since it correspond
to the MLE of the covariance matrix, it does not introduce neither bias nor distortion over ho-
mogeneous areas. However, as it may be expected, the local stationarity hypothesis may not
hold over some areas. This is specially the case near contours or point scatterers, where the
multilook results may not be valid due to the mixture of different samples following distinct sta-
tistical distributions. In these situations, the Boxcar filter may also be seen as a low pass filter,
reducing, thus, the spatial resolution of these details and blurring these image features that are
not produced just by speckle noise. This effect is particularly apparent on strong point scatter-
ers, as they appear enlarged according to the window size. Then, as stated in Section 2.2.4, the
amount of speckle filtering achieved by the multilook is in compromise with the amount of spa-
tial resolution loss obtained. One example of the results obtained with this filter may be found

later on this chapter, on Fig. 2.7b, where it is compared with other filtering techniques.

2.3.2 LEE ADAPTIVE FILTERING

The mentioned problems of the multilook filter are produced when the local stationarity hy-
pothesis is not valid, resulting in a mixture of not homogeneous samples. To overcome these
problems, the Lee filter [74][80] was proposed as an adaptive filter to improve the precision
of the estimated coherence. It tries to adapt to the morphology of the scene by choosing one
averaging window from a set of eight predefined directional windows. These windows are rep-
resented in Fig. 2.6.

The window containing the set of most homogeneous samples is selected, according to the
sample dispersion among the average of the total power received, that is, the Span of the sample
covariance matrix Z. Then, the pixels within the most homogeneous directional window are

employed for the estimation of the covariance matrix Z employing the Local Linear Minimum
Mean Squared Error (LLMMSE)

Z=7+b(Z—-1) (2.73)
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Figure 2.6: The eight predefined directional windows in the Lee adaptive filter [80]. The
selected pixels are represented in white color.

where Z refers to the sample covariance matrix averaged over the selected directional window,
Z refers to the value of the sample covariance matrix for the central pixel and b € [o,1] is a

weighting factor calculated with the degree of local stationarity.

For the computation of the b factor, a multiplicative noise is assumed in the received power,
in the form

y =an (2.74)

where y is the value of the central pixel, x is the value we want to estimate and n represents the
multiplicative noise, with an expectation equal to one and variance 7. Then, the weighting

factor b can be calculated as

=) (73
and L
var(x) = vary) = y'ey (2.76)

1— 02
where y = E{y}

The idea is that over homogeneous areas var(x) = o, then b = o and Z=1, resulting in
the multilook filter over the selected window. On the other hand, over a point scatter or very
heterogeneous areas, when b = 1 then the estimated sample covariance matrix corresponds to

the central pixel value =1, resulting in preserving the original value and no filtering at all.

The set of directional windows are intended to preserve the edges of the image, whereas the
LLMMSE tends to preserve point scatters. However, the set of predefined windows allow a very
limited adaptation to the morphology of the scene. An example of the filtering results obtained
with the Lee adaptive filter may be seen in Fig. 2.7c. It is worth mentioning that, since it just
employs the span of the sample covariance matrix for window selection, only a small fraction of

the polarimetric information is employed.
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2.3.3 IDAN FILTER

The Intensity Driven Adaptive Neighborhood (IDAN) [125] represents a step forward respect
to the Lee filter in terms of adaptation to the image morphology. It is based on the concept of
removing the limitation of the predefined windows by defining an arbitrary set of homogeneous
adjacent samples for each pixel of the image. This set of samples is called the Adaptive Neigh-
borhood (AN) of the pixel under study and it is constructed employing the Region Growing
technique [4].

The adaptive neighborhood notion was firstly employed for processing medical images, as
introduced in [61]. A seed is generated for each pixel and, then, a neighborhood is constructed
employing the region growing process. This AN may have a variable shape and size and, ide-
ally, it contains only pixels with the same distribution than the seed. In the IDAN filter, the
seed is calculated by applying a median filter to the adjacent pixels to the pixel of interest, as
described in [125]. Note that the median filter is employed to avoid as much as possible the

spatial resolution loss.

Compared to the Lee filter, the IDAN has the advantage of being able to achieve a stronger
filtering and a better adaptation to the image structure. However, since intensity SAR images are
not following a symmetric distribution, as stated in Section 2.1.3, it introduces an important bias
over the estimated values due to the median filter [ 57]. This bias makes impossible employing
the IDAN filter for SAR applications employing quantitatively the estimated information. The
presence of this bias has been discussed in [ 127] and compensated up to a certain point by the

authors in [126].

To construct the AN for each pixel, the IDAN employs the region growing technique taking
into account the elements of the main diagonal of the sample covariance matrix, generating the

vector of power measurements p

Tu(m, n) pl(m, n
P(m= n) = Tn(ma ”) = pz(m7 ”) (2'77)
T,,(m,n) p,(m,n

where m and n are the coordinates of the image pixels.

The set of adjacent pixels are analyzed in order to retain within the AN only those pixels that

are within the interval of 2 times the CV around the seed

ek D) = p(mmll _ o (2.78)
1B,(m, m)]| #
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where p,(k, ) represents the pixel to add to the AN, p.(m, n) refers to the seed value and the
subindex i refers to each one of the three SAR intensity images, as defined in (2.77). The CVis
expressed as o'/, which is a standard parameter in intensity SAR images, as described in Sec-
tion 2.1.3, having a value equal to 1/ \/L_eq for homogeneous areas contaminated by speckle
noise, where L., represents the number of independent samples averaged.

A similar concept is applied in the Lee sigma filter [75] since, according to the multiplicative
noise model for intensity SAR images, the 95% of the samples are expected to be in this interval
of values. Then, this process is iterated for each component of the p vector until no more pixels
can be added to the AN or a limit number of pixels is achieved.

However, when computing the AN with this threshold, there is a high risk of generating
neighborhoods containing non-homogeneous pixels, as the established limit of 2 times the CV
may be too permissive. A refinement of this region growing process is proposed in [ 125 ], by ap-
plying it in two stages with different thresholds. In the first step, the AN is computed by adding
the pixels within the interval of 2/3 times the CV, corresponding to the interval where the 50%

of the samples are expected to lie

lpi(k, 1) = pi(m )| _ 20
1p;(m, n)]| Y

(2.79)

With this first step, the estimation of the seed is refined and then, a second step of region growing
is performed, according to the previous limit, as expressed in (2.78). Finally, once the neigh-
borhood is defined for each pixel, the estimated sample covariance matrix Z may be obtained by

applying the multilook filtering or the LLMMSE within the AN, as described in Section 2.3.2.

To illustrate the effect of the different speckle filtering techniques presented in this section,
Fig. 2.7 shows an example of an area of a PolSAR image and the results obtained with them .
Fig. 2.7a represents the original PoISAR image represented in the Pauli composition assigned to
RGB channels. The effect of the speckle noise can be seen as a granular texture over the image.
On Fig. 2.7b the 7x7 Boxcar multilook filter has been applied and an important reduction of the
speckle noise may be observed. However, all the contours and small details of the image appear
blurred, resulting a spatial resolution loss. Figs. 2.7¢ and 2.7d show results after applying the
adaptive Lee filter, defined in Section 2.3.2, and the IDAN filter, defined in this section. These
filters achieve a relatively good speckle reduction while also maintaining the spatial resolution

much better than the multilook filter. However, as it will be seen, they may introduce some bias

'The PolSARPro software [3] has been employed to process this data and for Pauli image generation. For
the IDAN filtering, a maximum AN size parameter of 100 pixels has been employed.
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(d)

Figure 2.7: PoISAR images filtered employing different speckle filters. The Pauli vector

Shv + Svh

k,p is represented, assigning its components to the RGB channels (|Su, + S,
‘Shh - va|)-

1 1

or distortion over the filtered images.

2.3.4 NON-LocAL MEANS FILTERING

Ashighlighted in the previous sections, the multilook filter, the adaptive Lee filter and the IDAN
filter are based on the spatial locality of the data. That is, they are assuming similar values may be
found in a close area around the given pixel. The adaptive Lee filter and the IDAN have defined
some mechanisms to refine this local area to adapt to the morphology of the scene but they still
rely on looking for them in a neighboring area.

The non-local means filter (NL-means) [28] is following a completely different approach,
by breaking with the idea of local stationarity, as its name suggests. It is based on a non-local
weighted average of pixels but, in contrast with the adaptive Lee or IDAN filters, these pixels are

not required to be in a neighborhood of the given pixel, and they may be located at any position
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of the image.

Given a discrete image v = {v(i)|i € I}, where I represents the set of pixel positions, the
NL-means filter for pixel at position i may be computed as the weighted average of all the image

pixels

NL(i) = > w(i. j)v(j) (2.80)

jeI
where the set of weights w(i, j) are selected based on the similarity between pixel at positions i

and j and satisfy the conditions

o <w(i,j) <1 Vijjel (2.81)
D wli,j)=1 Vi€l (2.82)
jer

Moreover, to compute the similarity between the pixels i and j, instead of employing their
values, the set of values around a patch or neighborhood of each pixel is employed. Then, this
similarity comparison does not only require two similar pixel values but also a similar context
around them. Mathematically, this may be expressed as

e (- =)

w(i,j) = 20 exp m (2.83)

where N; represents the set of neighboring pixels around the i pixel, Z(i) is the normalizing

constant, defined as

20 = 5 s (L 00 -
j
where h is a factor controlling the amount of filtering.

A representation of this patch based comparison may be seen on Fig. 2.8, where three pixels
at positions q1, g2 and g3 are compared with the pixel at position p. The neighborhood area is
represented as a square around each pixel position.

The NL-means filter has also been extended to process PolSAR data, as described in [42]. In
this case, the similarity between each pixel of a patch is computed based on the scattering vector

absolute value relations, being proportional to

K., IhJ) (Mu!\hﬁ> (MJ !hJ>
In < ~ 4+ — | +In ~ 4+ 22 ) +1n il (2.85)
Kaal T L ™ kasl [kl

where k, and k, refers to the scattering vectors of each one of the two pixels being compared
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Figure 2.8: NL-means similarity comparison. g1 and g2 obtain large weights w whereas g3
gets a smaller weight, as it is surrounded by a different neighborhood [28].

on the patch, k; ; refers to the j-th component of i scattering vector and In refers to the natural
logarithm.

Note that, similarly to the IDAN filter, it only exploits the information related to each channel
power information, and not the correlation between them, that is contained in the off-diagonal
elements of the covariance matrix. However, on [41] an iterative refinement of the filter is pro-
posed, which is also extended in [42] to take into account all the polarimetric information con-

tained in the coherence matrix T, based on the symmetric Kullback Leibler divergence
SDg. (T, T,) o tr(T*T,) + te(T,'T,) — 6. (2.86)

The NL-mean filter employs a neighborhood in order to compare the similarity between pix-
els and this effectively reduces the effect of the speckle noise in terms of the similarity compar-
ison. However, two similar pixels require also to be located in a comparable context in order to

be considered similar, resulting into sub-optimality in terms of filtering, as studied in [94].

2.4 A REVIEW OF POLSAR CLASSIFICATION TECHNIQUES

As mentioned in Section 2.2, SAR polarimetry enlarges significantly the amount of information
that can be extracted from the scatterer. Not surprisingly, terrain identification or classification
is, thus, an important application for PolSAR.

Classification techniques are usually divided into two main types: supervised and unsuper-
vised methods. In a supervised approach, a set of examples are manually provided for each class

and the most similar areas to these ones are obtained. On the other hand, unsupervised tech-
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niques are not provided with any kind of input data and, consequently, they try to extract the
most differentiated areas that may be found on the scene.
In this section, two of the most well-known and widely employed unsupervised PolSAR clas-

sification techniques are described.

2.4.1 H/A/a POLARIMETRIC CLASSIFICATION

In Section 2.2.6, the H/A/a polarimetric decomposition has been described. Moreover, its in-
terpretation shows that it is able to distinguish between some different physical targets. Then, an
unsupervised classification may be obtained by simply defining ranges of values for the H/A/a
decomposition parameters.

According to [36], the most distinctive traits are found in the Entropy (H) and the averaged
Alpha angle (a), then, nine different regions are defined according to these value ranges, as rep-

resented on Fig. 2.9.
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Figure 2.9: Feasible set of values for H and a polarimetric decomposition parameters and
the corresponding scattering classification regions [36].

The physical interpretation of the meaning of these zones and the main scattering mecha-

nisms that they represent may be described briefly as [36]

« Zone 9: Low Entropy Surface Scatter: this area is characterized by H < o.sand a <
42.5°. Typically, Bragg surface scattering and specular scattering are included in

this class. This is the case for water surfaces at L and P-Bands, for example.

« Zone 8: Low Entropy Dipole Scattering: having H < o.5and 42.5° < a < 47.5°.
This region represents isolated dipole scattering, having a large imbalance between

hh and vv polarizations states in amplitude.
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+ Zone 7: Low Entropy Multiple Scattering: when H < o.sand a > 47.5°. Corre-
sponds to low Entropy double or even bounce scattering occurrence, usually pro-

duced by isolated dielectric and metallic dihedral scatters.

 Zone 6: Medium Entropy Surface Scatter: definedbyo.s < H < o.9anda < 40°.
This class also represents surface scattering, as the class defined by Zone 9, but with

an increased level of roughness.

+ Zone 5: Medium Entropy Vegetation Scattering: representedbyo.s < H < o.9and
40° < a < 50°. Areas including vegetation scattering with anisotropic scatterers

will lie within this region.

+ Zone 4: Medium Entropy Multiple Scattering: in the case of 0.5 < H < 0.9 and
a > 50°. These parameters indicate dihedral scattering with moderate Entropy.
This situation may happen, for instance, when having dihedral scattering behind a

canopy, which increases the Entropy of the mechanism.

 Zone 3: High Entropy Surface Scatter: for H > o.9 and a < 40°. Note that this
area is not feasible, since it is outside the posible area, represented by the curve
in Fig. 2.9. This fact is a consequence of the disability of the radar to detect the

different scattering mechanisms when the Entropy increases.

« Zone 2: High Entropy Vegetation Scattering: describedby H > o0.9and 40° < a <
55°. Typically high Entropy volume scattering is produced at a = 45° and H =

0.95. In the case of forest canopies these type of scattering is obtained.

« Zone 1: High Entropy Multiple Scattering: distinguished byby H > o.9anda >
55°. Even in the case of high Entropy, double bounce scattering may be distin-
guished, which are represented by this class.

Asitmaybe seen, the previous H/a polarimetric classification yields to eight different classes.
The boundaries of these regions are not completely fixed and they will depend on the parame-
ters of the radar and the amount of filtering employed, as described in [36]. Moreover, an ad-
ditional distinction may be performed by taking into account the Anisotropy A parameter. In
this case, called H/A/a polarimetric classification, each of the previously defined classes may
be separated in two different groups, having A < o.sand A > o., resulting in a total of 16

different classes.
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2.4.2  WISHART CLASSIFIER

The H/a and H/A/a classifiers are useful to make a polarimetric classification of the scatterers
of a scene. However, this segmentation is completely pre-defined and, as stated before, it may
depend on the data and the amount of speckle filtering. Moreover, depending on the scene,
this type of pre-defined classification may not make sense, as some type of targets may not be
present on the scene.

The Wishart classifier tends to adapt the classification scheme to the given scene, solving
the previously mentioned disadvantages of the direct H/a and H/A/a classifiers. As its name
suggests, it is based on the Wishart distribution, defined in (2.55). Assuming that we have a set
of N classes, identified by their mean covariance matrices C;, for i € [1, N|, then the probability
of the sample covariance matrix Z of belonging to the class defined by C; may be obtained as

nP"|Z|" P _ ,
pe(Z) = ——=——etr(—nC;"Z)p(i). (2.87)
’ |Ci|"Ty(n)
where p(i) refers to the a priori probability of belonging to the class i.

The Wishart classifier, then, will assign the sample covariance matrix Z to class i having the

largest p (Z). In order to simplify the computations, the logarithm of (2.87) may be applied

before maximization, as the logarithm is an increasing function

In (Pci<Z)) =pnln(n) + (n—p)In|Z| —nln|C;| — ln(fp(n)) + tr(—nC;'Z) + In (p(i)) .
(2.88)

Additionally, if we assume that all the samples have an uniform filtering, that is, the equivalent
number of looks parameter 7 of the distribution is the same for all the samples, then the factors
depending only on n may be taken out from (2.88), as they are constant factors and do not play
any role in the maximization process. This is also the case for the term depending on the Z
determinant, being constant for all i class. Moreover, the a priori probabilities of belonging to

each class p(i) may be considered equal for each class, resulting into
In (pci(Z)) x —In|C;| — tr(C;'Z). (2.89)

Usually, the process of maximizing In (pci (Z)) is transformed into the minimization of its
negative — In (PC,-(Z)) , as all the probabilities are smaller than 1, resulting into negative log-

values. Then, the process of assigning the sample Z to the class i may be expressed as [81]

i =argmin In|Cj| + tr(C;"Z). (2.90)
j€[1,N]
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The Wishart classifier, as defined in [81], is a combination of the H/a classifier with an iter-
ative adaptation employing the Wishart cluster assignation as expressed in (2.90). The process

performed by the Wishart classification is described by the following steps:
1. Perform the H/a classification of the data as an initial step, to initialize the 8 clusters.

2. Compute the covariance matrix C; of each cluster i by averaging all the samples in each

region of the H/a classification.

3. Assign each sample covariance matrix Z of the image to the most probable cluster, ac-

cording to (2.90).
4. Re-compute each cluster covariance matrix C; according to the previous assignation.
5. Repeat steps 3 to 5 until a convergence criterion is fulfilled.

The convergence criterion employed in step § may be, for instance, to limit the number of
iterations that the algorithm may perform or to stop it when the number of samples that have
changed its cluster assignment is below a given percentage. Note that, since the algorithm re-
quires a robust initialization, the H/a classification is applied, which results into 8 different clus-
ters. Alternatively, the H/A/a classification may be applied, resulting into 16 classes. However,
no technique is described in [81] for an appropriate initialization with an arbitrary number of
classes.

To show the results obtained by the H/a classification and the Wishart classification tech-
niques, an example is included with ESAR system, at L-band, over the Oberpfaffenhofen test-
site, southern Germany. After applying some speckle filtering, employing the 9 by 9 multilook
filter, the Entropy (H) and the averaged Alpha angle (a) has been obtained and its values are
shown on Figs. 2.10a and 2.10b, respectively.

With the Entropy and the averaged Alpha angle presented in Fig. 2.10, the H/a classification
has been applied, described in Section 2.4.1, and the results may be seen in Fig. 2.11a. The H/a
plane of all the values of the image may be seen on Fig. 2.11b, where the color code employed
in Fig. 2.11ais also represented.

For comparison purposes, Fig. 2.12a shows the result of applying the Wishart classification
to the same dataset. In this case, a different color map than in Fig. 2.11a has been employed,
as the obtained classes do not correspond to the initial assignment in the H/a plane due to the

adaptation of the Wishart classifier.
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90°

(a) H/a classification (b) H/a plane

Figure 2.11: H/a classification (a) and H/a plane and color code (b) of the Oberpfaffen-
hofen image.

As it may be seen, some areas are more clearly separated on Fig. 2.12a than on Fig. 2.11a,

where the amount of noise observed over the classification results is larger. This noise is ob-

43



(a) H/a Wishart classification (b) H/A/a Wishart classification
Class Class 16

1 8
Figure 2.12: H/a Wishart classification (a) and H/A/a Wishart classification (b) of the
Oberpfaffenhofen image.

served due to some areas of the image presenting a polarimetric response in between two of
the H/a classes. When applying the Wishart classifier to the data, since it is able to adapt to
the content of the image, this boundary effect is reduced. Additionally, Fig. 2.12b presents the
results after applying the H/A/a Wishart classification, resulting into 16 classes. In this case,
further details of the image are observed, specially on the bottom part of the image, as a larger

number of classes are available.
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All fixed set patterns are incapable of adaptability or plia-
bility. The truth is outside of all fixed patterns.

Bruce Lee

Binary Partition Tree

THE BINARY PARTITION TREE (BPT) data abstraction is presented in this chapter. At this point,
this structure is described from a generic point of view, without entering into the details of the
underlying data. On the following chapters, the BPT will be particularized to represent and
process PolSAR images and temporal series.

First of all, the basic concepts of the BPT and the motivation for its adoption are discussed.
A general BPT based processing scheme is proposed based on two main steps: the BPT con-
struction from the original data and its exploitation for different applications. Secondly, the al-
gorithms for performing these processing steps are described, performing a brief analysis of the
computational complexity of these methods. Finally, a few thoughts are commented regarding

the limitations of the BPT for data representation.

3.1 THEBPT AS A DATA ABSTRACTION

The Binary Partition Tree (BPT) may be considered as a region-based and multi-scale data rep-
resentation [109]. Hence, in contrast with a pixel-based approach, where a rectangular array

of pixels is assumed, the basic entity of this data abstraction is a connected area of the data,
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grouping adjacent pixels or elements with similar properties. Additionally, it is a hierarchical
structure being able to describe the data at multiple scales and also to provide ordered access
to subsets of regions. In the following sections, the BPT structure and the different concepts

related with this abstraction will be presented.

3.1.1 REGION-BASED APPROACH

The BPT, as mentioned before, is a region-based data representation. As opposite to a pixel-
based method, where a rectangular array of pixels is assumed, on a region-based approach the
data is represented by a set of connected regions, and each region is processed independently,
being the basic entity of the processing paradigm.

A region may be seen as a set of connected elements of the data that may be considered similar
under some criterion. Note that this definition implies the selection of a connectivity scheme
for the dataset. In image processing, for instance, when dealing with 2-dimensional data, the
4-connectivity or 8-connectivity are the typical choices. Under this assumption, a connected
region is a region on which any pair of data elements contained are connected through a path
that lies completely within the region itself.

On a pixel-based processing approach, the assumption that is usually performed behind is
the local stationarity. That is, it is presumed that pixels that are close in the spatial domain will
also present similar values. Then, the data portion within a local window around a given pixel
may be considered as stationary and, as a consequence, the samples within this window may
be processed jointly. This approach usually fails near contours or for small details of the scene,
where the local stationarity approach may not hold. On the other hand, the region-based ap-
proach is based on the idea that, although data are not stationary, they may be decomposed into
stationary connected components or regions, which may be processed individually and inde-
pendently. As it may be seen, this assumption is more general and flexible, being able to adapt
to regions of different sizes, taking profit of large amount of data for a reliable estimation of data
parameters on large regions, while also preserving the small details or the contours within the
data. In fact, the decomposition of the data into connected components or regions conforms a
data segmentation itself, being very useful for data processing and interpretation.

The difficulty derived on the region-based processing paradigm is that it has to rely on a trust-
worthy division into stationary connected components. The construction of this division may
be a very complex task, requiring a large amount of computational resources and a complicated
data modeling. In this scenario, the BPT simplifies this task by performing this division au-
tomatically, in terms of a metric measure, while also being efficient, by applying a divide and

conquer algorithm strategy.

46



3.1.2 HIERARCHICAL MULTI-SCALE APPROACH

As mentioned before, the BPT data representation has an inherent multi-scale nature. It con-
tains all the information in the original data plus additional information related to its structure
at different detail levels. The BPT is intended to be a generic data representation, being useful
for different applications. To achieve this goal, a data separation into stationary connected com-
ponents may not be enough, as distinct applications will require a completely different region-
based decomposition. As a consequence, in order to produce a generic structure, it must con-
tain the decomposition into stationary connected components at different scales.

However, if the division of a dataset into its connected components is a difficult task, the need
of performing it in a multi-scale basis may turn the problem intractable. Fortunately, this is not
the case for the BPT construction process, where its multi-scale essence comes out naturally.
As indicated before, the BPT may be constructed in an efficient manner by a divide and con-
quer strategy, by recursively breaking the complex problem into smaller parts until they become
tractable. Consequently, during the construction process the algorithm traverses over a wide
range of region sizes, covering from the individual elements to very large areas of the dataset.
The BPT, then, is constructed by keeping track of all this intermediate results, arranging all this
information hierarchically conforming a binary tree, which describes connected regions of the

data with similar properties at different scales.

3.1.3 THE BPT STRUCTURE

To enter into details on this binary tree structure, some basic notions about graphs and graph
theory will be presented in the following. Graphs are a representation of a set of objects having
some relations between pairs of them. From a formal point of view, a graph G may be seen as a
mathematical structure consisting of a set V of vertices or nodes and a set E of edges or lines, and
itis denoted as G = (V, E) [63]. The set of edges E contains 2-element subsets of V, since an
edge is related with two nodes. In this work only undirected graphs will be considered, which
means that the edges of the graph do not have a particular direction and then, the set E can be
defined as an unordered pair of vertices. Fig. 3.1 shows a representation of a simple graph with
4 vertices and 4 edges.

A weighted graph is a graph on which each edge has a value, i.e., a weight, associated. A sample
representation of a weighted graph is presented in Fig. 3.2.

In this context, a tree is a special case of graph, in which every two nodes are connected by

exactly one path. This means that there are no cycles inside a tree, also known as closed paths,
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Figure 3.1: A graph G = (V,E) representation with V.= {A,B,C,D} and E = {{A, B},
{A,C}, {A,D}, {B,D}}.

Figure 3.2: A weighted graph G = (V, E) representation, having V.= {A,B,C,D} and
E = {{A?Bv 1}7 {Aa C, 7}7 {A,D, 5}> {B7D7 17}}-

and that a tree is a connected graph, having a path that connects any pair of nodes. Typically,
trees are employed to model hierarchies and, consequently, they are represented in a top-down
scheme. Then, a root node has to be defined, which is the highest level of the hierarchy, usually
represented on top of the drawing. The other nodes connected to each node are represented in
alevel below it and, according to the hierarchy simile, they are called its sons. The nodes of the
tree having no sons are called leaves. Fig. 3.3 shows a representation of a tree with 4 leaves and
6 nodes.

Assuming the previous definition of a tree, Property 3.1 may be deduced [63].

Property 3.1 A tree with n nodes has always n — 1 edges.

Figure 3.3: A tree representation having 4 leaves {C, D, E,F}. The root node A has 2
sons {B, F} whereas the node B has 3 sons {C,D, E}.
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A binary tree is a special case of tree having exactly 2 sons per node except for the tree leaves.
In this case, the two sons can be named left and right sons. Fig. 3.4 represents a binary tree with
4leaves {A, B, C,D}.

Figure 3.4: A binary tree representation.

Due to the mentioned restrictions that apply to binary trees, Property 3.2 may be employed

to relate the number of nodes and edges on a binary tree with the number of leaves.

Property 3.2 A binary tree with n leaves has 2n — 1 nodes and, applying Property 3.1, 2n — 2 edges.

As stated before, the BPT is a hierarchical data representation structured in form of a binary
tree. As a region-based approach, each node of the tree represents a connected region of the
original data. The leaves of the tree represent each one of the original data elements whereas
other nodes represent the merging of its two child nodes. Consequently, by applying this def-
inition recursively, the root node of the tree represents the whole dataset. Between the leaves
and the root nodes there are a wide number of regions representing the data structure at dif-
ferent detail levels that can be exploited for different applications. Fig. 3.5 represents a BPT
generated from a 4-element {A, B, C, D} dataset, corresponding to the tree leaves.

Note that the BPT is not a balanced tree, and then regions with arbitrary sizes in terms of the
original dataset elements contained may be merged to generate the parent node. For instance,
in the BPT representation presented in Fig. 3.5 this effect can be clearly seen by the fact that the
leaves {A, B, C, D} appear at different levels of the tree.

3.1.4 BPT BASED PROCESSING SCHEME

Once the BPT data abstraction has been constructed, it may be employed for different appli-

cations, as described before. However, the extraction of useful information from the BPT re-
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(a) Original data (b) BPT rep-
elements resentation
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Figure 3.5: BPT representation of a dataset containing 4 elements {A, B, C,D}.

quires a completely different approach than processing the original data in terms of pixels since,
instead of them, a binary tree has to be exploited. Usually we are interested in obtaining a result
in the same domain than the original data. In this case, the BPT exploitation may be seen as the
selection or extraction from the tree of the most useful or interesting regions for a particular appli-
cation. Then, the BPT exploitation may be performed by a tree pruning algorithm, as proposed
on [109], considering the leaves of the pruned tree as the selected regions.

Consequently, the data processing scheme based on the BPT representation may be decom-
posed into two main steps: the BPT construction and the BPT exploitation. Fig. 3.6 represents

this two main steps of the mentioned processing scheme.

BPT-based processin i
g & Prurnng s —» Results 1
application 1
Data Construction
BPT Pru_nlng 2 Results N
, application N

Application independent Application dependent

Figure 3.6: BPT-based processing scheme.

It is worth noticing that the BPT construction process may be seen as application indepen-
dent, in the sense that it does not depend on the final application on which it will be employed.
The idea of the BPT, as presented before, is to be a generic data representation. The BPT con-
struction process, which is presented in detail in the following section, only exploits the internal

relationships within the data being, consequently, independent of the final application. Hence,
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the BPT has to be constructed only once per dataset which is also an advantage since it is the
step that has a larger computational complexity of the processing chain.

On the other hand, the BPT exploitation or pruning, as presented before, may be seen as
application dependent since it looks for useful regions for a particular application. Then, once the
BPT has been constructed for a specific dataset, it may be employed for different applications
through different pruning processes. This is an important fact about the proposed processing
scheme since usually the BPT pruning is the fastest step of the presented chain.

This separation of the processing procedure into two parts has some other attractive impli-
cations. Note that this scheme decouples the application independent and the application de-
pendent part of the processing chain. As a consequence, if each application is defined in terms
of a BPT pruning pruning process, it allows the generalization of the application rationale from
the original data space. Therefore, the same pruning process may be exported to a completely
different data domain for which the BPT structure has been constructed and is available. In
other words, the application rationale is defined and generalized in terms of the BPT abstrac-
tion being, then, independent of the data. Some examples of this generalization capability will

be seen on Chapters 4 and s.

3.2 BPT CONSTRUCTION

The previous sections have described the BPT structure and how it may be interpreted. Addi-
tionally, a basic processing scheme has been outlined on Fig. 3.6 which is based on two main
steps: the BPT construction and its exploitation through a tree pruning. In this section, the BPT
construction process will be described in detail, that is, the procedure to generate the structure
presented on Fig. 3.5b from the original dataset, shown on Fig. 3.5a.

A direct approach to face this process will be to start from the root node of the tree, the whole
dataset, and start to divide it recursively into two smaller regions up to the single data elements,
conforming the leaves of the tree. This approach may be seen as a top-down approach, since it
starts from the root node, represented at the top of the drawing, to the leaves of the tree, at the
bottom. Note that, in this case, the two smaller regions must be connected regions and mutually
disjoint in order to preserve the BPT structure as defined before.

However, this top-down approach may present some difficulties to be implemented. Given a
region, the number of possible divisions may become extremely high even for small regions and,
moreover, there is not a clear way to define or perform the optimal division at each step. Instead
of this approach, a divide and conquer strategy is proposed, splitting this large problem into

smaller ones until they become tractable. Divide and conquer is a well-known paradigm in al-
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gorithm design', and merge sort [56] or Fast Fourier Transform (FFT) [38] are two common
examples. When pushing this idea to the limit we arrive to the individual data elements and,
then, the construction may be proposed from a bottom-up approach. In this approach, starting
from the individual data elements, two adjacent regions are merged to generate a larger one at
each construction step until the root node is generated. This approach is more feasible compu-
tationally, since the number of adjacent regions is smaller than the number of possible divisions
for a given region.

Consequently, an iterative BPT construction algorithm was defined in [ 109], based on the
aforementioned bottom-up approach. Note that, in this algorithm, the sequence of regions that
are merged during the construction process completely defines the final BPT obtained. This
sequence is called the merging sequence. On the example presented in Fig. 3.5, for instance, the
merging sequence will contain the original leaf nodes and the sequence of pairs of adjacent re-
gions that are merged: ({A, B, C, D}, (B,D)|(E, C)|(A, F)).

In order to obtain a meaningful BPT abstraction, some criterion has to be employed to de-
cide which pair of regions should be merged at each construction step. If we want a data repre-
sentation containing regions representing areas with similar values, a similarity criterion may be
employed. With this in mind, a BPT construction algorithm was proposed in [109], based on
merging at each iteration the two most similar neighboring regions. This involves the evaluation

of the similarity between regions, which is conceptualized as a similarity measure.

3.2.1 REGION MODEL

Since each node of the tree represents a region of the original data, a region model is introduced
into every node, to describe the useful information contained within and to characterize the
region. From a computational point of view, this region model is a descriptor of the region,
avoiding the need to visit all the single elements of the region in order to characterize it, which
would be very inefficient.

This region model should ideally be complete enough to be able to represent properly all
the regions within the tree, ranging from single element regions, the tree leaves, to the whole
dataset, the root node. The definition of this region model can be an arduous task but, in fact,
a good region model is essential to obtain a good BPT data representation, as it will be seen on

the following sections.

!"The first known divide and conquer algorithm is considered to be the Euclidean algorithm, to compute the
greatest common divisor of two numbers, which is dated about 375 BC.
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3.2.2 DISSIMILARITY MEASURE

The similarity measure conceptualizes the amount of similarity between two adjacent regions.
Since each region is described by a region model, the similarity measure d is defined on the
region model domain space d : X X X — R, where X represents the region model domain.
As mentioned before, the role of this similarity measure d is to guide the BPT construction
algorithm to obtain a meaningful representation, by defining the merging order. Mathemati-
cally, a metric or distance measure are typical choices for this purpose in similar applications.
However, for the BPT construction process, we are interested only on the ordering they define
over the possible merging choices, not on their current values. Taking this into account, this
measure may be considered to be more similar to an heuristic function, typically used in mathe-
matical optimization or search algorithms. As a consequence, the mathematical properties of d
may be relaxed with respect to a distance measure and, henceforth, it will be called dissimilarity

measure [ 17]. Then, the following properties are assumed for a dissimilarity measure
1. d(A,B) > d, (generalized non-negativity)
2. d(A,B) = d, < A = B (identity of indiscernibles)

3. d(A,B) = d(B, A) (symmetry)

3.2.3 CONSTRUCTION ALGORITHM

As mentioned before, the BPT construction algorithm is based on merging at each iteration
the two most similar adjacent regions. To model the concept of adjacency or neighborhood
between the different regions, a Region Adjacency Graph (RAG) is employed [108]. OnaRAG
each node represents a connected region and each edge represents the neighborhood relation
between two regions. Additionally, the edges are weighted employing the dissimilarity measure
d described before, to indicate the similarity between the regions. Then, for each pair of adjacent

regions A and B an edge is added to the RAG W having as weight d(A, B), as shown on Fig. 3.7.

O n®

Figure 3.7: Weighted Region Adjacency Graph. An edge is added for every neighboring
relation weighted by the dissimilarity measure.

In order to construct the BPT, as an initialization step, the RAG W has to be constructed

from the original data. Algorithm 3.1 describes the algorithm for the construction of W from
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the original dataset D employing the dissimilarity measure d. The first loop of the algorithm
initializes the RAG by inserting all the nodes whereas the second loop introduces all the edges

between them.

Algorithm 3.1 RAG generation algorithm

Require: dataset D, dissimilarity measure d
Ensure: RAG W is generated
1: for each element i € data_elements(D) do
2: I < create_node(i)
3 add_node(W, I)
4: end for
s: for eachnode I € nodes(W) do
6: for each node K € neighborhood(I) do
7 e < create_weighted edge(I, K, d(I,K))
8 add_edge(W, e)
9 end for
10: end for

Once the RAG W has been constructed, the BPT construction algorithm, as described be-
fore, may be performed. This process is detailed on Algorithm 3.2, where B represents the BPT
structure. The first loop initializes the BPT with all the nodes of W that will become the leaves
of the final BPT generated. Then, at each iteration the edge e having the smallest weight is se-
lected and the two corresponding regions A and B are merged to generate a larger node F, that
will become their father node on B. Accordingly, the RAG W gets updated to represent this
new state by removing A and B and inserting F. All the other edges involving A or B have to be
updated to point to the father node F, indicating that F is a neighbor of all the adjacent nodes of
A and B. Finally, this process is repeated until no adjacent regions are found on W, that is, there
are no more possible region merges.

Fig. 3.8 represents all the states of W and B during the described BPT construction as de-
scribed in Algorithm 3.2 for the example represented on Fig. 3.5. At each state, the edge from
W with the smaller weight has been colored in blue, to represent the edge e that is selected and
whose nodes are merged by the algorithm at each step.

The complexity [ 5] of Algorithm 3.1, induced by the second loop, may be considered to be
O(k,n) = O(n), where nrepresents the number of elements in the dataset D and k, is a constant
indicating the number of neighbors per element. This k, is defined by the connectivity scheme

which, in most cases, may be considered to be a constant number for each element.
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Algorithm 3.2 BPT construction algorithm

Require: RAG W, dissimilarity measure d
Ensure: BPT B is constructed

1: B+ ()
2: for each node K € nodes(W) do > Initialize B
3: add_node(B, K)
4: end for
s: while edges(W) # () do > BPT construction
6: e < min(edges(W))
7 A, B < nodes(e)
8 F < merge(A, B)
9: add_node(W, F)
10: for each node K € (neighbors(W, A) U neighbors(W, B)) \ {4, B} do
11: n <— create_weighted edge(F, K, d(F,K))
12: add_edge(W, n)
13: end for

14: remove _edges(W, edges_from(A) U edges_from(B))
15: remove_nodes(W, {A, B})

16: add_node(B, F)

17: | < create_edge(F, A)

18: r < create_edge(F, B)

19: add_edge(B, 1)

20: add_edge(B, r)

21: end while

According to Property 3.2, a BPT with nleaves will have 21 — 1 nodes in total. Consequently,
n — 1 nodes have to be generated during the construction algorithm. Then, the second loop
of the Algorithm 3.2 will last for n — 1 iterations, since one node is generated at each iteration,
being the father node of the two selected regions. However, note that on this loop the search
for the minimum edge and the update of W is performed. This task may require an inspection of
all the edges, having a complexity O(n), raising the total complexity of the algorithm to O(n*).
Alternatively, a search structure may be employed in order to sort and find arbitrary edges more
efficiently, having O(log ) computational cost. It is worth noticing that, when employing this
search structure, the complexity of Algorithm 3.1 raises to O(n log n). Nevertheless, in this situ-
ation, the complexity of the BPT construction algorithm is reduced to O(k,n log n) which may
be considered to be O(nlogn) if the amount of neighboring regions per regions may be con-
sidered bounded by a constant factor k, along the whole construction process. In fact, this is
the case if the BPT construction is constructed properly, since regions of similar detail scale are
present among the whole process. In order to achieve this goal, the region size is a term that

has to be taken into account when defining similarity measures, as it will be described in the
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Figure 3.8: BPT construction process step-by-step. RAG and regions for each step is also
represented. The edge for the two most similar regions is colored in blue.

following chapter.

It is worth to mention that the O(nlogn) complexity is attained assuming that all the op-
erations performed during the BPT construction presented in Algorithm 3.2 are executed in

constant time, including the merge operation. That is, the region model of the generated node
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may be computed in constant time taking into account the region model of its two son nodes.
In the event that the region model computation of the merged region could not be calculated
efficiently this way, the total cost may raise to O(n*), increasing considerably the complexity
of the algorithm, probably resulting in being intractable for large images. This may happen, for
instance, if the region model computation requires the inspection of all the individual elements
of each region. Thus, the region model computation efficiency is something to be taken into
account. The region models that will be employed in this work are considered efficient in the

sense that they produce a global O(nlogn) complexity.

3.3 BPT EXPLOITATION

The previous sections have described the process of generating the BPT structure from the orig-
inal data. This structure is intended to be an abstract representation of the dataset, containing
also additional information related to its structure at different detail levels. Once it has been
constructed, the ultimate objective is to employ it to extract useful results for different applica-
tions. As mentioned before, this BPT exploitation process is completely application dependent,
since itlooks for meaningful regions for a particular purpose. This process may present some dif-
ficulties, as the BPT is larger and more complex than the original data. However, its hierarchical
structure encourages an agile navigation within it and the definition of efficient algorithms for
this purpose. In the following section, a generic algorithm will be described intended to extract

from the BPT the most useful or interesting regions for a particular application.

3.3.1 TREE PRUNING PROCESS

As mentioned previously, a tree pruning process will be considered for BPT exploitation. Com-
putationally, it may be seen as a tree simplification in order to remove some branches represent-
ing small details of the data that are not relevant for the application. From a practical point of
view, this process may also be seen as a node selection from the tree, that is, the extraction of the
most useful or interesting regions from the BPT structure [ 109]. It is worth to mention that the
BPT structure is not modified during this tree pruning process, as we are just interested in the
leaves of the pruned tree, which are obtained from the BPT with this process. Then, the same
BPT may be employed for many different prunes for distinct applications.

In this context, a pruning criterion Y has to be defined to conceptualize this notion of useful-
ness. A region X, then, may be considered as useful if Y (X) evaluates to true. The BPT pruning
process will look for regions that fulfill Y within the tree. However, in order to construct a valid

tree pruning, the following conditions should be considered:
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1. Each element of the original data has to be assigned to a pruned region. This condition

may also be seen as that the set of pruned regions must cover the whole dataset.

2. All the pruned regions must be mutually disjoint, that is, each element only corresponds

to a single pruned region.

In practice, it may happen that within the same tree branch different subnodes have distinct
behavior in terms of Y, as it may be seen on Fig. 3.9a. In Fig. 3.9 the nodes that fulfill Y are
colored in blue, whereas the nodes that not fulfill it are represented in red. As it may be seen,
the L node, for instance, fulfills Y (L) whereas its son node K does not. Some criterion has to be
defined, according to the pruning conditions previously stated, in order to determine the tree
pruning for these situations. This selection problem will be called the pruning decision problem.

Two main possible solutions are considered:

« On the one hand, the larger regions from the tree may be pruned that fulfill the criterion
Y. Note that this process is equivalent to start from the root node and, navigating to the
leaves, prune the first nodes found that fulfill Y. Accordingly, this process may be called
top-down tree pruning, and it is represented on Fig. 3.9b. As a consequence, the larger

regions from the dataset fulfilling Y will be obtained with this pruning.

« On the other hand, a region may be selected for pruning if and only if it and all of its
subnodes fulfill Y. This process may also be seen as, starting from the leaves of the tree
and navigating to the root node, prune the first nodes those father nodes do not fulfill
Y. Therefore, this process will be called bottom-up tree pruning, and it is represented on

Fig. 3.9c.

In general, the top-down tree pruning may seen as the pruning process that produces more
filtering, as larger regions from the tree are obtained, whereas the bottom-up pruning may be
seen as the one that preserves more details, as its pruning requirements are stricter, resulting
in smaller pruned regions. This effect may be clearly observed when comparing Figs. 3.9b and
3.9¢. As it may be seen, on the top-down BPT pruning the node L gets pruned as it fulfills Y(L)
whereas on the bottom-up pruning it cannot be pruned as one of its sons, the K node, does not
fulfill it. On the other hand, the I node may be pruned as all of its subnodes fulfill Y.

It is worth to mention that the region-based processing of the BPT is related with connected
operators and morphological image processing techniques [110]. In fact, the pruning decision

problem is produced when the pruning criterion Y is non-increasing. A criterion may be math-
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(b) Top-down pruned BPT (c) Bottom-up pruned BPT

Figure 3.9: BPT pruning processes. Nodes that fulfill Y are colored in blue, whereas
nodes that not fulfill it are colored in red.

ematically considered increasing if
VR, €R,: Y(R,) = Y(R,). (3.1)

Additionally, the top-down and the bottom-up pruning strategies correspond to the Min-rule

and Max-rule, respectively, as defined in [14].

The top-down BPT pruning process may be implemented in an efficient manner, as described
in Algorithm 3.3. In this algorithm, the BPT B is traversed in a depth-first search. Starting from
the root node R, each node A of the tree is checked for the pruning criterion Y (A). If the node
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Atulfills Y, itis included into the set of pruned nodes ©, otherwise the two child nodes of A are
checked. This process is repeated until a node fulfilling Y or a tree leaf is found. Note that the
need to include a tree leaf even in the case it does not fulfills Y is mandatory to guarantee that
each element of the dataset is assigned to a pruned region (pruning condition 1, defined before

in page 58). For instance, on the example presented in Fig. 3.9b, the set of pruned regions will
be® = {A,L.H,I,G}.

Algorithm 3.3 Top-down BPT pruning algorithm

Require: BPT B completely generated with root node R, pruning criterion Y

Ensure: The set © contains the pruned regions
1 @« 0
2: Q« {R} > Initialize queue Q with root node R
3: while Q?é @ dO

4: K < extract_first node(Q)
5 if Y(K) oris_leaf(K) then
6: 00U {I(}
7 else
8: A, B < sons(B, K)
9: Q<+ QU{A,B}
10: end if

11: end while

The bottom-up pruning process may be performed in a similar manner, starting from the
leaves of the tree and navigating upwards to the root node R. For each leave node A it will navi-
gate through the ancestor nodes until a node J not fulfilling the pruning criterion Y (J) is found.
The pruned node, then, will be the ancestor just before J. In this case, as the pruning process
starts from all the leaves of the tree, the first pruning condition stated before is automatically
achieved. However, the bottom-up approach requires a more complicated mechanism in order
to ensure that the set of pruned regions corresponds to a disjoint segmentation of the original
dataset. It is possible that different nodes get selected for pruning, coming from the bottom-up
traversal starting at different leaves, over the same branch, resulting in the undesirable situation
that one pruned region contains the other, as represented in Fig. 3.10.

As it may be seen in Fig. 3.10, when starting the bottom-up pruning process from leaf node
L,, the first region selected for pruning is node B, as all the ancestor nodes from L, to B fulfill
Y. Note that, since father nodes are generated by the merging of its two child nodes, all the
ancestors of a given node contain the region represented by this node. More formally, for each

node K of the BPT VF € ancestors(K) : K C F. When starting the pruning process from L,
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Figure 3.10: Situation when bottom-up BPT pruning may select two non disjoint regions.
Nodes that fulfill Y are colored in blue, whereas nodes that not fulfill it are colored in red.

a node is found not fulfilling Y before arriving to B and, then, node A is selected for pruning.
However, since the Bnode is a common ancestor with A, two regions A and B have been selected
for pruning having A C B which do not fulfill the second pruning condition, as they are not

mutually disjoint.

On the situation presented in Fig. 3.10, the node B may not be pruned, as it contains nodes
not fulfilling the Y pruning criterion. Nonetheless, this situation may not be observed until the
pruning process has been started from all of its leaves, in order to inspect all of its subnodes. To
circumvent these situations, an additional verification step in the pruning algorithm is proposed
in order to verify that the selected pruning region is disjoint (pruning condition 2, defined be-
fore in page 58). First, when a node A is pruned all of its ancestors are marked as non-eligible,
as they represent regions containing some of the already pruned ones. Secondly, if during this
step a node B is found which has been previously selected for pruning, it is replaced by the set
of sibling nodes § of all the ancestors from A to B. Note that S are the larger possible nodes that
cover the B region without including the A region, that is, the region represented by S U {A} is
covering the same area than B. Fig. 3.11 shows the proposed verification process when applied
to the previous situation and Algorithm 3.4 describes the proposed bottom-up pruning process

that ensures mutually disjoint pruned regions.

The complexity of the top-down BPT pruning algorithm is O(n) at most, where n repre-
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Figure 3.11: BPT disjoint verification process performed during bottom-up pruning af-
ter node A gets selected for pruning. Nodes selected for pruning set are filled with blue,
whereas nodes marked as non-eligible are filled with red.

sents the number of nodes in the BPT, as it is traversing through the BPT nodes only once.
On the other hand, the bottom-up tree pruning algorithm has a complexity that is not so ob-
vious to compute, due to the disjoint verification process. Note that all the nodes above the
final pruned set © get traversed only once, as they are properly marked as non eligible by the
first node pruned within, and subsequent verification processes stop when a non eligible node
is found. However, the nodes below the pruned ones may be traversed more than once, result-
ing in computational cost of O(nlogn), assuming that the tree is not unbalanced, or O(n*) in
the extreme case of an unbalanced tree. This increased computational cost is produced due to
the fact that the process is initiated on each leaf of the tree, resulting in repeated navigation over
some paths. To make it more efficient, it may be implemented in a top-down fashion, employ-
ing a recursive Depth First Search (DFS) [s0] over the tree, in order to avoid path repetition
%, This concept is employed in Algorithm 3.5, which, in fact, produces exactly the same results
than Algorithm 3.4. In this case, the complexity is reduced to O(n) as each node is traversed

only once thanks to the recursive scheme of the DFS. However, this algorithm is more complex

*The first known version of DFS was developed during the 19th century as an strategy to solve mazes [43]
by French mathematician Charles Pierre Trémaux.
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Algorithm 3.4 Bottom-up BPT pruning algorithm

Require: BPT B completely generated with root node R, pruning criterion Y

Ensure: The set © contains the pruned regions
1 @<« 0
2: N, < 0 > Set of not eligible nodes
3: for each node K € leaves(B) do

4 while K # R and Y (father(B, K)) and father(B, K) ¢ N. do > Find pruning node
5t K < father(B, K)
6: end while
7 O+ 00U {K}
8: S« 0 D> Set of sibling nodes
9: while K # R and father(B, K) ¢ N, do > Disjoint verification process
10: S$ < S Usibling(R)
11: K < father(B, K)
12: N. < N. UK
13: if K € © then
14: © < (©@\ {R})US > Replace previously selected node for pruning by S
15: end if
16: end while
17: end for

to understand since it follows a different approach than the intuitive idea behind a bottom-up
approach and, consequently, the previous algorithms and examples are provided in order to

better understand the rationale of the bottom-up pruning concept.

3.4 BPT LIMITATIONS

As mentioned in previous sections, the BPT is intended to be a generic region-based and multi-
scale data abstraction. In section 3.2.3 an algorithm has been defined for BPT construction
from the original data. This algorithm is based on the merging at each iteration of the two most
similar neighboring regions. Note that this scheme corresponds to the selection at each step of
the locally optimal decision. Then, this algorithm may be considered as a greedy algorithm [39].
However, it is worth to mention that the selection of the locally optimal decision at each step
does not necessarily produce a global optimum solution. This strategy is usually performed in
order to produce an approximation of the global optimum solution for complex problems at a
reasonable time. Nevertheless, a greedy algorithm only found the global optimum solution if

the problem has optimal substructure, that is, an optimal solution can be constructed efficiently
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Algorithm 3.5 Bottom-up BPT pruning algorithm implemented as a top-down Depth First

Search

1: procedure Borrom uP_ PRUNE(B, Y, R)
Require: BPT B completely generated with root node R, pruning criterion Y
Ensure: The set © contains the pruned regions

2: O @

3 N, «+ 0

4 DFS RecursiviE PRUNE(B, Y, ®, N,, R)
s: end procedure

6: procedure DFS RECURSIVE_PRUNE(B, Y, ®, N, K)
Require: BPT B completely generated, pruning criterion Y

Ensure: Pruned nodes within K are added into © set and N, gets updated accordingly

7: if is_leaf(K) then > Base case
8: if not Y (K) then
5 ® + 0 U{K}
10: end if
11: else
12: A, B < sons(B, K)
13: DFS_REecursive_PRUNE(B, Y, ®,N,, A) > DFS recursive calls
14: DFS_REecursive_PRUNE(B, Y, ©, N, B)
15: if A € N.orA € O then > If A or one of its subnodes has been pruned
16: N, <+ N. U {K} > Mark K as non eligible
17: if B¢ N.and B ¢ © then
18: ® <+ O U {B} > Prune B as its father is non eligible
19: end if
20: elseif B € N, or B € © then > If B or one of its subnodes has been pruned
21: N. + N. U {K} > Mark K as non eligible
22: @<+ 0uU{A} > Prune A as its father is non eligible
23: else if not Y(K) then
24: ®+—0U {A, B}
25: end if
26: end if

27: end procedure

from optimal solutions of its subproblems® [39]. In the general case, this property does not

necessarily holds and, consequently, the BPT construction may lead to sub-optimal represen-

tations, although there is not a clear way to define the optimality of a BPT.

Another intrinsic limitation of the BPT is that each region is produced by the merging of its

3A typical example of optimal substructure is the change-making problem. Most currencies have a set of

coin values presenting this property in order to facilitate the computation of the change.
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two child nodes. Asa consequence, new nodes represent regions of the data having as contours a
combination of the previous ones. Equivalently, no new contours are generated during the BPT
construction process. This may be a problem for some datasets, where optimal regions, under
some criterion, may have different contours for different detail levels. Fig. 3.12 represents this
scenario. Over the original data, on Fig. 3.12a, the optimal segmentation into 2 and 3 regions are
represented in Figs. 3.12cand 3.12b, respectively. Note that the contour of the 2 optimal regions
in Fig. 3.12c is completely different to the contours of the 3 optimal regions, in Fig. 3.12b. In
this case, there is no possible merging of the 3 optimal regions in order to obtain the regions
corresponding to Fig. 3.12¢c. The possible regions obtained with the BPT are represented in
Figs. 3.12d and 3.12¢, corresponding to the merging of AUB or BUCregions. Asa consequence,
in this scenario the BPT structure may not contain the optimal regions at all detail levels since

no new contours are generated when producing larger regions of the tree structure.

(a) Original (b) Optimal segmentation  (c) Optimal segmentation
into 3 regions into 2 regions

G ©
® ® © O ® @

(d) BPT regions after merging A and B (e) BPT regions after merging B and C

Figure 3.12: Since on BPT new regions are formed by merging of existing ones, no new
contours may appear on new regions.

65



66



It always seems impossible until it’s done.

Nelson Mandela

Polarimetric SAR Image BPT based Processing

POLSAR DATA HAVE TO BE DESCRIBED STATISTICALLY for distributed targets and, in order to
attain a proper estimation, a sample averaging has to be performed, as mentioned in Chapter 2.
However, this estimation has to be performed only over homogeneous areas and, in practice,
SAR data are strongly heterogeneous as it reflects the complexity of the scene. Then, the moti-
vation to employ the BPT in this scenario is to be able to adapt to the spatial structure and to

extract the homogeneous areas of the image.

The Chapter 3 hasintroduced the key theoretical concepts involving the BPT and its process-
ing. The present chapter is devoted to describe its employment to process PolSAR image data
for the speckle filtering and coastline segmentation applications [8][9][11]. It will describe all

the details involving its adaptation to represent and process this type of data.

As mentioned in Chapter 3, the BPT based processing scheme may be decomposed into two
main steps: the BPT construction and its exploitation for different applications. Consequently,

this chapter is divided into these main parts.
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4.1  POLSARIMAGE BPT CONSTRUCTION

This section describes all the concepts required to apply the BPT construction process that has
been generically defined in Section 3.2 for PolSAR data. The objective is to be able to apply the
BPT construction algorithm, as described in Algorithm 3.2, for a single PolSAR image.

4.1.1 POLSAR IMAGE CONNECTIVITY SCHEME

The BPT is aregion-based data representation, where the region concept stands for a connected
data segment of the data, as described in Section 3.1.1. As a consequence, the data connectivity
has to be defined for every pixel of the PolSAR image. From a computational point of view, this
is the set of neighboring pixels for a given one, which is employed in the step prior to the BPT
construction, the RAG generation, described in Algorithm 3.1.

The pixel connectivity is a common concept in image processing techniques, being the 4-
connectivity and the 8-connectivity the most typical choices, as it has been highlighted in Sec-

tion 3.1.1. A representation of these connectivity schemes has been depicted in Fig. 4.1.

(a) 4-connectivity (b) 8-connectivity

Figure 4.1: Pixel connectivity schemes. Every image pixel, in blue, has 4 or 8 neighbors,
represented in red.

Reducing the number of neighbors per pixel, as in the case of the 4-connectivity, represented
in Fig. 4.1a, has a positive impact in the computational cost, reducing the number of similarity
measures computation in the RAG generation and also during the BPT construction. However,
this connectivity scheme do not consider diagonal pixels as adjacent, being unable to represent
thin diagonal structures of the image as a single region. In this work, the 8-connectivity scheme
shown on fig. 4.1b will be employed to avoid this limitation, as it is assumed that physical struc-

tures may be present on any orientation of the image.
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4.1.2 PoOLSAR DaTa REGION MODEL

As mentioned in Section 3.2.1, each node of the BPT represents a connected region of the data
through a region model. This region model should be complete enough to describe all the rel-
evant information of the region at all the scales of the tree. Then, in order to apply the BPT
structure to PolSAR images, a region model has to be defined to describe the different spatial
regions of PoISAR data.

Section 2.2.4 has described the Gaussian polarimetric model for distributed scattering mech-
anisms. According to this model, the covariance matrix C of the distribution completely char-
acterizes the target. Consequently, the sample covariance matrix Z has been proposed as an
estimator of C, which corresponds to its MLE. Therefore, the region A may be represented by

its sample covariance matrix Z, [8][11]

A = <kkH>11A - - Z kikfl (4-1)
"A ica
where 14 represents the number of pixels within the region A.

In fact, equation (4.1) is very similar to the multilook defined in (2.54), except that the av-
erage is computed over the pixels within the region A instead of a fixed window around the
central pixel. Using this model is highly convenient as most of the polarimetric inversion and
information extraction models are based on the covariance matrix [76][33].

Under the Gaussian hypothesis, the sample covariance matrix Z is a good region model to
represent homogeneous areas of the image, as described in Section 2.2.4. However, this is not
the case for heterogeneous areas, when estimated employing samples following a different sta-
tistical distribution. In the BPT, as a multi-scale data representation, regions of very different
sizes will be found and some of them, specially the larger regions, may not be considered as
homogeneous. This is especially the case for the root node, for instance, covering the whole
image. In most of the cases, the whole image is not homogeneous and, consequently, it can not
be properly represented by its sample covariance matrix Z.

Thus, employing the region model defined in (4.1) will have a negative impact on the larger
regions of the BPT, corresponding to the nodes closer to the root, since they may be heteroge-
neous. In the following sections, the sample covariance matrix Z will be employed as a region
model for convenience, resulting into the aforementioned limitations for inhomogeneous re-
gions. However, if the final applications for which the BPT is intended to be used are interested
only in homogeneous regions of the image, this effect may not be a drawback, as it will be seen.

Another limitation of the sample covariance matrix is that it results into singular matrices

when directly calculated over the single pixels of the original image, when Z = kk*. Actually,
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this is a limitation of the multilook estimator, as described in Section 2.2.4. In practice, this lim-
itation will affect all the regions of the BPT containing a number of pixels n, smaller than the
sample covariance size, that is, ny < p. This fact might constitute a problem for some applica-
tions or even for some similarity measures employed for BPT construction. As a consequence,
an initial filtering or regularization of the data may be needed for some applications, in order to
obtain full-rank matrices for each pixel of the image.

Nonetheless, a more detailed discussion about the limitations on matrix regularization and
on representing inhomogeneous regions may be found on Chapter 6, including some improved
models and techniques in order to reduce the impact of these restrictions on the BPT and on

the final applications.

4.1.3 DISSIMILARITY MEASURES FOR POLSAR DATA

The dissimilarity measure defines the merging sequence during the BPT construction process
and, consequently, it defines completely the final tree that will be obtained, as explained in Sec-
tion 3.2.2. It is established in the region model space and, therefore, for PoISAR data it has to
be defined over the sample covariance matrix Z, as expressed in (4.1).

It is worth to mention that, since the dissimilarity measure is tied to the region model space,
all the limitations of the chosen region model will become also limitations on this measure. As
mentioned in the previous section, since the sample covariance matrix is not able to represent
properly inhomogeneous regions, the dissimilarity measures defined on this space will also fail
to evaluate the similarity between these regions, as they are not accurately characterized.

Moreover, as mentioned before, the Z matrices may be rank-deficient which may pose a prob-
lem for some measures. This limitation may be overcome by employing only the diagonal el-
ements of the covariance matrix, corresponding to the retrieved power for each polarization
state. Alternatively, an initial filtering may be applied to obtain full-rank matrices. However,
this is normally a small filtering, focused on matrix regularization instead of speckle filtering.
Usually a 3 by 3 multilook filter is applied for this purpose, resulting into a very small spatial
resolution loss. In this regard, the similarity measures have been classified into full-matrix mea-

sures and diagonal measures [8][9]:

o Full-matrix measures employ all the information contained within the sample covariance
matrix Z and, therefore, they are sensitive to the fully polarimetric information under
the Gaussian hypothesis. As a consequence, they are able to achieve better adaptation to
the changes at any polarimetric feature. However, they need full-rank sample covariance
matrices in order to properly exploit the complete polarimetric space. This fact implies

the need of a prior filtering of the data for matrix regularization, as stated before.

70



« Diagonal measures are focused only on the diagonal elements of the covariance matrix,
corresponding to the backscattered power. Mathematically, they are assuming that all
the off-diagonal elements are equal to zero. This results automatically in a full-rank ma-
trix, avoiding the problem of having singular matrices and also the need for the initial
filtering. However, this assumption is arbitrary and it may not be true and, in fact, the
correlation between the different polarimetric channels contains useful information that
isignored by these measures. It is worth noticing that the adaptive Lee and IDAN filters,
described in Sections 2.3.2 and 2.3.3, have also this limitation, as they are not exploiting

the complete polarimetric information under the Gaussian hypothesis.

FuLL-MATRIX DISSIMILARITY MEASURES

On this section, full-matrix dissimilarity measures for PolSAR data are going to be presented.
In the following, it is assumed that two adjacent regions, denoted by A and B, having covari-
ance matrices Z, and Zg, respectively, and region sizes of n4 and ng pixels, are evaluated by the

dissimilarity measure d, which is expressed as d(A, B).

« Symmetric revised Wishart dissimilarity, denoted by d;,,. This measure assumes that
the sample covariance matrices Z, and Zjp are following a Wishart distribution and per-
forms a statistical hypothesis test to evaluate if they are following the same distribution
[68]. To do so, one of the two sample covariance matrices is assumed to be known, that
is, it is assumed that the real covariance matrix C that defines the distribution is equal
to Z. Aside from being false, this assumption involves the inconvenience that the mea-
sure depends on which of the two sample covariance matrices is assumed to be known.
Therefore, this statistical test is not symmetric, i.e. d,, (A, B) # d,,(B, A). A modification
is proposed in [68] to generate a symmetric measure d, as d, = d,,(A, B) + d,,(B, A).
Then, the symmetric revised Wishart measure, defined in [8], is obtained based on this
concept and adding a term depending on the region size, as it will be detailed in the fol-
lowing

dow(A,B) = (tr(Z,'Zg) + tr(Z5'Za)) (na + np) (4.2)

where tr(.) denotes the matrix trace and n, denotes the number of pixels within the re-

gion A.

+ The Geodesic dissimilarity, designated as d,, is defined in [9] according to a completely
different approach. It considers the positive definite matrix cone geometry [22], that i,
the geometry of the sample covariance matrix space. Accordingly, it measures the dis-

tance over the geodesic path, instead of the euclidean path, that follows the curvature
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of the matrix cone space. The geodesic path concept is based on differential geometry
[22] and additional details about this concept will be found later in this section. In this
case, since it is a measure defined through the matrix logarithm, a modified version is

generated by adding a logarithmic term depending on the region size

—1/2 —1/2 2nan
dy(A,B) = | log <ZA 252, ) £+ In (ﬁ) (4.3)
na + np
where ||.||r represents the Frobenius matrix norm, log(. ) represents the matrixlogarithm

and In(.) represents the natural logarithm.

« The Ward relative dissimilarity, denoted by d,,,, is based on a measure from Ward hi-
erarchical clustering [128]. In this clustering technique, an error measure based on the
Error Sum-of-Squares (ESS) was introduced to quantify the amount of information loss
when two clusters are merged. This measure can also be applied to measure the informa-
tion loss when merging two neighboring regions. In order to employ it for PolSAR data,
a normalization matrix is introduced to tackle the multiplicative nature of the speckle

noise. Then, the Ward relative dissimilarity measure may be defined as
dyr(A,B) = ny - [|Nj5(Za — Zap)Nas|lz + n5 - [ING5(Zs — Zap)Nas[[z  (4.4)

where Z 5 denotes the covariance matrix of the region A U B and N, denotes the nor-

malization matrix of Z,4, defined as

' Za, o o
NA = o V ZAzz o (45)
o o \/Zass

where Z,; refers to the (i, j)-th element of the sample covariance matrix Z 5.

Note that there is a term depending on the region sizes n, and ng on all the dissimilarity
measures. It is required since, during the BPT construction, regions of different sizes will be
compared. The concept represented by this term is that it may be assumed that larger regions
will have less noisy estimations of the region model and, then, the dissimilarity over them may
be more restrictive than with smaller regions. This idea is in accordance with the Wishart dis-
tribution, defined in (2.55), as it depends on the equivalent number of looks #. In addition, this
term or similar ones also appear when employing other rationales to define distance or statistical

measures over PolSAR data, as it may be seen on [98].
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In order to get a better idea of the rationale on which is based the geodesic dissimilarity mea-
sure dg,, an example within a simplified space is presented in the following to show the adapta-
tion to the space geometry. Since the 3 by 3 complex covariance matrix space is too complicated

to represent graphically, a real symmetric 2 by 2 covariance matrix space will be employed

c— C., C, _ Cu CuCap (06)
Co G, VCiuCip C.
where —1 < p < 1represents the correlation coefficient.

It may be seen from (4.6) that the 2 by 2 real covariance matrices have three independent
components, C,,, C,,, C,,, where the set of possible values for C,, depends on the other two. As
this space has only three real components, it can be represented graphically in a tree-dimensional
plot, as it is shown on Fig. 4.2, where the limits of the space are represented. These boundary
surfaces are obtained for the extreme cases p = —1and p = 1. As it can be seen, the space is

confined within a cone, which is called the positive definite matrix cone.
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Figure 4.2: The 2 by 2 real symmetric covariance matrix space cone.
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In this space, the euclidean distance may be defined as ||Z4 — Z3|| r, whereas the geodesic dis-
tanceis || log <Z:/ ZZBZXI/ 2) ||r [22]. Note that it corresponds to the first term of the geodesic
dissimilarity d,,, the term depending on the region sample covariance matrices. The rationale
behind that measure is that it is based on the geodesic path instead of the euclidean path, which

is following the curvature of the positive definite matrix cone space.

Then, the euclidean path y,, which length is measured by the euclidean distance, can be de-

fined as
7.(t) = Zs + t{(Zp — Z,) (4.7)

witho < t < 1. Asit may be seen, y,(0) = Z, whereas ,(1) = Zg.

On the other hand, according to [22], the geodesic path 7, is defined by

1 _1 _1\t 1
7,(H) = Z; (zAzszAz) zZ: (4.8)

foro<t<u.

For this example, the following values for Z, and Zg are assumed

S (49

With these values, the euclidean path y, and geodesic path Vg are represented in Fig. 4.3, in
black and magenta colors, respectively. These paths are obtained by changing the ¢ parameter
from o to 1. The plot over the original space is presented in Fig. 4.3a, where the bounds of the
positive definite matrix cone have been also represented. As it may be expected, the euclidean
pathy, follows a straightline from Z  to Zs. On the otherhand, the geodesic path y is following

a curved line which is adapted to the positive definite matrix cone geometry.

Considering that the geodesic dissimilarity d, is based on the Frobenius norm in the ma-
trix logarithmic space, the euclidean y, and geodesic 7, paths have been represented also in
this space in Fig. 4.3b. It is worth noticing that, as mentioned before, the logarithm applied
is the matrix logarithm, not the logarithm to each element of the matrix individually. In this
space, the bounds of the positive definite matrix cone can not be represented since when an
eigenvalue tends to o the matrix logarithm tend its elements to infinity. Therefore, the positive
definite matrix cone is unbounded in the logarithmic space. As it can be seen in Fig. 4.3b, in the
matrix logarithmic space the euclidean path 7, appears as a curved line whereas the geodesic

path develops a straight line behavior.
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Figure 4.3: Euclidean (black) and geodesic (magenta) paths over the original and loga-
rithmic spaces.

D1AGONAL DISSIMILARITY MEASURES

These measures, as mentioned before, take only into account the diagonal elements of the co-
variance matrix, that is, the backscattered power for each polarization state. This automatically
ensures a full-rank matrix, avoiding the need for an initial filtering for matrix regularization.
Assuming that the off-diagonal elements are equal to zero, a diagonal variant of the previous

dissimilarity measures may be defined.

+ The Diagonal revised Wishart dissimilarity, referred to as dg,,, is obtained with (4.2)

when assuming that Z, and Zg are diagonal p by p matrices, as mentioned before,
L\ (Za3+ Zs?
da.(A,B) = i T B - (n n .10
(4. 5) Z ZAiZBii (7 + 1z) (4:10)

i=1

where Z;; and Zg;; represent the (i,j)-th element of the estimated covariance matrices

Z, and Zg, respectively.

+ The Diagonal geodesic dissimilarity, designated as dgg, similarly to the previous case
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case, is based on (4.3) but assuming that Z, and Zj are diagonal p by p matrices

p
"
wian - S () on(2m)

HA+HB

Considering that full matrix and diagonal dissimilarity measures are based on the same prin-
ciples, a comparison between them may be useful to compare the advantages and disadvantages
of employing the full matrix information in front of employing only the diagonal information,
while assuming that all off-diagonal elements equal to o.

Furthermore, some additional diagonal dissimilarities have been defined, based on the rela-

tive comparison of the matrix diagonal elements.

« Diagonalrelative normalized dissimilarity, labeled d;,, is based on the euclidean norm
of the normalized difference of the matrix diagonal vector. Firstly, the difference of the
diagonal vectors is normalized by their sum for each component, which produces a result
bounded in the interval [—1, 1] for each diagonal element. Secondly, the euclidean norm
of the resulting vector is applied and, finally, the d4, dissimilarity measure is obtained

after multiplying it by a term depending on the region size
) 7z 7 L\ /2
di, (A, B) = ZAi 7B . ‘ .
w(4,B) (Z (2 H)) (s + ) (412)

« The Diagonal relative dissimilarity, denoted as d,, is computed as the euclidean norm
of the sum of relative errors of both diagonal elements. Note that this comparison, as
opposite to dgy, is not bounded, taking values on the interval [0, 00). Again, a term de-

pending on the region size is also included to take into account this information

p L\ /2
Zii_Zii Zii_Zii
dyr(A,B) = (Z( AZM 2 BzA,.,. . ) ) - (na + ng)
p 2
Zai — Zp;i)”
- (z =y ) Cont ). (413

4.2 POLARIMETRIC SAR BPT BASED APPLICATIONS

Once all the components mentioned in Section 4.1 have been defined, it is possible to construct

the BPT representation of a PolSAR image, employing the process described in Section 3.2.3.
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At this point, some methods have to be defined for the exploitation of this data abstraction for
different applications.

It is worth noticing that, as stated in Chapter 3, the whole BPT construction process is ap-
plication independent and, thus, the same applies for all the concepts defined in the previous
section. Then, according to the region model and dissimilarity measures defined in the previous
sections, the obtained BPT structure will represent regions of the image having similar polari-
metric characteristics, in terms of its sample covariance matrix Z. Conversely, the concepts
introduced in the following sections are focused on some particular applications and then, two
different sections may be found according to distinct applications. Two applications that ex-
ploit the PoISAR BPT will be described: speckle filtering and coastline segmentation. Special
attention will be paid to the speckle filtering application, that will be analyzed in detail, defining
different pruning methods and criteria. Moreover, its results will be evaluated with real and sim-
ulated data. Finally, the coastline segmentation application will be described briefly. As it will
be seen, the two mentioned applications are completely different and they will exploit distinct

information contained within the BPT.

4.3 BPT BASED ESTIMATION OR SPECKLE FILTERING

Asmentioned in Chapter 2, SAR images are contaminated by speckle noise, which is a handicap
for their further use or interpretation. Most applications require a speckle filtering as a pre-
processing step in order to reduce the effect of the speckle and to a achieve a proper estimation of
the target polarimetric response. Additionally, as described in Section 2.3, there is a tendency in
the recent state-of-the-art speckle filtering techniques to adapt to the spatial content of the image
to avoid the mixture of inhomogeneous samples during the speckle filtering process. Therefore,
the motivation here is to apply the BPT data abstraction for this purpose.

One of the most important applications of this thesis is the speckle filtering or polarimetric
information estimation. In the context of a region-based processing scheme, thisis equivalent to
the delimitation of the homogeneous areas of the scene, according to the selected region model,
the sample covariance matrix Z. Once this delimitation of the scene has been performed, the
speckle filtering application comes out automatically, since the region model of an homoge-
neous area may be employed to describe its polarimetric response accurately, under the Gaus-
sian hypothesis.

Asoutlined in Section 3.3, the BPT exploitation may be performed by a tree pruning process,
which extracts the most useful or interesting regions for a particular application. Thus, this sec-

tion describes two different pruning strategies for the BPT-based estimation or speckle filtering.
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Additionally, results will be analyzed in detail both with synthetic and real PolSAR data.

4.3.1 PRUNING BASED ON THE NUMBER OF REGIONS

One possible BPT pruning mechanism is to define the number of regions N to extract of the im-
age and, in accordance, extract the N most different regions from the tree. Note that this pruning
strategy requires the definition of a measure to quantify the difference of the regions. However,
as described in Section 4.1.3, this is exactly the role of the previously defined dissimilarity mea-
sures. Then, the same dissimilarity measure employed for BPT construction may also be also
applied for its pruning based on the number of the regions.

Note that, when the same dissimilarity measure is employed for BPT construction and prun-
ing, this pruning strategy is equivalent to stop the BPT construction process when the number
of regions N has been achieved. The remaining regions may be considered as the N most dif-
ferent regions according to the dissimilarity measure. This pruning strategy has the advantages
of being simple, while also not requiring the definition of any additional criterion for pruning.
Moreover, due to its simplicity, it does not require the application of the pruning processes de-
fined in Section 3.3.1, as this pruning is completely defined by the merging order. On the other
hand, it has the disadvantage of having to decide the number of regions N parameter, which
may be really difficult to figure out a priori.

To see the results obtained by this pruning strategy, Fig. 4.4 and Fig. 4.5 show examples of
two 256 by 256 pixel PolSAR image crops, corresponding to some agricultural fields and an
urban area, respectively. Data, acquired by the DLR’s ESAR system at L-band, will be presented
in detail in the following sections devoted to analyze the obtained results in detail. Results are
shown for the gx9 multilook filter, as a reference, and for the mentioned BPT pruning based on
the number of regions. Fig. 4.4a and Fig. 4.5a present the original data crop whereas Fig. 4.4c to
Fig. 4.4e and Fig. 4.5¢ to Fig. 4.5e show the results for different number of regions N parameter
values.

On these results, as mentioned before, each region has been represented with its estimated
sample covariance matrix averaged within the region, and employing a Pauli RGB color com-
position. For the BPT construction process and, hence, for the pruning process, the geodesic
dissimilarity measure d; described in (4.3) has been employed. Note that, since the dy, mea-
sure is employing the full covariance matrix information, an initial filtering is needed for matrix
regularization. In this case, an initial 3 by 3 multilook filtering has been employed.

The difference between a region-based and a pixel-based processing is clear when comparing

results with the multilook and with the BPT in Fig. 4.4 and Fig. 4.5. The edges on the multilook
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(c) N =250 (d) N=so () N=10

Figure 4.4: Results after applying the 9x9 multilook and the BPT pruning based on the
number of regions of an agricultural fields area for different values of N. The BPT has
been constructed employing the geodesic dg, dissimilarity. Images are represented using
Pauli RGB composition (|Sun + Suuls [Sne + Sunly [Sun — Su)-

appear blurred, due to the spatial resolution loss produced by this low-pass filtering. On the
other hand, the edges of the BPT region appear perfectly clear, as filtering is performed inde-
pendently within each pruned region, which is the processing element of the BPT and, conse-
quently, since all the pixels of a given region have the same region model, they appear with a
constant color over the results. Moreover, it may be seen that the BPT-based region contours
are following the contours of the scene, except when the number of regions N is too small to rep-
resent properly the complexity of the scene, resulting into large regions mixing different areas

of the image.

The multi-scale nature of the BPT may also be seen on Figs. 4.4 and 4.5, when changing the
number of regions parameter N. Reducing the N parameter results into larger regions, pruning
nodes of the tree closer to the root. Increasing N has the opposite effect, obtaining regions
farther from the root and closer to the leaves of the tree. It is worth noticing that all the regions

obtained for the different parameters, in this case N = {250, 50, 10}, correspond to the same
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(c) N=250 () N=10

Figure 4.5: Results after applying the 9x9 multilook and the BPT pruning based on the
number of regions of an urban area for different values of N. The BPT has been con-
structed employing the geodesic d,, dissimilarity. Images are represented using Pauli RGB
composition ([Spx + Sul, v |Shn — Sul)-

BPT, but pruned at different detail levels, clearly showing the multi-scale nature of this data
representation.

Another consideration when analyzing results obtained in Figs. 4.4 and 4.5 is that there is no
clear way to define the optimum number of regions N. Furthermore, it strongly depends on the
scene complexity. On the agricultural area, for instance, where large homogeneous regions may
be found, a small value of N, even N = 10, may be enough to properly represent all the regions
of the scene, as it may be seen in Fig. 4.4e, whereas on urban areas, having a much more complex
spatial structure, this value is totally inadequate, as seen in Fig. 4.5e, requiring a larger value, in
the order of N = 250 or even larger, as shown on Fig. 4.5c.

In order to perform a more detailed analysis of the region sizes, Table 4.1 shows the minimum
and the maximum size, in pixels, of all the pruned regions for each case of the results shown on

Figs. 4.4 and 4.5. Additionally, Fig. 4.6 shows the histograms of the pruned region sizes for the
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H Agricultural zone H Urban zone

Number of regions N || 250 | 5o 10 250 | 50 10

Minimum region size | 44 157 1693 1 45 45

Maximum region size || §70 | 2539 | 12094 || 918 | 4948 | 40430

Table 4.1: Pruned regions and region sizes in pixels over urban and agricultural areas for
BPT pruning based on the number of regions with different N.
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Figure 4.6: Region size histograms for N = 250 and N = so0 over agricultural and urban
area images presented in Fig. 4.4 and Fig. 4.5.

previous pruning results obtained at N = 250 and N = 50 values.

Analyzing the differences between the region size histograms of the two environments, it can
be seen that the dynamic range of the pruned region sizes is much more narrow in the agricul-
tural area than in the urban area, mainly because the difference in complexity of both scenes.
Moreover, it can be seen that the region sizes obtained are very dependent on the pruning pa-
rameter N, as it may be expected, as the average region size is fixed by N according to the total
number of pixels over N. Also, for N = 250 the maximum region size density for agricultural
area is between 150-400 pixels, with around 80% of total regions, whereas for N = 50 only 8%
of regions are within these values. One would expect that, since the structure of the image is the
same, those values should be more similar for both cases.

In conclusion, although the BPT pruning based on the number of regions may be simpler, as
it does not require the introduction of any new concept or measure, it has the disadvantage of
having to choose the number of regions N parameter a priori. Thisis a difficult task, as it strongly
depends on the image structure, being not easy to figure out a priori. Additionally, the obtained

region sizes have a strong dependence with the N parameter, when in fact they should depend
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more on the image structure. This is consistent with the fact that dissimilarity measures have
a strong dependence with the region size, as stated on Section 4.1.3. Indeed, the underlying
problem is that the number of regions is highly dependent on the image structure and, then, it
can not be employed as a pruning parameter when we want to obtain a segmentation that adapts
to this image structure.

Another limitation of this pruning strategy is that it is based only on the region model to
define the pruned regions, as it is based on the dissimilarity measure. Then, as stated in Sec-
tion 4.1.2, all the limitations of this model for representing an heterogeneous region are also
transfered to this pruning approach. As a consequence, this method may not obtain proper

results for relatively small values of N, depending on the scene spatial complexity.

4.3.2 HOMOGENEITY BASED PRUNING

The BPT pruning based on the number of regions, described in the previous section, has shown
the ability of the BPT to adapt to the spatial structure of the image. Additionally, its region-
based and multi-scale nature have been shown through different examples. However, some
important drawbacks have been detected, specially regarding to the definition of the N pruning
parameter and its dependence with the image structure. In order to overcome all these limita-

tions, the following guidelines need to be taken into account:

1. Ideally, the pruning parameter should be completely independent of the image structure,

to avoid the trouble of defining a different value for each image.

2. The dependence of the pruned region sizes with the pruning criterion should be avoided
as much as possible, allowing that regions with completely different sizes appear at the

same tree pruning.

3. To avoid the propagation of the region model limitations, the pruning criterion should
depend on all the pixel values contained within the region, not only on the region model,

to mitigate the problems when dealing with heterogeneous regions, for instance.

With all these guidelines in mind, a new BPT pruning strategy is defined. Ultimately, the
main goal of the PoISAR information estimation or speckle filtering process is to extract the
largest homogeneous areas of the scene. Accordingly, an homogeneity measure @ is defined, in
order to estimate the region homogeneity. The pruning process, then, is performed by applying
a pruning threshold §, over this measure, by marking a region A for pruning if ®(A) < §,. Note
that, in this case, the pruning algorithms defined in Section 3.3.1 have to be applied.
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Note that, for each region A, the homogeneity measure ®(A) should be independent of its
size, in order to fulfill the second guideline, and it should depend not only on its region model,
according to the third guideline. With this in view, the first point is automatically fulfilled since
O is a measure of the homogeneity of the given region, which is assumed to be dependent only

on the spatial content within it. Accordingly, the following homogeneity measure @ is defined

Z HZ _ZAHF (4.14)

2 zalk

where Z' represents the covariance matrix of pixel i within region A, Z, represent its estimated
covariance matrix and ny its total number of pixels.

It is worth to mention that (4.14) may also be seen as the relative Mean Squared Error (MSE)
that is committed when representing all the pixels of the region Z; by its sample covariance
matrix Z. In contrast to the classical MSE, the ® region homogeneity (4.14) is a relative error
measure, as it is divided by the squared norm of the region model ||Z 4|} in order to cancel out
the multiplicative nature of the speckle noise.

With the proposed region homogeneity measure @, a pruning criterion Y, may be defined in
order to select from the tree only homogeneous regions. Accordingly, a region A may be defined

as homogeneous if it has a relative MSE below a pruning threshold §,, value
Yi(A): D(A) <8, (4.15)

In the following, for convenience, the pruning factor §, will be expressed in dB, correspond-

ing to the following expression
Yi(A): 10-log (D(A)) < 5,(dB). (4.16)

With the proposed Y, pruning criterion, in contrast to the pruning based on the number of
regions defined in Section 4.3.1, the number of regions obtained is automatically defined by the
image content. The pruned regions will be as large as possible while maintaining a relative MSE
below the threshold. As a consequence, for a given &, value, a large number of small regions
will be obtained naturally in images having complex structures, whereas large regions will be
obtained in images having large homogeneous areas. And, what is even more important, the
appropriate region size may be obtained in all cases when having an image with a combination
of large and small structures.

For comparison purposes, the same PolSAR images than on Figs. 4.4 and 4.5 have been pro-

cessed with the homogeneity based region pruning. Fig. 4.7 and Fig. 4.8 show the images pre-
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sented in Fig. 4.4a and Fig. 4.5a, corresponding to an agricultural and a urban area, respectively,
filtered employing the defined region homogeneity based pruning Y, for different pruning fac-

tor §, values.

(a) 8§, = —2dB (b) §, = —1dB (c) 8§, = odB

Figure 4.7: BPT homogeneity based pruning of an agricultural fields image for different
values of §,. The BPT has been constructed employing the geodesic d,; dissimilarity. Im-
’ |Shh - va|)-

Slw + Svh

ages are represented using Pauli RGB composition (|Sun + Sul,

"(a) 5, — 2dB (b) 3, — 1dB T(0) 5, — odB

Figure 4.8: BPT homogeneity based pruning of an urban area image for different values
of §,. The BPT has been constructed employing the geodesic d, dissimilarity. Images are
represented using Pauli RGB composition (|Sun + Suul, [Si + Sunls [Sun — Suvl)-

When comparing Fig. 4.7 with Fig. 4.4, roughly similar results may be seen for pruning thresh-
olds§, = —2, —1, 0dBthanfor N = 250, 50, 10. The contours of the fields are closely obtained
in both cases and large regions may be retrieved corresponding to them. However, when ana-
lyzing in detail the results of the region based homogeneity pruning, important differences are
observed. Even for a large pruning threshold, in the case of §, = odB, small details are pre-

served in the image, as it may be seen on the down-left part of Fig. 4.7¢, that is, a larger range
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of values is observed for the obtained region sizes. This fact is produced thanks to the indepen-
dence of the pruning criterion from the region size, which was, indeed, one of the premises of
the pruning strategy. Nonetheless, the benefits of this pruning mechanism become much more
evident in the results presented in Fig. 4.8 in comparison with Fig. 4.5. In this scenario, the spa-
tial complexity of the image is significantly higher, presenting a large number of small regions
and, in fact, the region homogeneity based pruning adapts to this scenario producing a much
larger number of regions than for the agricultural area, even when employing the same pruning
threshold parameters. This adaptation was, in fact, another of the proposed guidelines for this
pruning strategy.

In order to assess this adaptation numerically, Table 4.2 shows the achieved number of re-
gions and the maximum and minimum region size for each pruning process of Figs. 4.7 and

4.8.

H Agricultural zone H Urban zone ‘

5y —2dB | —1dB | odB || —2dB | —1dB | odB
Number of regions 502 116 32 2652 | 1696 | 1043

Minimum region size 2 4 11 1 1 1

Maximum region size || 3602 | 8697 | 8698 898 1403 | 3052

Table 4.2: Pruned regions and region sizes in pixels over urban and agricultural areas for
homogeneity based pruning with different pruning threshold §, values.

The adaptation of the region based homogeneity pruning to the image structure is clear from
the number of pruned regions, corresponding to the second row of Table 4.2. As observed on
the results, over urban area a large number of smaller regions are obtained, as they correspond
to the small structures that are present on the scene. On the other hand, for the same pruning
threshold &, values, larger regions are obtained in the agricultural area than on urban area. The
ability to preserve small details while also having large regions for homogeneous areas may also
be seen when comparing the minimum and maximum region sizes, which is an improvement

compared with the pruning based on the number of regions, as previously shown on Table 4.1.

To analyze the region size distribution closely, Fig. 4.9 presents the region size histograms for
different pruning thresholds §,, over the agricultural and the urban area. It is worth mentioning
that for the urban area, shown on Fig. 4.9a, the maximum density of region sizes is around 20
pixels for all the pruning factor values whereas for the agricultural area, depicted in Fig. 4.9b,

this value is around 100 pixels, but it is also maintained for different §,, values.
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Figure 4.9: Logarithmic region size histograms for different pruning factor §, values over
agricultural and urban area images presented in Fig. 4.4 and Fig. 4.5.

Allin all, the homogeneity based pruning is able to obtain a wider range of region size values
than the pruning based on the number of regions, since it is independent of the region size. Ad-
ditionally, it does not depend on image size or complexity, resulting into similar filtering values
for a given §, in any type of image or scenario. The number of regions is automatically ob-
tained by the pruning criterion Y, in order to fulfill the relative MSE on all the pruned regions,
extracting as large regions as possible from the BPT. This pruning strategy, then, overcomes
all the major drawbacks of the pruning based on the number of regions, as described in Sec-
tion 4.3.1. On the other hand, it is more complex than the pruning based on the number of
regions, as it requires the definition and the computation of the region homogeneity measure
®(A) for each region A of the tree and, additionally, it requires to apply the pruning algorithm
to the tree. However, when comparing this increase in complexity with the BPT construction
process, it is negligible, as the pruning procedure is much faster. Furthermore, the region ho-
mogeneity measure ®(A) may be computed efficiently in a bottom-up approach in linear time

respect to the number of nodes.

It is worth noticing that all the results shown in Figs. 4.4 and 4.7 and in Figs. 4.5 and 4.8
correspond to different pruning processes over the same BPT structures. This fact may give an
idea of the large amount of information that may be extracted from the BPT data abstraction of
a PolSAR image.
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4.3.3 RESULTS WiTH REAL DATA

This section is devoted to a more detailed analysis of the previously described pruning mech-
anisms with real PoISAR data. In particular, they will be compared with some state-of-the-art
speckle filtering techniques described in Section 2.3. Moreover, their ability to estimate the
covariance matrix without introducing any bias or distortion will be also analyzed.

In the previous sections some examples have been presented to illustrate the effects of the
pruning strategies defined. These examples are small crops of a full dataset having different areas
that will be processed and studied in this section. This full dataset corresponds to a measuring
campaign conducted by DLR in 1999 with its experimental ESAR system over the Oberpfaf-
fenhofen test-site, southern Germany. Data were collected at L-band, with a spatial resolution
of 1.5m x 1.5m in fully polarimetric mode. The whole PolSAR image has 2816 rows by 1540
columns and its Pauli RGB representation is shown in Fig. 4.10a. The scene contains some
urban areas, having different buildings and human made structures, in the central part of the
image, a forest area in the top part and an agricultural area, with large fields and grass areas, in
the bottom area.

Fig. 4.10b shows the result obtained after applying the BPT homogeneity based pruning with
a pruning threshold §, = —2dB. In this case, the BPT has been constructed employing the
symmetric revised Wishart d,, dissimilarity measure, as defined in (4.2). When comparing it
with the original image, qualitatively the same colors are observed but it appear much less noisy.
The contours of the filtered image seem to correspond to the structure of the original image and
the small details are also preserved.

In order to compare the BPT-based estimation approach with other speckle filtering tech-
niques, the dataset presented in Fig. 4.10a has been processed with a 7x7 multilook as a refer-
ence, the IDAN" filter [125], and the two proposed BPT pruning approaches: pruning based
on the number of regions and region homogeneity based pruning. Although the whole dataset
has been processed, to perform a more detailed analysis of the filtering techniques, results will
be studied over a 512 by 512 pixel crop of the full dataset, presented in Fig. 4.11a. The area of
the scene within this crop contains large agricultural fields at the bottom part of the image and
a urban area with small details in the center and right parts. A forest area can also be found at
the top part of the image. This crop area of the results after applying the 7x7 multilook and the
IDAN filtering are shown on Fig. 4.11b and Fig. 4.11¢, respectively.

!The PolSARPro [3] IDAN implementation has been employed for this work, with a maximum AN size
parameter of 100 pixels.
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(a) Original (b) ds,8, = —2dB
Figure 4.10: Pauli representation of the original and BPT-based filtered images of Oberp-
faffenhofen. The revised Wishart dissimilarity measure dg, has been employed for BPT
construction and region homogeneity based pruning with §, = —2dB (|Spn + Sy, |Si + Sun

‘Shh _va|)-

As mentioned previously, the multilook, shown in Fig. 4.11b, is able to achieve a relatively
good amount of speckle filtering but it results into a spatial resolution loss, blurring all the con-
tours and small details of the image. On the other hand, the IDAN, shown in Fig. 4.11¢, has
a better spatial resolution preservation, as it maintains the contours and details. However, the

amount of speckle reduction achieved by the IDAN is smaller than in the multilook case.

Results after applying the proposed BPT-based approach over the same area are represented
in Fig. 4.12. The figures on the left column (Figs. 4.12a, 4.12¢, 4.12¢) correspond to BPT prun-
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(a) Original (b) 7x7 multilook (c) IDAN

Figure 4.11: Detail Pauli RGB images. (a) Original, (b) filtered with 7x7 multilook and
(c) filtered with IDAN (|Sun + Sul, [Siw + Sunls [Swn — Swl).

ing based on the number of regions” whereas the right column (Figs. 4.12b, 4.12d, 4.12f) show
the results of region homogeneity based pruning. Note that all the results in Fig. 4.12 have been
generated by pruning over the same BPT, constructed with the symmetric revised Wishart dj,
dissimilarity over the entire image, presented in Fig. 4.10a.

Analyzing the BPT-based estimation results in Fig. 4.12, the differences previously men-
tioned between the two defined pruning mechanisms may be seen. Moreover, when process-
ing a large dataset, the inconveniences of the BPT pruning based on the number of regions are
even more evident. In the examples processed in Sections 4.3.1 and 4.3.2, two small crops of
this dataset have been processed. These crops, however, contained only one type of scenario: a
agricultural area or a urban area. In a large PolSAR image, as the one represented in Fig. 4.10a,
having a mixture of different types of areas, it is not possible to define a number of regions pa-
rameter N suitable for all the areas. A large value, such as N = 50000, shown in Fig. 4.12a, may
be required for a proper representation of the urban area. Nevertheless, over the agricultural
area a smaller value of N will be required, in the order of N = 2000, as shown in Fig. 4.12e. As
a consequence, there is no possible value of N suitable to obtain a good detail representation
over all the areas of the image.

On the other hand, the region homogeneity based pruning results, shown in the right column
of Fig. 4.12, do not present these issues. In this case, the pruning threshold parameter §, acts
like an indicator of the degree of filtering, showing more details for smaller values §, = —2dB

than for larger ones §, = odB, as shown in Figs. 4.12b to 4.12f. However, the region size adapts

*Note that the results are shown over a detailed area of 512 by 512 pixel, but the whole image, presented in
Fig. 4.10a is processed. Then, the number of regions N refers to the regions in the whole image and, thus, only
a small subset of regions appear over the crop area shown.
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(a) daw, N = 50000
O T

(e) dgw, N = 2000 (f) dw, 5, = 0dB

Figure 4.12: Detail Pauli RGB images. (a), (c), (e) filtered with pruning based on the
number of regions and (b), (d), (f) filtered with region homogeneity based pruning (|Su; +
Sw|y ‘Shv + SV]I‘! |Shh - va|)-

better to the content of the scene, as larger regions are observed in the agricultural areas than in

the urban zone for all the pruning threshold §,, values, being able to properly represent all the
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regions of the image with a given pruning threshold.

Another characteristic of the BPT-based pruning is that when the pruning threshold 5, or N
parameters gets increased or decreased, respectively, resulting into larger regions, some region
contours of the image disappear, but no new contours appear, as it may be seen on the image
sequence from Figs. 4.123, 4.12¢, 4.12e and Figs. 4.12b, 4.12d, 4.12f. Thisisa consequence of the
way in which new regions are generated on the BPT. Since larger regions are always constructed
as the merging of two smaller ones, only the contours between them are not presentin the father
region, while the rest of them are preserved.

In order to show more clearly this ability of the region homogeneity based pruning to pre-
serve small details of the original image and, at the same time, perform strong filtering over large
homogeneous areas, a crop of the original image containing five corner reflectors over an homo-
geneous field, near to the main runway of the airport, in the bottom part of the original image,
shown in Fig. 4.10a, has been processed. The results are shown in Fig. 4.13 for the multilook,

the IDAN and the region homogeneity based pruning techniques for different &, values.

(a) Original (b) 7x7 multilook

(c) dow, 8, = —2dB (d) dw, 8, = —1dB

() daw, 8y (f) IDAN

Figure 4.13: Detail Pauli RGB images of corner reflectors preservation with the multilook,
the IDAN and the BPT based filtering (|Sun + Sul, Sul)-

The original image crop containing the corner reflectors is represented on Fig. 4.13a. As it
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may be seen, they are difficult to identify due to their small size and the high level of speckle
noise in the area. The 7x7 multilook filter, whose results are shown on Fig. 4.13b, reduces sig-
nificantly the speckle over the field and the corner reflectors appear highly contrasted but, since
they have much more reflectivity than the surrounding area, they appear enlarged according
to the filter window. The IDAN filter, depicted in Fig. 4.13f, has a good detail preservation,
preserving the corner reflectors, but the amount of speckle reduction is much smaller than the
multilook. Results for the BPT-based speckle filtering are shown on Figs. 4.13¢ to 4.13e for
different §, values. It may be seen that for all the pruning threshold values shown the corner
reflectors are preserved as small points while large regions appear over the field. Over the field
large regions appear, even for §, = —2dB, where some details are observed within the field,
showing its internal structure. In the case of §, = odB, all the underlying field is merged into
just one region while all the corner reflectors and details are preserved. The amount of speckle
reduction achieved by the BPT-based pruning is much more visible over the field than in the
IDAN and 7x7 multilook filtering, specially for §, = odB, as all the pixels of the field are aver-

aged together, resulting into a better estimation of the polarimetric response.

In Section 4.1.3 different dissimilarity measures for PoISAR data have been defined. All the
previous examples correspond to different pruning strategies over the same BPT constructed
employing the symmetric revised Wishart dj,, dissimilarity measure, as defined in (4.2). To
show the effect of this function in the final results, different BPTs of Fig. 4.10a have been con-
structed employing the distinct dissimilarity measures defined and the same region homogene-
ity based pruning has been applied to them, employing 5, = odB. These results are shown on
Fig. 4.14 over the same crop area presented in Fig. 4.11a. In order to apply the full matrix mea-
sures, an initial 3x3 multilook filter has been applied for matrix regularization, as in the previous

case.

When considering the results shown on Fig. 4.14 it may be surprising that most of them ob-
tain very similar results. Although the distinct dissimilarity measures defined in Section 4.1.3
are based on completely different approaches, all of the results roughly identify the main con-
tours of the agricultural fields and also preserve the details of the urban area. This may give an
idea of the robustness of the proposed BPT-based processing scheme in terms of the dissim-
ilarity measure employed for BPT construction. However, an in-depth analysis shows some
differences, specially when considering the noise over the straight contours of the fields or the
ability to distinguish between all the different agricultural fields. In general, the full matrix mea-
sures, shown in Figs. 4.14b and 4.14d, have a better ability to distinguish the different fields.

Additionally, from all the different dissimilarity measures it seems that the geodesic measure
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(e) dd,,, 8p = odB (f) ddra Sp = odB

Figure 4.14: Detail Pauli RGB images processed using region homogeneity based pruning
with 8, = odB over different trees constructed employing various dissimilarity functions

(|Shh + va‘y Slw s Sl’/l‘r Shh - Sw’)-

dyg, defined in (4.3), presents the better results in terms of contour noise and region distinction.
Note that a more detailed analysis of the results is complex by the absence of ground truth, but

in Section 4.3.4 a more detailed analysis will be performed with simulated data to overcome this
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limitation.

Fig. 4.15 shows the morphology of the pruned trees constructed with different dissimilarity
measures. In this case, in order order to obtain a small enough tree to be able to represent it
graphically, instead of the full image, a small crop has been processed corresponding to an area
of agricultural fields, presented in Fig. 4.4a. All the presented pruned trees have been pruned
with the region homogeneity based pruning employing §, = odB. Finally, the leaves of the
pruned tree have been colored in green if they correspond to single pixels, that is, leaves of the

original BPT, and in red otherwise.

(a) dag (b) dy (c) daw (d) dg

Figure 4.15: Pruned BPTs using region homogeneity based pruning with §, = odB over
different trees constructed employing various dissimilarity functions. Pruned nodes are col-
ored in green if they are leaves or in red otherwise.

The analysis of the BPT morphology is a very difficult task, as it depends on the structure
of the PolSAR image itself, and it will not be addressed in this work. By the way, some general
differences may be observed when comparing the pruned BPTs obtained after its construction
employing diagonal or full matrix dissimilarity measures. It may be seen that the trees obtained
with diagonal measures, shown in Figs. 4.15a and 4.15c, are less balanced than those obtained
with full matrix measures, represented in Figs. 4.15b and 4.15d. As a consequence, the pruned
BPTs obtained with diagonal measures appear thiner. Moreover, the pruned tree obtained with

the d;,, dissimilarity measure contains single pixels near to the root node. Note that this is not
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the desired structure for a BPT, as it is expected to find large regions close to the root. However,
in this case a small piece of data has been processed, having only 256 by 256 pixels and, thus,
these results are not very representative. Unfortunately, the pruned BPT of the whole image
has thousand of nodes making very difficult its representation and analysis, which is out of the

scope of this work.

In the previous examples a qualitative comparison of the BPT pruning results has been per-
formed in terms of the obtained Pauliimages. Note, then, that only the information correspond-
ing to the retrieved power in the Pauli basis of the estimated covariance Z is represented. In
order to do a broader analysis of the preservation of the polarimetric information, an additional
study is performed. The Entropy (H), Anisotropy (A) and averaged Alpha angle (a) decom-
position, as described in Section 2.2.6, will be employed in the following analysis to do a more
comprehensive assessment of the polarimetric information preservation. Fig. 4.16 shows these
parameters for the 7x7 multilook, the IDAN filtering and the proposed region homogeneity
based pruning for §, = —2dB and §, = odB. The Entropy and Anisotropy are represented
from o, in blue, to 1, in red color; the averaged Alpha angle is represented from o0°, in blue, to
90°, in red. In this case, the symmetric revised Wishart d, has been employed for BPT con-

struction, corresponding, thus, to the same Pauli results shown in Figs. 4.12b and 4.12f.

A qualitative evaluation of the polarimetric decomposition parameters presented in Fig. 4.16
reveals that the same colors may be seen on all the filtering processes, indicating that the polari-
metric information is roughly maintained. Nevertheless, the BPT is able to perform an stronger
averaging over large homogeneous areas, as in the agricultural fields or in the forest, reducing
considerably the noise over these parameters. For §, = odB, over the forest area in the top of
the image, the Entropy H tends to 1 whereas the Anisotropy A tends to o, which fits with the
theoretical response for a random volume scattering, as it is supposed to occur over forest [36].
Additionally, the ability of the BPT to preserve small details may also be seen, specially over
the urban area in the center of the image. Some small spots may be seen on this area for the
multilook, specially on H and a, corresponding to point scatterers. These details also appear
on the BPT results but without the characteristic enlargement of the multilook. The proposed
filtering scheme, then, improves the estimation of the polarimetric information both, in point
as well as in distributed scatterers, with respect to the multilook filter.

The comparison of these results is not clear due to the absence of ground truth. In order to
overcome this limitation when dealing with real data, some visually homogeneous areas from
the data may be selected in order to do a statistical analysis of the results obtained over these

areas. This analysis has been performed in this dataset over the three areas shown on Fig. 4.17.
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Figure 4.16: H/A/a of processed images with 7x7 multilook, IDAN and using region ho-
mogeneity based pruning.
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Figure 4.17: Homogeneous zones manually selected over the original image for the quan-
titative analysis (|Sun + Sw|, [Sio + Sunly |Shn — Sul)-

The average results obtained over these areas for different filtering mechanisms are shown on
Table 4.3. In this analysis, the original data is compared with the results of the 7x7 multilook, the
IDAN filter and the BPT region homogeneity based pruning strategy for §, = —2dB, —1dBand
odB values. To show the ability to preserve the elements of the covariance matrix elements, the
averaged value of the diagonal elements is displayed in the C,, to C,, columns. Additionally, the
real and imaginary parts of C,; element is also presented. Finally, the last three columns show
the averaged values obtained for the Entropy (H), Anisotropy (A) and averaged Alpha angle
(a) polarimetric decomposition parameters. As mentioned in Section 2.2.6, these parameters

require a full-rank matrix and, thus, they cannot be computed for the original image.

In order to compare the results obtained by the different techniques, the 7x7 multilook may
be used as a reference, as it corresponds to the MLE. In fact, it may be seen that it obtains values
close to the original data for all the covariance matrix elements. The BPT-based processing also
obtains similar values for all the different values of §,. However, for higher values of the prun-
ing threshold, when §, = odB, some values start to diverge from the original ones due to the
mixture of different regions that may not be so homogeneous. On the other hand, the IDAN
filter has a noticeable bias on the obtained values, tending to underestimate all the covariance

matrix elements. The presence of this bias has been mentioned in Section 2.3.3 and it is dis-
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Region | Filtering | C, | C» | C; [R(Cy) [S(Cy) [ H A [ a |
Original 28.27 | 16.06 | 18.34 §5.242 5.504 - - -
ML 7x7 28.21 | 15.97 | 18.36 5.321 5.465 0.8012 | 0.3543 | 48.29
Z1 IDAN 18.73 | 9.661 | 12.03 2.471 2.595 0.8558 | 0.3050 | 49.48
sooopx | BPT-2dB | 28.15 | 16.10 | 18.17 5.466 5.605 0.8271 | 0.2873 | 48.27
BPT -1dB | 28.20 | 15.20 | 18.08 5.558 5.612 0.8618 | 0.2036 | 47.91
BPT odB | 27.76 | 14.47 | 16.96 5.813 §5.211 0.8694 | 0.1630 | 47.74

Original | 279.3 | 159.1 | 172.8 | 49.80 -14.37 - - -
ML 7x7 280.8 | 159.3 | 172.9 49.18 -15.27 | 0.8598 | 0.2907 | 49.06
Z2 IDAN 173.0 | 102.4 | 105.8 20.59 -7.978 | 0.9003 | 0.2501 | §1.29
s9sopx | BPT-2dB | 278.1 | 158.4 | 1715 48.05 -16.12 | 0.8475 | 0.2984 | 49.50
BPT -1dB | 280.4 | 157.7 | 172.4 50.24 -15.42 | 0.8925 | 0.2269 | 49.41
BPT odB | 292.2 | 160.8 | 177.0 50.74 -13.42 | 0.9305 | 0.1307 | 49.61

Original 10.70 | 2.782 | 13.13 2.644 5.599 - - -
ML 7x7 10.70 | 2.789 | 13.14 2.662 5.593 0.6781 | 0.4248 | 42.62
73 IDAN 7.123 | 1.864 | 8.678 1.433 2.896 0.7438 | 0.4505 | 44.39
18000 px | BPT -2dB | 10.33 | 2.713 | 12.94 | 2.498 5.255 0.7370 | 0.3755 | 43.32
BPT -1dB | 10.36 | 2.799 | 13.23 2.434 5.136 0.7445 | 0.3881 | 43.60
BPT odB | 11.76 | 3.405 | 13.59 2.556 5.351 0.7852 | 0.3471 | 44.34

Table 4.3: Mean estimated values over homogeneous areas for different speckle filtering
strategies.

cussed in [127]. The authors have compensated up to a certain point this bias in [126], but,

unfortunately, there is no free implementation of this filter in order to compare the results.

For the H/A/a parameters, represented in the last three columns of Table 4.3, all the filters
obtain similar values, including the IDAN. It may seem odd that the bias in the covariance matrix
elements is not reflected into these parameters which, in fact, are extracted from the estimated
covariance matrix. This effect is caused by the relative nature of these elements, which do not
depend on the absolute power reflected by the target. Since the bias factor is roughly similar for
all the covariance matrix elements, it does not affect significantly the H/A/a parameters. The
comparison of the obtained values for these elements is not as straightforward as in the other
elements, since they may not be computed for original data. The multilook may be employed
as a reference but, although it is an unbiased estimator of the covariance matrix, it does have a
bias over the H/A/a parameters estimated indirectly from the obtained Z matrices, as shown on
[90][91]. According to this work, the Entropy H and Anisotropy A are always underestimated
and overestimated, respectively, and increasing the number of looks reduces the bias. A similar
trend may be seen in Table 4.3 when increasing the pruning threshold &, which, in fact, increases
the obtained region sizes and accordingly the number of averaged samples, the obtained values
for H and A slightly increase and decrease, respectively, as the estimation bias is reduced. A
detailed mathematical characterization of the estimated H/A/a parameters and its bias may be

found in Appendix A, while modeling the effect of the speckle noise with matrix perturbation
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theory [91]. Finally, some additional results with different SAR sensors may be found in the
Appendix B.

4.3.4 ANALYSIS WITH SIMULATED DATA

A more detailed analysis of the obtained results may not be performed with real data as we have
no knowledge of the ground truth. In order to conduct a thorough analysis, the true statistics
of the data must be known and also its detailed spatial distribution. This kind of information is
unknown for a real scenario as it is almost impossible to acquire.

To overcome these limitations, a synthetic dataset may be generated according to a given
artificial ground truth in order to perform an in deep analysis of the obtained results. In this
section two different synthetic datasets will be employed to do a more detailed analysis of the
BPT-based PolSAR estimation techniques defined in sections 4.3.1 and 4.3.2.

Fig. 4.18 shows an example of the first dataset employed. It corresponds to a 128 by 128
pixelsimage having 4 equal size zones, as represented in Fig. 4.18a. The simulated data have been
generated employing the complex Gaussian polarimetric model, as described in [99], assuming
a reflection symmetric target, since most of natural targets are assumed to follow this model,

having a covariance matrix C of the form

1 op\/?

C = omn o & o (4.17)

PNTY o Y

where * denotes the complex conjugate.

(a) (b) (c)

Figure 4.18: Simulated PoISAR dataset with 4 equal size zones. Z,,, Z,, and Z,, are as-
signed to blue, red and green channels, respectively. (a) Zones shape and numeration, (b)
and (c) one realization of the image with intensity variations and image ground-truth, re-
spectively.

According to the model presented in (4.17), three different datasets have been simulated,
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employing y, = 1and €; = o.1and variations for oyp; and p, in the different regionsi =1... 4

numbered as denoted in Fig. 4.18a:
1. Variations in intensity: p. = 0.5; oyg = {1, 9, 25, 49}
2. Variations in correlation: p= {o7 o.zsej”7 — 0.5, o.75e7j”}; oggi = 1

3. Variations both in correlation and in intensity: p = {o, 0.25¢", — 0.5, 0.75¢ /" };

OHH = {17 9, 2§, 49}

The idea behind these datasets is to generate simple images in order to make the interpreta-
tion of the obtained results as easy as possible. Moreover, the contrast between the different
regions varies in terms of the retrieved power or channel correlation, in order to compare the
sensitivity of the obtained BPTs to these traits of the data separately. Figs. 4.18b and 4.18c,
for instance, show one realization and the simulated ground truth for the first dataset, having
variations in intensity.

To assess the obtained results X in comparison with the simulated ground truth Y, an error

measure is proposed Eg, based on the averaged relative error measure per pixel [8]

o 11X — Y
Er(X, Y (4.18)
( ny, - nwzz |Y1]||F

i=1 j=1

where 1, and n,, are the image height and width in pixels, respectively, X7 represents the (i, j)th
pixel value of image X, that is, its estimated sample covariance matrix Z, and || - ||r denotes
Frobenius matrix norm. It is worth noting that the relative error measure defined in (4.18) is
based on the inverse signal to noise ratio (SNR™*) averaged for all the pixels in the image.

The filtering error Ep figures obtained over these three datasets employing the BPT pruning
based on the number of regions, as described in Section 4.3.1, may be seen on Fig. 4.19. Each
chart shows the Egr measure on the vertical axis, in dB, in terms of the number of regions N,
in the top horizontal axis, for different BPTs constructed employing most of the dissimilarity
measures defined in Section 4.1.3, including diagonal and full-matrix measures. Additionally,
in the bottom horizontal axis the average region size is represented, corresponding to the total
number of pixels of the image divided by the number of regions, calculated as (ny, - n,,) /N. Both
the horizontal axes are shown in logarithmic scale. These plots have been obtained after aver-
aging the outcome of 25 different realizations of each dataset. These results are also compared
with those of the multilook or Boxcar filter, for different window sizes. Note that for the Boxcar
filter, the bottom horizontal axis represents the total size, in pixels, of its averaging window; i.e.

the nin (2.54). In order to be able to apply the full-matrix dg,, (4.2) and d,,, (4.4 dissimilarity
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measures an initial 3x3 multilook filtering has been applied to get full-rank matrices. The stan-
dard deviation values over the 25 realizations have also been represented for the multilook and
for the d;,, case. The rest of the BPT based curves present similar standard deviation values to

the d,,, but they have not been represented to make the plots more readable.

When analyzing the Ep relative error results obtained in Fig. 4.19 two completely different
behaviors may be observed. Figs. 4.19a and 4.19c¢ present very similar trends whereas Fig. 4.19b
shows a distinct evolution. In fact, when there are variations in intensity, those dominate among
the variations in correlation, as they are much more important in terms of the Eg measure than
the variations in correlation. In Figs. 4.19a and 4.19c, for small values of the region size, the
results from the BPT and the multilook present similar values, as the effect of the region mix-
ture in the multilook is negligible. However, when the region size increases, while reducing
the number of regions N, the curve of the multilook starts to increase in terms of relative error.
This is produced by the fact that the error committed by the region mixture is larger than the
reduction in speckle when increasing its window size. Then, according to the Ex measure, the
optimum multilook window size will be 7 by 7 pixels, corresponding to a region size of 49 in
Fig. 4.19. The plots of the BPT based filtering continue its trend, decreasing when the region
sizes increases. Here, the spatial adaptation of the BPT avoids the region mixture over the re-
gion contours, allowing the increase of the number of pixels averaged, resulting in an additional
reduction of the error due to the speckle noise reduction over the data. Theoretically, the best
results may be obtained for 4 regions, when pruning the BPT at N = 4, as the simulated ground
truth has exactly 4 regions. As it may be seen, most of the BPT based plots achieve its optimum
near 4 regions, except when employing the dg, measure. If the number of regions N is reduced

below 4 regions, the region mixture is unavoidable, resulting into large values of Eg.

On the other hand, when only variations on correlation are present, as shown in Fig. 4.19b,
results are completely different. Note that the correlation between channels is contained in the
off-diagonal elements of the covariance matrix and, then, only the full-matrix measures d, and
d,,, are sensitive to them. Then, the regions generated when employing dg, (4.12), dg, (4.13)
and dg, (4.10) dissimilarity measures rapidly start mixing non-homogeneous regions, since
they can not adapt to the spatial morphology, and never improve the multilook filter perfor-
mance. Conversely, full matrix measures dg, (4.2) and d,,, (4.4) can adapt to the image spatial
morphology, avoiding the region mixture effect, and achieving better results than the multilook
filter. It is worth noticing that, in Fig. 4.19b, the intensity is constant over the entire image.
Then, the mixture of different regions do not have such a dramatic impact in Eg as in Fig. 4.19a

and 4.19c. This also explains why the minimum of the Boxcar relative error occurs at region
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Figure 4.19: Relative error measure for simulated images with 4 equal size zones filtered
with a BPT pruning based on the number of regions. The lines have been obtained averag-
ing the results of 25 simulated realizations.
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sizes about 400-500 pixels, equivalent to a 21x21 multilook filtering.

When comparing the results obtained for all the dissimilarity measures in the three cases,
it may be seen that they present different behaviors also in terms of the number of regions N.
The Wishart based dissimilarity measures dy, and d,, present the most stable behavior, having
a constant decrease in terms of Ex when decreasing the number of regions N. The dg, and dg,
measures may present better values of relative error than the other measures at some N, but they
do not have a constant behavior and are only sensitive to diagonal elements of the covariance
matrix. The Ward relative dissimilarity measure d,,, presents more error than the other measures
but it is the only one that has a clear minimum in N = 4 for all cases. However, when there are
no variations in intensity, the full matrix measures are the only ones that can adapt to the spatial

contours and improve the Boxcar filter performance, as shown on Fig. 4.19b.

(a) Boxcar 3x3 (b) Boxcar 9x9  (c) Boxcar 15x15

(d) dgy, N=100 (€) dgy, N=100 (f) dyy, N =100

(g) dsw, N =1000 (h) dg,, N =100 de,

Figure 4.20: Boxcar and BPT pruning based on the number of regions results for one of
the simulated PolSAR images with variations in both correlation and intensity employing

different dissimilarity measures. Z,,, Z,, and Z,, are assigned to blue, red and green chan-
nels, respectively.
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For the visual inspection of the obtained results, Fig. 4.20 shows the outcome of the multi-
look filtering and the BPT pruning based on the number of regions when employing different

dissimilarity measures and N parameter values.

The first row, Figs. 4.20a to 4.20c, shows the Boxcar filter results for window sizes from 3x3
to 15x15. As it may be seen, when increasing the size the effect of the speckle gets also re-
duced. However, the impact of the region mixture near contours gets also increased, resulting
into blurred transitions between regions. On the second row, Figs. 4.20d to 4.20f, the number of
regions N parameter is set to 100 and results are shown for different dissimilarity measures: d,,
dgw and d,,,. All of them are able to detect the main contours of the image avoiding the region
mixture, for this value of N. Note that the contours within each of the four regions may be con-
sidered as random, as there are no contours in the simulated ground truth and, consequently,
these contours are produced by the effect of the speckle noise. The third row, composed by
Figs. 4.20g to 4.20i, shows the obtained results over the BPT constructed employing the sym-
metric Wishart dy,, measure for different values of N. Fig. 4.20i depicts the obtained result for
N = 4, corresponding to the real number of regions in the simulated ground truth. As it may be
seen, the obtained regions are very close to this ground truth, shown in Fig. 4.18c, with small dif-
ferences on the region contours. This similarity is also confirmed by the small values observed

in terms of the relative error measure Eg.

The same analysis have been performed with the region homogeneity based pruning, as de-
scribed in Section 4.3.2. Fig. 4.21 shows the results after applying this pruning strategy to the
different BPTs constructed employing all the dissimilarity measures defined in Section 4.1.3.
These plots show the relative error measure Eg, defined in (4.18), in the vertical axis in terms
of the pruning threshold §, in the horizontal axis. In these plots both axes expressed in dB. As
in Fig. 4.19, the results have been obtained after averaging the outcome of 25 different realiza-
tions of each simulated image. Again, the values of the standard deviation are shown for the

symmetric revised Wishart dissimilarity d,.

When comparing Figs. 4.21a to 4.21cit may be seen that all of them present a similar trend, as
opposed to Figs. 4.19ato 4.19c. For all the plots, there is a clear minimum for all the dissimilarity
measures, that may be located around §, = —6dB. Moreover, when there are variations on
intensity, as in Figs. 4.21a and 4.21¢, a wide range of values for §, may be chosen having a near-
optimum behavior. This is produced by the fact that the region mixture on these cases produces
a strong increase in the region homogeneity measure and then, the pruning factor has to be
substantially increased in order to prune this non-homogeneous regions. On the other hand,

when there are only variations in correlation the effect of the region mixture is much more subtle
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Figure 4.21: Relative error for simulated images with 4 equal size zones filtered with the
region homogeneity based pruning. Results have been obtained averaging 25 realizations.
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in terms of the homogeneity measure, but there is also a minimum at the same pruning threshold

value §, = —6dB.

The minimum values, in terms of the relative error measure, obtained by the region homo-
geneity based pruning, represented in Fig. 4.21, are roughly the same than in the pruning based
on the number of regions, as shown in Fig. 4.19, as the same regions may be obtained from the
corresponding BPTs. However, the region homogeneity based pruning has the advantage of
having a predictable behavior and the same optimum pruning threshold value, independently
of the image content or dissimilarity measure employed for BPT construction. Additionally,
when there are only variations in correlation, as represented in Fig. 4.21b, it may improve some-
what the results obtained by the pruning based on the number of regions for diagonal measures,
as the homogeneity measure is sensitive to the full covariance matrix information, mitigating

slightly the limitations of these measures.

Fig. 4.22 shows the results obtained after applying the region homogeneity based pruning
to one realization of the dataset having variations in both correlation and intensity. Figs. 4.22a
to 4.22f show the results of the region homogeneity based pruning with a threshold value of
8, = —6dB, which produces the optimum Ey value in all the datasets, for the different BPTs
constructed employing various dissimilarities measures. As it may be seen, on all of them the 4
regions of the image are clearly obtained. The main variations among them lies in the precision
of the contours retrieved and the presence of some small regions within the 4 squares that only
correspond to speckle features. The best results seem to be obtained by the full-matrix measures
g dyr and dgg. Additionally, in order to show the obtained results evolution when varying the
pruning threshold &, value, Figs. 4.22¢ to 4.221 depict the obtained results for the homogeneity
based pruning pruning with threshold values from §, = —9dBto §, = —4dB. For these
results the geodesic dissimilarity measure d, has been employed in all cases. As mentioned
before, there are a wide range of values for the pruning threshold §,, that produce the optimum

result, as it may be seen from Fig. 4.22j to 4.221.

When comparing both BPT pruning strategies, represented in Figs. 4.19 and 4.21, it is worth
to mention that the simulated image having 4 equal size regions is not complex enough to be rep-
resentative. In fact, one of the most remarkable benefits of the region homogeneity BPT based
pruning isits ability to extract homogeneous regions of different sizes, as stated in Section 4.3.2.
These advantages have been clearly seen when processing real data, as it may be observed on the
results presented in Section 4.3.3. The simulated datasets employed in the previous analysis do
not present this level of structural complexity, as they only have 4 equal size regions. Although

they may be useful to understand and interpret the obtained results, they may not be realistic.
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(a) dd”’ Sp = —6dB (b) ddrr Sp = —6dB (C) ddw: SP — —6dB

(8) dig. 8 = —9dB (h) dy, 5, = —8dB (i) dsg, 5, = —7dB

(j) dsg, Sp = —6dB (k) dsg, Sp = _SdB (|) dsg, Sp — _4dB

Figure 4.22: BPT homogeneity based pruning results for one of the simulated PolSAR im-
ages with variations in both correlation and intensity employing different dissimilarity mea-
sures and prune thresholds. Z,,, Z,, and Z,; are assigned to blue, red and green channels,
respectively.

Then, in order to obtain a more representative results, the simulated ground truth may de-
scribe a more realistic complex scenario, similar to a real PoISAR image. Ideally, it should con-
tain large homogeneous areas, like agricultural fields, and also small details, like the corner re-
flectors or the urban area, as seen before. Moreover, it would be desirable that the covariance

matrix C for every region represents realistic values that can be found in real data. Therefore,
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in order to accomplish the previously mentioned requirements, a ground truth may be gener-
ated by a segmentation of a real image. Since a manual segmentation is not affordable, due to
the large number of small regions and details of a real image, a segmentation technique may be
employed. To generate this realistic ground truth, the BPT region homogeneity based prun-
ing with a pruning factor §, = —1dB has been employed over the tree constructed with the
geodesic dissimilarity d,, presented in (4. 3). Figs. 4.23a and 4.24a present the 512 by 512 pixel
crops of the Oberpfaffenhofen dataset and Figs. 4.23b and 4.24b represent the obtained regions
after applying the previously mentioned BPT pruning strategy.

(a) Original crop (b) Filtered (dy, 8, = —1dB)

Figure 4.23: Pauli representation of the original and filtered images of an agricultural area
(|Shh + va‘y Shv + Svh|y Shh - va’)-

As it may be seen on Figs. 4.23 and 4.24, both images have large and small homogeneous
regions but they correspond mainly to an agricultural area and a urban area, respectively. Con-
sequently, Fig. 4.23ais dominated by large regions whereas on Fig. 4.24a a much higher number
of small details may be observed. Indeed, the number of regions of the ground truth images are
1939 for the agricultural zone and 6869 for the urban zone.

Then, in order to simulate a realistic ground truth, the images represented in Figs 4.23b and
4.24b may be employed as a ground truth for the simulation process. Note, however, that these
results may not correspond to the real ground truth of the Oberpfaftenhofen dataset, due to seg-
mentation and modeling errors of the region homogeneity based pruning employed for their

generation. Nonetheless, they are good choices for an analysis with simulated data as they have
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(a) Original crop (b) Filtered (dg, 8, = —1dB)

Figure 4.24: Pauli representation of the original and filtered images of an urban area
(‘Shh"i_svv‘r Sho + Sun Shh _Sw|)-

large and small regions with shapes and polarimetric information that may be close to the struc-

ture and content of a real PoISAR image.

Ground truth N Realizations
_ _ e :

X BPT-Based

E(X.Y) [ Filtering

Figure 4.25: Evaluation process scheme for a simulated dataset.

A set of synthetic images may be generated from the ground truth images, represented in

Figs 4.23b and 4.24b, that may be employed for testing the performance of the region homo-
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geneity based pruning. The whole simulation and evaluation scheme has been represented in
Fig. 4.25, which corresponds to the same evaluation process performed before for the 4-region
images datasets.

In order to perform this analysis, the set of realizations are processed with the proposed BPT
based technique employing different dissimilarity measures and pruning thresholds and they
are compared against the simulated ground truth. For this comparison with the ground truth,
which is denoted as E(X, Y) in the scheme, the relative error measure Ep is employed, that has
been defined previously in (4.18). Figs. 4.26a and 4.27a represent one simulated realization of
the ground truth images described before. As outlined in Fig. 4.25, these images are processed
with the BPT proposed technique in order to obtain filtered images, which are also depicted
in Figs. 4.26b and 4.27b, respectively. It is worth noticing the similarity of these images with
Figs. 4.23b and 4.24b, showing the ability of the BPT to obtain the originally simulated ground
truth.

(a) One realization (b) Realization filtered (dy, §, = —sdB)

Figure 4.26: One realization of the agricultural simulated ground truth and the corre-
sponding filtered image (|Su, + Suul, [Si + Sunls [Spn — Sul)-

As a first step, the performance of the multilook filtering will be assessed in this complex
simulated environment. Table 4.4 shows the Ex measure obtained for the original simulated
realizations and after processing them with the multilook filtering employing various window

sizes.



(a) One realization (b) Realization filtered (dy, §, = —5dB)

Figure 4.27: One realization of the urban simulated ground truth and the corresponding

filtered image (|Sun + Suol, [Sno + Sunl, |Shn — Swl).
H Agricultural zone H Urban zone
No filtering 1.451 1.565
3x3 multilook -1.911 -0.251
sxs multilook -2.411 0.871
~x7 multilook -1.895 2.616
ox9 multilook -1.055§ 4.308

Table 4.4: Relative error Eg, in dB, for original and multilook filtered realizations.

As one might expect, similar relative error values are obtained for the original realizations
in both zones. However, when applying the multilook, different trends are observed for both
cases. On the agricultural zone the best window size is sx5 whereas on the urban zone it is
around 3x3. Moreover, the amount of error obtained in the agricultural area is much lower than
the one obtained on the urban area. These differences are caused by the distinct spatial structure
of both areas. The agricultural area is composed mainly by large homogeneous fields and, then,
a higher amount of filtering may be performed without a significant inhomogeneous region
mixture. On the other hand the urban area is composed by a large number of small regions and,
consequently, the heterogeneous region mixture effect appears even for small window sizes,

increasing the Er measure.

The same analysis has also been performed to the region homogeneity based pruning, as de-

picted in Fig. 4.25. Results for the agricultural area are shown in Fig. 4.28 for the BPTs con-



structed employing the diagonal and full-matrix Wishart and geodesic dissimilarity measures:
daw, dgwy dag and dg. Figs. 4.28a and 4.28b show the achieved relative error Eg and the number of
pruned regions in terms of the pruning threshold §,, respectively. Moreover, Fig. 4.28c shows

the relative error in terms of the number of regions pruned in the BPT pruning process.

As it may be seen in Fig. 4.28a, there is a minimum value of Eg for a pruning threshold value
slightly below §, = —sdB, which is located at the same point for all the BPTs constructed
employing various dissimilarity measures. This result is consistent with the previous results
employing the 4 regions simulated datasets, as shown in Fig. 4.21. Moreover, for all the dis-
similarity measures this minimum value of Ey is clearly below the best value obtained by the
multilook, which is represented in Table 4.4, demonstrating its ability to outperform the mul-
tilook for speckle filtering by adapting to the spatial structure of the image, even in a complex
scenario. When comparing the results obtained by the different dissimilarity measures, it may
be seen that the geodesic set of measures achieves better results than the Wishart based mea-
sures. Additionally, the diagonal measures dg, and d g attain slightly lower Eg values than their
full-matrix counterparts d, and d, respectively. This observation may seem contradictory as
theoretically the full-matrix measures are sensitive to the full polarimetric information, being
able to adapt to additional features than diagonal measures, as reported in the previous analy-
sis with the 4 squares datasets. However, it may be related with the fact that the Ex measure
is more sensitive to the power information, as stated before, which is contained in the diago-
nal elements of the covariance matrices. Note that nowadays there is not a clear measure to
evaluate properly the full matrix information preservation and probably the relative error mea-
sure Eg presents some limitations in this regard. Nevertheless, the full-matrix measures have
some important advantages in preserving the full polarimetric information under the Gaussian

hypothesis, as it may be seen in Figs. 4.19 and 4.21.

Fig. 4.28b shows the number of pruned regions, or, equivalently, the leaves of the pruned
tree, according to the pruning threshold §, value. For a better readability the vertical axis, cor-
responding to the number of pruned regions, is represented in logarithmic scale. It may be seen
that, in general, the geodesic dissimilarity measures achieve a smaller number of regions for a
given &, value than the Wishart based measures. Note that the pruning threshold §, parameter
fixes the maximum amount of relative MSE accepted per region, corresponding to the homo-
geneity measure previously defined in (4.14). Then, a smaller number of regions means that
the pruned regions obtained are larger while being equally homogeneous, as they have been
pruned with the same relative MSE threshold, resulting in a simpler segmentation and a better

polarimetric estimation. Consequently, it may be deduced that the geodesic based measures
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Figure 4.28: Parameter evolution for different values of &, and dissimilarity measures over

the agricultural zone.
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achieve a better adaptation to the scene spatial structure, as they obtain larger homogeneous
regions than the Wishart based measures. Moreover, if full-matrix measures are compared with
diagonal ones, two different situations are observed. For pruning threshold below the opti-
mum, that is, §, < —sdB, the full-matrix measures d,; and d,, achieve better results, having a
smaller number of pruned regions, than their diagonal counterparts d4; and dy,, respectively.
However, for larger values of the pruning threshold, §, > —sdB, the opposite situation is no-
ticed. This fact means that full-matrix measures are able to achieve a better adaptation to the
structure of the scene when the regions obtained may be considered as homogeneous, specif-
ically for small values of §,. As mentioned before, for a larger values of the pruning threshold,
when the heterogeneous region mixture becomes evident, as it is represented by an increase in
Eg, the sample covariance matrix Z is not able to properly represent statistically the scattering
process of the region. For this pruning threshold values, the BPTs constructed employing full-
matrix measures achieve a poorer performance in terms of spatial adaptation. Nonetheless, for
this application we are usually interested in having homogeneous regions and, then, in this situ-
ation dissimilarity measures employing the full matrix information obtain larger homogeneous

regions resulting in a better contour detection.

Additionally, Fig. 4.28c shows the relative error Ex measure versus the number of pruned re-
gions that are obtained when varying the §, parameter. The set of Eg values obtained are the
same that are represented in Fig. 4.28a, but it may be clearly seen that the minimum Eg value is
obtained for a different number of pruned regions on each plot. In fact, the BPTs constructed
employing Wishart based measures obtain the best Ex values at about 5000 regions, while if the
geodesic measures are employed then this point is achieved at about 3500 regions. As men-
tioned before, the number of regions of the ground truth for the agricultural zone is 1939. This
gives some idea of the spatial adaptation performance of the proposed technique. It can also
be seen that the minimum point is attained at slightly lower number of regions for full matrix

dissimilarities than for diagonal ones.

Fig. 4.29 shows the same figures than Fig. 4.28 for the urban area crop presented in Fig. 4.24.
As in the previous case, the outcome of 2§ realizations have been averaged to reduce the noise
over the plots. Fig. 4.29a represents the Ex measure versus the pruning factor value §,,. As it may
be expected, there is a minimum for all the lines almost in the same position than in Fig. 4.28a,
at —6dB < §, < —sdB, but the values of these minimums in urban area are lower in terms
of Eg than the values obtained in the agricultural area. Indeed, the difference between the Ex
obtained at§, = —10dB and the minimum point is not as large as in Fig. 4.28a. This contrast be-
tween both results are produced by the distinct spatial structure of both images. As mentioned

previously, the urban area is composed mainly by a large number of small regions and, then,
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there are a smaller number of homogeneous samples for each target to estimate its response.
Consequently, the possible amount of speckle filtering is inherently reduced, as there is no op-
portunity to achieve such a large filtering as in the agricultural area. However, it is worth to
mention that the obtained Ey values are still better than those obtained by the multilook, rep-
resented in Table 4.4, as the spatial adaptation avoids the mixture of adjacent targets. When
comparing the results obtained employing different dissimilarity measures, the same conclu-
sions extracted for the agricultural area dataset apply, although over urban area the differences
in term of Eg between diagonal and full matrix dissimilarities are larger. This fact may be caused
by the inability to estimate properly the off-diagonal elements of the covariance matrix over
such a small regions having few samples available, confusing the full-matrix measures that rely

on them for the region similarity computation.

Fig. 4.29b shows similar trends to Fig. 4.28b, having almost the same shape. However, the
vertical axis scale, corresponding to the number of regions, presents larger values, since the
structure of the urban areas is much more complex, resulting in a higher number of regions
for a given pruning factor §,,. An analogous effect may be observed on Fig. 4.29¢, where the best
results in terms of Ey are achieved at about 15000 regions for the geodesic based dissimilarities
and at about 20000 for Wishart based dissimilarities. As described before, the ground truth for
the urban area contains 6869 regions, so there is approximately the same relation between the
number of pruned regions for the minimum Ep attained and the ground truth regions for the

agricultural and the urban areas.

Comparing the results with simulated data presented in this section with those presented
in Section 4.3.3 it may be seen that the §, values employed differ substantially. When dealing
with real data, the typical pruning threshold values range from —2dB < §, < odB whereas
on the previous analysis with simulated data the best Eg values are obtained for values around
—6dB < §, < —4dB. As an example, Figs. 4.23b and 4.26b correspond to similar results but
the former has been obtained from real data at §, = —1dB whereas the latter from simulated
data with §, = —sdB. This disparity implies that the simulated data are more homogeneous, in
terms of the homogeneity measure, than the real data. This fact may be caused due to additional
features that are present in real data and are not taken into account within the region model
simulated, which is the complex Gaussian polarimetric model. These additional features may be
considered as the region texture and, since they are not properly modeled, the pruning threshold
8, hastobeincreased in order to absorb these modeling errors when processing real data. When
the synthetic data are generated, this texture is not reproduced as it is not contemplated in the

model and, then, it is not necessary to increase the pruning factor to assimilate the modeling
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4.4 BPT BASED COASTLINE SEGMENTATION

As a multi-scale data abstraction, the BPT structure contains a large amount of useful informa-
tion about the image structure at different detail levels, as mentioned before. In this section the
coastline segmentation is briefly presented in order to illustrate a different application based

on a completely different pruning mechanism than the polarimetric estimation presented in

I

(a) Original Pauli (b) BPT based coastline segmenta-
tion

previous sections.

Figure 4.30: Pauli RGB image of Barcelona (a), and BPT based coastline segmentation
(b). The revised Wishart dissimilarity dg, has been employed for the BPT construction
(|Shh + va‘v S/w + Sun Shh - va’)-

Fig. 4.30a presents a PolSAR image of Barcelona, Spain. This image is a 1500 X 2500-pixel cut
of a C-band Pauli RADARSAT-2 image that was acquired in November, 18th 2008, in fine quad
polarization mode, with nominal resolution of 5.2m X 7.6m. Over the sea, a zoom rectangle
shows a detailed area corresponding to the Forum harbor of Barcelona. The coastline segmen-
tation result is shown on Fig. 4.30b, where 2 regions may be seen, corresponding to the sea and

the land on the image. The color of each region corresponds to its Entropy (H) parameter in

117



Fig. 4.30b. To generate this result, the BPT has been constructed employing the symmetric
Wishart dissimilarity measure d,, (4.2) and, as a pruning strategy, the two most different of the
tree has been extracted, that is, the two sons of the root node.

As it may be seen, the coastline is clearly detected as the contour between the two obtained
regions. Additionally, due to the ability of the BPT to preserve contours and small details, some
small and thin structures like the breakwaters of the Forum harbor are preserved in the segmen-
tation. Indeed, all these details are detected on the lowerlevels of the tree and they are transfered
to the larger regions of the BPT, as shown in Fig. 4.30b.

While the polarimetric estimation is based on the extraction of the homogeneous regions of
the tree, corresponding to smaller regions, this application is focused on the largest ones. The
example presented in Fig. 4.30 exhibits the benefits and usefulness of a multi-scale representa-
tion like the BPT for data representation and interpretation.

It is worth noticing that, as mentioned in Section 4.1.2, the sample covariance matrix Z em-
ployed as a region model, is not able to properly represent homogeneous regions of the image.
In the coastline segmentation example, represented in Fig. 4.30b, the region corresponding to
the land area, represented in red color, is strongly heterogeneous, as it contains a mixture of
urban areas, agricultural fields, mountains, etc. Indeed, it may be seen that this area has a large
Entropy, as red color correspond to H = 1, due to this combination of different types of scat-
tering processes. Nevertheless, a meaningful segmentation result is obtained since, in this case,
the other region containing the sea area corresponds to a quite homogeneous area. However,
in general, for a proper representation of inhomogeneous areas more complex region models
should be employed in the BPT representation. This issue will be further discussed and ana-
lyzed later, in Section 6.3, where some additional models are defined to handle, up to a certain

point, with inhomogeneous regions.
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We must use time as a tool, not as a coach.

John F. Kennedy

Polarimetric SAR Time Series BPT based

Processing

IN THE LAST FEW YEARS the construction of temporal series datasets has grown significantly,
driven by the growing presence of space-borne SAR systems. These datasets consist of differ-
ent acquisitions of the same area collected at different dates, due to the ability of space-borne
sensors to revisit periodically and under the same geometry the scene. The importance of these
data relies in that they contain useful information not only concerning the scene but also re-
lated to its temporal evolution and dynamics. Nevertheless, the analysis and exploitation of this
information from SAR time series is a challenge that is only just beginning to be studied and
developed.

This chapter deals with all the concepts related to the extension of the previously defined
BPT data abstraction to represent and exploit PoISAR time series datasets. Two different alter-
natives are proposed for this extension and the strengths and limitations of both approaches are
analyzed and discussed. Apart from the previously mentioned speckle filtering application, on
which this thesis is focused, an additional application will be proposed in order to study the vari-

ability of the scene. This application gives an idea of the potentialities of the BPT abstraction
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and its usefulness for the analysis and interpretation of the temporal dimension of the data.

5.1 THE TEMPORAL DIMENSION OF THE DATA

On the time series datasets, the temporal dimension comes into play. When considering these
data, particular attention should be paid to the modeling of this dimension, as it will define the
final representation obtained and its interpretation. In this work, two different BPT approaches
are defined depending on the target modeling in terms of the temporal dimension. In order to
simplify the processing and the analysis, in the following it will be assumed that all the acquisi-
tions are properly co-registered, that is, the area of the scene represented by the pixel at position
(i, 7) is the same for each acquisition of the dataset.

The two proposed modeling alternatives differ on the way they characterize a target on these
time series datasets. The additional information contained within the temporal dimension may
be considered as an additional dimension of the data or as an additional feature of the target.
The following sections give a more detailed description of these assumptions and their corre-

sponding consequences in terms of data modeling and interpretation.

5.1.1 TIME AS AN ADDITIONAL DIMENSION OF THE DATA

On the one hand, it may be assumed that a target is characterized by the statistics of its po-
larimetric response, as performed in single PolSAR image data processing, which has been de-
scribed in Chapter 4. Note that, under this assumption, different target responses may be ob-
served for a resolution cell on each acquisition, resulting into distinct targets detected at differ-
ent time instants over the same area. This fact implies that time series datasets are composed
by three-dimensional data, corresponding to the space and time dimensions. In this context, then,
the temporal dimension is employed as an additional source of data [15].

The immediate consequence is that the amount of available samples gets increased according
to the number of acquisitions of the dataset. A dataset having N acquisitions containing n, and
n, pixels in range and azimuth dimensions, respectively, is composed of n, - n, - N elements.
It is worth noticing that, according to this assumption, the sample covariance matrix Z may be
estimated, as described in (2.54), employing homogeneous samples of different acquisitions.
This involves an improvement in terms of the estimated Z as the number of available samples
may be increased while also reducing the effect of speckle noise. However, this also implies that
an adaptation is needed in the space-time dimensions in order to avoid heterogeneous samples
mixture, which might be more complex due to the higher dimensionality. Moreover, since sam-

ples of different acquisitions are combined, the interferometric information of the data cannot
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be exploited with this approach.

5.1.2 TIME AS AN ADDITIONAL DIMENSION OF THE TARGET

On the other hand, it may be assumed that a target is not defined by a constant response, but a
particular temporal evolution is associated with each target. Then, its response changes among
the temporal dimension following a particular trend defined by this evolution. Under this as-
sumption, the target may be characterized by its response dynamics according to the temporal

dimension. To this end, the statistics of the extended scattering vector k, may be employed [ 15]

T
— | vT T T
k=| k' k' ... kf (5.1)
where k; represents the scattering vector at the i-th acquisition, as defined in Section 2.2.3 and
N represents the number of acquisitions in the dataset.
Following the same rationale than in Section 2.2.4, the extended sample covariance matrix
Z, may be defined, corresponding to the estimation of the covariance matrix of k., containing

all the information to completely characterize it under the Gaussian hypothesis

Zu Qu e QIN
Qg Z, --- QzN

Z = <kek§>n = . . . . (5-2)
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where Z;; corresponds to the 3 by 3 sample covariance matrix representing the polarimetric
information of the i-th acquisition, as expressed in (2.54), and £ is a 3 by 3 complex matrix
representing the correlation between the acquisitions i and j.

Note that, in this scenario, the additional information provided by the temporal dimension
of the data is employed to improve the target characterization by including this information into
its description, resulting into the extended matrix Z,. Then, the individual data elements are not
the original pixels of each acquisition, but the complete set of collocated pixels among all the N
acquisitions, as described by (5.2). Therefore, having N acquisitions containing 7, and 1, pixels
in range and azimuth dimensions, respectively, results into a dataset having n, - n, elements with
an extended sample covariance matrix Z, composed of N X N 3 by 3 matrices. However, since
Z, is hermitian, it only contains (N* + N) /2 independent 3 by 3 matrices. So, this assumption
results into two-dimensional data, corresponding to the spatial dimensions, similarly to the single
PolSAR image case.

Comparing this approach with the one presented in Section 5.1.1, it has the disadvantage of
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not allowing the increase in the number of samples combined, as the number of samples in the
dataset is independent of the number of acquisitions N. However, this concept allows a more
detailed target characterization when employing the extended Z, matrix, making possible, for
instance, the exploitation of the interferometric information, which may be extracted from the

€);; matrices.

5.2  BPT REPRESENTATIONS FOR POLSAR TIME SERIES

Two alternatives have been proposed for dealing with the temporal dimension of the data, as
described in Sections 5.1.1 and s.1.2. The BPT abstraction, described in Chapter 3, may be
extended to represent PolSAR time series according to these hypotheses [15], as described in
the following.

These sections are focused on the generation of the BPT structure from the original PoISAR
time series, by defining the core concepts over these datasets, as described in Section 3.2. Addi-
tionally, these concepts are related with their equivalent notions when processing PolSAR data,

as they have been defined previously in Section 4.1.

5.2.1 SpAce-TiME BPT

When considering the temporal information as an additional dimension of the data, just as de-
scribed in Section 5.1.1, a three-dimensional dataset is obtained [ 10]. These correspond to the
space and time dimensions and, consequently, this BPT representation will be called Space-

Time BPT (ST BPT) [15].

In order to apply the BPT construction process, some elements have to be defined for this

1. Data connectivity. The obtained BPT will contain connected regions of the data. Then,
in this case, the data connectivity has to be defined over the space-time domain. Over
the spatial dimension, each pixel will be connected with its 8 neighbors, as it has been
defined for PolSAR data in Section 4.1.1. In the temporal dimension, each pixel will be
connected with the pixels located on the same position in the acquisitions just before
and after in the temporal dimension, resulting into the 10-connectivity [10][15], which

has been represented in Fig. s.1.

2. Region model. Under this approach, as described in Section §.1.1, a target is characterized
by its polarimetric response. Then, the sample covariance matrix Z, defined in (4.1), may
be employed for its description, as it completely describes the scattering process under

the Gaussian hypothesis. However, note that in this case the sample covariance matrix
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may be computed by combining samples of different acquisitions, as the connected re-

gions of the data may cover different images by expanding over the temporal dimension.

3. Similarity measure. To apply the BPT construction process described in Algorithm 3.2,
the similarity between adjacent regions has to be computed. Note that this is a measure
defined over the region model space, which is the same model employed for processing
PolSAR data. Then, all the dissimilarity measures previously defined in Section 4.1.3 may
be employed to construct the ST BPT.

. Central pixel
. Connected pixel

Figure 5.1: Space-Time BPT pixel connectivity. Each pixel, represented in blue, has 10
neighbors, colored in red.

As a consequence, the resulting ST BPT data abstraction is composed of connected regions
of the data in the space and time dimensions presenting a similar polarimetric response. This
means that the obtained regions cover pixels of different acquisitions having a similar Z matri-
ces, according to the employed dissimilarity measure. As mentioned previously, this may allow
an increase in the number of samples per region, improving the polarimetric information esti-
mation by expanding regions in the temporal dimension. However, due to the adaptation to
the data morphology, this expansion may only be possible if there are no changes in the tar-
get among the different acquisitions, as its Z matrix will change, resulting into the mixture of
heterogeneous samples. Consequently, when there is a target change among two adjacent ac-

quisitions, a contour in the temporal dimension is observed.

It is worth noticing that, since in the ST BPT approach the temporal information has been
employed as an additional dimension of the data, a change in the data connectivity has to be
performed to adapt to the new dimensionality, but the region model and dissimilarity measures
have been maintained with respect to the single PolSAR image BPT abstraction. This fact may
give an idea of the simplicity of the adaptation of the BPT processing scheme to a different data
type or layout.

123



5.2.2 TEMPORAL EvoLuTioN BPT

The temporal information may also be employed to improve the characterization of the target
scattering process, as described in Section 5.1.2. As a consequence, each target is characterized
by a particular temporal evolution [6], that may be described by the extended model Z,, as
detailed before. Therefore, this approach will be called Temporal Evolution BPT (TE BPT)
[15].

As for the ST BPT, the following elements have to be defined in order to construct the TE
BPT from the original data [7]

1. Data connectivity. Note that in this case a two-dimensional dataset is obtained, as the
temporal information is included within Z,. Then, the same 8-connectivity scheme em-

ployed before, shown in Fig. 4.1, may be applied for this data.

2. Region model. In this approach the whole temporal evolution of the target has to be taken
into account, as mentioned in Section s.1.2. The extended sample covariance matrix Z,
has been defined in (5.2) for this purpose and it may be employed as a region model in

the TE BPT representation.

3. Similarity measure. This measure is defined in the region model space and, as a con-
sequence, it has to be defined over the Z, matrix. In Section 4.1.3, some dissimilarity
measures have been defined over the sample covariance matrix for PoISAR data. The ex-
tended sample covariance matrix Z, contains the polarimetric information of the target
at the i-th acquisition on the sub-matrix Z;;, as explained before. Therefore, a modifica-
tion of the previously defined dissimilarity measures is proposed to take into account the
full sequence of polarimetric matrices. For instance, the extended geodesic dissimilarity

measure d, between two regions A and B may be defined as

2 21N
+In (—A = ) (5.3)
F na + np

where Z,, represents the Z;; component of the A region, as shown on (5.2).

dg(A,B) = i:

i=1

log (Z;i:/ZZBii Z;:/2>

It is worth noticing that the first part of (5.3) corresponds to euclidean norm of the geodesic
dissimilarity terms, the term depending on the covariance matrixin (4.3 ), corresponding to the
entire sequence of Z; matrices. The term depending on the region size has been maintained un-
altered as it only concerns the number of pixels within the region, having nothing to do with the

polarimetric modeling. The same idea may also be applied to extend other similarity measures.
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Moreover, the dissimilarity measure extension proposed in (5.3) ignores the information
contained within the €;; matrices. Indeed, the d,, dissimilarity measure defined in (4.3) could
be applied directly to the whole Z, matrix. However, this approach will involve some limita-
tions as the information contained within the ; is different to the one contained in the Z;
matrices. The Q;; matrices contain interferometric information, having a distinct nature than
the polarimetric information, that depends on the spatial baselines, topography, subsidence,
etc [34] which prevents a direct comparison between them. Additionally, in order to employ
the whole Z, matrix for a full-matrix measure, it is required to be full-rank, involving a large
initial filtering of, at least, 3N independent samples for matrix regularization [60]. This may
be a problem even for a small number of acquisitions N, requiring a large averaging and reduc-
ing the spatial resolution. On the other hand, the proposed extension in (5.3) employs the full
polarimetric information among all the acquisitions, under the Gaussian hypothesis, and only
requires a small matrix regularization process employing at least 3 independent samples, as in

the single PolSAR image BPT based processing.

The nodes of the TE BPT represent spatial regions of the scene having a similar polarimetric
temporal evolution, that is, regions presenting a similar sequence of Z; matrices according to
the dissimilarity measure. Although it may not increase the number of averaged samples, as in
the case of the ST BPT, the TE BPT may improve the target characterization, as it takes into
account the temporal evolution information, resulting into a better identification of targets and

a more accurate region contours over the scene.

In the TE BPT the region model has been changed and, as a consequence, the dissimilarity
measure has been also modified accordingly. Despite these changes, the rest of the concepts and
algorithms presented in Chapter 3 may be applied directly. This is possible thanks to the generic
description of the BPT and its related modeling notions. Then, the adaptation performed on
the TE BPT may serve as an example for the process of changing the region model in the BPT

data abstraction.

Itis worth mentioning that both ST BPT and TE BPT approaches, presented in Sections 5.1.1
and 5.1.2, may be seen as a generalization of the single PoISAR image BPT, presented and ana-

lyzed in Chapter 4, as both of them result into this representation for N = 1.

The computational complexity of the BPT construction process has been analyzed in Sec-
tion 3.2.3, being the Algorithm 3.2 the most significant part. This algorithm has a complex-
ity of O(nlogn), depending on the number of leaves of the tree n. Note that for the two de-
fined BPT approaches in Sections 5.1.1 and 5.1.2, the number of leaf nodes is different, being
n, - n, - N for the ST BPT and n, - n, for the TE BPT, where n, and n, represent the number

of samples in range and azimuth, respectively. However, although the number of leaves does
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not depend on the number of acquisitions N in the TE BPT, the complexity of the dissimilarity
measure computation increases linearly with N, as it may be observed on (5.3). When taking
this into consideration, the asymptotic computational cost of the ST BPT may be expressed as
O (n,n,Nlog(n,n,N)), whereas for the TE BPT this cost will be O (1n,n,Nlog(n,n,)). Conse-
quently, the computational cost of the TE BPT construction is slightly below the construction
cost of the ST BPT, mainly due to the smaller number of nodes of the tree.

5.3 PoOLARIMETRIC SAR TIME SERIES BPT PRUNING

Section 5.2 has described two different BPT representations of a PolSAR time series dataset.
Both of them differ on the target characterization in the temporal dimension, as explained in
Sections 5.1.1 and 5.1.2, respectively. This section deals with the BPT exploitation of these two
data abstractions.

A tree pruning process has been proposed in Section 3.3.1 for BPT exploitation. In order to
achieve a good target characterization, we are usually interested in obtaining the largest homo-
geneous regions of the data, as it has been mentioned in Section 4.3. Note, however, that this
results into different concepts for both approaches, as they contain distinct types of regions, as
mentioned before. In this section, the region homogeneity based pruning, described in Sec-
tion 4.3.2, will be adapted to the ST BPT and the TE BPT, as it has proven to be independent
of the image content and to produce better results in practice.

The region homogeneity based pruning is based on the definition of a homogeneity measure
®(A) that may be interpreted as the average error committed when representing all the samples
of the region A by its region model, as defined in Section 4.3.2. For a single image PolSAR data,
the homogeneity measure ®(A) has been defined in (4.14) based on the relative MSE measured
employing the euclidean matrix norm of the sample covariance matrices Z. It is worth noticing
that in the ST BPT representation the region model is exactly the same than in this case and,
thus, the same (4.14) measure may be directly applied. Then, the pruning criterion may be ob-
tained by fixing a threshold §, over this measure to obtain those regions with a homogeneity
below the threshold, as expressed in (4.15) or (4.16). However, the nodes of both BPT repre-
sentations may not be compared, as in the ST BPT they represent three-dimensional regions of
the data, potentially containing samples of different acquisitions.

It is worth emphasizing at this point that although the BPT representation of a single PoOISAR
image and the ST BPT are different data abstractions of distinct types of datasets, the same
pruning process and criteria may be directly applied for both of them without any change, as

they share the same region model. Indeed, this is a good example of the decoupling performed
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by the BPT data abstraction between the application dependent and independent parts, as de-
scribed in Section 3.1.4. As it has been depicted in the scheme on Fig. 3.6, the BPT pruning
process for a particular application is defined in terms of the BPT structure itself, decoupling
it with the underlying data. Then, when changing the underlying data structure for PolSAR
time series in the ST BPT, only the BPT construction process has to be modified, whereas the
same pruning process proposed in Section 4.3.2 may be applied directly over the resulting tree
structure.

On the other hand, in the TE BPT representation the region model has been changed to the
extended sample covariance matrix Z, to represent the target temporal evolution, as expressed
in (5.2). As expressed in Section 5.2.2 the previously mentioned ®(A) measure may be ap-
plied to the Z, matrix. However, this approach will have the same inconveniences previously
mentioned, as it would mix polarimetric and interferometric information and it will require a
stronger initial filtering for matrix regularization. Alternatively, the same extension method per-
formed for the (5.3) dissimilarity measure may be applied for the homogeneity measure ®(A)
defined in (4.14), resulting into the extended homogeneity measure ®,(A) which employs the

full polarimetric temporal evolution contained in the sequence of Z; matrices of the region A

1 Z Z]lil ||Z]l] - ZA;‘;‘H;

D (A) = — <8, (5.4)
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where Z}l:j is the Z;; covariance matrix for the i-th pixel within region A and Z,, is the Z;; covari-
ance matrix of the region model Z, for the A region.

Again, the ®,(A) homogeneity measure may be interpreted as the relative MSE that is com-
mitted when representing all the individual pixels by its Z, model when taking into account only
the polarimetric information evolution, contained within the Z; matrices.

The pruning process has been described in Section 3.3.1, where Algorithms 3.3 and 3.5 have
been defined for pruning the BPT in a top-down and bottom-up approaches, respectively. The
complexity of these pruning processes has been defined as linear with respect to the number of
nodes of the BPT, resulting in a computational complexity of O(n,n,N) both for the ST BPT
and the TE BPT. Note that although the number of nodes in the TE BPT is smaller, in the
order of O(n,n,), the computation of the homogeneity measure (5.4) has a linear complexity
depending on the number of acquisitions O(N), resulting into a total pruning cost in the order
of O(n,n,N).

To analyze the results obtained with the two different BPT based processing schemes pro-
posed, a real PoISAR time series dataset is employed in this section. This dataset is composed

by 8 RADARSAT-2 Fine Quad-Pol images corresponding to a test site in Flevoland, the Nether-
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lands. It was acquired within the ESA AgriSAR 2009 campaign, devoted to analyze the agricul-
tural fields temporal evolution employing PolSAR data. The selected set of images correspond
to acquisitions with the same incidence angle, the beam FQu13 in this case, and in ascending
passes of the satellite, from April 4th, 2009 to September 29th, 2009, with an acquisition ev-
ery 24 days. From the original acquisitions, a crop of a common area of the scene having 4000
by 2000 pixels has been selected and co-registered, conforming the full Flevoland dataset, as

represented in Fig. 5.2.

Figure 5.2: Composition with the 8 Pauli RGB images of the full PoISAR time series
dataset of Flevoland (|Sux + S|, (St + Sunly |Shn — Suwl)-

Two of these images are shown on Fig. 5.3, corresponding to the acquisitions from April 14th,
2009 and June 25th, 2009, respectively. As it may be seen, the scene is composed mainly by a
large area of agricultural fields, in the central and top part of the image, and some sea surface and
urban areas at the bottom part. The difference between both images may be clearly observed
specially in the agricultural fields, mostly appearing in blue color in Fig. 5.3a, corresponding to
asurface scattering according to the Pauli basis, but appearing in green over Fig. 5.3b, represent-
ing a dominant volume scattering. This variation is caused by the plant growing process in the
agricultural fields. Most of the plants in the agricultural fields are not grown on April, but they
become near fully grown in June, resulting in an increase in the volume scattering component

of the Pauli basis.
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(a) April 14th, 2009 (b) June 25th, 2009

Figure 5.3: Pauli RGB crop images from two Flevoland acquisitions corresponding to
April 14th, 2009 and June 25th, 2009 (|Sun + Suul, |Siw + Sunls [Shn — Suvl)-

Fig. 5.4 shows the results obtained over the first acquisition of the dataset, corresponding to
a fraction of the results, employing the two mentioned BPT approaches with a pruning thresh-
old of §, = —3dB. Note that the full dataset is difficult to represent for visual inspection,
as it contains 8 different images, then, on Fig. 5.4 only a portion of it, corresponding to the
first acquisition is shown, although the full dataset with the 8 acquisitions has been processed.
Similarly, in the following, results will be shown over one of the acquisitions, for simplicity.
Fig. 5.4a represents the results of the region homogeneity based pruning over the ST BPT con-
structed employing the geodesic dissimilarity measure d,, defined in (4.3), whereas Fig. 5.4b

shows the same pruning results over the TE BPT constructed employing the extended geodesic
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(a) ST BPT, dg, §, = —3dB (b) TE BPT, d,, §, = —3dB

Figure 5.4: Pauli representation of the first Flevoland acquisition after processing the full
dataset with the Space-Time BPT constructed employing the d,; measure (a), and with
the Temporal Evolution BPT constructed with the d; measure (b). Results shown are both
for Sp = _3dB (|Shh + va|1 ’Shv + Sunls ’Shh - va|)-

dissimilarity d,, as expressed in (5.3). Both cases have been pruned with a pruning threshold of
8, = —3dB but, however, note that on the ST BPT the ® homogeneity measure is employed
whereas the corresponding extended measure @, is employed for the TE BPT, as the region
model for both approaches differs.

Qualitatively similar results may be observed when comparing Fig. s.4a and Fig. 5.4b. With
the employing pruning threshold both methods achieve a relatively large speckle reduction
while also preserving the region contours. However, when the results are observed closely,

some differences appear, specially on the agricultural fields region contours detected by both
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methods. To examine in detail the obtained contours, Fig. 5.5 shows a zoom over asmall 512 x
512 pixel area of the dataset corresponding to the agricultural fields area of the previous results.
Fig. 5.5a corresponds to the original acquisition, Fig. 5.5b shows the corresponding area of the
results obtained with the ST BPT whereas Fig. 5.5¢ depicts the same area of the previous TE

BPT results. In this case, the crop shown corresponds to the second acquisition for all the cases.

ik / " \ ny \ r : e ’ ...l" W I'I-‘
(a) Original (b) ST BPT

A ‘na

(c) TE BPT

Figure 5.5: Pauli representation of a crop area of the second acquisition. Original (a) and
results after processing the full dataset with the ST BPT (b) and with the TE BPT (c).
Results are shown for 8, = —3dB (|Sun + Suol, [Sn + Sunls [Swn — Sul)-

Analyzing the results shown in Fig. 5.5, it may be seen that although similar colors are ob-
tained from both BPT approaches’, the contours of the agricultural fields detected by the TE
BPT, shown in Fig. 5.5¢, seem to be more precise than the ones of the ST BPT, represented
in Fig. 5.5b, where a larger number of contours may be observed within the fields. Indeed, the
extended region model Z, enhances the target characterization by taking into account the com-
plete polarimetric temporal evolution, as mentioned before. Due to this improved character-
ization an increase in the region differentiation is obtained by a combination of two different
factors. On the one hand, the extended model has N different realizations of the region con-
tours, assuming that they appear over all the acquisitions, reducing the effect of the speckle
noise over them and making easier their identification over the extended model with respect to
the simpler classical one. On the other hand, there is a differentiation enhancement between
adjacent regions if they are following a distinct temporal evolution, as this evolution is modeled

by the extended sample covariance matrix Z, and, consequently, the dissimilarity between re-

"The PolSARPro [3] software has been employed for Pauli image generation. Since this software applies an
equalization for each RGB channel, small color differences are observed in the original and filtered Pauli images.
These differences are caused buy this equalization process as the BPT based processing does not introduce any
bias or distortion, as it has been shown in the previous Sections 4.3.3 and 4.3.4.
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gions gets increased if they are following a different temporal evolution. However, in order to
achieve this differentiation enhancement, the assumption that the region contours are spatially
aligned among all the acquisitions, as the agricultural field contours, is essential.

In order to illustrate this differentiation enhancement that is obtained when taking into ac-
count the full temporal evolution of the target, Fig. 5.6 shows the results over another crop of
the image containing some agricultural fields of the first acquisition. Fig. 5.6a shows the crop
area over the original data, whereas Figs. 5.6b and 5.6c shows the same area processed with the
TE BPT employing 1 and 8 acquisitions, respectively. In this case, the first acquisitions has
been selected specifically due to the predominant surface scattering that may be observed over
all the agricultural fields, as observed in Fig. 5.6a. When processing only one acquisition, most
of the fields have a very similar polarimetric response and they are mixed together, as shown in
Fig. 5.6b. However, if the whole polarimetric temporal evolution of the 8 acquisitions is em-
ployed for target characterization, they may be properly separated resulting in a better contour

detection, as depicted in Fig. 5.6¢.

| & I

(c) TEBPT,N=38

Figure 5.6: Pauli representation of an agricultural area of the first acquisition. Original
(a) and filtered with the TE BPT employing one image (b) and employing the full dataset
(C) with Sp = —3dB (|Shh -+ SW|, Shy + Sunl, ‘Shh — SW‘).

On the other hand, the main advantage of the ST BPT is that it may employ samples of dif-
ferent acquisitions in order to achieve a larger amount of filtering. This effect may not be clearly
apparent when examining the results shown in Figs. 5.4 and 5.5, where the results from the ST
BPT has been compared with those from the TE BPT. Indeed, these results are not directly
comparable since they represent different information of the scene, as it has been mentioned
in Sections 5.1.1 and §.1.2. Whereas the TE BPT represents spatial regions of the scene fol-
lowing a similar polarimetric temporal evolution, the ST BPT represents regions of the dataset

in the space-time domain and, consequently, they have contours in both, the spatial and the

132



temporal domains. Consequently, it may not be expected that the ST BPT contours represent
just the spatial features of the scene, as they also represent changes in the temporal dimension
and, moreover, they may be different over each acquisition. For instance, on the results shown
on Fig. 5.5b it may be seen that some contours appear within the agricultural fields apart from
the field borders. In this case, they may be produced by small portions of the field that are con-
nected with bigger regions on the acquisitions just before or after, representing zones of the field
that start to change before or after than the rest of the field. It is worth noticing, then, that the
interpretation of these region contours is more complex, as it may be done in the space-time

domain.

(@) 1st (b)2nd (c) 3rd (d) 4th (e) 5th  (f) 6th (g) 7th  (h) 8th

(i) Ist () 2nd (k) 3rd (1) 4th (m) 5th (n) 6th (o) 7th  (p) 8th

Figure 5.7: Region shape for the region marked in Fig. 5.5¢c, employing the TE BPT (first
row), and for the region marked in Fig. 5.5b, employing the ST BPT (second row), for all
the eight different acquisitions.

In order to see more clearly the differences between both representations and the type of in-
formation they represent, Fig. 5.7 shows the region shape of the field marked with a red cross on
Figs. 5.sband 5.5¢ over all the acquisitions for the ST BPT, on the first row, and for the TE BPT,
on the second row. As it may be observed, the same region contours are achieved for the TE
BPT among all the acquisitions, represented in Figs. 5.7a to 5.7h, as it is a spatial representation
of the data. However, this is not the case for the ST BPT, as shown in Figs. 5.7i to 5.7p, where
different shapes are obtained at each acquisition. Moreover, the regions of the ST BPT may
have an arbitrary structure in the space-time domain, representing areas with similar polarimet-
ric response on this domain. Then, as mentioned before, the ST BPT may combine samples

of different acquisitions to achieve a better characterization of the target polarimetric response.
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’ 8y ‘ Regions M 1st acquisition | Average temporal depth ‘

-5 dB 359371 2.067
-4 dB 223969 2.652
-3dB 127957 4.068
-2dB 52077 6.727
-1dB 14660 7758
odB 4666 7.921

Table 5.1: Number of regions and average region depth in the temporal dimension over
pruned regions intersecting the first acquisition for different pruning factors in the results
obtained employing the ST BPT.

To analyze this ability to increase the amount of available samples, Table 5.1 shows, for differ-
ent pruning threshold §,, values, the number of pruned regions over the first acquisition, that
is, the pruned regions that intersect with this acquisition. Additionally, it shows the average
temporal depth of all these regions, computed as the total number of samples contained within
these regions with respect to the samples of one acquisition. When employing §, = —3dB, as
for the previously shown results, the ST BPT may employ approximately 4 times more samples
than when filtering over one acquisition. As a result, this BPT representation may substantially
improve the polarimetric response estimation by combining more homogeneous samples of
different acquisitions.

From the previous results, it may be deduced that the ST BPT may improve the number of
samples averaged by combining samples of different acquisitions. However, its results are more
difficult to interpret as they are defined in the space-time domain and, thus, the obtained regions
may not be directly related with an area of the scene, as their contours change among different
acquisitions. On the other hand, the regions of the TE BPT represent spatial areas of the scene
and, due to the improved target characterization attained when taking into account the com-
plete temporal evolution, it may improve the contour detection over areas having spatially fixed
contours. Additionally, the extended model Z, is that it may be employed to exploit the inter-
ferometric information, contained within the £, matrices, allowing a PolInSAR interpretation
of the obtained regions.

It may be deduced, from the aforementioned conclusions, that the ST BPT may be a good
representation for areas where almost no information can be extracted from the interferometric
information, which may be produced by a strong temporal decorrelation, or where the contours
are not spatially fixed as, for instance, over the sea or ocean areas. On the other hand, due the
increase of region differentiation over fixed contours, the TE BPT may be the proper option for

processing the land areas, where most of the contours are spatially fixed over time. Moreover,
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since the regions obtained by this representation uniquely correspond to spatial areas of the

scene, it is easier to analyze and interpret.

e Y, ' "

(a) H, 7x7 ML

0 H/A 1

0° a 90°

Figure 5.8: H/A/a parameters of an agricultural area of the second acquisition processed
with the ST BPT and with the TE BPT for §, = —3dB.

As performed in Section 4.3.3, in order to analyze the capabilities of the proposed BPT ap-
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proaches to correctly estimate and preserve the polarimetric information and its evolution in
the scene, the H/A/a eigendecomposition parameters [35] will be employed, described in Sec-
tion 2.2.6. Fig. 5.8 shows the H/A/a parameters for the agricultural area of the second acquisi-
tion presented in Fig. s.s, for a pruning threshold §, = —3dB. It compares the values obtained
by the ST BPT and the TE BPT approaches with the 7x7 multilook (ML) filtering as a refer-
ence. A qualitative comparison of the results reveals that similar values are obtained by all the
methods. However, as observed when processing a single PoISAR image, the BPT based ap-
proaches may obtain a better noise reduction due to employing a larger number of samples for
polarimetric response estimation, while also preserving the contours. This effect is more no-
ticeable in the TE BPT results, due to the increased region differentiation over temporally fixed

contours, as mentioned previously.

Fig. 5.9 illustrates the temporal evolution of the Entropy H information for the TE BPT rep-
resentation. The Pauli representation of the obtained results is shown in Figs. 5.9a to 5.9¢ for
the 1st, 4th and 8th acquisitions, respectively. Figs. 5.9d to 5.9f show the Entropy parameter
for the same acquisitions. It is worth mentioning that on the first acquisition, most of the agri-
cultural fields are not grown, on the 4th acquisition they are almost fully grown and, finally, on
the 8th acquisition most of them have already been harvested. This evolution may also be ob-
served in the corresponding Pauli images, as mentioned before. Since the polarimetric response
of these areas change substantially, the Entropy parameter varies accordingly over the different
acquisitions, as can be seen on Figs. 5.9d to 5.9f, ranging from low Entropy when there is surface

scattering to high Entropy when the volume scattering dominates.

To perform a more detailed analysis of the preservation of the polarimetric temporal evo-
lution, Fig. 5.10 shows the evolution of the H/A/a parameters for the field marked with a red
cross on Fig. 5.9a among all the acquisitions. The evolution is shown for the ST BPT and the
TE BPT, employing in both cases §, = —3dB, and for the 7x7 multilook filtering, as a refer-
ence. For the multilook filter, the pixel located at the cross has been taken. In fact, the cross
shown on Fig. 5.9a is far enough from the field edges in order to ensure that the multilook filter
is not affected by the blurring of the region contours. Very similar trends are obtained for both
the BPT approaches and also for the multilook filtering, meaning that the proposed time series
BPT based processing techniques preserve also the polarimetric temporal evolution of the data.
Additionally, the proposed methods may employ a much larger number of homogeneous sam-
ples with respect to the multilook filtering, resulting in a better estimation of the polarimetric
response and evolution, while also having a better spatial resolution preservation, maintaining

the region contours and small details of the scene. As stated in [90][91], the estimation of the
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(b) 4th acquisition

i al
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(d) H, 1st acquisition (e) H, 4th acquisition
0 H 1

Figure 5.9: Pauli and Entropy H images for different acquisitions processed with the TE
BPT. The full dataset has been processed with a pruning threshold §, = —3dB (|Sun + Su|,
S+ Sunls [Shn — Swl)-

H/A/a parameters is biased when estimating the sample covariance matrices as an average of a
finite number of samples. Due to this bias, the Entropy parameter is underestimated whereas the
Anisotropy parameter is overestimated. As it may be seen, the Entropy values obtained by the
multilook filtering are below those obtained by the BPT while in the Anisotropy the opposite
is observed. Since the bias gets reduced when the amount of averaged samples gets increased,
results on Fig. 5.10 are consistent with the fact that the BPT is employing a much larger num-
ber of samples and, thus, reducing the bias with respect to the multilook. More details about
this bias and a mathematical characterization of the speckle noise effects over the estimation of
the sample covariance matrix eigendecomposition and the H/A/a parameters may be found in
Appendix A.

Finally, in order to show the results over the complete dataset and the temporal evolution of
the scene, the Pauli, Entropy (H), Anisotropy (A) and the averaged Alpha angle () is repre-

sented in Figs. 5.11 and §.12, respectively, for all the acquisitions of the dataset.
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Figure 5.10: Evolution of the H/A/a parameters for the agricultural field marked on

Fig. 5.9a. The full dataset has been processed with the TE BPT, with a 7x7 multilook fil-
ter and with the ST BPT. For the BPT pruning §, = —3dB has been employed in both
cases.
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(c) Pauli 3rd  (d) Pauli 4th  (e) Pauli 5th
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Figure 5.11: Pauli and Entropy H time series images over all the acquisitions of the results obtained with the TE BPT. The full dataset
has been processed with a pruning threshold 8, = —3dB (|Sun + Suuls [S + Sunl, [Sun — Su])-
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Figure 5.12: Anisotropy A and averaged Alpha angle a time series images over all the acquisitions of the results obtained with the TE
BPT. The full dataset has been processed with a pruning threshold §, = —3dB.



5.4 TEMPORAL INFORMATION ANALYSIS

As shown in the previous section, the TE BPT and the ST BPT data structures have proven to
be useful representations to process PolSAR time series. However, one of the main motivations
for processing this type of datasets is to explore and analyze the evolution of the scene during
the acquisition campaign. Consequently, this section is devoted to the analysis of the scene vari-
ability on the temporal dimension. For this purpose, two different applications are proposed,
the temporal change detection and the temporal stability analysis, based on the ST BPT and
the TE BPT, respectively. These applications are described and studied in the following.

5.4.1 TEMPORAL CHANGE DETECTION

In Section §.1.1, the target characterization based on the classical sample covariance matrix Z
model has been proposed for time series. In this case, itis assumed that a target is defined by its Z
matrix and, consequently, a change in the obtained matrix among adjacent acquisitions may be
interpreted as a target change. The ST BPT representation has been described in Section 5.2.1,
based on this assumption, resulting into arbitrary regions in the space-time domain, which are
composed of pixels of different acquisitions having similar polarimetric response. Then, having
this type of representation, the change detection application naturally arises when examining
the region contours in the temporal dimension, as proposed in [ 10]. Note that this application
is focused on the temporal region contours, rather than on their spatial contours. Therefore, a
map may be generated from the ST BPT results indicating, for each spatial pixel of the scene,
the number of contours in the temporal dimension. Since on this representation a change in
the polarimetric response may be interpreted as a target change, each time a temporal contour
is observed among adjacent acquisitions it may be considered as a change. Then, the values of
this map range from o changes, when the spatial pixel belongs to the same region and there is
no change in the polarimetric response on all the acquisitions, to N — 1, when there is a region
change on every acquisition.

Fig. 5.13 represents the mentioned map, showing the number of contours in the temporal
dimension per spatial pixel of the scene. The Flevoland dataset has 8 acquisitions and, conse-
quently, the obtained values range ranging from no changes, represented in blue, to 7 changes,
represented in red color. Results are shown for distinct pruning factor §, parameter values,
corresponding to different prunes over the ST BPT constructed employing the geodesic dis-
similarity measure d,,. As seen before, when increasing the pruning factor §,,, larger regions are

also obtained in the temporal domain, resulting into a smaller number of temporal changes on
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(a) 5, = —sdB (b) §, = —3dB (c) 5, = —1dB
0 Changes detected 7

Figure 5.13: Number of temporal changes detected per spatial pixel for different pruning
factors §,. No changes is represented in blue and 7 changes in red.

Fig. 5.13. Analyzing the results closely, it can be seen that there are small blue dots over urban
area even for small values of the pruning factor, at §, = —sdB. These small dots correspond
to point scatterers of the buildings or human-made structures that present no-change during
the different acquisitions. An enlarged image of an urban area and the corresponding changes

detected map for §, = —sdB is shown on Fig. 5.14.

As it may be observed, the agricultural fields area, at the top-left part of the image, appears
more reddish, indicating that a large number of temporal changes is detected. This is due to the
small value of relative MSE that is admitted per region, as we are using §, = —sdB, resultinginto
that most of the variability of the agricultural fields among acquisitions is considered as a target
change. The urban areas, on the contrary, appears more yellowish, indicating a smaller number
of changes, and, within these areas, there are small structures in blue, indicating no change in
the whole sequence of acquisitions. These targets may be considered as point scatterers, as their

polarimetric response presents a constant behavior among all the acquisitions.

When the pruning factor gets increased to §, = —3dB, as shown on Fig. 5.13b, some other
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Figure 5.14: Pauli RGB enlarged image of an urban area and the changes detected with a
pruning threshold §, = —sdB (|Sun + Suul, [Snw + Sunl, [Sun — Su])-

zones appear also in blue, like closed water areas, which roughness is less affected by wind than
the sea, having a more stable polarimetric behavior. With this pruning factor, the agricultural
fields also appear reddish and yellowish, presenting a large number of temporal changes. How-
ever, if the pruning factor is increased to §, = —1dB, as depicted in Fig. 5.13¢, then big differ-

ences in terms of temporal changes can be seen over the distinct fields of the agricultural areas.

It is worth noticing that the ST BPT construction process defined in Section 5.2.1 and the
BPT pruning defined in Section s.3 are sensitive to the fully polarimetric information under
the Gaussian hypothesis and, consequently, these scene change maps are also sensitive to all

this information.

However, although these maps may give an idea of the number of changes in the scene, they

do not indicate the importance of these changes. For instance, although a small number of
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changes may be observed over urban areas, maybe some of them are more relevant in terms of
the polarimetric response variation than the ones produced over the sea. Moreover, the results
shown on Fig. 5.13 seems to be considerably noisy. This is produced by the fact that the ob-
tained regions may have arbitrary shapes over time, as depicted on Fig. 5.7, which may result in
different number of temporal contours for spatial pixels corresponding to the same agricultural
field. Note that, in technical terms, the number of changes maps are pixel-based processing re-
sults, as the result is generated pixel by pixel. This reflects the difficulties in relating the regions
in the space-time domain with the areas of the scene. Ideally, having results giving an idea of the
amount of change for each field or structure of the scene could be more useful. When the aim
is to have such results, a temporal analysis should be performed over the TE BPT, as it provides
spatially fixed region contours, as shown on Fig. 5.7, which may be directly related to the same

physical area of the scene among all the acquisitions.

5.4.2 TEMPORAL STABILITY ANALYSIS

As mentioned in Section §.1.2, on the TE BPT it is assumed that the target is characterized
by a particular polarimetric temporal evolution. In this case, then, the temporal information is
included within the region model. As opossed to the ST BPT, the TE BPT performs a spatial
segmentation of the data and, consequently, it does not have temporal contours. Therefore, in
order to analyze the temporal information, the extended region model Z, has to be examined. It
contains the target response temporal evolution for the region, having the polarimetric response
for each acquisition within the different Z;; matrices. Then, a new temporal stability measure
may be defined based on analyzing the amount of change between all the different Z;; matrices of
each region. Moreover, to be consistent with the BPT construction and processing, a similarity
measure may also be employed to evaluate the similarity f; between the different polarimetric

matrices over all the acquisitions of the region A

(s.5)

F

N N
t(A) = m Z Z Hlog <Z;1/2ZJ'J'Z;1/2>

i—=1 j=i+1

where Z;; correspond to the sample covariance matrix of the i-th acquisition of the extended
model Z, for the region A, described in (s.2).

The proposed £, measure, as defined in (5.5 ), corresponds to the average geodesic similarity
measure between the sample covariance matrices for all the acquisitions. A large value of the
measure indicates that strong changes are observed for the given region of the scene, whereas

a small value indicates that the polarimetric response of the regions remains stable among the
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acquisition campaign. By contrast to the number of temporal contours, the ¢, measure is not
mathematically bounded, ranging from zero to infinity. However, in practice, since the radar
measured values are bounded, the f; measure values range approximately in the interval |o, 6],

but almost all the values are concentrated within the range [o, 3].

) i ‘ ALk A5 o T e R Sk £ 2 3 g .,
(a) t;,8, = —sdB (b) t,8, = —3dB (c) t;,8, = —1dB
0 t 2.5

Figure 5.15: Temporal stability measure ¢, over the Flevoland dataset for different pruning
factors §,.

Fig. 5.15 shows the t; measure over the Flevoland dataset. The TE BPT has been constructed
with the extended geodesic d; dissimilarity measure, defined in (5.3), and it has been pruned
with different values of the §, parameter. As it may be seen, for lower values of §, the tempo-
ral stability measure obtains larger values, due to the smaller amount of speckle filtering, wich
results resulting into larger variability of the obtained sample covariance matrices. However,
as the pruning factor increases, larger regions are obtained, which results into a larger speckle
filtering, reduces the variability of the estimated values and produces smaller t; values over ho-
mogeneous areas. Analyzing the distribution of the f; measure over the scene, it may be seen
that larger variability in terms of the polarimetric temporal evolution is produced over the agri-

cultural fields whereas closed waters, for instance, have a more stable polarimetric response.
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These observations are, indeed, similar to the ones obtained by the number of changes in the
temporal dimension, shown on Fig. 5.13. However, it is worth noticing that both results rep-
resent different information. The temporal contours give an idea of the number of changes in
the polarimetric response over time, whereas t; measures the amount of temporal polarimetric

change for each region.

(c) t;,8, = —2dB
0 t. 3

| |
Figure 5.16: Pauli of the first acquisition of the Barcelona dataset (a), first acquisition
processed with the TE BPT (b) and temporal stability measure ¢, for §, = —2dB (c) (|Su+
va|v Shv + Svh ) |Shh - va‘)-

In order to perform a more detailed analysis of the ability of the temporal stability measure to
quantify relevant changes in the scene, a new dataset is employed, containing 35 RADARSAT-2
Fine Quad-Pol images of the city of Barcelona, in Spain. The images were acquired with the
FQg beam, and the acquisition campaign goes from Januray 20th, 2010 to May gth, 2012, with
an acquisitions every 24 days. The Pauli representation of the first acquisition of the Barcelona
dataset is represented in Fig. 5.16a. As it may be seen, the scene is mainly composed of the
urban and industrial area of the Barcelona city, in the central part of the image, surrounded by
the Mediterranean Sea on the right part and mountains on the left part. At the bottom part of the
image, the Barcelona airport may be observed whereas on the center the Barcelona Harbor may

be found. Fig. 5.16b shows the first acquisition of the results obtained after processing the full
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dataset employing the TE BPT representation and a pruning threshold §, = —2dB. Fig. 5.16¢
presents the ¢, measure defined in (5.5) over the pruned regions obtained. This dataset, then,
has been chosen to detect changes in urban areas due to the availability of ground truth and

knowledge of the scene.

Figure 5.17: Geo-coded t;, measure for the Barcelona dataset as an overlay with an optical
image [1].

Moreover, the temporal stability results shown in Fig. 5.16c have been geo-coded, in order to
easily identify the obtained regions of the processed dataset over the ground. On Fig. 5.17 this
information have been represented as an overlay with an optical image from [ 1], with a certain
degree of transparency.

As it can be seen on Fig. 5.17, several red spots appear over the sea, in the lower right part of

the image, corresponding to the different vessels that were present at some of the acquisitions.
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Note that these vessels, since they are present only in one acquisition, represent a significant
change in terms of the polarimetric response with respect to the underlying sea and, conse-
quently, the £, measure indicates a strong change with a large value, appearing in red. Over the
land area some big red spots may also be seen, specially on the central part of the image, corre-
sponding to the Barcelona harbor. In the rest of the image, some additional small red spots may
also be seen, with correspond to changes in the urban area. In the following, these results are

analyzed in detail.

(c) Ship loading bay and cranes

Figure 5.18: Geo-coded t; measure over the Barcelona harbor (a) [1]. A container area
(b) with a ship loading bay and cranes (c) may be seen [2].
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Fig. 5.18a presents a zoom of the results shown on Fig. 5.17 corresponding to an area of the
Barcelona harbor, where large red spots are obtained, as mentioned before. In the central part
of the image, strong changes are detected corresponding to a ship container area. To see more
clearly this zone, a photography taken from the ground is presented in Fig. 5.18b [2]. Note that
on these areas the different containers are constantly stacked and unstacked from the ships, re-
sulting in a completely different backscattering response from acquisition to acquisition. This
task is performed by big cranes located near the loading bay, that may be seen on the photog-
raphy in Fig. 5.18¢ [2], which are placed over rails along the loading bay and, consequently,
their position change over different acquisitions, resulting into large changes detected by the
radar. Moreover, on Fig. 5.18a red spots may also be seen all around the shore, corresponding
to this cranes and also to the fact that different ships are docked at the loading bays on some

acquisitions, as seen in Fig. 5.18c.

0

Figure 5.19: Geo-coded t; measure over the Barcelona airport Terminal-1 area [1].

Another area of the scene where large changes may be detected correspond to the Barcelona
airport. Fig. 5.19 presents a zoom of the geo-coded results shown in Fig. 5.17 corresponding
to the Terminal 1 zone of the Barcelona airport. Some big rectangular red spots are observed
on the top part of the image, where plane parking lots are located. On these zones the planes

are placed temporally and, consequently, there is high probability of detecting different planes
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from acquisition to acquisition, resulting into large porlarimetric changes. Additionally, on the
bottom part of the image a large building may be seen, corresponding to the Terminal 1 building.
The fingers are connected to the building and it may be observed that small red dots are obtained
over them. Indeed, the fingers are moved every time they are attached to a plane, resulting into
these changes. In this case, the ability of the BPT structure to preserve small details of the data
allows the identification of these changes. Some big spots may also be seen near the fingers,

corresponding to some planes that were attached to them on some acquisitions of the dataset.

(b) Hangar in construction (c) Hangar finished

Figure 5.20: Geo-coded t; measure over the Barcelona airport hangar area (a) [1]. Hangar
under construction (b) and after the construction process has finished (c) photographies

).

Fig. 5.20 presents the same results over a different area of the Barcelona airport where a big

hangar is placed. The geo-coded results are shown in Fig. 5.20a. Another plane parking area
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may be seen in the bottom part of the image but the larger changes detected correspond to
an hangar located at the top right part. In fact, this hangar has been constructed during the
acquisition campaign, as it may be seen on the photographies taken from the ground Figs. 5.20b
and s.20¢, presenting this hangar under construction and when the construction process has
finished, respectively. Indeed, on the optical image employed on Fig. 5.20a as an overlay with
the results the hangar was under construction. Note that these results show the ability of the TE
BPT based temporal stability t; analysis to detect and identify the scene changes related with
the building activities.

Moreover, in the extended sample covariance model Z,, defined in (5.2), the complete set of
PolSAR Z;; and PolInSAR £;; matrices are available for target characterization. This additional
information may be employed to describe the change in the scene. For instance, the Entropy
H and averaged Alpha angle a polarimetric parameters have been computed for the whole se-
quence of Z; matrices corresponding to the region of the hangar. The evolution of these two
parameters for the different acquisitions of the campaign is shown in Fig. 5.20. As it may be ob-
served, during the first 14 acquisitions the Entropy and Alpha parameters change substantially
due to the building activities over the hangar. However, after the 14th acquisition, presum-
ably when the hangar construction has finished, these parameters maintain a constant behav-
ior. More specifically, the Entropy and the averaged Alpha angle present a low value, indicating
surface scattering probably caused by the roof of the hangar.

The hangar that has been constructed in the Barcelona airport shows the ability of the TE
BPT and the ¢, measure to identify the changes on the scene corresponding to building activi-
ties. However, the hangar is a large building that might be also easily identified by other means.
In order to analyze the ability of this technique to detect also more localized changes in the
scene, Fig. 5.22 shows a zoom of the ¢, results over the Montjuic area of Barcelona. A small red
dot may be observed in the center of Fig. 5.22a. In these area a monument has been constructed
during the acquisition campaign consisting in 4 columns, as it may be observed in the ground
photographies Figs. 5.22b and .22, corresponding to this area before and after the construc-
tion of the monument. Note that this monument is much smaller than the hangar presented in
Figs. 5.20b and 5.20¢, being, in fact, not much larger than the resolution of the sensor. However,
due to the ability of the BPT structure to preserve small details of the data, as observed before,
this change may be detected by the t, measure.

In order to compare the proposed temporal stability £, measure with a state-of-the-art po-
larimetric change detection technique, a modification of the log likelihood-ratio test statistic

measure defined in [37] is proposed. However, the change measure In Q originally defined in
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Figure 5.21: Entropy (a) and averaged Alpha angle (b) temporal evolution for the hangar
among different acquisitions.

[37] was intended to determine the change between two different acquisitions. Then, it has
to be generalized to process PolSAR time series, having N different acquisitions. According to

[97], we have defined the extended log likelihood-ratio test statistic measure In Q,

N
—InQ,=—n Z In|Z;;| — Nin|Z,| + pNInN (5.6)

i=1

where n; represents the number of looks, |Z;| represents the determinant of the p by p matrix
N
Zii and ZS - Zi:l Zii'

152



=i ij}.ll
(b) Before (c) After

Figure 5.22: Geo-coded t; measure over the Montjuic area in Barcelona (a) [1]. Ground
photographies before (b) and after (c) the construction of the 4 columns monument [2].

The —In Q, measure (5.6) indicates no change between the Z; matrices with a o value, i.e.
when Q, = 1, and it denotes a strong change with a value tending to 0o when Q, = o. Itis
worth noticing that, since this measure is based on the determinant, it requires full rank ma-
trices. This means that some initial filtering must be applied to the data. In order to obtain a
constant amount of filtering, as the —In Q, measure depends on the number of looks 1, an ini-
tial multilook filter will be performed in order to apply (5.6). The amount of initial filtering
plays an important role in the obtained results. Note that a small amount of filtering will pro-
duce noisy results whereas a large filtering will reduce the spatial resolution. Fig. 5.23 shows the

results of applying (5.6) after a 3x3 and a 7x7 multilook filter over the Barcelona dataset.
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(a) —In Q,, 3x3 multilook (b) —In Q,, 7x7 multilook

Figure 5.23: —In Q, test statistic results for change detection over the Barcelona dataset.

It may be observed that the contrast increases when increasing the amount of initial filtering.
Fig. 5.23b has much more contrast than Fig. 5.23a. This effect is particularly visible when ob-
serving the contrast between the land and sea areas, which is larger with a 7x7 multilook than
with a smaller 3x3 filtering. However, as explained before, this increase in contrast is attained
at the expense of a spatial resolution loss. Moreover the values obtained by this measure are
strongly affected by the amount of filtering, which may be seen on the colorbar.

Then, in order to make a quantitative evaluation of the ¢, and the —In Q, measures, a relative
separation measure S is proposed to evaluate the ability to separate the change and no-change
areas of the scene

§= et (57)
e = bl
where 0., 0,,c and y_, u, _stand for the standard deviation and the mean of the change and no-
change areas, respectively.

A lower value of the S measure indicates that change and no-change areas can be better sep-

arated. To see more clearly the differences between the TE BPT temporal stability measure t;
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and the —In Q, test statistic, two zoom areas of the geo-coded results are shown in Fig. 5.24.

(i) —In Q,, 7x7 ML
2450

Figure 5.24: Geo-coded t; and —In Q, comparison over the airport and a building area in
the Barcelona harbor as an overlay with an optical image [1].

To evaluate the separability of both measures, two areas of the Barcelona dataset have been
analyzedin detail, shown on Fig. 5.24. Figs. 5.24ato 5.24c correspond to an area of the Barcelona
airport, where the plane parking lots previously analyzed may be seen. On the other hand,
Figs. 5.24g to 5.24i show an area of the harbor where one industrial building has been demol-

ished, as it may be observed on the optical photographies in Figs. 5.24d and 5.24e. In order to
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evaluate the statistics of the change and no-change zones, which are required for the S measure,
some areas have to be manually labeled accordingly. In Figs. s.24a and 5.24f, the change areas
have been marked with a red contour whereas the no-change zones are represented with a blue
contour. Note that the changes appearing in both areas have a different layout: the plane park-
ing lots on Fig. 5.24a are relatively small when compared with the industrial building that has

been demolished in Fig. 5.24g.

’ Measure ‘ U, ‘ [T ‘ o, ‘ Ope ‘ S ‘

ts, SP = —2dB | 3.034 | 0.4207 | 0.7578 | 0.3785 | 0.4348
ty 0, = —1dB | 2.993 | 0.2944 | 0.8023 | 0.1900 | 0.3678
—InQ,, 3x3 ML | 1095 | 259.1 | 462.0 | 52.87 | 0.6157
—InQ,, 7x7 ML | 4478 | 489.7 2179 460.1 | 0.6615

Table 5.2: Separability between change and no-change areas for the Barcelona airport
zone shown on Fig. 5.24a.

’ Measure ‘ U, ‘ [T ‘ o, ‘ Ope ‘ S ‘

ts, SP = —2dB | 2.222 | 0.6224 | 0.2920 | 0.3408 | 0.3956
ty 0, = —1dB | 2.077 | 0.4459 | 0.2760 | 0.1832 | 0.2816
—InQ,, 3x3 ML | 710.8 | 209.0 | 145.6 | 62.23 | 0.4143
—InQ,, 7x7 ML | 2611 | 279.2 643.5 82.27 | 0.3112

Table 5.3: Separability between change and no-change areas for the Barcelona harbor in-
dustrial area shown on Fig. 5.24f.

Tables 5.2 and 5.3 show the values of o, 0y, y_, 4, and the separation measure S over the
areas shown on Figs. 5.24a and s5.24f for the ¢, measure with §, = —2dBand §, = —1dB
pruning thresholds and for the —In Q, measure with 3x3 and 7x7 multilook as initial filtering.
For the airport area, whose results are shown in Table 5.2, the separation attained by the BPT
based method outperforms the —In Q, in all cases. Since on this situation the change areas are
relatively small, increasing the multilook filtering size results into a mixture of zones having dif-
ferent temporal evolution and, consequently, degrading the separability. Conversely, the TE
BPT is able to adapt to the spatial structure of the targets in the scene, avoiding the mixture of
targets having a different evolution and achieving a better separability. On the other hand, Ta-
ble 5.3 shows the same results for the industrial buildings near the harbor. In this case, the BPT
based ¢, measure achieves slightly better separability for low and high filtering, that is, t; with
8, = —2dBvs. —In Q, with 3x3 multilook and ¢, with §, = —1dB vs. —In Q, with a 7x7 multi-
look, respectively. Note that since the building are that has been demolished is large, the effect
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of the inhomogeneous samples mixture is more negligible here, resulting into a performance of
the —In Q, measure more similar to the t; measure in terms of the separability S measure. The
improvement of the BPT-based technique is produced in this case by a combination of a better

spatial resolution preservation and a larger amount of filtering over large homogeneous areas.

5.4.3 OBSERVED EXECUTION TIMES

The computational complexity of the BPT construction and pruning algorithms has been ana-
lyzed and described in Sections 3.2.3 and 3.3.1. Moreover, the cost of these algorithms has been
detailed in Section 5.3 for processing PolSAR time series when employing the ST BPT and the
TE BPT representations. However, to give a more clear idea of the processing time in practice,
Table 5.4 shows the observed execution times of different processing stages of the BPT-based
processing. In order to generate these results, a processing server has been employed for com-
putation, having 12 Intel® Xeon® processors. It may be seen, as stated in Chapter 3, that the
most time consuming part is the BPT construction, due mainly to the similarity measures com-
putation. Nevertheless, it is worth mentioning that this step only has to be performed once per
dataset, as it is application independent. Once the BPT data abstraction has been constructed,
it may be pruned many times for different applications and, in fact, this step is fast, as it may be
seen on Table 5.4. It may also be seen, as stated in Section §.3, that the ST BPT construction has
alarger computational complexity than the TE BPT generation, since its number of nodes gets
increased by a factor of N. However, the pruning process over the ST BPT may be performed
faster than on the TE BPT, since the computation of the (4.14) measure is simpler than the
extended homogeneity (5.4).

Processing Flevoland | Flevoland | Barcelona
ST BPT TE BPT TE BPT
BPT Construction | sh24m 37m 29s sh34m
Prune §, = —2dB 0.248 0.525 6.28
Prune §, = —1dB 0.048 0.198 3.48
Prune §, = odB 0.028 0.08s 2.38

Table 5.4: Observed execution times for different processing stages of the proposed tech-

niques.
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A person who never made a mistake never tried anything

new.

Albert Einstein

BPT Related Enhancements and Other

Contributions

THIS CHAPTER COLLECTS some other contributions that have been developed during the course
of this thesis in order to enhance the detected limitations related with the different aspects of
the BPT based processing.

On the first section, the problem related with the resolution loss implied by the initial filter-
ing needed for matrix regularization is analyzed. A new speckle filtering method is developed
in order to improve this limitation of the 3 by 3 multilook previously applied. Moreover, this
technique is defined in the same terms than the BPT processing scheme, employing analogous
similarity measures in order to combine similar pixels of the image, while avoiding the hetero-
geneous sample mixture. The second section deepens into the understanding of the changes
detected from a polarimetric point of view. The mathematical background to perform this anal-
ysis is defined and, then, tested with real data. The third section describes the limitations of
the sample covariance model for representing inhomogeneous or textured data. Then, a new
model, not based on the centroid representation approach is proposed in order to mitigate this

limitation.
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6.1 MATRIX REGULARIZATION AND INITIAL FILTERING

As mentioned in Section 2.2.4, the sample covariance matrix Z is the estimation of the covari-
ance matrix that determined the statistical distribution of the polarimetric data, assuming the
Gaussian hypothesis. However, the estimation of this matrix, as expressed in (2.54), only makes
sense over homogeneous samples of the data. The problem here is that PolSAR data is usually

strongly heterogeneous, since it reflects the complexity of the scene.

An additional complication when processing PolSAR data is that most processing schemes
require that the estimated Z values are full-rank matrices. This inconvenience also applies to the
proposed BPT based techniques as it has been indicated, for instance, in the full-matrix dissimi-
larity measures defined in Section 4.1.3. In order to circumvent this limitation, an initial filtering
may be applied to the data, just as a matrix regularization. In the results shown in Chapters 4
and s, an initial 3 by 3 multilook filtering has been applied for this purpose. This pre-processing
step ensures full-rank matrices at the expense of a small spatial resolution loss. In general, this
may be a reasonable price to be paid, but for the BPT based processing, which aims to preserve
as much as possible the spatial resolution, this effect undermines one of its most valuable bene-
fits. Then, in the following, a new speckle filtering technique is presented, based on the Bilateral
filtering [ 116] applied to PolSAR data [14][12][13], in order to mitigate, as much as possible,
this spatial resolution loss produced during this matrix regularization pre-processing step. It is
worth mentioning that this approach has, in practice, some similarities to the Non-Local Means

filtering [28][42], presented in Section 2.3.4, while reducing the size of the patch to one pixel.

6.1.1 BILATERAL AND DISTANCE-BASED FILTERING

The multilook filtering, as mentioned in Section 2.3.1, is assuming spatial locality on the data.
Then, for each pixel of the image, a local window is considered, and it is assumed that all the
pixels within this window are homogeneous. Obviously, this is not true near contours or for

small areas, where different type of targets may appear together.

The bilateral filter [ 116] introduces also the domain locality. Note that it may be assumed,
for PolSAR data, that homogeneous samples will also have similar response values. Then, the
homogeneous data will be found close in the spatial domain and also in the polarimetric do-
main. Therefore, the sample averaging (2.54) performed by the multilook may be replaced by
a weighted averaging according to the sample closeness in both domains [14][12]. As a con-

sequence, the sample covariance matrix Z obtained at position (i, j) may be expressed as [13]

160



1

7i —
k(i,j)

Z Z2""w(i, j, m, n)w, (Z'"",Zij) (6.1)

m,n€V(ij)

where V(i, j) stands for the local window around the pixel located at (i, j) position, Z represents
the sample covariance matrix of the input image at (i, j), w; and w, are the weighting functions

on the spatial and polarimetric domains, respectively, and k(i, j) is the normalization factor,

defined as

ki) = > wli,j,m n)w, (2™ Z7). (6.2)

m,nEV(i)

In order to obtain valuable results, the proper definition of the w, and w, weighting func-
tions is crucial. The role of these functions is to exploit the spatial and polarimetric locality and,

accordingly, they should exhibit the following characteristics:

1. The weighting functions w; and w, should be within the finite interval [o, 1], presenting

higher values for closer values in the spatial and polarimetric domains, respectively.

2. Asa consequence, from the previous condition it may be assumed that

wi(i,j,i,j) =1, Vi,j (6.3)
wy(Z,Z) =1, VZ (6.4)

3. Additionally, symmetry is considered in data closeness for both domains, thus, w, and w,

should be symmetric, that is,

wy(i, j, m,n) = w(m,n,i,j) Vi j,mn (6.5)
Wy (Z'"”, Zij) =w, (Zij, Z'””) Vi, j, m,n. (6.6)

In short, the w; and w, weights should be functions based on the data closeness in the spatial
and polarimetric domains, respectively. In order to employ a simple and known mathematical

concept, and also to be consistent with the BPT based conception, a definition of those weights
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is proposed in terms of a spatial and a polarimetric distances d and d,, respectively

1
wli,j,mn) = ———— (6-7)
( ] ) 1 + ds (1,],111,71)

o

n ij 1

w, (2™, 27) = W (6.8)
1 S —

2
%

where ¢, and o, control the weights sensitivity in the spatial and polarimetric domains, respec-
tively. Mathematically, d; and d,, are metric functions that quantify the sample closeness on

their domains, following the properties:
1. d(x,y) > o. Non-negativity.
2. d(x,y) = oifand only if x = y. Identity of indiscernibles.
3. d(x,y) = d(y, x). Symmetry.
4. d(x,z) < d(x,y) + d(y, z). Triangle inequality.

Some similarity measures have been defined in Section 4.1.3 and analyzed in Sections 4.3.3
and 4.3.4 with real and simulated PolSAR data. On that section, two main types of measures
were identified: full-matrix and diagonal measures. Although only full-matrix measures are able
to fully exploit the complete polarimetric information under the Gaussian hypothesis, these
functions require full-rank matrices. If this technique is intended to be used as a matrix regu-
larization step, that is, without any kind of initial filtering, only diagonal measures may be em-
ployed as the matrices estimated from original pixels Z = kk'! are singular, having rank equal
to 1.

In the proposed technique, the classical euclidean distance may be employed in the spatial

domain

d(i,jymon) = (i—m)*+ (j — n)* (6.9)

On the other hand, for the polarimetric domain, some of the diagonal dissimilarity measures
defined in Section 4.1.3 may be employed. However, special attention must be paid to them
in order to fulfill the previously defined mathematical properties of a metric measure. Since
this was not a requisite for the dissimilarity measures for the BPT construction, some of them
have to be modified. Moreover, the term depending on the region size has no sense for the
bilateral filter which is, indeed, a pixel-based approach. Then, the revised Wishart dissimilarity

measure [68], on which is based the d;;,, measure defined in (4.10), may be applied with some
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modifications for the bilateral filtering, resulting into the the d,,, measure

3 mn2 i \2
d;w (Zmn’Zij) — Z (Z) + ‘('Zkk) _6 (6.10)

mn rzY
k=1 Zkk kk

where Z;; is the index notation for the (i, j)-th element of the 3 by 3 matrix Z.

Another relevant measure that has been defined in Section 4.1.3 is the geodesic dissimilarity,
based on the Riemannian geometry of the hermitian positive definite cone of matrices [22].
As in the previous case, a modification of the diagonal version d 4, which has been defined in
(4.11), will be employed. Note that this measure is defined in terms of the natural logarithm of
the diagonal elements quotient. This fact reduces considerably the rate of growth of the mea-
sure having not enough separability between different matrices to prevent the heterogeneous
region mixture when employed for the bilateral filter. Thus, a modification d,, is proposed to

compensate this rate of growth reduction caused by the logarithm

3
dpy (Zm", Zij) = exp Z In* | — —1 (6.11)
k=1

where In stands for the natural logarithm.

Additionally, when dealing with PolSAR data, special attention must be given to the system
noise. This noise may be caused by different sources as, for instance, thermal noise, discretiza-
tion errors, etc [ 53 ]. However, from the statistical point of view, it is usually modeled as a zero-
mean uncorrelated Gaussian noise. This noise may degrade the performance of the polarimetric
weights computation when the backscattered power is comparable to the noise power. Then, a

modified d,; measure may be applied, based on the previous measures (6.10) and (6.11)
& (27,27) = d (2" + 011,27 + o71) (6.12)

where Irepresents the 3 by 3 identity matrix, o7 stands for the power of the system noise and d,
may be d,, or d,..

In practice, the effect of the d,; measure modification is that it reduces the sensitivity of the
polarimetric measures when the backscattered power, contained within the diagonal elements
of the Z matrix, is close to the system noise power ;. However, it has the inconvenience of
introducing it as a new parameter to be fixed. The o; value may be obtained from the parameters
of the sensor. Additionally, it may be estimated from the data, as proposed in [ 53 ], by manually

selecting a dark area of the image, where presumably there is no radar backscattered power, and,
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consequently, the mean power of this area may be considered as the system noise power o;. In
fact, an automatic method for estimating the o is proposed based on this rationale. The whole
image is decomposed into large enough blocks to reduce the effect of speckle noise, for instance
9 by 9 pixels, and the minimum retrieved power from all the blocks among all the channels is
considered as the o; parameter for the image. Note that this method is assuming that some
dark areas are present in the image. If this is not the case, this method may lead to an incorrect
parameter estimation. Then, it is generally safer to employ the parameters of the sensor when
available.

It is worth noticing that the bilateral filtering, as described in (6.1), results into a different
amount of averaged pixels per pixel. This may be a difficulty for further processing of the data
but, however, this information is still available for analysis and interpretation, being related with
the k parameter (6.2). Moreover this parameter may also hold information related with the
spatial structure of the image, as it will be seen later on.

As mentioned previously, the bilateral filter is a pixel-based processing scheme, as it relies on
the pixel values for the computation of the different w,, weights. Then, the speckle noise present
in the data that contaminates the original SAR data will also affect the weight computation,
resulting into a noisy w,, values and, consequently, a noisy filtered image. In order to mitigate
this effect, an iterative weight refinement scheme is proposed, which is represented in Fig 6.1.

D
Orig

Img

in N in
s CBL)>= »{Img 1 ref"“t Img 2| ===

Figure 6.1: lterative weight refinement approach diagram.

In the diagram presented in Fig 6.1, 'Orig Img’ stands for the original input image and the
subsequent 'Img i’ represent the output result obtained after the i-th iteration. The filtering
process is performed on the circular boxes marked as ’CBL; an acronym for Cross-Bilateral Filter
[47] based on the filter previously defined in (6.1). The weighted average is performed over the

input image in, whereas the weight computation is performed over the reference image ref

. ij
Z 2" wi(i, j, m, n)w, ( s Zref) (6.13)
m,ne V(i)
where Z/ and Z7 represent the estimated covariance matrix of the input and reference images

ref
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at position (i, j), respectively.

It is worth stressing that the proposed iterative weight computation scheme in Fig. 6.1 does
not correspond to an iterative filtering. Iterative filtering may produce a stronger level of fil-
tering but it usually tends to produce overfiltering by mixing similar non-homogeneous areas
and blurring some details due to the propagation of errors. On the other hand, the proposed
scheme processes the original image at each iteration. Consequently, the propagation of errors
is avoided. This scheme is intended to generate a more reliable estimation of the polarimetric
weights w, based on filtered images. Additionally, iterative filtering would have the inconve-
nience of combining samples with different amounts of filtering among the different iterations,
producing a k parameter that does not correspond to the real number of samples averaged from
the original image, making the further analysis and interpretation of the obtained results more
difficult.

In the following, this approach will be called the Distance Based Filtering (DBF) [13]. This
proposed technique is evaluated in this section as a speckle filter itself, in order to analyze the
ability of this approach to adapt to the structure of the scene and preserve its spatial resolution.
In Section 6.1.2 this technique will be combined with the BPT, employed as a pre-processing
step for matrix regularization.

Fig. 6.2 shows the results obtained after applying the proposed DBF technique to the first
acquisition of the Flevoland dataset described in Section 5.3. The original image is presented in
Fig. 6.2a and the corresponding DBF filtering result is shown in Fig. 6.2b. For this processing,
the d,,,, similarity measure has been employed, the local window V' corresponds to a 11 by 11
pixel square window, and the weights sensitivity has been set to ¢, = 3and 0, = 0.6. These
values have been chosen experimentally, as they have demonstrated to produce a good level
of speckle filtering while also preserving the details of the image. The automatic method for
o} calculation has been applied, as stated before. In this case, the original image contains dark
areas, as seen on Fig. 6.2a, corresponding to closed and calm water, where this parameter may be
estimated correctly. Finally, 5 iterations of the weight refinement scheme presented on Fig. 6.1
have been performed.

As it may be observed, the noise has been substantially reduced in Fig. 6.2b in comparison
with Fig. 6.2a. However, in order to see more clearly the differences, a detail of these images is
depicted in Figs. 6.3a and 6.3, including the obtained number of averaged pixels k parameter,
represented in Fig. 6.3f. This detail area is composed by some forest and agricultural areas in
the top part and urban and sea areas in the bottom part. Moreover, the results of this filtering

strategy are compared with those obtained from the 7 by 7 multilook filter, the Refined Lee filter
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PR EL. e i
(a) Original (b) DBF Filtered, 5it, d,, 05=3,0,=0.6
Figure 6.2: Original (a) and DBF filtered (b) Pauli RGB images of the first acquisition of

the Flevoland dataset. For the DBF, 5 weight refinement iterations have been employed
with the d,,, measure and o = 3,0, = 0.6 parameters (|Sun + Suu|, [Sn0 + Sunls [Shn — Sul)-

[74], described in Section 2.3.2, and the IDAN filter' [125], explained in Section 2.3.3. Addi-
tionally, a zoom is shown in bottom right corner, corresponding to the central part of the image,
in order to see the obtained results at pixel level. The 7 by 7 multilook filtering may achieve a
good level of filtering, as observed in Fig. 6.3b, but it blurs the edges on the image and enlarges

the small point scatters or details of the image, mixing, then, heterogeneous samples of the im-

'The PolSARPro software [3] has been employed to process this data and for Pauli image generation. For
the IDAN filtering, a maximum AN size parameter of 100 pixels has been employed.
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Figure 6.3: Pauli RGB for the original detail image (a) and filtered images employing 7x7
multilook (b), refined Lee (c), IDAN (d) and the proposed method (e). The k parameter
for the proposed method is represented in (f), corresponding to the number of averaged
pixels (|Sun + Suwls [Snw + Sunls [Snn — Sul)-

age. As mentioned in Section 2.3.1, this is caused by the fact that the multilook is a low pass
filter that reduces the spatial resolution. The refined Lee filtering, shown in Fig. 6.3c achieves a
good spatial resolution reservation but, due its intrinsic limitations to adapt to complex spatial
structures, it introduces some artifacts that distort the obtained image. The IDAN filter also
achieves a good level of filtering while also preserves some of the image contours but, however,

it blurs small details as point scatters. On the other hand, the proposed technique does not in-
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troduce artifacts and preserves the edges and the small details. Furthermore, it achieves a good
level of filtering over homogeneous areas, similar to the multilook. The edge preservation may
be clearly seen over the coastline while its capability to preserve small details may be observed
in the zoom over the urban area. The amount of filtering performed for each pixel is represented
in Fig. 6.3f, corresponding to the k parameter. Note that this parameter may not be directly as-
sumed as the Equivalent Number of Looks [ 18], but it is related with it, as it correspond to the
number of averaged pixels per pixel. It may be observed that small k values are obtained near
contours while large values are retrieved over homogeneous areas. Indeed, the values obtained
over homogeneous areas are in the order of 40, which is a similar number to the multilook filter,
that would have a number of averaged pixels per pixel constant over the whole image and equal
to7 -7 = 49 pixels.

To see more clearly the effect of the iterative weight refinement scheme presented in Fig. 6.1,
the obtained k parameter for each iteration has been represented in Fig. 6.4. The number of
averaged pixels per pixel is represented for the 1st to the 4th iterations, as the last iteration cor-
responds to Fig. 6.3f, presented before. Note that the color scale is different in each image, in
order to increase the contrast, as reflected by the corresponding color bars. Additionally, Fig. 6.5

shows the histogram of the obtained k parameter for each iteration.

As it may be observed, in the first iteration the amount of filtering achieved is low, as small
k values are obtained. Moreover, the k values retrieved are very noisy since it is difficult to es-
timate correctly the w, weights over the original image due to the speckle noise. This effect
is specially visible over the zoomed area. In the successive iterations of the weight refinement
process, larger values of k are progressively obtained while the noise over this parameter gets
reduced. It may also be seen that contours, small details and homogeneous areas of the image
are more clearly detected. Similar conclusions may be extracted from the k histograms shown
in Fig. 6.5. It may be observed that the k values gets increased with the successive weight refine-
ment iterations and, additionally, the difference between them gets reduced as the number of
iterations increases. Then, a convergence pattern may be observed which may induce to con-
tinue this process. However, very small differences are observed in the following iterations and,
consequently, we have decided to stop it after the sth iteration, in order to reduce the compu-

tational time needed for this processing.

In order to perform a detailed analysis of the polarimetric information preservation of a fil-
tering technique, additional information than the one contained in the Pauli images should be

considered. Fig. 6.6 analyzes the obtained Entropy (H) and averaged Alpha angle (@) polari-
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Figure 6.4: Evolution of the k parameter, corresponding to the number of averaged pix-
els per pixel, among the different iterations of the weight refinement scheme presented in
Fig. 6.1. The k parameter of the final iteration corresponds to Fig. 6.3f.
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Figure 6.5: Number of averaged pixels per pixel histograms, the k parameter, for each it-
eration of the weight refinement scheme.

metric parameters [35], which has been described in Section 2.2.6, for the multilook, the re-
fined Lee, the IDAN and the proposed DBF filtering strategies. The same area than on Fig. 6.3
is shown, for comparison purposes. Qualitatively similar colors may be observed in all cases,
meaning that similar values are obtained over homogeneous areas. However, when looking at
the results in detail some important differences may be noticed. The ability of the different
methods to preserve the spatial resolution may be clearly stated over the small details of the
image, specially over the urban area, as seen on the zoomed area, where the multilook filter en-
larges those details according to its window. The Refined Lee filter results, shown on Figs. 6.6b
and 6.6f, demonstrates a good preservation of the small details of the image whereas the IDAN
filter, whose results are represented on Figs. 6.6c and 6.6g, almost destroys these small details
that appear as small blue and red dots in H and a, respectively, when employing the refined Lee.
On the other hand, the proposed DBF filter preserves the structure of the small details, similarly
to the refined Lee, while also has the advantage over this technique of attaining a higher amount

of filtering over homogeneous areas while not introducing distortion to the image.

As performed in Section 4.3.3, some homogeneous areas may be manually defined over the
image in order to perform a quantitative evaluation of the preservation of the polarimetric in-

formation. Three homogeneous zones have been manually selected from this data crop that
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Figure 6.6: Entropy (H) and averaged Alpha angle (a) for 7x7 multilook and the pro-
posed filtering method.

have been marked in Fig. 6.3a. These zones correspond to forest, water and an agricultural crop
areas, respectively. Table 6.1 shows the mean values obtained for the diagonal elements of the
sample covariance matrix over these areas for the original image and for the different speckle
filtering methods previously commented. Additionally, the same results for the proposed DBF
method are presented, when employing the d,,, and d,, measures. Moreover, the magnitude
and phase of the correlation coefficient p , over HH and VV polarization states and the H/A/a
polarimetric decomposition parameters are also shown. All these values may not be computed
over the original image and, then, they are not represented in the table. It may be observed that
all the adaptive filters analyzed have an underestimation bias over the diagonal elements of the
covariance matrix. However, the bias of the proposed method is the smaller of those filters,
obtaining mean values that are close to the ones obtained for the multilook. Nonetheless, for
the H/A/a all the filters obtain values that are similar to those obtained by the multilook. In
addition, a further analysis of the filtering capability of those filters may be found in [13].
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TL1

’ Region ‘ Filtering Cu C., C,, ‘ P, ‘ arg(p,.)(°) ‘ H ‘ A ‘ a(®) ‘
Original 2.302-10 ' | 1.125-10 ' | 1.906-10 ' - - - - -
71 7x7 Multilook | 2.305-107" | 1.130-107" | 1.933-10" ' | 0.4194 1.670 0.8504 | 0.2599 | 42.87
Forest Refined Lee 1.879 10" ' | 9.965 10" * | 1.623 - 10" ' | 0.3971 2.873 0.8442 | 0.3063 | 44.51
5000 IDAN 1.471-10" " | 7.353-10" > | 1.252-10 ' | 0.2993 2.339 0.8878 | 0.2513 | 46.03
pixels | Proposedd,, | 2.227-107" | 1.090-10 " | 1.869 -10 ' | 0.3865 1.569 0.8698 | 0.2244 | 43.46
Proposed dpg 2.210-10 ' | 1.082-10 " | 1.853-10 ' | 0.3869 1.550 0.8661 | 0.2290 | 43.52
Original 1.787-10 % | 1.280-10 % | 2.552-10 ° - - - - -
72 7x7 Multilook | 1.801-107% | 1.271-1073 | 2.552 10" > | 0.7443 3.088 0.4351 | 0.6407 | 19.30
Water RefinedLee | 1.492-107% | 1.255-10 3 | 2.099 -10" * | 0.7062 2.53§ 0.4701 | 0.6438 | 21.89
3900 IDAN 1.158 107 % | 8.901-10" * | 1.667 - 10" > | 0.6263 2.473 0.5248 | 0.6967 | 24.32

pixels Proposed dpw 1.749 - 10 1.263 - 10 3 | 2.479 - 10 0.7094 2.872 0.4689 | 0.6381 | 20.59

Proposed d,, | 1.732+10* | 1.254 10 3 | 2.458 <10 * | 0.7079 2.871 0.4693 | 0.6392 | 20.75

Original 1.862-107" | 3.195-10 % | 1.771-10 " - - - - -
73 7x7 Multilook | 1.855 107" | 3.170 -107* | 1.758 - 10 ' | 0.7489 8.423 0.5444 | 0.2998 | 22.87
Crop RefinedLee | 1.434-107"' | 2.862-10"% | 1.393-10 " | 0.7059 7.478 0.5781 | 0.3653 | 25.86
2200 IDAN 1.020-10 ' | 1.948 - 10" * | 1.006 - 10" ' | 0.6187 8.641 0.6514 | 0.3783 | 27.84

pixels Proposed dpw 1.765 - 10 3.087 - 10~ 1.679 - 10~ 0.7062 8.474 0.5880 | 0.2933 | 24.50
Proposed dpg 1.757 - 10~ 3.058 - 10~ 1.671 - 10" 0.7072 8.470 0.5808 | 0.2987 | 24.53

Table 6.1: Mean estimated values over homogeneous areas for the proposed DBF in comparison with other speckle filtering techniques.
For the proposed technique, an 11x11 local window has been employed with 5 weight refinement iterations and o5 = 3,0, = 0.6.



As mentioned previously, some parameters are involved into the DBF filtering process. The
effect of the weight refinement scheme and the number of iterations has been analyzed previ-
ously. In the following, the impact of the o, and o}, weight sensitivity parameters is evaluated.
Fig. 6.7 shows the results of applying the proposed method to the Flevoland dataset with dif-
ferent combination of o; and o, parameters. The same detail area is shown than on Fig. 6.3, for
comparison purposes. Figs 6.7a and 6.7b show the effect of changing the ¢ parameter, whereas
Figs 6.7d and 6.7e depict changes on 0,,. If these results are compared with the previous filtering
results, shown in Fig. 6.3¢, it may be observed that when the weight sensitivity is increased, by re-
ducing the values of o; or 0, the amount of speckle filtering attained gets reduced. Conversely,
when those parameters are increased the opposite effect is obtained. Additionally, Figs. 6.7b
and 6.7c and Figs. 6.7e and 6.7f show the effect of changing the dissimilarity measure employed
for computing the polarimetric weights. Note that smaller differences are observed between
these image, which means that this parameter has a lower impact on the obtained results.

Nevertheless, the o and 0, parameters are dealing with different domains and, consequently,
they have a different impact on the filtering. The s0-bin histogram of the number of averaged
pixels per pixel, the k parameter, is shown in Fig. 6.8 for distinct values of ¢, and 0,. When
changing the o parameter the spatial decay of the w; weights is modified but the sensitivity to
the polarimetric domain remains unaltered. Then, as it may be observed in Figs. 6.8a to 6.8c,
all the k values gets increased but the shape of the histograms remains almost unaffected. On
the other hand, when the o, parameter is modified, a similar trend is observed in terms of k but
in this case, as it may be seen in Figs. 6.8d to 6.8i, the shape of the histograms is substantially
changed. It is worth noticing that the o, parameter plays an important role in the polarimetric
information preservation, as the adaptation to the spatial content of the image is achieved due
to the polarimetric locality assumption. Then, the selection of this parameter is a trade-oft be-
tween the amount of speckle filtering and the contours and details preservation. In fact, if this
parameter is set to a high value, as it may be observed in Figs. 6.7e and 6.7f, a larger amount of
filtering is achieved at a cost of some heterogeneous samples mixture and resolution loss. More-
over, the proposed DBF filtering scheme may be considered as a generalization of the multilook

as it tends to this filter over the V' window when o; — oo and 0, — o0.

6.1.2 DBF AS MATRIX REGULARIZATION FOR THE BPT

In the previous section the DBF technique has been defined and analyzed as a speckle filter.
However, it may be employed also as a matrix regularization pre-processing step for the BPT

based processing scheme, in order to obtain full-rank Z matrices. According to the previous
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(d) dPW7 0s=3,0p=0.3 (e) dpw» 05s=3,0p=1.§

Figure 6.7: Pauli RGB detail image of the filtered results for different o, and o, with 5
weight refinement iterations and 11x11 local window V (|Sun + Suu|, [Snw + Sunls [Sun — Su])-

analysis, when employing it instead of the classical 3 by 3 multilook filtering, the spatial resolu-
tion loss of the multilook may be avoided.

Nevertheless, the goal of this matrix regularization step is not to reduce the speckle noise
of the data but to obtain full-rank matrices in order to be able to apply dissimilarity measures
that exploit the full polarimetric information under the Gaussian hypothesis. In this situation,
then, the amount of filtering required is much smaller, just to regularize the sample covariance

matrices.

Fig. 6.9 shows the BPT region homogeneity based pruning results employing a §, = —2dB
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Figure 6.8: Histograms of the number of averaged pixels k for different o, and ¢, with 5
weight refinement iterations and 11x11 local window V

pruning threshold and the d;, dissimilarity measure, as described in Section 4.3.2, of the first
acquisition of the Flevoland dataset. Fig. 6.9a shows the BPT results obtained when the classical
3 by 3 multilook filtering is applied as a regularization step. On the other hand, Fig. 6.9b shows
those results when the proposed DBF technique is applied for matrix regularization. As it may
be seen, the amount of filtering required for this purpose is much smaller, as the local window V'

has been reduced to 5 by s pixels and also the corresponding filter parameters to oy = 2,0, =
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(a) BPT pruning §, = —de with 3x3 mul- (b) BPT pruning §, = —2dB with 5x5
tilook DBF, 3it, dpw, 05 = 2,0, = 0.4

Figure 6.9: Pauli RGB of the BPT region homogeneity based pruning results with §, =
—2dB for 3x3 multilook and the proposed DBF method with 5x5 local window V, 3 iter-
ations of the weight refinement scheme, and d,,, 05 = 2,0, = 0.4 parameters as initial
filtering for matrix regularization (|Sy, + S +S — Suwl).

0.4. Additionally, only 3 iterations of the weight refinement scheme have been performed, as
they are enough to produce a reliable result. Comparing the results on Figs. 6.9a and 6.9b it may
be clearly observed that the small resolution loss of the 3 by 3 multilook is also transfered to the
BPT representation, specially on the small details in the urban area that appear enlarged in the
zoom area. When the DBF is employed, the resolution preservation observed in details of the
urban area gets improved. This effect may also be seen in thin structures like the breakwaters
in the coastline. Moreover, due to the better contour preservation also achieved by the DBF
technique, some field contours of the image are better retrieved by the BPT, as it may be seen in
the top part of the image, for instance.

Another example of the benefits of employing the proposed DBF technique for matrix regu-
larization may be observed in Fig. 6.10. In this case, the whole Barcelona time series dataset has

been processed with the TE BPT representation. Fig. 6.10a shows the geo-coded results of the
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(b) Geo-coded t; measure with 5x5 DBF, 3it, d, 05 = 2,0, = 0.4 regulariza-

tion
Figure 6.10: Geo-coded temporal stability measure t; over the Barcelona dataset employ-
ing the TE BPT for the 3x3 multilook and the proposed DBF method with 5x5 local win-

dow V, 3 iterations of the weight refinement scheme, and dp,,, 0; = 2,0, = 0.4 parameters
as initial filtering for matrix regularization.
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temporal stability t; measure, described in Section 5.4.2, over the Terminal-1 Barcelona airport
area when employing the 3 by 3 multilook on each one of the 35 images as matrix regulariza-
tion. On the other hand, Fig. 6.10b shows the same results when applying the proposed DBF
technique over each image. The increase in spatial resolution on the ¢, results when applying the
DBF may be clearly observed, specially in the zone of the fingers, those details appear blurred
in Fig. 6.10a but not in Fig. 6.10b, where a small red dot may be clearly seen for each finger.
Moreover, since the heterogeneous sample mixture gets avoided due to a better preservation of
the contours when employing the DBF for matrix regularization, some small or thin structures
appear better represented in Fig. 6.10b. This effect is particularly evident on the runway in the
right part of the image, which appear very noisy in Fig. 6.10a and much more clear in Fig. 6.10b.
Note that since this runway presents a thin structure, the 3 by 3 multilook mixes its samples with
those around it, resulting in a poorer performance for the BPT representation. This example,
indeed, may serve as an example of the improvement achieved by applying the DBF technique

as a pre-processing step for PolSAR time series datasets.

6.2 POLARIMETRIC CHANGE ANALYSIS

6.2.1 THE B7'A MATRIX

When analyzing the term depending on the sample covariance matrices in the different dissim-
ilarity measures defined in Section 4.1.3, it may be observed that some of them are based in
the matrix Z;'Z,. The revised Wishart measure dy,, defined in (4.2), is based on the trace of
this matrix tr(Z5"Z4 ), whereas the geodesic dissimilarity measure d,, is based on the Frobenius
norm of this matrix, as it is defined in (4.3) in terms of the expression || log <Z1; e/ AZ;/ 2) || -
Indeed, this expression is equivalent to || log (ZEIZ A) ||, since the eigenvalues of Z;/ W/ AZ;/ :
are the same than those of Z5'Z,.

In fact, this is not a coincidence, as the Wishart probability density function, definedin (2.55)
is also based on the exponential of the trace of this matrix. Then, in the following sections, this
matrix is studied from the point of view of its eigenvectors and eigenvalues, in order to obtain a

physical interpretation of the information contained within.

6.2.2 GENERALIZED EIGENVALUES AND POLARIMETRIC CONTRAST

As mentioned in Section 2.2, one of the most important properties of wave polarimetry is that
it allows to explore the target response at any other polarization state, through the polarization

synthesis [24]. Then, one of the first approaches proposed to explore the difference between
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two targets characterized by A and B covariance matrices was through the polarimetric constrast,
defined as the ratio between the radar power backscattered by the two targets at a particular

polarization state, denoted by w [70]

wHAw

wHBw

P.(A,B,w) = (6.14)

Note that the polarimetric contrast P, is the ratio between two power measures and, con-
sequently it is real and positive valued. For each polarization state, the polarimetric contrast
indicates an increment of power in A respect to B with a value P, > 1, whereas in the case of a
decreasein power P, < 1isobtained. Ifthere is no change in the retrieved power a value equal to
1 is retrieved. This measure may be optimized in order to obtain the optimum polarization state
W,p that maximizes the contrast between the two targets [70]. The mathematical solution to
this optimization process may be found by the Lagrange multipliers method, that corresponds

to the generalized eigenvalues for A and B covariance matrices [70][33]
Aw = ABw (6.15)
which may be obtained by solving the following equation

det(A — AB) = o. (6.16)

Note that, if the matrix B is invertible, then (6.15) may be pre-multiplied by B™" in order to
obtain [20]

B 'Aw = Aw (6.17)

corresponding to the classical eigenvalue equation of the B™'A matrix, that may be obtained

solving
det(B™'A — AI) = o. (6.18)

Then, the eigenvalues A; of the B™*A matrix define the polarimetric contrast P, values that
may be obtained. If the eigenvalues are assumed to be sorted A, > 4, > ... > 1, > o
then the maximum contrast corresponds to A, whereas the minimum contrast corresponds to A,
[70][33]. Moreover, the polarization states that produce the mentioned polarimetric contrast
values denoted by the eigenvalue A; corresponds to its associated eigenvector v;. In the case
of the 3 by 3 covariance matrices, A, corresponds to the maximum polarimetric contrast, A,
to the minimum contrast and A, corresponds to a contrast in between these two. It is worth

mentioning that, since the B™'A matrix is not necessarily hermitian, then the corresponding
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eigenvectors v; are not orthogonal to each other.

6.2.3 PHYSICAL INTERPRETATION OF POLSAR DiSSIMILARITY MEASURES

According to the mathematic analysis performed in Section 6.2.2, the eigenvalues of the B*A
matrix may be interpreted in terms of the polarimetric contrast. Consequently, the dissimilarity

measures that are based on these matrices may also be interpreted in these terms.

The revised Wishart dissimilarity measure dy,, is defined in the form tr(Z;'Z 4 ) +tr(Z, ' Zp).

Accordingly, this measure may also be expressed as
P
tr(Zg'Za) + tr(Z3'Zs) = N+ A" (6.19)

where Z, and Zg are assumed to be p by p covariance matrices and A; represent the generalized
eigenvalues of Z, and Zg matrices. Note that the eigenvalues of Z,'Zy are the inverse of the

eigenvalues from Z;'Z,.

Then, the revised Wishart dissimilarity measure may also be interpreted as the sum of the
polarimetric contrasts and their inverse. In fact, as expressed before, a power reduction in a
particular polarization state will be represented by a polarimetric contrast value o < P, < 1,
having less importance on tr(Z;'Z, ) than a power increment, represented by P, > 1. To solve
this issue, the sum is performed over the polarimetric contrast and its inverse in (6.19), in order

to give equal importance to changes due to power increments or decrements.

On the other hand, the term corresponding to the covariance matrices of the geodesic dis-
similarity measure d,,, as mentioned before, may be expressed as || log (ZEIZA) ||p- Then, this
measure may be interpreted in terms of the polarimetric contrast interpretation of the Z;'Z,

matrix as

l10g (252425 ) Il = |l log (25°2Z4) |1r = (6.20)

As it may be observed in (6.20), in the geodesic dissimilarity measure the logarithm of the
polarimetric contrast is taken. Then, an increment or decrement of power by the same factor
would naturally have the same contribution to the measure, represented by the same positive
or negative logarithm value, respectively. Afterwards, the euclidean norm of all the In A; values

is computed, giving equal weight to positive or negative values.
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6.2.4 CHANGE ANALYSIS RESULTS

The previous analysis of the B~ *A matrices in terms of the polarimetric contrast motivates the
employment of these matrices to characterize the changes that are produced over the different
acquisitions in PolSAR time series. In the following an example is shown over two images of the
Flevoland dataset, presented in Section 5.3, corresponding to the acquisitions from April 14th,
2009 and June 25th, 2009, respectively. The two original Pauli images of these two acquisitions

may be seen in Fig. 5.3, in page 129.

[ r‘! e
| . V- i

(a) April 14th, 2009 filtered (b) June 25th, 2009 filtered

Figure 6.11: Pauli RGB images from the TE BPT results with §, = —3dB pruning thresh-
old of two Flevoland acquisitions corresponding to April 14th, 2009 and June 25th, 2009
(|Shh + va|1 Shy + Svh|r Shh - Sw|)-

The entire Flevoland dataset has been processed with the TE BPT representation, as de-
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scribed in Section 5.3, and the Pauli representation of the results obtained when employing
a pruning threshold of §, = —3dB is shown in Figs. 6.11a and 6.11b, for the same acquisitions
shown in Fig. 5.3, corresponding to April 14th, 2009 and June 25th, 2009, respectively. As it may
be seen, there are significant changes in terms of the observed polarimetric response among the
two acquisitions. On April, as shown in Fig. 6.11a, most of the agricultural field plants are not
grown, resulting into a predominant surface scattering, appearing in blue color. On the other
hand, in the acquisition from June, in Fig. 6.11b, most of these fields are grown, resulting into
a predominant volume scattering from the plants, represented in green color in the Pauli RGB

composition.

With these results from the BPT based approach, having almost a region per agricultural field,
the speckle noise reduction achieved over them is considerable, resulting into a reliable estima-
tion of the polarimetric response of the field. Then, the previous analysis of the polarimetric
change based on the estimated sample covariance matrices of the two acquisitions Z, 'Zz may

be employed to interpret the differences among these two acquisitions.

Fig. 6.12 shows the histograms of each one of the generalized eigenvalues A; between the two
acquisitions depicted in Fig. 6.11. The horizontal axis represents the value of each eigenvalue in
expressed in dB, according to10log _(1;). As it may be observed, most of the A, values, shown in
Fig. 6.124, are greater than o, as they correspond to the maximum polarimetric contrast, which
represents an increase of the retrieved power in their corresponding polarization state. On the
other hand, most of the values of A, in Fig. 6.12¢, are below o, which implies the opposite effect.
The peak of the second generalized eigenvector A,, represented in Fig. 6.12b, is located around
o, indicating no change in terms of the polarimetric contrast. However, most of the 4, values

are located over the positive values.

In order to see the distribution of the generalized eigenvalues among the scene, Fig. 6.13
shows the generalized eigenvalues corresponding to the change between these two acquisitions.
Asin Fig. 6.12, the A; values are represented in dB, as depicted in the color bar. The o dB, corre-
sponding to no change, is represented in green, the reddish colors represent an increase whereas
the blueish values represent a decrease in the retrieved power. As observedin Fig. 6.12, it may be
seen that on A, most of the values are positive whereas on 7t3 most are negative. However, some
positive values may also be observed in A, over some agricultural fields, which implies that the
retrieved power has increased for all the polarization states. On A, some red areas may be ob-
served in the agricultural fields, whereas most of the other areas appear in green, corresponding

to a polarimetric contrast equal to 1, indicating no change.
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Figure 6.12: Histograms of the 1; generalized eigenvalues among the two acquisitions
shown in Fig. 6.11 expressed in dB.

Fig. 6.14 depicts the obtained generalized eigenvectors in the Pauli RGB color composition
associated with the eigenvalues represented in Fig. 6.13. Then, Fig. 6.14a represents the Pauli
of the polarization state that produces the maximum contrast whereas Fig. 6.14c correspond to
the polarization state achieving the minimum polarimetric contrast. As it may be observed, the
predominant component of the first eigenvectors v, is the volume scattering, appearingin green.
On the v, eigenvector, representing also an increase in the retrieved power, more reddish colors
are seen, corresponding to double bounce. On the other hand, the third eigenvector v;, is clearly
blue over the agricultural fields. Accordingly, it may be deduced that over the agricultural fields
the volume and double bounce scattering processes have increased, mostly corresponding to the

first and second eigenvalues, whereas the smaller contrast is obtained for the surface scattering,
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(c) 4,

-12 dB 12

Figure 6.13: Distribution of the different 1; generalized eigenvalues among the two acqui-
sitions shown in Fig. 6.11. Results are shown in dB scale.

represented by the third eigenvector. This conclusion in consistent with the physical changes

described before, corresponding to the growing process of the plants in the agricultural fields.

6.3 REGION SIMILARITY AND HOMOGENEITY

In Section 4.3.2 the region homogeneity based pruning has been defined. This pruning process
is defined in terms of a region homogeneity measure which may be interpreted as the average
error that is committed when representing all the pixels of the region by its region model. In
this section, a more generic definition of this measure is proposed from a mathematical point
of view. Then, the limitation of the previously defined homogeneity measure are identified and
some improvements are proposed to solve them.

In the more general case, a region model space is supposed, denoted by S, and a metric d is

assumed over this space

d:Sx8—R. (6.21)
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(a) Pauli RGB v, (b) Pauli RGB v, (c) Pauli RGB v,

Figure 6.14: Pauli RGB representation of the different v; generalized eigenvectors among
the two acquisitions shown in Fig. 6.11 (|Sus + Suul, (S0 + Sunl, [Sun — Swl)-

This measure is, in fact, the point on which all the knowledge of the S space may be included,
while focusing on the particular properties of the region model space on that we are interested

on.

Then, a set C of N points in this region model space is assumed C = {Z,,Z,,...,Zyx},
where Z,,Z,,...,Zy € S. Note that the mathematical concept of a set of samples may be
directly related with the region concept within the BPT structure or, generally, in any region-
based approach. Accordingly a set homogeneity H(C) measure may be defined in terms of the
corresponding d metric. First, it is assumed that Z is the center of mass of C, defined as, for

instance,
N
Zc = l Z,. (6.22)
N i=1

Then, the set homogeneity H(C) may be defined in terms of the metric d as

H(C) = 1%1 Z d(Z:,Zc). (6.23)
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Fig. 6.15 represents the set C and the computation of H(C) in terms of the metric d. Indeed,

H(C) may be interpreted as the average distance d from all the C samples to its center of mass
Zc.

R L L L L
Lem=n .~
~

-
DAl

Figure 6.15: Set homogeneity measure definition. The set C and its center of mass Z¢
are represented.

For the region homogeneity based BPT pruning, the relative error homogeneity @, has been

defined in (4.14). With the aforementioned notation it may be expressed as

N
Z. — 7|
o(c) = Ly 1o ek (624)

that corresponds to the relative MSE of the region. According to the previous generic homo-

geneity definition, in (6.23), it corresponds to the H(C) measure that is obtained when employ-

ing the relative euclidean distance as the dg metric

do(a,B) — 1A= Bl (6.25)
IB1%

The distance measure d employed for the region homogeneity measure pays an important
role in the obtained results, presumably as important as the role it plays in the BPT construction
process. In fact, the (6.25) measure is not adapted to the complex covariance matrix space,
which may resultinto a bad estimation of the region homogeneity. As opposite, an homogeneity
measure could be defined employing a distance measure adapted to the complex covariance

matrix space as, for instance, the revised Wishart similarity measure [68]

dn(A,B) = tr(A7'B) + tr(BT'A) — 2p (6.26)
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where p is the size of the p by p matrices A and B. If the d,,, measure is employed to define an ho-
mogeneity measure, as expressed in (6.23 ), then the homogeneity measure H,,, (C) is obtained

as

N
H,,,(C) = I%Ztr(Zlec) +tr(Zg'Z) — 2p (6.27)

In order to analyze the effects of the distance measure employed on the homogeneity mea-
sure, an evaluation process is proposed. For this experiment, two different covariance matrices
C, and C, are defined

1 o o1 1 o 0.9
C,=|o o1 of,C,=|0 o01 of. (6.28)
o1 o0 1 09 o0 1

These matrices are employed to generate two reference sets, A and B, having each one 5000
samples following a Wishart distribution with a particular covariance matrix and a number of
looks equal to 9. Then, a new set C is computed taking 5000 samples with different proportion
from A and B and its homogeneity is computed. Fig. 6.16 shows the evolution of the homo-
geneity measures @ (C) and H,,,(C), depending on the amount of samples, in %, taken from the

B set. The rest of the required samples to complete the set are taken from the A set.
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Figure 6.16: Evolution of the homogeneity measure versus % of mixture; 0% and 100%
of mixture correspond to selecting all the samples from A and B, respectively.

Fig. 6.16a shows the evolution of the ®(C) and H,,(C) homogeneity measures, defined in
(6.24) and (6.27), when the samples of A and B are following a Wishart distribution charac-
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terized by the C, and 10C, matrices, respectively. As it may be seen, the ®(C) measure do not
characterize properly the homogeneity of the C set, as it should present a maximum when 50%
of samples are taken from each set. On the contrary, the H,,,(C) measure, based on the Wishart
metric d,,,, obtains a better plot as it presents a behavior more analogous to the amount of mix-
ture. Moreover, since the ®(C) measure is not adapted to the covariance matrix space, it may
have low significance when there are changes only on the off-diagonal elements, as it is domi-
nated by the power. This effect is shown on Fig. 6.16b, having A and B characterized by C, and
C, matrices, respectively, where the ®(C) measure obtains an almost flat curve, whereas the

Wishart homogeneity H,,,(C) obtains a much better characterization of the C set homogene-
ity.

In a split and merge scenario, as it is the case in the BPT construction algorithm, where dif-
ferent sets are frequently merged, an efficient computation of the homogeneity measure H is
essential to obtain a reasonable computing time. Specifically, when the set C is constructed as
the merging of two disjoint sets A and B, thatis C = A U B, H(C) should be computed in
constant time in terms of Z4, Zg, H(A) and H(B). As mentioned in Section 3.2.3, in order to
maintain the BPT construction algorithm complexity at O(nlogn), the region merging merg-
ing process, including the region model and homogeneity calculation, should be computed at

constant time.

For an efficient computation of the ® measure defined in (6.24) the Total Sum of Squares
(TSS) [128] is employed in the BPT construction process. For a given set C, the TSS(C) is
defined as the sum of squared euclidean distances from all samples to its center of mass. In the

case of the sample covariance matrices employed as a region model, this corresponds to
N
TSS(C) = > [|Z: — 2|} (6.20)
i=1

Having this measure, when a new set C is generated by merging A and B, expressed as C =
A U B, then the corresponding measures ®(C) and TSS(C) of the new set may be computed in
terms of TSS(A) and TSS(B) as [128]

NaNg

TSS(C) = TSS(A) + TSS(B Z, — 1p|z————
(C) = TSS(A) + TSS(B) + 124 ~ Zalli -2

(6.30)

where N and Np are the number of samples of the sets A and B, respectively. Note that (6.30)
does not contain any summation depending on the number of samples and, consequently, it

may be computed in constant time as long as the TSS values for each set are stored. With the
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TSS(C) value, the homogeneity measure ®(C) may be directly computed in constant time as

1

= —ZTSS(C) (6.31)
Nel|Zc|%

o(C)
where N¢ = N, + Nj correspond to the number of samples of the C set.

6.3.1 THE PROBLEM OF THE CENTROID REPRESENTATION

When having a set of pixels A, they are usually characterized by the average sample covariance
Z2, as mentioned before. When comparing the set A with another set of pixels B, their central
values Z¢ and Z2 are compared through the metric measure d, for instance, the revised Wishart
dissimilarity d,,, defined in (6.26). This cluster center comparison is depicted in Fig. 6.17, where

the enveloping of the set of pixels has been marked with a dashed line and its central value with
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Figure 6.17: Representation of the similarity computation between cluster centers employ-
ing the centroid model.

In some situations, the central value of a cluster may not be a good representative of the set
of pixels, specially if it is composed by not homogeneous samples. This effect has been stated in
Section 4.1.2, where the limitations of the sample covariance matrix as a region model were dis-
cussed. In this situation, the central value may even fall outside the cloud of points it represent,
asillustrated in Fig. 6.18. As it may be seen, a set of pixels composed by AUB has been compared
with another D employing the central value, as stated before. In this case, the obtained mean

value Z2"® falls outside the two sets A and B which it represents. Consequently, the obtained
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similarity measure d,,,(Z2-®, Z2) becomes completely unrealistic, as it not represents properly

the similarity between the sets A U B and D.

L]
e""mun? 0.' LI
LLLTS * * n L]
o LS * v’
. 9 * D -® [ AN
* N ** ZC '00 u .

* - v . L] .
L4 * I -
. . . . 0 .
[} “ ~ J L []
[ ] \J LR} L4

» $‘ *ens® l..'ll“ . :
. 0
. AUB B *
’,. . dm,l(Z Z ) o
" . * ..
. X g o X .
.
. * .
. ZA " ZAUB : ZB .'0
: C Ll C [ ] c 0‘
> & . -
* o .

. 4 * L]
* R4 *

N R ’0. *
D R - .
'Yy *

[ ] * *

. * ‘e **

*e . A4 .

“y [ 34 * *
Sagmpmpun® ...-“

Figure 6.18: Similarity comparison between cluster centers may obtain unrealistic results

over inhomogeneous sets.

The issue of the centroid representation previously mentioned, is not a problem of the d,,,
measure itself, but it is a limitation of the employed model, which is not able to represent such
a situation. More complex models may be employed as a descriptors, taking into account a
mixture of distributions or the data texture, for instance. However, more complicated models
require a larger number of parameters and, consequently, they are more difficult to determine,

requiring a larger number of samples for a reliable estimation.

6.3.2 AVERAGE LINKAGE DISSIMILARITY MEASURES

In order to solve the previous problem, instead of defining a more complex model, another
possibility is to avoid the need for a parametric model and the necessity of cluster similarity
computation within this model space. Having defined the d,,, similarity between points, the
average linkage between all the cluster values, also known as Unweighted Pair Group Method
with Arithmetic mean (UPGMA) [113], may be used, in order to avoid the employment of a
representative value. This similarity measure, denoted as d,; may be defined as

N, Ny
ZB (6.32)

d.(A,B)

I’W

i=1 j=1

As it may be seen, it is a similar concept to the generic homogeneity measure (6.23) but, in
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this case, the distance is evaluated between each possible pair of values of the two sets compared.

This idea has been represented in Fig. 6.19.
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Figure 6.19: Similarity comparison between two sets employing an average linkage
Wishart measure.

If this average linkage measure is employed to analyze the similarity between not homoge-
neous sets, asin the scenario depicted in Fig. 6.18, a more appropriate measure may be obtained.

This situation has been represented in Fig. 6.20
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Figure 6.20: Similarity comparison between the inhomogeneous sets A U B and D employ-
ing the average linkage measure.
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6.3.3 THEZY REGION MODEL

The previous average linkage Wishart similarity measure between two sets may take into ac-
count data inhomogeneity and also the texture of the two different pixel sets. Moreover, it is
not assuming any shape over the points sets, being able to compute the similarity between ar-
bitrary collections of points. The only assumption performed is embedded within the metric d
employed for the computation, which corresponds to the geometry of the space. However, the
computation of d,; may be very resource consuming as it requires to compare all the possible

pixel pairs through the d,,, measure, that is N, - N}, comparisons, as it may be deduced from

(6.32).

Nonetheless, in order to avoid this computational explosion, an extension to the centroid

representation is proposed. Expanding the d,,, measure (6.26) into (6.32)

N, N, N, N,

da(A, B) = Nle SN w@z ) + 3 @z | - (6.33)

i=1 j=1 i=1 j=1

the linear properties of the matrix trace may be applied to obtain

N, Nb N, Nb
da(A,B) = Nle w | Y Nz v (YN 27| | -
a i=1 j=1 i=1 j=1
N, Nb Nh N,

1 . -
= NN, tr Z Zf1 Z Z]B + tr Z Z]]-3 Z Zf1 —2p.  (6.34)
Note that, as stated before, the center of a set of pixels A may be computed as
1
A_ 1 A
Z:—= N, ZZi . (6.35)

Similarly, the average of its inverses may be defined, which in the following will be referred

A
toas Y

N,
Ao LS g
Y- = N 2 z . (6.36)

With this notation, the average linkage Wishart similarity measure d,; defined in (6.34) may
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also be expressed in terms of these matrices

d.(A,B) = (tr (N.NLYAZE) + tr (NN, YEZE)) — 2p

aNp
= tr (YRZg) + tr (YeZ%) — 2p. (6.37)

In the following, this set representation based on the Y¢ and the Z( average matrices will be
called the ZY model. Employing this idea, as it may be seen, the computation of the d,; measure
may be as simple as the computation of the classical symmetric Wishart similarity measure (4.2)
or even faster, as it just requires two matrix multiplication and trace computations, not requiring
any matrix inversion. On the other hand, it has the disadvantage of requiring a larger amount
of memory, as two different matrices, Z and Y, are stored in the model. The computation of the

union model of two sets A U B may also be easily obtained as

N,Z{ + N, Z¢

ZAVB — 6.38
c N, + N, (6:38)
N, YA + N, Y2
YAUB — a+C C' 6.
c N, + N, (6:39)

It is worth mentioning that this model requires an initial filtering or matrix regularization of
the original data, in order to have full-rank matrices. The computation of the Y matrix requires
invertible original pixel matrices. This problem may be circumvented by applying an initial small
multilook filtering or by a more complex adaptive filtering in order to preserve the resolution of

the original data, as, for instance, the proposed DBF technique [ 13 ], proposed in Section 6.1.1.

Additionally, the YAZ? matrices allow a similar interpretation to the A~*B matrices studied
in Section 6.2, as they correspond to the average of these matrices for each pair of points of the

two sets.

The proposed ZY model also allows the efficient computation of the Wishart homogeneity

measure H,,,(A) defined in (6.27). To do so, the same mathematical development may be ap-
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plied to compare all the points of the region A with its average sample covariance matrix Z4

N,
— NL Z (tr (z;‘“zé) + tr (ZA z,-)) —2p
A

i=1

1 Ny Ny
A d (z;““zé>+ tr ZA ZA )—zp

Ny
1 . .
=— | tr E 72778 | 4t | Z4 E 74 —2
NA i:1 1 C C ‘ 1 p

A
1 —1
=— |t E v/l 7 —i—NAtr ZA ZA)
1 N4
_ AT A o
N, tr E_ Z; Z. ) p

1
=tr| — 7278 | —
()

which yields to the expression

H,,(A) = tr(YSZE) — p. (6.40)

If instead of the Wishart homogeneity H,,,(A), the average distance among all the A points
is evaluated, that is, d,;(A, A), then it may be obtained

du(A, A) = 2tr(YSZE) — 2p = 2H,,,(A). (6.41)

This expression may be easily obtained from (6.37) when Z2 = Z2 and Yp = YA.

However, in this case, the eigenvalues of the YAZ% matrix do not correspond to the average
polarimetric contrast. Note that this measure is defined among all the points within the same
set A and, consequently, instead of change, it may be interpreted as the homogeneity or variabil-
ity within A. As it may be deduced from (6.27), in this case, YAZ$ corresponds to the average
of Z# "Z + Z* "7}, for each pair of points Z{* and Z* within A. Equivalently, its eigenvalues
correspond to the average of the generalized eigenvalues and its inverse A; + A; " as it is based
on the Wishart measure, that may be defined in the same terms, as denoted in (6.19). Con-

sequently, the eigenvalues of the YAZ24 matrix, denoted as Ay, are always larger than 1, that
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is, Ayz, > 1 Vi. Then, their value may be interpreted as amount of variability in the A set, in
terms of the Wishart dissimilarity measure. The larger the Ayz,, the larger the variability on the

corresponding polarization state defined by the associated eigenvector vyy,.

6.3.4 PoOLSAR TiME SERIES ZY REGION MODEL EXTENSION

When processing PolSAR time series, as described in Section 5.1.2, the temporal evolution of
the target may be included within the region model in order to improve its characterization,
assuming that a target is defined by its polarimetric temporal evolution. This assumption, then,
leads to the extended Z, model, defined in (5.2), on page 121.

Similarly, the extended Y, matrix can be defined, following the same rationale
Y, = . . ) ) (6.42)

where N represents the number of acquisitions in the dataset and Y;; represents the Y matrix
corresponding to the i-th acquisition, as expressed in (6.36). On (6.42), the off-diagonal el-
ements other than the ones contained within the Y;; matrices are not considered, as only the
polarimetric information will be employed in the following. With the Z? and Y# matrices, the

extended Wishart homogeneity measure H,,, (A) of the region A can be computed as
H,,,( Z tr(Y;Z5) — (6.43)

Similarly, the extended average linkage d,;, (A, B) dissimilarity measure may also be defined

in terms of the extended Z, and Y, matrices of the A and B regions

N

d..(A,B) = J%Z (tr(YAZE) + tr(Y2Z2)) — 2p. (6.44)

i=1

Additionally, a temporal stability measure t,,(A) may be defined in the same way as the
measure defined in (5.5 ), on page 144, but in terms of the average linkage dissimilarity measure

dal

N N

t(A) = lm ;J; (te(YAZE) + tr(YAZE)) — 2p. (6.45)
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6.3.5 CoOMPARISON WITH COVARIANCE MATRIX AND SIMILARITIES

To see the benefits obtained when employing the ZY region model in combination the average
linkage similarity measures, the Flevoland and Barcelona datasets, presented in Sections 5.3 and
5.4.2 have been processed with the TE BPT employing the average linkage d,;, dissimilarity

measure for BPT construction and the extended Wishart homogeneity H,,, for pruning.

| L w o SR Y| L
(a) TE BPT, 4, - (b) TE BPT, dut,, Hy,, §, = 6dB

Figure 6.21: Pauli RGB images of the first acquisition from the TE BPT results over the
Flevoland dataset processed with the d; and @, measures over the classical model and with
dy, and H,,, dissimilarity and homogeneity measures over the ZY model (|Su, + Sy, |Sh +
Svns |Shh - va|)-

1

Fig. 6.21 shows the first acquisition of the processed Flevoland dataset when employing the

previously proposed extended region model Z,, dissimilarity and homogeneity measures, de-
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fined in Sections 5.2.2 and 5.3, in comparison with the ZY model and the d,;;, and H,,,, measures
defined in Section 6.3.4. It is worth mentioning that since the extended Wishart homogeneity
measure H,,, is based on a different measure than ®,, a different range of values of the prun-
ing threshold 8, parameter are required in both situations in order to obtain a similar result.
Then, in Fig. 6.21a a pruning threshold §, = —3dB has been employed whereas on Fig. 6.21ba

8, = 6dB value has been set in order to obtain a comparable level of detail in the results.

Apparently Fig. 6.21a and 6.21b present similar results but, when they are examined in detail,
some differences may be observed. Figs. 6.22a and 6.22b show a detail of these results over the
first acquisition. It may be observed, in the left part of the image, some green fields correspond-
ing to zones that are vegetated among all the acquisitions of the Flevoland dataset. These areas
presumably have a larger spatial variability or texture and, consequently, they appear segmented
into many regions in Fig. 6.22a. Due to this larger variability, the classical Z, is not able to prop-
erly group all these small regions as it is not able to model inhomogeneous regions accurately.
When the ZY model is employed better results are obtained, as observed in Fig. 6.22b, since
the average linkage dissimilarity measure d,;, and the revised Wishart homogeneity measure
H,,, are more suited for the comparison and modeling of heterogeneous regions, as they are
not based on the centroid representation, as stated in Section 6.3.2. With this approach these
areas are properly merged together and they appear as a single region. To see more clearly this
effect, Figs. 6.22c and 6.22d show only the contours between the regions obtained. It may be
observed that over the agricultural areas on the right part of the image both approaches achieve
similar results whereas, for these fields having high spatial variability, only the ZY model is able
to properly identify and separate them. Indeed, when employing the ZY model, no significant
difference is observed on the results obtained among these fields and the other ones.

The Barcelona dataset has been also processed employing the TE BPT with the ZY model
and the d,;, and H,,, dissimilarity and homogeneity measures. Fig. 6.23b shows the temporal
stability £, , measure results, defined in (6.45), obtained employing this representation. These
results are compared with the ones obtained in Fig. 6.23a employing the classical model, dis-
similarity and homogeneity measures for the TE BPT and the temporal stability measure £, as
described in Section 5.4.2. In these results, the DBF technique, defined in Section 6.1.1, has
been employed for matrix regularization in both cases.

As it may be observed in Fig. 6.23, the average linkage concept may also improve the results
obtained in terms of the temporal stability measure. When employing the f; , measure based on
this notion, the same changes are detected but a much larger contrast may be observed between

the change and no change areas. Note that with the ZY model the different regions of the scene
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(a) Pauli, dg, ®., 8, = —3dB

(c) Contours, d,, @, §, = —3dB (d) Contours, dg,, Hp,, §, = 6dB
Figure 6.22: Pauli RGB detail images and contours of the first acquisition from the TE
BPT results over the Flevoland dataset processed with the d; and @, measures over the

classical model and with d,;, and H,,, dissimilarity and homogeneity measures over the ZY
model (|Shh + SVI}|1 Slw + Suh ) |Shh - Suv‘)-

may be better identified, specially those having large spatial variability, as seen before. Addition-
ally, the t, , measure is able to calculate more accurately the polarimetric changes among these
regions, as it employs all the pixel values instead of the centroid, resulting into a more reliable
temporal stability outcome. In fact, the results in Fig. 6.23b are less noisy and more contrasted

than those on Fig. 6.23a, being easier to identify the corresponding changes over the scene.
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oA, Goglee

(b) Geo-coded t,,, TE BPT with the ZY model and d,;, and H,,,

Figure 6.23: Geo-coded temporal stability measures ¢, and t,, over the Barcelona dataset
employing the TE BPT with the classical model and d; and ®, measures and the ZY
model with d;, and H,,, dissimilarity and homogeneity measures. In both cases the DBF
technique has been employed for matrix regularization with 5x5 local window V, 3 itera-
tions of the weight refinement scheme, and d,,, o = 2,0, = 0.4 parameters.
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To get different results, you have to do something different.

Albert Einstein

Multidimensional SAR Data Classification

THE BPT HAS PROVEN to be a useful multidimensional SAR data representation for different
applications. As described in Chapter 3, it is a region-based approach that describes homoge-
neous connected areas of the image. Going one step further in this direction, different areas of
the scene identified by some particular traits may be grouped together into classes. The process
of assigning the different samples, or regions, from the data into a finite set of classes is known as
classification. This chapter introduces some progress that has been developed within the course

of this thesis in this field, based on the BPT representation and concepts.

As indicated in Section 2.4, classification techniques may be decomposed into two main
types: supervised and unsupervised classification. On supervised classification, an initial knowl-
edge of the scene is required in order to provide the training set, which is a set of regions that
are known to belong to each class. Then, the rest of the data is assigned into one of the supplied
classes by the technique. On unsupervised classification no a priori knowledge of the scene or
classes is assumed and, consequently, the technique automatically defines the classes according
to the most differentiated areas of the data.

The first section of this chapter defines a supervised classification technique taking into ac-

count the same similarity measures that have been employed for the BPT based processing. The
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second section employs the k-means clustering approach to obtain unsupervised classification
results from the BPT pruning results. It is worth mentioning that, since these techniques are de-
fined in terms of the BPT, they may also be applied to the previously described representations
for PolSAR images and also for PoISAR time series datasets, providing a classification technique

that naturally takes into account the temporal evolution of the scene.

7.1 SIMILAR REGIONS SUPERVISED CLASSIFICATION

The proposed BPT construction process, described in Section 3.2, is based on an iterative merg-
ing of the two most similar adjacent regions on the scene. The conceptual framework behind
this idea is based on the similarity measures, which evaluate the closeness among two regions.
Moreover, these measures have been adapted to the extended model for processing PolSAR
time series, as described in Section §.2.2. It has been shown that taking into account the polari-
metric temporal evolution of the target results into an increase of region differentiation. In fact,
this information may also be useful for classifying the different regions of the scene.

As mentioned before, the BPT pruning process results into a set of homogeneous regions
of the image. Note that, for a region-based supervised classification approach, a training set
should be provided consisting of a collection of regions for each class. Accordingly, in order
to obtain a supervised classification technique based on the BPT, the same similarity measures
employed for its construction may be employed also to identify the closest training region of
any pruned node, but, in this case, without the term depending on the region size. Note that this
term was incorporated for the BPT construction process, in order to ensure a proper multi-scale
structure while favoring the merging of smaller regions first. In this case, the aim is to define a
classification technique independent of the region size. Then, the geodesic similarity measure

dg., for instance, may be employed for classification, based on the geodesic measure dg, defined

in (5.3) on page 124

TR

i=1

log (24,20, 2.."")

‘F (7.1)

where Z,, stands for the sample covariance matrix of the i-th acquisition within the extended
region model Z, of the region A.

Fig. 7.1 shows an example of this classification procedure in the Flevoland PolSAR time series
dataset, described in Section s.3. In this case, the classical 3 by 3 multilook has been employed

as initial filtering and the extended geodesic dg and @, measures for TE BPT construction and
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pruning, respectively. In the pruning process a §, = —3dB threshold parameter has been em-
ployed, corresponding, then, to the same results shown previously in Fig. 5.4b, on page 130, and
analyzed in Section s.3. Fig. 7.1a shows the value of the proposed dg. measure, as described in
(7.1), corresponding to the similarity to the region marked in magenta in this figure. In order to
obtain the similar regions to a given one, a maximum value may be set over the similarity mea-
sure in order to obtain a mask, as shown in Figs. 7.1b and 7.1c. As it may be observed, a larger
value of this threshold parameter results into a larger amount of similar regions. Note that these
results correspond to the set of regions of the dataset that are following a similar polarimetric

temporal evolution among all the 8 different acquisitions of the dataset.

(a) dy S|m||ar|ty values  (b) Similar regions dyc <2 (c) Similar regions dg. < 2.25

0 d

| |
Figure 7.1: Region similarity to the field marked in magenta in (a). A threshold over the
similarity measure conforms a similar regions classification, as represented in (b) and (c).

In order to obtain a supervised classification of the data a certain number of classes are pro-
vided within the training set and, consequently, each region is assigned to the class of the most
similar region of this set. Over the Flevoland dataset, a ground truth classification of the agri-
cultural fields is available, represented in Fig. 7.2. This ground truth has been built by collecting
the information related with the crop type in ground, provided as part of the ESA AgriSAR
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Figure 7.2: Flevoland agricultural crop type ground truth. Each color represents a type of
crop.

2009 campaign. Note that only a part of this ground truth falls within the scene covered by the
Flevoland dataset, shown in Fig. 5.3.

From the ground truth presented in Fig. 7.2, 4 different types of crop has been selected for
classification: winter wheat, onions, sugar beet and potatoes. These crop types hasbeen selected
since a large number of these fields may be found within the scene of the Flevoland dataset
presented before. As a training set, two fields have been randomly selected for each crop type.
Then, the obtained polarimetric temporal evolution for each pruned region of the TE BPT has
been tested for similarity, according to the d,. measure, to these training set fields. Accordingly,
they have been assigned to the class of the most similar training field. In order to avoid the
labeling of very different areas of the scene, a threshold of d;c < 2.5 has been set for all the
region similarity, as represented in Fig. 7.1. Thus, those regions that have a similarity above 2.5
from all the fields of the training set are not labeled.

The corresponding supervised classification results are shown in Fig. 7.3. On this figure, the
pruned regions have been filled according to the color of the class they have been assigned to,
whereas the contours of the fields have been colored according to the ground truth data. Al-
though there are some regions miss-classified, a high degree of success may be observed among
the agricultural fields. From this results it may be inferred that a reliable supervised classifica-
tion results may be obtained when employing the TE BPT for scene type classification, specially

over agricultural fields.
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Figure 7.3: Geo-coded Flevoland agricultural crop type supervised classification results
and ground truth. The regions are filled according to their classification result whereas the
contours of each field are represented with the color of the ground truth data. Colors cor-
respond to Winter wheat, Sugar beet, Potatoes and Onions.

This performance is mainly achieved due to taking into account the complete polarimet-
ric temporal evolution of the agricultural fields, as it increases substantially the differentiation
among them, as it has been stated in Section 5.3. In order to see clearly the benefits of employ-
ing this information in practice, the same supervised classification approach has been employed
over the dataset conformed only by the first acquisition. Fig. 7.4 shows a detail of the results ob-
tained after applying this technique with different types of filtering processes. Fig. 7.4a corre-
spond to the detail of the results shown in Fig. 7.3, employing the TE BPT over the whole time
series dataset, having 8 acquisitions. On the other hand, Fig. 7.4b shows the results obtained
when applying the same TE BPT and supervised classification techniques over the first acqui-
sition only of the Flevoland dataset. Note that on each result of Fig. 7.4 a different type of data
or filtering is employed and, then, the applied threshold values for the d, similarity measure
have been tuned in each case in order to obtain comparable results. As it may be observed, the
performance of the obtained classification decreases substantially when only one acquisition
is available, specially for Winter wheat and Onions classes. Probably, these classes are mainly
distinguished by their polarimetric temporal evolution and only one image may be not enough

in order to properly identify them.
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Gooale earth

(a) TE BPT employing 8 acquisitions, dg. < 2.5

Google earth

(b) TE BPT employing 1 acquisition, dg. < 0.5

Google earth

(c) 7x7 multilook employing 8 acquisitions, dy < 3.5

Figure 7.4: Comparison of geo-coded Flevoland agricultural crop type supervised classifi-
cation results for the TE BPT employing 8 and 1 acquisition and for the 7 by 7 multilook
employing the 8 acquisitions. Colors correspond to Winter wheat, Sugar beet, Potatoes and

Onions.
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Additionally, in order to reflect the benefits of employing the TE BPT representation for ho-
mogeneous region segmentation and filtering, Fig. 7.4c shows the results obtained after apply-
ing the same supervised classification employed in Figs. 7.3 and 7.4a over the 8 original images
filtered with a 7 by 7 multilook. Note that, in this case, the polarimetric temporal evolution
among all the acquisitions is also available but estimated employing the multilook instead of
the TE BPT. Therefore, roughly the same areas than on Fig. 7.4a may be guessed in Fig. 7.4¢
but they are considerably more noisy as they are more contaminated due to the speckle. This
example clearly shows the advantage of employing the TE BPT for segmentation and polari-
metric estimation. Since it results into almost one region per agricultural field, the effect of the
speckle noise over the data is strongly reduced producing a noticeably clearer result. Moreover,
asitis a region-based approach, the classification process over the BPT is significantly more ef-
ficient from a computational point of view, as it has to test the d,. measure only once per region

instead of once per pixel as in the case of the 7 by 7 multilook.

7.2 K-MEANS UNSUPERVISED CLASSIFICATION

This section is focused on the definition of an unsupervised classification technique based on
the BPT representation. Indeed, the results shown on the previous section suggest that, due to
the clear differentiation among the different agricultural fields, an unsupervised classification
technique may be useful to determine automatically the different areas of the scene.

In machine learning and data mining the clustering or cluster analysis is the process of group-
ing samples in such a way that the samples within a group or cluster are more similar to each
other than those in other groups. Then, it corresponds to the unsupervised classification proce-
dure. The k-means is a well-known method for cluster analysis in data mining [92]. Moreover
this technique may be also defined in similar terms to those of the BPT based processing. The
following sections describe and analyze a PolSAR classification technique based on the k-means

clustering.

7.2.1 K-MEANS DEFINITION AND LIMITATIONS

The k-means concept was originally employed for signal processing [114] as proposed by S.
Lloyd [86]. However, the first algorithm was published by EW. Forgy [51] and, consequently,
it is also referred to as the Lloyd-Forgy algorithm.

Originally, in the k-means clustering approach, a set of # multidimensional observations,

which are denoted by (x,,x,, . . ., X,), are assigned to a finite ksets § = (S,, S,, . . ., St), having

207



k < n,in order to minimize the within-cluster sum of squares

k
arg min D> I —wl (7.2)

i=1 XES;

where y, refers to the mean of all the observations assigned to S;. For region-based PolSAR data

and time series datasets, the x; and u, may be considered as region models, corresponding to

the sample covariance matrices Z or the extended Z, matrices.

The k-means is an iterative algorithm that may be decomposed into two main alternating

stages, assignment and update steps:

208

During the assignment step, each observation is tested for similarity among all the cluster
centers . Finally, it is assigned to the set S; having the closest center .. That is, for the
)

iteration t, the set S,(t may be defined as

Si(t) - {Xp Ld(x,, l‘ft)) < d(x,, l‘)‘(t)) Vitsjs k} (7.3)

where d(x,, pft)) denotes the distance between the p observation and the mean of the

i-th cluster at iteration t.

Originally, the distance d refers to the squared euclidean distance d,, defined as

do(xp, 1) = [1x, — 7|1, (7.4)

but for PoISAR data any of the previously defined dissimilarity measures without the re-
gion size term may be employed as, for instance, the d,. measure defined in (7.1). Note,
however, that this fact involves that (7.2) is not fulfilled, as they correspond to distinct
measures. Additionally, in order to fulfill a similar expression when substituting the eu-
clidean d, by the geodesic dg. measure, the cluster means p, should also be computed ac-
cording to the geodesic mean [22], to be consistent with the space geometry employed

in the similarity measure, which is not the case.

In the update step the means or centroids u, are re-computed for each cluster S;, according

to the new assignments performed during the previous assignment step. This may also

Z X; (7:5)

XjES,-(t)

be expressed as
(1) _

1

1
|57

where |Si(t) | denotes the cardinality of the Si(t) set.



These two steps are repeated until a convergence criterion is achieved, usually when there is
no change among the assignments or when a given number of iterations has been performed.

It is worth mentioning that finding the exact or optimum solution of the k-means method
is a NP-hard problem [45]. This means that no solution is known in a polynomial execution
time and, consequently, an exact solution may not be found in practice even for relatively small
datasets due to the large computational complexity. The Lloyd-Forgy algorithm previously de-
scribed corresponds to an approximation of the problem. Therefore, this algorithm typically
converges to a local optimum but, however, there is no guarantee that it converges to the global
optimum. In fact, the performance of the results obtained strongly depends on the initial clus-
ter assignments, also called seeds. As a consequence, some initialization methods have been
proposed in order to perform a robust initialization for different types of data. Accordingly, in
Section 7.2.2, an initialization method is adapted for the PolSAR data BPT pruning results.

It should be noted that the Wishart classification technique [81], previously described in Sec-
tion 2.4.2, may also be considered as a k-means clustering algorithm, as it is based on the same
principles. In this case, the employed polarimetric distance d,,.(Z,, C;) between the estimated

covariance matrices of the p sample Z, and the cluster center C; may be considered as
dye(Z,,C;) = In|C;| + tr(C'Z,). (7.6)

Note, however, that this technique is limited to 8 or 16 classes, depending on the initializa-
tion employed, that is, the H/a or the H/A/a classification. Indeed, since PolSAR data are
strongly contaminated by speckle noise, a good initialization of the cluster centers is crucial in
order to obtain meaningful results. Then, the initial classification based on H/A/a parameters
is employed as it provides a reasonably good initialization at the cost of restricting the number

of classes parameters k.

7.2.2  ROBUST INITIALIZATION FOR K-MEANS: K-MEANS++

As mentioned previously, the initialization or seeding process is crucial for the k-means method.
Moreover, this process is even more important for PolSAR data, since it is strongly contami-
nated by speckle.

Recently, the k-means++ [ 19] method has been proposed in order to generate a robust ini-
tialization for the k-means technique. It specifies a randomized procedure to initialize the clus-
ter centers, prior to the k-means clustering. A randomized algorithm employs some degree of
randomness to guide its behavior in order to achieve a good performance in the average case

[96]. Under some situations, only randomized algorithms are able to ensure a certain level of
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approximation to general problems [46]. In this regard, with the k-means++ initialization, the
Lloyd-Forgy algorithm previously described is guaranteed to find an expected approximation
ratio O(log k) to the optimal k-means solution [19], where k refers to the number of clusters.
Note that the original k-means algorithm may find clusters arbitrarily worse than the optimum
[67].

In order to obtain a good initialization of the k cluster centers, they should be spread out
around the range of values of the dataset. This is, indeed, the intuition behind the k-means++
approach. It initializes each of the cluster centers to one sample of the dataset, trying to en-
sure that all the obtained centers are far away from each other. The k-means++ initialization

algorithm may be described according to the following steps:

1. The first cluster S, gets initialized to one sample taken uniformly random among all the
samples of the dataset. If the sample x; has been chosen, the corresponding first cluster

center is set to it accordingly u, = xi.

2. For each data sample x;, the minimum distance D,, (i) between it and the nearest center

u; of the already chosen sets S already chosen is computed

D,,(i) = arg min d(x;, ;). (7.7)
jeS.

3. A new cluster S, is assigned to a new sample x;, which is chosen randomly according to
a weighted probability proportional to D,,(i)* for each sample i. That is, the probability
P(i) of choosing the x; sample as the new cluster center g may be defined as

D, (i)
() = s (79

n . *
Zj:l Dm (])2
4. The steps 2 and 3 are repeated until the k different sets have been initialized.

5. Finally, the standard k-means clustering process, defined in Section 7.2.1, is applied with

this initialization.

In order to apply the k-means++ method previously described for PolSAR data and temporal
series, the dissimilarity measures may be employed over the sample covariance matrices. For
instance, the d,. measure, defined in (7.1), may be applied. However, in order to apply this
algorithm over the regions obtained from the BPT, some changes have to be made. Note that
the k-means++ is a randomized algorithm and, since regions of different sizes may be found, the

number of samples for each region has to be taken into account.



The k-means++ is a randomized algorithm that defines a probability for choosing each one
of the input samples. However, the BPT is a region-based approach and, consequently, each
region is composed by an arbitrary number of samples. Then, the probability P(i) of selecting
the sample i, defined in (7.8), may be redefined in a region-based fashion as P, (i), taking into

account the region size parameter

_ D,(i)*-N;
E]N:}i Dy (j)? - N;

P.(i) (7.9)

where N; refers to the number of samples of the region i and Ny, refers to the total number of
pruned regions.

The computation of this initialization may be much more complex than employing a ran-
dom or fixed seeding as, for instance, the fixed H/a or H/A/a initial classification. Then, the
k-means++ requires an additional amount of time to the classical k-means technique. However,
according to the authors, the k-means classification may converge faster due to a better initial-

ization, resulting into a global processing time reduction [19].

7.2.3 OUTLIER DETECTION AND REMOVAL FOR K-MEANS

In statistics, an outlier may be considered as an observation that is unusually distant from other
observations [62]. An outlier observation may be produced due to the inherent variability in
the observation or due to an experimental error. In the later case, those samples are usually
excluded from the dataset.

For unsupervised classification techniques, the outliers may pose a problem. Since they are
far away from all of the other data, this situation may result into one big cluster grouping almost
all the data within and small clusters around it for the outliers themselves. Then, for this appli-
cation, the elimination of the outliers may be interpreted as the removal of non-significant small
details in order to obtain a more detailed analysis over the significant data.

In order to define areliable outlier removal technique, a clear definition of this concept should
be available. However, up to date there is no rigid mathematical definition of what constitutes
an outlier. There are different methods for outlier detection [83][64]. Typically, a model is
employed to characterize the data, assuming a normal distribution, and the observations that
are considered as unlikely based on the mean and standard deviation are removed. However,
these approaches have the inconvenience of resulting into a systematic elimination of a part of
the data. Other applications are based on a distance measure in order to remove those samples
that are relatively far from the closest sample [69][105]. Nevertheless, these techniques only

work for isolated samples. When a group of samples constitute an outlier, these distance-based



approaches do not detect them properly.

Consequently, a different approach for outlier detection and removal is proposed. In a gen-
eral sense, within the context of the unsupervised classification an outlier may be considered as
group or class that is small enough to be considered as not significant. When a dataset composed
of N samples is classified into k clusters, it may be considered that the average size per cluster is
N/k. Then, a set S; will be considered as not significant if it contains less than 1% samples of this
average size. Consequently, the k-means algorithm, described in Section 7.2.1, is modified in
order to remove the samples corresponding to each stable cluster S; having less than N/ (100k)
samples. When the samples assigned to the non-significant S; cluster have not changed among
two consecutive iterations, these samples are labeled as outliers and removed from the classifi-

cation. The free S; cluster is then re-assigned according to the k-means++ method, as described

in (7.9).

7.2.4 BPT BASED UNSUPERVISED CLASSIFICATION RESULTS

In this section, the proposed unsupervised classification technique, based on the k-means++ ini-
tialization method and the Lloyd-Forgy algorithm is evaluated with real PoISAR data. Fig. 7.5
shows the results of applying the proposed unsupervised classification method to the Oberpfaf-
fenhofen PolSAR image presented in Fig. 4.10a, on page 88. Fig. 7.5a shows the result obtained
after classifying the image into 8 clusters employing the BPT with the classical sample covari-
ance matrix Z model, as presented in Chapter 4, and the dg. measure (7.1) for classification.
On the other hand, Fig. 7.5b shows the same result when employing the ZY model, described
in Section 6.3.3, and the d,; measure (6.32) for classification. In both cases, the number and,
consequently, the color of each class is random, as it depends on the k-means++ randomized
initialization method.

It may be observed from Fig. 7.5 that the structure of the image is much less clear from
Fig. 7.5a than from Fig. 7.5b. The obtained classes when employing the ZY model have a better
correspondence with the different areas of the scene, as some parts like the runway and agricul-
tural fields are distinguished into different classes. Indeed, as mentioned in Section 4.1.2, the
classical model has the limitation of being unable to properly represent inhomogeneous areas
of the image. This effect becomes more dramatic for the classification application, as all the dif-
ferent targets of the scene are grouped into a small number of groups, resulting into a mixture of
different statistics within each cluster. In this situation, the classical model is unable to properly
represent the different clusters and, consequently, the dissimilarity measurements obtained are

also affected, resulting into a poor final performance. On the other hand, the ZY model and the
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Figure 7.5: Clustering into 8 classes of the Oberpfaffenhofen PoISAR image presented in
Fig. 4.10a. The classical model and d,. measure has been employed in (a) whereas the ZY
model and the d,; dissimilarity measure has been employed in (b).

average linkage dissimilarity measure have been proposed in Sections 6.3.3 and 6.3.2 in order
to circumvent this limitation, resulting into better unsupervised classification results as they are

able to deal more effectively with inhomogeneous statistics.

The outlier removal method presented in Section 7.2.3 has been employed in the results
showninFig. 7.5. On these images, the outliers are not represented, as they are not classified, ap-
pearing in black color. To see them more clearly, Fig. 7.6 shows the outlier pixels obtained from
these two results. As it may be observed, much more outliers are detected when employing the

classical model, in Fig. 7.6a, than with the ZY model, in Fig. 7.6b. Again, this is a consequence of
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(a) Outliers k = 8, dy, classical (b) Outliers k = 8, du, ZY
model §, = —2dB model &, = 7dB

Figure 7.6: Outliers detected during the clustering into 8 classes of the Oberpfaffenhofen
PolSAR image presented in Fig. 4.10a. The classical model and dg. measure has been em-
ployed in (a) whereas the ZY model and the d,; dissimilarity measure has been employed in

(b).

the inability of the classical model to deal properly with the different inhomogeneous clusters.
In Fig. 7.6b it may be observed that most of the outliers correspond to strong targets in urban
areas that are very different to the rest of the image, according to the d,; measure, and they are
not enough representative to constitute a cluster by themselves. The number of detected out-
liers in Fig. 7.6a is 38330 pixels (0.88%), whereas on Fig. 7.6b only 3214 pixels (0.074%) have
been labeled as outliers.

One of the main advantages of the k-means++ initialization algorithm, as described in Sec-
tion 7.2.2, is that it may be employed to initialize the Lloyd-Forgy unsupervised classification
algorithm with an arbitrary number of classes while providing a reasonably robust results. This
eliminates the limitation of the Wishart classifier, that only produces 8 or 16 classes, as it has to
rely on the fixed H/a or H/A/a polarimetric segmentation in order to obtain a robust initializa-
tion. To show this ability, Fig. 7.7 shows the results obtained when clustering the Oberpfaffen-

hofen PolSAR image into 2, 4 and 12 clusters. In these cases, the ZY model and the d,; measure
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Figure 7.7: Clustering into 2, 4 and 12 classes of the Oberpfaffenhofen PolSAR image
presented in Fig. 4.10a. The ZY model and the d,; dissimilarity measure has been em-
ployed in all cases.

have been employed for the BPT processing and classification. It may be seen that when the
number of clusters k gets increased, the additional classes are spread into further details of the
image.

This classification procedure may also be extended to process PolSAR time series, employ-
ing the BPT structures defined in Chapter 5. Fig. 7.8 shows the classification results obtained
over the complete Flevoland dataset for k = 16. On Fig. 7.8a the extended Z, region model,
the d, dissimilarity and the @, homogeneity measures have been employed for BPT processing
whereas the dg. measure has been employed for the unsupervised classification. On the other
hand, Fig. 7.8b presents the results when employing the extended ZY model and d,;, and H,,,
dissimilarity and homogeneity measures for BPT based processing, described in Section 6.3.4,
and d,, also for the clustering process. In both cases the 3 by 3 multilook has been employed
as initial filtering for matrix regularization. It may be observed that in this dataset, the d,. mea-
sure and the classical extended model obtain a more reliable results than over one single image,
as previously seen in Fig. 7.6, since having the polarimetric temporal evolution information in-

creases the separability among the different regions of the scene. However, it may also be seen
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that employing the extended ZY model results in an improvement, as a better separation into
different clusters is observed within the agricultural crop fields area. Moreover, the number of
outliers, appearing in black color, is larger in Fig. 7.8a than on Fig. 7.8b, specially over the urban

areas.

i, % ]E Tl G A@%fz.z@
(b) k =16, dg,, ZY model §, = 6d
16

(a) k =16, dg, extended model §, = —3dB
1

Sk

Class

Figure 7.8: Clustering into 16 classes of the complete Flevoland dataset. The classical
model and d, measure has been employed in (a) whereas the ZY model and the d,;, dis-
similarity measure has been employed in (b).

Fig. 7.9 depicts the clustering results for different k values over the Flevoland dataset. The ZY

region model has been employed, with the d,;, measure for BPT construction and pruning, as
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in the results shown in Fig. 7.8b. It may be seen that for k = 2, in Fig. 7.9a, the two obtained
classes correspond to the sea and land areas of the scene. Additionally, some roads of the scene
are alsoincluded in the class representing the sea, as they present a similar polarimetric temporal
evolution, dominated by surface scattering among all the acquisitions. When two more classes
are allowed, as shown in Fig. 7.9b, the land area of the scene is divided into three distinct classes.
Two of them correspond to different types of agricultural fields, whereas the third one groups
the forest and urban areas having a larger backscattering power. For k = 8, represented in
Fig. 7.9¢, more classes are observed over the fields and urban areas. This behavior continues
when the number of classes k parameter gets further increased, as it may be seen in Fig. 7.8b,
specially over the agricultural crops area, as different polarimetric temporal evolution trends are

detected in this part of the scene.
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(a) k = 2, dgi,, ZY model (b)) k = 4, dai,, ZY model (c) k = 8, dg,, ZY model
5, = 6dB
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Figure 7.9: Clustering into 2, 4 and 8 classes of the Flevoland PoISAR time series dataset
presented in Fig. 5.3. The ZY model and the d,;, dissimilarity measure has been employed
in all cases.

In order to evaluate the correspondence of the obtained classes with the ground truth in-

formation and, consequently, with the real content of the scene, Fig. 7.10 shows a detail of
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the geo-coded results shown in Fig. 7.8b, corresponding to the classification into 16 clusters.
On Figs. 7.10a to 7.10f, the contours of different crops types have been marked in black color,
according to the ground truth information. It may be observed that the different classes ob-
tained by the classification technique correspond to the different types of agricultural crops of
the scene, specially for those crop types having a larger number of fields over the image, as for
onions, potatoes, sugar beet and winter wheat, marked on Figs. 7.10cto 7. 10f, respectively. It is
worth mentioning that, in this case, no training information has been provided, as the proposed
technique is an unsupervised classification method. Then, the different polarimetric temporal
evolution of the distinct agricultural fields is automatically detected and separated into different

clusters.
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Figure 7.10: Detail of the geo-coded clustering results of the Flevoland dataset into 16
classes and the region contours of some agricultural fields from the the ground truth data.
The ZY model and the d,;, dissimilarity measure has been employed.
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I think what a life in science really teaches you is the vastness

of our ignorance.

David Eagleman

Conclusions and Future Research Lines

8.1 CONCLUDING REMARKS

The processing of multidimensional and multitemporal SAR data has been addressed in this
thesis. Instead of performing this task directly over the original pixels, a data abstraction has
been proposed, the Binary Partition Tree (BPT). It is a hierarchical representation of the data,
which may be considered as a region-based and multi-scale description of the data. This work
has dealt with the adaptation and the exploitation of this novel representation for PolSAR data
and also for polarimetric time series datasets. After this detailed study, the BPT has proven to

be a useful representation for the processing and analysis of multidimensional SAR data.

A generic BPT based processing scheme has been proposed, which is composed of two dif-
ferent steps: the BPT construction and its exploitation. Moreover, these two steps isolate the
application dependent and independent parts of the technique. Then, the application indepen-
dent part only has to be performed once per dataset, as it only exploits the internal relationships
within the data. Additionally, the exploitation of this abstraction is defined in terms of a BPT
pruning mechanism, dissociating the application rationale from the data arrangement. This fact
has allowed, for instance, the employment of the same algorithms for speckle filtering and seg-

mentation over PolSAR images and over time series datasets. It is worth mentioning that all
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these methods have been defined in terms of two straightforward mathematical concepts: a re-
gion model and a similarity measure within the space defined by this model. Then the BPT
based processing scheme may be considered as a framework for the systematic exploitation of

these two concepts.

The BPT based processing scheme has been adapted to process PolSAR data. To do so, the
sample covariance matrix Z has been proposed as a region model, as it corresponds to the sta-
tistical descriptor employed in most of the PolSAR techniques and parameter inversion mod-
els. Some similarity measures have been proposed over this covariance matrix space, being the
most successful the Wishart measure, based on the statistical distribution of the data under the
Gaussian hypothesis, and the geodesic measure, which is based on the geometry of the posi-
tive definite matrix cone. However, it is worth mentioning that the variation observed among
the different similarity measures is relatively subtle, showing the robustness of the BPT in this
sense. Conceptually, the similarity measure encapsulates all the knowledge about the region
model space and, in practice, it allows the systematic employment of all the polarimetric infor-
mation contained within the covariance matrices, which was one of the limitations of some of

the speckle filtering techniques in the literature.

Different applications have been developed based on the BPT abstraction during the course
of this thesis. Nonetheless, special attention has been paid to the polarimetric information es-
timation or speckle filtering of the data. This application may be considered as the main pillar
of this thesis. After an extensive analysis of the literature on this topic, a common trend has
been observed on some state-of-the-art techniques towards the adaptation of their local win-
dow to the structure of the scene. The ultimate goals of this tendency are both to increase the
amount of available samples for estimation and to avoid the mixture of heterogeneous sample
distributions. The BPT structure continues with the same essential approach in a region-based
fashion, assuming that although a SAR image is composed by heterogeneous data, it may be
decomposed into a set of homogeneous regions, which are the basic entities of this technique.
In this regard, the proposed region homogeneity based pruning strategy has proven to be ca-
pable of adapting to the structure of the scene independently of its content complexity. This
independence has allowed the employment of the same pruning threshold values for different
images and datasets, resulting into similar degree of filtering. Thanks to the multi-scale nature of
the BPT representation, this technique has shown its ability to obtain, simultaneously, large re-
gions over homogeneous areas while also preserving the small details and the spatial resolution
of the scene. Distinct pruning processes over the same tree have shown that the image mor-
phology may be extracted at different detail levels and they have also demonstrated the large

amount of useful information contained within the BPT representation of the data.
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Detailed analyses have been conducted, including real and simulated data, to evaluate the
performance of the proposed BPT based speckle filtering approaches. It has been proven that it
does not introduce any bias or distortion over the data, as the estimation process is based on the
Maximum Likelihood Estimator (MLE) within each homogeneous region. Additionally, since
it has the ability to achieve arbitrarily large regions over homogeneous areas, a massive amount
of filtering may be attained over these areas, unparalleled in other pixel-based approaches. As a
consequence, the BPT based approach has outperformed other speckle filtering techniques in

the conducted analysis in terms of noise reduction and spatial adaptation capabilities.

Additionally, the flexibility of the BPT structure has allowed the development of another ad-
ditional application: coastline segmentation. In this case, the whole PolSAR image has been
divided into the two most different regions, corresponding automatically to the land and sea
areas. Thanks to the capability of the BPT to preserve the small features of the scene and the
spatial resolution of the data, all the details and thin structures of the coastline are also preserved
in the obtained results. Unlike in the speckle filtering application, which is focused on the ho-
mogeneous regions of the BPT, this application is focused on the larger nodes of the tree and,
thus, it shows that the BPT exploitation may be performed at completely different detail scales

and, consequently, it may be useful for a wide range of applications.

This thesis has also studied the processing of PolSAR time series datasets. The analysis and
exploitation of the temporal information in PolSAR data is a big challenge that is now starting
to be studied and developed. In this thesis, two different alternatives have been proposed to
deal with the temporal dimension of the data. On the one hand, it may be assumed that a tar-
get is characterized by its particular PoISAR response. Under this assumption, samples from
different acquisitions may be combined as long as there is no substantial changes in their re-
sponse, since they correspond to the same target. Consequently, this approach results into a
three-dimensional filtering in the space and time dimensions. The data abstraction that is ob-
tained under this assumption is called the Space-Time BPT (ST BPT). On the other hand, it
may be assumed that targets are evolving among the temporal dimension and, thus, they may
be characterized by their particular polarimetric temporal evolution. Then, this evolution is a
feature of the target which should be included within the model for its proper characterization
and exploitation. In this context, the objective is to combine samples of the scene following the
same polarimetric temporal evolution. Employing this concept, the Temporal Evolution BPT

(TE BPT) representation is defined.

The main advantage of the ST BPT is that it may combine samples from different acquisi-
tions in order to enlarge the available data and improve the polarimetric response estimation.

Additionally, as it is a three-dimensional data representation, it has the flexibility to properly
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represent details of the scene not having fixed contours among the temporal dimension. How-
ever, as a counterpart, this flexibility hinders the interpretation of the obtained results as, due
to the changing contours, the obtained regions may not be directly related with a particular
area of the scene. Moreover, the combination of samples among acquisitions prevents the ex-
ploitation of the interferometric information of the data. Conversely, the TE BPT improves
the characterization of the target by taking into account its complete temporal evolution. The
main inconvenience in respect to the ST BPT is that it is only capable to properly represent
spatially fixed contours. However, most of the contours over the land areas of the scene may be
considered as spatially fixed, limiting the impact of this inconvenience. Furthermore, its results
may be easily interpreted as its regions uniquely correspond to a spatial area of the scene and,
additionally, the interferometric information is naturally included within the region model, al-
lowing the exploitation of the PolInSAR information. In this regard, it is worth mentioning that
exploiting the temporal evolution for target characterization improves significantly the ability

to distinguish among the different areas of the scene and the accuracy of the obtained contours.

According to the aforementioned findings, it has been deduced that the space-time represen-
tation may be more suitable for areas not having spatially fixed contours or where no significant
information may be extracted from the interferometric information. This is particularly the case,
for instance, of the sea or water areas. However, over the land areas, most of the contours may
be considered as fixed and, in this situation, employing the polarimetric temporal evolution
for target characterization may result into more precise results. Furthermore, these results are
simpler to interpret as they uniquely correspond to an area of the scene. It is worth noticing
that some of these conclusions related with the temporal information characterization can be
extrapolated to other processing techniques and, consequently, they are contributions of this

thesis that go beyond the BPT based processing of the data.

The two BPT time series data representations have been analyzed in the context of the speckle
filtering application with real time series datasets. A region homogeneity based pruning has
been defined over these structures, in the same fashion as in the single PolSAR image BPT ex-
ploitation. The adaptation of this exploitation procedure has been straightforward due to the
decoupling of the application rationale from the data achieved thanks to the BPT as an inter-
mediate layer in the processing scheme. The TE BPT and the ST BPT have proven to achieve a
large amount of noise reduction while also preserving the polarimetric information and its evo-
lution. Additionally, the TE BPT extended model has demonstrated a better region and con-
tour differentiation thanks to the improved characterization due to the complete polarimetric

temporal evolution.

The analysis of the variability of the scene has been studied, resulting into the change de-
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tection application. On the ST BPT the changes are directly detected, appearing as temporal
contours. Consequently, a map indicating the number of temporal contours per pixels has been
proposed to analyze the variations over the scene. However, this approach does not take into
account the significance of the detected changes. Conversely, the TE BPT contains the target
evolution information within the region model. Then, the temporal stability measure has been
proposed over the extended model to assess the relevance of the temporal changes of each re-
gion among all the acquisitions. This approach has proven to be able to precisely detect human
made changes as, for instance, the building construction and transportation activities. For this
application, the ability of aggregating samples having the same polarimetric temporal evolution
into the regions of the TE BPT is essential, as it avoids the mixture of pixels having different
dynamics. Moreover, the region-based BPT change detection approach has also proven to out-
perform a pixel-based state-of-the-art polarimetric change detection technique in terms of sep-

arability between change and no-change areas.

This thesis has also attempted to overcome some of the detected limitations of the developed
techniques. One of these limitations of the BPT based and most PolSAR techniques is that, in
order to exploit the full polarimetric information, they require an initial filtering for matrix reg-
ularization. A 3 by 3 multilook is employed as a pre-processing step in the BPT, resulting into
a small spatial resolution loss. In this thesis, the Distance-Based Filtering (DBF) technique has
been proposed to circumvent this drawback. It has been analyzed as a standalone speckle filter-
ing technique, resulting into a good polarimetric estimation and an improved spatial resolution
preservation with respect to the multilook, the adaptive Lee and IDAN filters. It is worth men-
tioning that this technique is based on the same similarity measures and models than the BPT
but, in this case, in a pixel-based fashion. This contributes to give an idea of the great potential
of these simple concepts in practice. In conjunction with the BPT, it has improved the spatial
resolution of the obtained results both in speckle filtering and change detection applications.
Additionally, the mathematical concepts for the sample covariance matrix generalized eigen-
values have been proposed to perform a fully polarimetric analysis of the changes between two

different acquisitions.

Another downside analyzed has been the inability of the polarimetric Gaussian model to
properly representinhomogeneous regions. The mean sample covariance matrixis based on the
centroid representation, which may not be sufficient when heterogeneous samples are mixed.
More complex statistical distributions may be applied as region models but, usually, they in-
volve a larger number of elements in order to properly initialize and estimate the model. Con-
versely, a non-parametric representation has been proposed, the ZY region model, allowing the

estimation of the average Wishart similarity measure among all the sample pairs. The linear
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properties of the trace are exploited in order to achieve an efficient computation of these mea-
sures. When employed for the BPT based processing, since this measure is not based on the
centroid representation, it has demonstrated an improved capability to identify and represent
areas of the scene having large spatial variability or texture. Moreover, an improvement has
been also observed for the change detection application, when this model and the associated

full-linkage measures are employed for the temporal stability measurements.

Finally, the supervised and unsupervised BPT based classification have also been developed
applying the same notions previously exploited: a region-based approach employing a polari-
metric model and a similarity measure in this space. For the supervised classification appli-
cation, the previously employed dissimilarity measures have been capable of detecting similar
agricultural fields to a given one. Moreover, the region-based BPT approach has been com-
pared with the multilook pixel-based approach in this framework, showing a clear improvement
when employing the BPT-based technique. For the unsupervised classification, the k-means
method has been proposed to exploit the similarity measures for grouping similar regions into
clusters. Special attention has been paid to the initialization process, employing the k-means++
randomized method, and to the outlier detection and removal, which have been defined in a
region-based fashion in order to achieve reliable results. The proposed technique has proven
to be able to obtain a good separation of the scene content into an arbitrary number of classes.
Additionally, thanks to the BPT generalization for PoISAR time series, the classification of the
scene taking into account the temporal evolution of the different targets has been achieved. The
temporal information has demonstrated to produce a considerable improvement in the classi-
fication of agricultural fields, as different types of crops may be properly identified according to
their polarimetric temporal dynamics. Another important conclusion extracted from this anal-
ysis is that, in the unsupervised classification, the obtained clusters are composed of a mixture
of different targets, as all the scene content is grouped into a small set of classes. Then, the em-
ployment of a region model being able to properly deal with heterogeneous distributions, as the

ZY model, is even crucial for this application.

8.2 FUTURE RESEARCH LINES

As mentioned previously, the central topic of this thesis is the employment of the BPT data
abstraction for the speckle filtering of multidimensional SAR data. However, as this structure
has proven its usefulness for many other fields, some additional applications have been pro-
posed and analyzed. In fact, the employment of the BPT representation for different multidi-

mensional SAR applications seems very promising. Then, one future line of research would be
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the exploitation of this framework for additional applications as, for instance, vessel detection,
mapping land-use and cover, agriculture monitoring, forestry, city planning and control, or, in
general, object identification and segmentation.

Additionally, when the different proposed BPT pruning mechanisms have been analyzed
with simulated data, it has been shown that an optimum value exist for the pruning parameter.
Although this information may not be clearly obtained from real data, since no ground truth
information is available, it might seem reasonable to investigate an automatic prune criteria to
avoid the need for the pruning parameter. This method could be based, for instance, on the
evolution of the homogeneity measure from the tree leaf to the root node in order to identify
automatically the better pruning location for each branch of the BPT.

One of the advantages of the TE BPT representation is that the interferometric information
is naturally contained within the extended region model, as mentioned before. However, this
information has not been employed for the BPT construction or processing. Then, in the fu-
ture this information may be taken into account to generate region-based PolInSAR processing
techniques, which might also benefit from the improved estimation capabilities of the BPT over
homogeneous areas and the ability to preserve small details as point scatters. This future line fits
perfectly with some forthcoming SAR missions that are focused on this direction, as the ESA
BIOMASS mission or the TanDEM-X and TamDEM-L missions. Moreover, this information
might also be specially useful for classification, as it may help to differentiate and characterize
different types of targets, particularly human-made structures.

During the course of this thesis, the limitations of the classical sample covariance matrix have
been stated and the ZY region model has been introduced to overcome some of these limita-
tions. However, this model could also be employed to characterize the texture within the region,
in conjunction with the generalized eigenvalues and eigenvectors study proposed. Moreover,
an automatic fully polarimetric change analysis and characterization among all the acquisitions

could be performed, by extending the generalized eigenvalue decomposition to N acquisitions.
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If people do not believe that mathematics is simple, it is only

because they do not realize how complicated life is.

John Von Neumann

Eigendecomposition Perturbation Analysis

As mentioned previously, the statistical characterization of PolSAR data is based on the sample
covariance matrix statistical descriptor. This appendix describes briefly the study of the stability
of the different eigendecomposition parameters of this matrix based on the perturbation analy-
sis. Additionally, some conclusions are presented relating the obtained results with the Entropy

(H), Anisotropy (A) and averaged alpha angle (a) decomposition, described in Section 2.2.6.

After the matrix estimation or filtering process, the matrix T is obtained, which, in fact, will
be different to the real covariance matrix T due the estimation errors produced due to the em-
ployment of a finite number of samples. Since the sum of two Hermitian matrices is a Hermitian

matrix, it is possible to model this erroras E [71][89]

T=T+E. (A1)

The objective, then, is to determine the eigendecomposition of T and its relation with T in
terms of the perturbation E. The perturbation matrix E may be interpreted as the speckle contri-
butions that corrupt the estimation of T. Consequently, the influence of this term will decrease

by increasing the number of averaged independent samples or improving the speckle filtering
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technique. In order to quantify the effect of the error matrix, (A.1) may be expressed as
T=T+¢B (A.2)

where ¢ = ||E|| quantifies the perturbation magnitude and B = E/«.

According to [129] the sample eigenvalues /7:,-(5) may be expressed as a function of the true

eigenvalues A;, for an ¢ sufficiently small, as a convergent power series in ¢

i1‘(5) =4+ kpe +kpe® + ... (A3)

The quantities X (¢) correspond to the eigenvalues of T or, equivalently, T+ ¢B. As observed,
whene — o, /l\i(s) — A;and |/l\,(£) — | = O(e), where O(¢) is the big O or Landau notation
describing the limiting behavior of a function. In a similar way [ 129], the sample eigenvectors
u; (&) may be expressed as a convergent power series in ¢, for ¢ sufficiently small, where the con-

stant term corresponds to true eigenvector u;

u(e) =w +zpe + 2,8+ . ... (A.4)

Since the set of eigenvectors u;, fori = 1, . .., m forms a basis of C™, z;; may be expressed as
m

Z; = Z Sikj Uk (A.s)
k=1

where sy; is a scalar. Introducing (A.s) into (A.4)
ue) = (1+ ey + s+ .. W

+ Z (esita + €Siko + .. .) . (A.6)
k=1,k#i

In order to eliminate the multiplicative factor, one may divide the previous expression by the

factor (1 + es;;, + €si;, + - . .) as this term in not zero for sufficiently small . Then

G(e) =w+ > (et + et +.. ) (A7)
k=1,k#i

that holds for unitary vectors u;. Nevertheless, it only holds for a normalized u;(¢) when ¢ = o.

When ¢ # o, u;(¢) needs to be normalized to norm one.
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The eigenvector u, or right-eigenvector, of a square matrix T is a vector u # o such that
Tu = Au (A.8)

where A is the eigenvalue associated with the eigenvector u. Similarly, the left-eigenvector fis a
vector f # o such that f'T = Af”. In case of Hermitian matrices, left and right-eigenvectors
are equal. When considering (A.8) for the perturbed case

(T + B) w;(e) = A;(e)u;(e). (A.9)

According to [91], the first order perturbation of the eigenvalues is [ 129]

~

Ai(e) = 4 + B, + O(€). (A.10)

where
ﬂij = f‘iHBuj (A.11)
s = flu,. (A.12)

Finally, the first order perturbation of the eigenvectorsis [129]

il\i(E) =w + £k221k:7éi %uk + O(£2>. (A.13)

The same analysis may be performed to obtain the second-order perturbation approximation

[91]. For the eigenvalues this approximation may be expressed as [129]

£y 2 - ‘ﬁik‘l
Aie) =X+ B, +¢ k;ﬁ R o(e). (A.14)

Similarly, the second order perturbation of the eigenvectors is

uie) =w; +e¢ Z ﬁ—kiluk
k

k=1k#i
m BBy B..Bu:
v (Shty) —
+e ) Ai—ik “up | +0(8). (A.15)

k=1,k#i
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In order to relate the perturbation with the speckle, the statistical model of the speckle noise
has to be included within the expression (A.2) [91]. Then, the perturbation magnitude &> is
equivalent to the inverse of the number of looks n™* and the expectation of the perturbed eigen-

values may be defined as

m

L=EL(e} =+ 3

k=1,k#i

Aidi
Ai — M

+0(n). (A.16)

Similarly, the expectation of the perturbed eigenvectors may be defined as

~ ~ - Aid _
BB} =u o Y a0 (n?). (A.17)
A — A)?

" k=1,k#i (

With this information, the expected values for the H/A/a polarimetric decomposition pa-

rameters may also be extracted

P k=1,kti
__ Lo (nfz) . (A.18)

2nln(3)

ke = zm: Afk + zm: Lol (A.19)

k=1,k#2 AZ lk k=1,k#3 l3 - Ak
" "Lk
_ _ A.
ka Z A — A Z A, — Ak (A.20)
k=1,k#2 k=1,k#3
1 A, —2 1A, —2
A~ - 2 3 3 - 2 3 Az ?LZ
T N TP R W

TSR e LA G R (A

= > p, w1\ <« Aidy
a~a— Z ; (|u,~(1)| + —2 ) kz —<Ai — lk)z

=1,k#i

: (29% {':‘((11)) } - 1) +0(n™). (A22)
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As mentioned in [82], the entropy bias has a linear dependence with its value. Then, a linear
regression may be performed for the estimation and further removal of this bias [91], as it may

be observed on Fig. A.1.

Mean Val. H

0 0.2 0.4 0.6 0.8 1
H

Figure A.1: H is represented by red dots and regression curves by black lines [91].

The effect of this bias correction in practice may be observed in Fig. A.2, over a portion of the
Oberpfaftenhofen dataset, presented in Section 4.3.3.

Another important conclusion that may be extracted from the perturbation analysis of the
matrix eigendecomposition is that, if the eigenvalues are sufficiently separated, the eigenvec-
tors are more stable with respect to the speckle than eigenvalues, as the denominator of (A.17)

depends on the square of the eigenvalue separation (A; — A;)*, whereas (A.16) depends only in

this separation (1; — A;).
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Figure A.2: Original and corrected entropies employing the multilook filter. (a) Entropy
estimated with a 3 x 3 multilook, (b) Corrected entropy estimated with a 3 x 3 multilook,
(c) Entropy estimated with a 7 x 7 multilook, (b) Corrected entropy estimated with a 7 x 7
multilook [91].
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Additional Results

This appendix presents some additional results from other datasets that have been obtained
during the course of this thesis. In many cases, these results have not been analyzed as in detail
as those presented in Chapters 4 and 5. However, they have been included in this thesis in order
to show the ability of the proposed technique to process different types of data from different
SAR sensors.

B.1  ALOS FurLry PoLARIMETRIC SAR DATA

Fig. B.1a shows the Pauli representation of the original fully polarimetric SAR data acquired by
the ALOS sensor, at L-band, from Catalunya, Spain. This acquisition was acquired the 13th
of April, 2007. Figs. B.1b and B.1c show the obtained results with the BPT region homo-
geneity based pruning, employing the ® measure, with pruning threshold parameter values of
8, = —3dBand §, = —1dB, respectively, as described in Section 4.3.2. The 3 by 3 multi-
look initial filtering and the geodesic dissimilarity measure d,; have been employed for the BPT
construction process.

As it may be seen, the amount of speckle reduction achieved in this case is also noticeable,

resulting into a more contrasted image. The effect of changing the pruning threshold parameter
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(a) Original (b) BPT §, = —3dB (c) BPT §, = —1dB

Figure B.1: Pauli representation of the results obtained from the ALOS dataset from
Catalunya, Spain. The original image is presented in (a), whereas (b) and (c) present the

results obtained employing the BPT region homogeneity based pruning with §, = —3dB
and §, = —1dB pruning thresholds, respectively. The images have been reduced in the
azimuth direction, represented in the vertical direction, by a factor of 25% (|Sun + S/,
Sty + Sunls |Shn — Sunl)-
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may be seen specially at the bottom part of the image, where some of the details are filtered for

high values, as for §, = —1dB in Fig. B.1c.

B.2  FSAR AIRBORNE FuLLY POLARIMETRIC SAR DATA

A portion of a PoISAR image acquired by the FSAR airborne sensor, from the DLR, is repre-
sented in Fig. B.2a. It was acquired at X-band with a 25 cm by 2§ cm spatial resolution near Kauf-
beuren, in Germany. This image have much better resolution than the other images employed
previously and, then, it a good example of the results obtained with the BPT based processing
scheme over very high resolution images. In this case, the ZY region model and the d,; dis-
similarity and H,,, homogeneity measures have been employed for the BPT construction and
pruning, as described in Section 6.3.3. Additionally, the DBF filtering has been employed for
matrix regularization, employing a 9 by 9 local window, o = 2 and ¢, = 0.65 parameters and 3
iterations of the weight refinement scheme, as described in Section 6.1.1. The results obtained

for a pruning threshold of §, = —2dB are shown in Fig. B.2b.

(a) Original | (b) BPT §, = —2dB

Figure B.2: Pauli of the results obtained from the FSAR dataset at X-band from Kauf-
beuren, Germany. Original Pauli image (a) and results obtained with the BPT region ho-
mogeneity based pruning (b) at §, = —2dB (|Sun + Swul, [Sn + Sunl, [Swn — Su])-

Additionally, in order to see more clearly the results, a detailed area of these results is shown

in Fig. B.3a. The BPT based obtained results for §, = —2dB and §, = odB are represented in
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(b) BPT §, = —24B (c) BPT 8, = odB

Figure B.3: Pauli representation of a detailed area of the results obtained from the FSAR
dataset at X-band from Kaufbeuren, Germany. The original image is presented in (a),
whereas (b) and (c) present the results obtained employing the BPT region homogeneity
based pruning with §, = —2dB and 8§, = odB pruning thresholds, respectively (|Su, + Sul,
St + Sunly |Shn — Swl)-

Figs B.3b and B.3c, respectively. The effect of speckle reduction may be clearly seen from these
results and also the larger amount of filtering when increasing the pruning threshold §, up to
odB. The ability of the proposed technique to obtain large regions over homogeneous areas
while also maintaining the spatial resolution and the small details of the image may be clearly

seen on Fig. B.3c.
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B.3 TERRASAR-X DUAL POLARIMETRIC TIME SERIES DATA

The TE BPT representation and the temporal stability t; measure, defined in Chapter s, have
also been employed to process a dual polarimetric TerraSAR-X time series dataset. This dataset
consists of 49 acquisitions having HH and VV polarization states from the city of Murcia, Spain.
The acquisition campaign started the 19th, February 2009 and ended the 24th, January 2011.
A crop having 3000 by 3000 pixels has been selected for each image and they have been co-
registered. The extended model and geodesic dissimilarity measure dy have been employed for
BPT construction. The DBF method has been employed for matrix regularization, with a § by
s local window, 0, = 2 and 0, = 0.5 parameters and 3 weight refinement iterations. Fig. B.4
shows the geo-coded temporal stability measure t;, as described in Section s.4.2, as an overlay
with an optical image of the area [1].

Fig. B.sc shows a detailed area of the results shown in Fig. B.4. In order to identify the changes
detected, two optical images of the zone from 2008 and 2011 are represented in Figs. B.5a and
B.sb, respectively. As it may be seen, in this area a street has been constructed in the top part of
the image and two buildings have been erected over the right part. These buildings are clearly
detected, appearing as red areas. Over the street, however, there is no detected polarimetric
change as in both optical images, shown in Figs. B.sa and B.sb, the observed type of scattering
may be, from 2008 to 2011, surface scattering, resulting into no change from the radar response
point of view among all the acquisitions of the dataset. However, due to the good spatial resolu-
tion of the sensor, some small dots are observed over the street, corresponding to the streetlights
that have been built. These small details may be detected thanks to the good spatial resolution
preservation of the DBF and the TE BPT.
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Figure B.4: Geo-coded t;, measure for the Murcia dual-pol TerraSAR-X time series
dataset, in Spain [1]. The TE BPT with extended region model has been employed with
a §, = —2dB pruning threshold.
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(c) Geo-coded t, measure

Figure B.5: Optical images from 2008 (a) and 20011 (b) and geo-coded ¢, measure (c)

for the Murcia dual-pol TerraSAR-X time series dataset, in Spain [1]. The TE BPT with
extended region model has been employed with a §, = —2dB pruning threshold.
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