188 research outputs found

    PMU Placement in Electric Transmission Networks for Reliable State Estimation against False Data Injection Attacks

    Get PDF
    Currently the false data injection (FDI) attack bring direct challenges in synchronized phase measurement unit (PMU) based network state estimation in wide-area measurement system (WAMS), resulting in degraded system reliability and power supply security. This paper assesses the performance of state estimation in electric cyber-physical system (ECPS) paradigm considering the presence of FDI attacks. The adverse impact on network state estimation is evaluated through simulations for a range of FDI attack scenarios using IEEE 14-bus network model. In addition, an algorithmic solution is proposed to address the issue of additional PMU installation and placement with cyber security consideration and evaluated for a set of standard electric transmission networks (IEEE 14-bus, 30-bus and 57-bus network). The numerical result confirms that the FDI attack can significantly degrade the state estimation and the cyber security can be improved by an appropriate placement of a limited number of additional PMUs

    Impact Assessment, Detection, And Mitigation Of False Data Attacks In Electrical Power Systems

    Get PDF
    The global energy market has seen a massive increase in investment and capital flow in the last few decades. This has completely transformed the way power grids operate - legacy systems are now being replaced by advanced smart grid infrastructures that attest to better connectivity and increased reliability. One popular example is the extensive deployment of phasor measurement units, which is referred to PMUs, that constantly provide time-synchronized phasor measurements at a high resolution compared to conventional meters. This enables system operators to monitor in real-time the vast electrical network spanning thousands of miles. However, a targeted cyber attack on PMUs can prompt operators to take wrong actions that can eventually jeopardize the power system reliability. Such threats originating from the cyber-space continue to increase as power grids become more dependent on PMU communication networks. Additionally, these threats are becoming increasingly efficient in remaining undetected for longer periods while gaining deep access into the power networks. An attack on the energy sector immediately impacts national defense, emergency services, and all aspects of human life. Cyber attacks against the electric grid may soon become a tactic of high-intensity warfare between nations in near future and lead to social disorder. Within this context, this dissertation investigates the cyber security of PMUs that affects critical decision-making for a reliable operation of the power grid. In particular, this dissertation focuses on false data attacks, a key vulnerability in the PMU architecture, that inject, alter, block, or delete data in devices or in communication network channels. This dissertation addresses three important cyber security aspects - (1) impact assessment, (2) detection, and (3) mitigation of false data attacks. A comprehensive background of false data attack models targeting various steady-state control blocks is first presented. By investigating inter-dependencies between the cyber and the physical layers, this dissertation then identifies possible points of ingress and categorizes risk at different levels of threats. In particular, the likelihood of cyber attacks against the steady-state power system control block causing the worst-case impacts such as cascading failures is investigated. The case study results indicate that false data attacks do not often lead to widespread blackouts, but do result in subsequent line overloads and load shedding. The impacts are magnified when attacks are coordinated with physical failures of generators, transformers, or heavily loaded lines. Further, this dissertation develops a data-driven false data attack detection method that is independent of existing in-built security mechanisms in the state estimator. It is observed that a convolutional neural network classifier can quickly detect and isolate false measurements compared to other deep learning and traditional classifiers. Finally, this dissertation develops a recovery plan that minimizes the consequence of threats when sophisticated attacks remain undetected and have already caused multiple failures. Two new controlled islanding methods are developed that minimize the impact of attacks under the lack of, or partial information on the threats. The results indicate that the system operators can successfully contain the negative impacts of cyber attacks while creating stable and observable islands. Overall, this dissertation presents a comprehensive plan for fast and effective detection and mitigation of false data attacks, improving cyber security preparedness, and enabling continuity of operations

    Minimum Sparsity of Unobservable Power Network Attacks

    Full text link
    Physical security of power networks under power injection attacks that alter generation and loads is studied. The system operator employs Phasor Measurement Units (PMUs) for detecting such attacks, while attackers devise attacks that are unobservable by such PMU networks. It is shown that, given the PMU locations, the solution to finding the sparsest unobservable attacks has a simple form with probability one, namely, κ(GM)+1\kappa(G^M) + 1, where κ(GM)\kappa(G^M) is defined as the vulnerable vertex connectivity of an augmented graph. The constructive proof allows one to find the entire set of the sparsest unobservable attacks in polynomial time. Furthermore, a notion of the potential impact of unobservable attacks is introduced. With optimized PMU deployment, the sparsest unobservable attacks and their potential impact as functions of the number of PMUs are evaluated numerically for the IEEE 30, 57, 118 and 300-bus systems and the Polish 2383, 2737 and 3012-bus systems. It is observed that, as more PMUs are added, the maximum potential impact among all the sparsest unobservable attacks drops quickly until it reaches the minimum sparsity.Comment: submitted to IEEE Transactions on Automatic Contro

    Electric Power Grid Resilience to Cyber Adversaries: State of the Art

    Get PDF
    © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. The smart electricity grids have been evolving to a more complex cyber-physical ecosystem of infrastructures with integrated communication networks, new carbon-free sources of powergeneratio n, advanced monitoring and control systems, and a myriad of emerging modern physical hardware technologies. With the unprecedented complexity and heterogeneity in dynamic smart grid networks comes additional vulnerability to emerging threats such as cyber attacks. Rapid development and deployment of advanced network monitoring and communication systems on one hand, and the growing interdependence of the electric power grids to a multitude of lifeline critical infrastructures on the other, calls for holistic defense strategies to safeguard the power grids against cyber adversaries. In order to improve the resilience of the power grid against adversarial attacks and cyber intrusions, advancements should be sought on detection techniques, protection plans, and mitigation practices in all electricity generation, transmission, and distribution sectors. This survey discusses such major directions and recent advancements from a lens of different detection techniques, equipment protection plans, and mitigation strategies to enhance the energy delivery infrastructure resilience and operational endurance against cyber attacks. This undertaking is essential since even modest improvements in resilience of the power grid against cyber threats could lead to sizeable monetary savings and an enriched overall social welfare

    Impact Assessment, Detection, and Mitigation of False Data Attacks in Electrical Power Systems

    Get PDF
    The global energy market has seen a massive increase in investment and capital flow in the last few decades. This has completely transformed the way power grids operate - legacy systems are now being replaced by advanced smart grid infrastructures that attest to better connectivity and increased reliability. One popular example is the extensive deployment of phasor measurement units, which is referred to PMUs, that constantly provide time-synchronized phasor measurements at a high resolution compared to conventional meters. This enables system operators to monitor in real-time the vast electrical network spanning thousands of miles. However, a targeted cyber attack on PMUs can prompt operators to take wrong actions that can eventually jeopardize the power system reliability. Such threats originating from the cyber-space continue to increase as power grids become more dependent on PMU communication networks. Additionally, these threats are becoming increasingly efficient in remaining undetected for longer periods while gaining deep access into the power networks. An attack on the energy sector immediately impacts national defense, emergency services, and all aspects of human life. Cyber attacks against the electric grid may soon become a tactic of high-intensity warfare between nations in near future and lead to social disorder. Within this context, this dissertation investigates the cyber security of PMUs that affects critical decision-making for a reliable operation of the power grid. In particular, this dissertation focuses on false data attacks, a key vulnerability in the PMU architecture, that inject, alter, block, or delete data in devices or in communication network channels. This dissertation addresses three important cyber security aspects - (1) impact assessment, (2) detection, and (3) mitigation of false data attacks. A comprehensive background of false data attack models targeting various steady-state control blocks is first presented. By investigating inter-dependencies between the cyber and the physical layers, this dissertation then identifies possible points of ingress and categorizes risk at different levels of threats. In particular, the likelihood of cyber attacks against the steady-state power system control block causing the worst-case impacts such as cascading failures is investigated. The case study results indicate that false data attacks do not often lead to widespread blackouts, but do result in subsequent line overloads and load shedding. The impacts are magnified when attacks are coordinated with physical failures of generators, transformers, or heavily loaded lines. Further, this dissertation develops a data-driven false data attack detection method that is independent of existing in-built security mechanisms in the state estimator. It is observed that a convolutional neural network classifier can quickly detect and isolate false measurements compared to other deep learning and traditional classifiers. Finally, this dissertation develops a recovery plan that minimizes the consequence of threats when sophisticated attacks remain undetected and have already caused multiple failures. Two new controlled islanding methods are developed that minimize the impact of attacks under the lack of, or partial information on the threats. The results indicate that the system operators can successfully contain the negative impacts of cyber attacks while creating stable and observable islands. Overall, this dissertation presents a comprehensive plan for fast and effective detection and mitigation of false data attacks, improving cyber security preparedness, and enabling continuity of operations

    False Data Injection Detection for Phasor Measurement Units

    Get PDF
    Cyber-threats are becoming a big concern due to the potential severe consequences of such threats is false data injection (FDI) attacks where the measures data is manipulated such that the detection is unfeasible using traditional approaches. This work focuses on detecting FDIs for phasor measurement units where compromising one unit is sufficient for launching such attacks. In the proposed approach, moving averages and correlation are used along with machine learning algorithms to detect such attacks. The proposed approach is tested and validated using the IEEE 14-bus and the IEEE 30-bus test systems. The proposed performance was sufficient for detecting the location and attack instances under different scenarios and circumstances

    Enhancing Grid Reliability With Phasor Measurement Units

    Get PDF
    Over the last decades, great efforts and investments have been made to increase the integration level of renewable energy resources in power grids. The New York State has set the goal to achieve 70% renewable generations by 2030, and realize carbon neutrality by 2040 eventually. However, the increased level of uncertainty brought about by renewables makes it more challenging to maintain stable and robust power grid operation. In addition to renewable energy resources, the ever-increasing number of electric vehicles and active loads have further increased the uncertainties in power systems. All these factors challenge the way the power grids are operated, and thus ask for new solutions to maintain stable and reliable grids. To meet the emerging requirements, advanced metering infrastructures are being integrated into power grids that transform traditional grids into \u27\u27 smart grids . One example is the widely deployed phasor measurement units (PMUs), which enable generating time-synchronized measurements with high sampling frequency, and pave a new path to realize real-time monitoring and control in power grids. However,the massive data generated by PMUs raises the questions of how to efficiently utilize the obtained measurements to understand and control the present system. Additionally, to meet the communication requirements between the advanced meters, the connectivity of the cyber layer has become more sophisticated, and thus is exposed to more cyber-attacks than before. Therefore, to enhance the grid reliability with PMUs, robust and efficient grid monitoring and control methods are required. This dissertation focuses on three important aspects of improving grid reliability with PMUs: (1) power system event detection; (2) impact assessment regarding both steady-state and transient stability; and (3) impact mitigation. In this dissertation, a comprehensive introduction of PMUs in the wide-area monitoring system, and comparisons with the existing supervisory control and data acquisition (SCADA) systems are presented first. Next, a data-driven event detection method is developed for efficient event detection with PMU measurements. A text mining approach is utilized to extract event oscillation patterns and determine event types. To ensure the integrity of the received data, the developed detection method is further designed to identify the fake events, and thus is robust against cyber-threat. Once a real event is detected, it is critical to promptly understand the consequences of the event in both steady and dynamic states. Sometimes, a single system event, e.g., a transmission line fault, may cause subsequent failures that lead to a cascading failure in the grid. In the worst case, these failures can result in large-scale blackouts. To assess the risk of an event in steady state, a probabilistic cascading failure model is developed. With the real-time phasor measurements, the failure probability of each system component at a specific operating condition can be predicted. In terms of the dynamic state, a failure of a system component may cause generators to lose synchronism, which will damage the power plant and lead to a blackout. To predict the transient stability after an event, a predictive online transient stability assessment (TSA) tool is developed in this dissertation. With only one sample of the PMU voltage measurements, the status of the transient stability can be predicted within cycles. In addition to the impact detection and assessment, it is also critical to identify proper mitigations to alleviate the failures. In this dissertation, a data-driven model predictive control strategy is developed. As a parameter-based system model is vulnerable to topology errors, a data-driven model is developed to mimic the grid behavior. Rather than utilizing the system parameters to construct the grid model, the data-driven model only leverages the received phasor measurements to determine proper corrective actions. Furthermore, to be robust against cyber-attacks, a check-point protocol, where past stored trustworthy data can be used to amend the attacked data, is utilized. The overall objective of this dissertation is to efficiently utilize advanced PMUs to detect, assess, and mitigate system failure, and help improve grid reliability
    corecore