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Abstract

The global energy market has seen a massive increase in investment and capital flow in the

last few decades. This has completely transformed the way power grids operate - legacy

systems are now being replaced by advanced smart grid infrastructures that attest to better

connectivity and increased reliability. One popular example is the extensive deployment

of phasor measurement units, which is referred to PMUs, that constantly provide time-

synchronized phasor measurements at a high resolution compared to conventional meters.

This enables system operators to monitor in real-time the vast electrical network span-

ning thousands of miles. However, a targeted cyber attack on PMUs can prompt operators

to take wrong actions that can eventually jeopardize the power system reliability. Such

threats originating from the cyber-space continue to increase as power grids become more

dependent on PMU communication networks. Additionally, these threats are becoming in-

creasingly efficient in remaining undetected for longer periods while gaining deep access

into the power networks. An attack on the energy sector immediately impacts national de-

fense, emergency services, and all aspects of human life. Cyber attacks against the electric

grid may soon become a tactic of high-intensity warfare between nations in near future

and lead to social disorder. Within this context, this dissertation investigates the cyber se-

curity of PMUs that affects critical decision-making for a reliable operation of the power

grid. In particular, this dissertation focuses on false data attacks, a key vulnerability in the

PMU architecture, that inject, alter, block, or delete data in devices or in communication

network channels.

This dissertation addresses three important cyber security aspects - (1) impact assessment,

(2) detection, and (3) mitigation of false data attacks. A comprehensive background of false

data attack models targeting various steady-state control blocks is first presented. By in-

vestigating inter-dependencies between the cyber and the physical layers, this dissertation

then identifies possible points of ingress and categorizes risk at different levels of threats.



In particular, the likelihood of cyber attacks against the steady-state power system control

block causing the worst-case impacts such as cascading failures is investigated. The case

study results indicate that false data attacks do not often lead to widespread blackouts,

but do result in subsequent line overloads and load shedding. The impacts are magnified

when attacks are coordinated with physical failures of generators, transformers, or heavily

loaded lines. Further, this dissertation develops a data-driven false data attack detection

method that is independent of existing in-built security mechanisms in the state estimator.

It is observed that a convolutional neural network classifier can quickly detect and isolate

false measurements compared to other deep learning and traditional classifiers. Finally,

this dissertation develops a recovery plan that minimizes the consequence of threats when

sophisticated attacks remain undetected and have already caused multiple failures. Two

new controlled islanding methods are developed that minimize the impact of attacks un-

der the lack of, or partial information on the threats. The results indicate that the system

operators can successfully contain the negative impacts of cyber attacks while creating

stable and observable islands. Overall, this dissertation presents a comprehensive plan for

fast and effective detection and mitigation of false data attacks, improving cyber security

preparedness, and enabling continuity of operations.
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Chapter 1

Introduction

1.1 General Introduction

In a macro-economic system, all major sectors such as agriculture, extraction of natural

resources, manufacturing, construction, transport, communication, and health services de-

pend on a reliable supply of electricity. However, the existing electricity infrastructure

has increasingly become vulnerable to various cyber attacks. An advanced class of threat

is a false data injection attack that modifies power system measurements to impede time-

critical operations. False data attacks have been shown to cause incorrect solutions to

multiple power system control algorithms, leading to an increase in operation costs, incor-

rect generation dispatch, and unintentional outages. Consequently, outages disrupt other

critical dependent networks like water, gas, and internet, thereby affecting a large number

of customers and causing substantial economic loss. The general theory of false data in-

jection attacks and the implications of such attacks are currently an active field of research.

This dissertation investigates the impact of false data injection attacks and develops effec-

tive detection and mitigation strategies to counter such sophisticated threats.

1.2 Motivation

Power systems are an essential part of our lives and reliable electricity is critical for daily

tasks. However, rapid changes in system operating conditions due to the diversity of cus-

tomer behaviors and demands, uncertainty in renewable generation, stressed transmission
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network, aging infrastructure, and increased connectivity between various load-serving

entities are some of the challenges that threaten the reliability of power systems. Black-

outs have often resulted due to lack of situational awareness, an example of which is the

July 2012 blackout in India that affected 700 million people [1].

Situational awareness is improved by deploying more phasor measurement units for real-

time monitoring and accurate system condition estimation. Unfortunately, these online

monitoring devices are vulnerable to various cyber-attacks that can potentially introduce

delays and errors in time-critical operations. Without correct real-time information, the

power grid is susceptible to manual or automatic control errors.

Attacks targeted against power networks lead to disruption of major control algorithms

including static and dynamic state estimator, optimal power flow and security-constrained

economic dispatch [2–30]. Additionally, attacks have been shown to compromise the

transient and auxiliary controls [31–37], substation controls and communication archi-

tecture [38–44] and other energy control and operation blocks [45–58]. A combination

of data falsification and physical attacks against transmission lines and unmanned remote

substations may result in line overloads, load curtailment, and in the worst-case, cascading

failures.

As a result, power system operators now have to deal with additional security issues aris-

ing from the cyber domain. Various factors pose difficult challenges for system operators

to understand the very nature of cyber-attacks. These challenges range from ‘zero-day’

attacks to potential undiscovered ‘back-doors’ in communication systems and third-party

maintenance software. Additionally, insufficient information sharing between utilities and

government and the lack of cyber security training complicate the detection of these mod-

ern threats. This dissertation conducts a systematic study on the current smart grid cyber

security issues and proposes new solutions to address advanced threats like data falsifica-

tion attacks.
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1.3 Research Scopes and Objectives

Figure 1.1 illustrates the three-fold objectives of this dissertation - impact assessment,

detection, and mitigation of false data attacks, on steady state power system control blocks.

The specific objectives are defined as follows,

Figure 1.1: Summary of research topics in this dissertation

Impact Assessment of False Data Attacks

• To investigate conditions under which the impacts of false data attacks are the most

severe on realistic power grids,

• To study the impacts of false data attacks considering special protection systems

such as remedial action schemes (RAS),

• To assess attack impacts considering (a) expected energy not served, (b) loss of

observability after cascading failure and controlled islanding, and (c) extent of the

recoverability of the grid.
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Detection of False Data Attacks

• To verify the correctness of measurements by exploiting historical PMU time-series

data,

• To develop a false data detection technique independent of the power system topol-

ogy and state estimation.

Impact Mitigation of False Data Attacks

• To incorporate the uncertainty of PMU measurements in controlled islanding under

the lack of knowledge, or partial knowledge of false data attacks, while creating

stable and observable islands,

• To maximize the island observability with a minimum number of PMUs under the

lack of knowledge of attacks,

• To isolate vulnerable PMUs in a small island under the partial knowledge of attacks,

• To develop a multi-objective optimization problem for controlled islanding as an

effective post-attack mitigation solution, and investigate various optimization tech-

niques for solving the multi-objective problem.

1.4 Contribution of Dissertation

This dissertation is concerned with the detection, impact assessment and impact mitiga-

tion of false data attacks against the power system steady state control algorithms. This

dissertation is organized into three chapters,
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1.4.1 Chapter 2

This chapter first presents a comprehensive analysis on false data injection attacks against

the steady-state control of the bulk electrical system. Next, this chapter focuses on esti-

mating the actual impact of false data attacks on realistic power systems. Practical electric

grids are designed to operate under large inter-area power transfers for different loading

conditions. Depending on the current system loading, compromised measurements can

have diverse impacts on power systems - not all data attacks will have the same level of

impact on system reliability. To study the scenarios that lead to the most severe conse-

quences, attacks targeting RAS are considered. Such attacks disable or block triggering

conditions and prevent automatic RAS from taking timely corrective actions. In addition

to attacks against RAS, the false data attack on phasor data concentrators is modeled using

a semi-Markov approach that closely mimics practical cyber attack scenarios.

Using a distributed cascading failure algorithm, the direct consequence of the coordinated

attack is quantified as the expected energy not served. Further, post-attack impacts are

quantified using three indices - Loss of Observability after Cascading Failures (LOCF),

Loss of Observability after Controlled Islanding (LOCI), and Lines Recoverable after

Controlled Islanding (LRCI). Together, these indices quantify the extent of a grid’s re-

coverability after an attack adversely impacts the system.

1.4.2 Chapter 3

Existing model-based bad data detectors in traditional state estimators are incapable of

discovering carefully crafted false measurements. This chapter develops a measurement-

based false data attack detector that is independent of the power system topology and state

estimation. The false data detector is developed by leveraging historical PMU data col-

lected from phasor data concentrators (PDC) at regional substations. These regional PDCs

form one of the most vulnerable points in the entire synchrophasor communication archi-
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tecture where multiple concentrating PMU data streams may be compromised at the same

time. This detector is designed to serve as an early warning system to detect and isolate

vulnerable measurements quickly at any regional substation in the power grid network.

False data streams in the PDCs are detected by exploiting time-based inconsistencies in

PMU packet data. Normal events such as load/generation variations and bus/branch faults

exhibit strong correlations among multiple time series due to the underlying physical laws

governing the dynamic system. However, only a subset of measurements are changed

during data falsification attacks, thus altering the underlying statistics and the inherent

correlations within the time-series data.

Various deep learning algorithms are used to identify altered data streams based on the

differences in spatio-temporal features. A convolutional neural network (CNN)-based data

filter is first developed to detect false data attacks. The results of the developed filter is

compared with other deep-learning and traditional classifiers.

1.4.3 Chapter 4

If for any reason a sophisticated false data injection attack remains undetected, it is es-

sential to contain the impacts of wrong measurements to only a small part of the system.

This chapter develops an effective mitigation strategy to counter the sophisticated data

falsification attacks that remain undetected and have already impacted critical lines and

transformers. We utilize existing power system islanding techniques and investigate how

these methods can be improved to account for PMU measurement uncertainty.

Two controlled islanding techniques are developed to prevent large-scale outages when

attacks remain completely undetected, or when partial knowledge on attack is available.

Under the lack of knowledge of attacks, the multi-objective optimization problem maxi-

mizes the observability of the islands using a minimum number of PMUs. When partial
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knowledge of attack is available, the size of the island with vulnerable measurements is

minimized to contain the impacts of attacks. The islanding scheme is formulated as a

multi-objective optimization problem that minimizes the impact of attacks while simulta-

neously creating stable and observable islands.

Different scalarization techniques are explored to transform the multi-objective islanding

optimization problem into a single objective problem. The impacts of the optimal islanding

solutions are then investigated on various realistic power system networks.

1.5 Publications

Part of the work presented in this dissertation has appeared in the following publications

as of April 15th, 2021,

Peer Reviewed Journals:

1. Basumallik, Sagnik, Sara Eftekharnejad, and Brian K. Johnson. “The impact of

false data injection attacks against remedial action schemes." International Journal

of Electrical Power & Energy Systems 123 (2020): 106225.

2. Basumallik, Sagnik, Rui Ma, and Sara Eftekharnejad. “Packet-data anomaly de-

tection in PMU-based state estimator using convolutional neural network." Interna-

tional Journal of Electrical Power & Energy Systems 107 (2019): 690-702.

Conferences:

1. Basumallik, Sagnik, and Sara Eftekharnejad. “Dynamic Islanding in Power Sys-

tems Based on Real-Time Operating Conditions." In 2019 North American Power

Symposium (NAPS), pp. 1-6. IEEE, 2019.

2. Basumallik, Sagnik, Sara Eftekharnejad, Nathan Davis, Nagarjuna Nuthalapati,

and Brian K. Johnson. “Cyber security considerations on PMU-based state estima-
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tion." In Proceedings of the Fifth Cybersecurity Symposium, pp. 1-4. 2018.

3. Basumallik, Sagnik, Sara Eftekharnejad, Nathan Davis, and Brian K. Johnson.

“Impact of False data attacks on PMU-based state estimation." In 2017 North Amer-

ican Power Symposium (NAPS), pp. 1-6. IEEE, 2017.
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Chapter 2

Impact Assessment of False Data

Attacks

2.1 Introduction

The reliable operation of smart power grids depends on situational awareness made pos-

sible by real-time monitoring and accurate system condition estimation using PMUs. Un-

fortunately, the PMU communication architecture is vulnerable to false data attacks. False

data attacks comprise of injection, alteration, blocking, deletion, modification of data and

status, or a combination of any of the above, in devices or in communication network

channels, that impede the reliable operation of power systems. Fig. 2.1 shows the chrono-

logical development of research in false data injection attacks against the bulk electric

grid. Such attacks can lead to uneconomic operation, line overloads, loss of reliability,

and unintentional islanding. While attacks could result in power outages, not all attacks

will have the same level of impact on system reliability and real-time operations.

This chapter investigates to what extent such coordinated attacks against the power system

steady-state control blocks actually lead to large scale blackouts. We specifically seek to

identify attack circumstances that lead to the most severe consequences. To consider the

worst case scenarios, the impact of false data injection attacks is investigated on realistic

power networks under large inter-area power transfers. To further maximize the impact

of attacks, threats against the steady-state remedial action schemes are considered, which

prevent timely corrective actions. A risk index is developed to quantify the attack im-
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pacts under various load-generation and network topology conditions. Additionally, three

indices are proposed - loss of observability after cascading failures, loss of observability

after controlled islanding, and lines recoverable after controlled islanding, to quantify the

severity of the attack, and to estimate the extent of recoverability of the grid after attacks

have adversely impacted the power grid.

The chapter starts with a brief overview of various power system control and operations

blocks, provides a comprehensive background on cyber-security research in electric power

grids, and considers attacks against steady-state controls in details, which is the main scope

of this dissertation.

2.2 Overview of Power System Control and Operations

We first present a brief overview of the key operating control blocks for the electric power

systems susceptible to false data attacks. At the heart of the power system is the master

program called the energy management system (EMS), a high-performance critical ap-

plication overlooking all monitoring, control, and optimization functions of the electric

grid. The EMS collects redundant measurements from various PMUs and SCADA de-

vices, sampling current, voltage, and power flow from field instrument transformers. The

PMUs sample at the rate of 30/60/120/240 messages per second with a significantly high

degree of accuracy compared to traditional SCADA devices, and hence widely deployed

by utilities to improve real-time monitoring [63, 64]. The PMUs at the substation level

send their measurements to a local phasor data concentrator (PDC) where the data pack-

ets are time synchronized and aligned. Data from station level PDCs are concentrated at

regional PDCs which further report to a data concentrator at the main control center. The

PMU-PDC architecture is shown in Fig. 2.2.

Inside the EMS is the topology processor that estimates the grid network structure from
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Figure 2.2: Visualization of a PMU-PDC network architecture. The PMUs at the field
level send their measurements to a local phasor data concentrator (PDC) at a substation
where the data packets are time synchronized and aligned. Data from station level PDCs
are concentrated at regional PDCs which further report to a data concentrator at the main
control center. The PMU data flows through the wide area network, concentrates at super
PDC where it is used for state estimation and other applications. Access to the communica-
tion architecture is restricted via user authentication and firewalls. The data is periodically
archived in the historians.
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circuit breaker contact signals hardwired to Remote Terminal Units (RTUs) [65]. These

status signals are incorporated in the PMU packet data flowing through the communica-

tion network. For a reliable operation of the power system, a correct estimation of the

system topology is the first and the most important step. Once the topology is determined,

the state estimator (SE) collects redundant measurements from SCADA and PMUs, elimi-

nates gross errors, and estimates bus voltages and angles using a non-linear weighted least

squares method [66]. The SE provides a quasi-static model of the power system under real-

time operating conditions. The states are estimated by solving an over-determined set of

non-linear power flow equations [67]. A general non-linear hybrid state estimator utilizes

bus voltage and branch current phasors in addition to power flows and injections measure-

ments to estimate power system states [68]. To account for different sampling rates, the

average of each PMU time series over one state estimation cycle is used in combination

with SCADA measurements [69].

DC State Estimation

The linear DC state estimation using conventional SCADA meters only is based on the

following linear measurement function [70],

z = Hx+ e (2.1)

where z is a m × 1 vector of measurements, H is the m × n Jacobian Matrix, x is the

n × 1 vector of state variables, e is a m × 1 vector of random Gaussian errors, and m,

n are total number of measurements and states respectively. In DC state estimation, the

following assumptions hold - (1) the voltage magnitudes at all buses in the network are

assumed to be constant and equal to 1 per unit (p.u.); (2) the shunt susceptances and series

resistances of transmission lines are neglected; (3) the bus angle differences between two

buses are considered to be very small; (4) reactive power is completely neglected and (5)

state variables only consist of bus voltage angles.



15

The measurement residual arising from the difference between measured and estimated

states is defined as,

r = z −Hx (2.2)

The state variables can be estimated by minimizing the objective function J ,

J(x) = (z −Hx)TR−1(z −Hx) (2.3)

Straightforwardly for DC state estimation, the states are estimates as,

x̂ = (HTR−1H)−1HTR−1z (2.4)

AC State Estimation

The oversimplified DC state estimation model may not be suitable for real time power

system state estimation as measurements in power system are related to their states by a

non-linear function. The relation between the state variables to the states for AC state

estimation can be written as [70]

z = h(x) + e (2.5)

where z is a m × 1 vector of measurements from SCADA meters and PMUs, h is a set

of non-linear power flow functions relating measurements to state variables, x is a n × 1

vector of state variables, e is a m× 1 vector of random Gaussian errors, and m, n are total

number of measurements and states respectively.

The non-linear functions h(x) which relate the measurement to the state variables com-

prise of active and reactive power injections at bus, active and reactive power flow in

transmission lines, and branch real and imaginary currents. The real and reactive power

injection at bus m is,
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Pm = Vm
∑
n

Vn(gmncosδmn +Bmnsinδmn) (2.6)

Qm = Vm
∑
n

Vn(gmnsinδmn −Bmncosδmn) (2.7)

The real and reactive power flow from bus m to bus n is,

Pmn = Vm
2gmn − VmVn[gmncos(δm − δn) + bmnsin(δm − δn)] (2.8)

Qmn = −Vm2bmn − VmVn[gmnsin(δm − δn)− bmncos(δm − δn)] (2.9)

The real and imaginary branch current between bus m and bus n is,

Imn,real = Vm[gmncosδm − bijsinδm]− Vn[gmncosδn − bijsinδn] (2.10)

Imn,imag = Vm[bmncosδm + gijsinδm]− Vn[bmncosδn + gijsinδn] (2.11)

The weighted least squares method is used to minimize the measurement residuals to ac-

curately estimate the states with the objective function defined as [68],

J(x) = (z − h(x))TR−1(z − h(x)) (2.12)

where R is the measurement error covariance matrix. The estimates of the state are then
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found by an iterative process like Newton Raphson method,

∆x̂ = (HTR−1H)−1HTR−1(z − h(x)) (2.13)

x̂i+1 = x̂i + ∆x̂i (2.14)

where H is the measurement Jacobian matrix and is defined as H = ∂h(x)
∂x

,

H =

0 ∂Pi
∂δ

∂Qi
∂δ

∂Pij
∂δ

∂Qij
∂δ

1
∂Iij,real
∂δ

∂Iij,imag
∂δ

1 ∂Pi
∂x

∂Qi
∂x

∂Pij
∂x

∂Qij
∂x

0
∂Iij,real
∂x

∂Iij,imag
∂x


T

(2.15)

In matrix H , the first and the sixth columns are related to bus voltage magnitude and

angle - system states which are directly measured by the PMUs, and hence has an identity

relation with the estimated states.

Bad Data Detection

Bad PMU and SCADA data can naturally occur as the result of instrumentation errors,

thermal degradation of equipment, or random electrical noise. One of the most popular

technique of detecting erroneous measurements is comparing the L2 − norm of the mea-

surement residuals to a detection threshold τ . For DC state estimation, no bad data is

detected when,

||z −Hx̂||< τ (2.16)

Similarly for AC state estimation, no bad data is detected when,

||z − h(x̂)||< τ (2.17)

In general, the threshold τ is determined obtained from the cumulative chi-square distribu-

tion for m− n degrees of freedom [70]. Residuals that satisfy 2.16 and 2.17 are assumed

to be free of bad data while those that fail to satisfy this condition are excluded from
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the data set for subsequent calculations. The discarded bad data is often substituted by

pseudo-measurements obtained from historical values to ensure that SE converges.

Applications of State Estimation

The output of the SE serves as the starting point for all critical applications in the EMS

including optimal power-flow (OPF) and economic dispatch, load forecast, and voltage

security. The OPF analysis and economic dispatch calculates the line power flow to meet

customer demand while simultaneously minimizing operating costs. This is done by solv-

ing a set of non-linear power balance equations consisting of generation, load and network

equations [71]. An extension of the optimal power flow solution is the security constrained

optimum power flow (SCOPF) which has added constraints for generator power limits,

transmission line capacity and contingency constraints. The SCOPF ensures that the sys-

tem is both pre-contingency and post-contingency stable with no SOL violations [72–74].

The results of OPF assist the real-time contingency analysis (RTCA) to determine the

binding thermal and voltage constraints, ensuringN−1 orN−1−1 reliability of the power

system under all real-time operating conditions [75]. In other words, this means system

operating limits (SOL) are satisfied at every instant. In general, there are three types of

SOL that are defined as - 24 hours (normal), 4 hours long term emergency (LTE), and 15

minutes short term emergency (STE). Depending on the current estimated states and the

load demand, transfer analysis helps determine the extent to which the current operating

system can be moved before being bounded by SOL. To ensure safety and continuous

operation, actions against SOL violations range from generation dispatch, load curtailment

to other appropriate emergency control actions.

The information from SE and OPF/SCOPF is used in the electricity market to determine

the Locational Marginal Prices (LMP). The LMP reflects the price of electricity across

different geography and accounts for the customer load pattern, cost of generation, and
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transmission line congestion. The electricity market allows generating power plants to sell

power at a particular bidding price in the day-ahead (ex-ante market) and the real-time

market (ex-post market) while simultaneously satisfying the customer demand [54].

The results of the SE is also used in the Automatic voltage control (AVC) system. The AVC

is responsible for maintaining system voltages within the desired range by continuously

adjusting the reactive power injection, and is commonly used to monitor inter-area reactive

power balances [76, 77]. The operation of AVC can be briefly explained as follows - first,

the output of the SE, i.e., voltages and angles, are fed as an input to the OPF block. Once

the OPF converges to a valid solution, the results are used to issue trigger commands to

vary generator reactive power in order to maintain voltages within the prescribed margin

of 0.9− 1.1 p.u.

The SE output further drives the automatic generation control (AGC) [78–80], a funda-

mental power system control and operation block. Inside a designated control area, the

AGC maintains a nominal grid frequency and tie-line power flow by regulating the output

power of generators, and reduces the area control error (ACE). Further, the estimates of

the system states, together with the OPF, are used for calculating generation reserves to

ensure reliability in maintaining grid frequency in the event of generation loss.

In summary, the SE is the heart of the power system and a correct estimate of bus voltage

and angles is crucial for accurate functioning of all power system control and operation

blocks.

2.3 Background of Cyber Attacks against Power Systems

Deployment of energy management systems has improved situational awareness, however,

has inadvertently introduced additional cyber security risks in the electric grid. We present

an overview of cyber-security research in electric power grids, and then discuss in details
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attacks against steady-state controls, which is the main focus of this dissertation.

The authors in [81] have presented a thorough review of smart grid communication in-

frastructures and related cyber threats and challenges. The vulnerable access points in the

electric power grid SCADA and EMS were shown to include field staff remote access com-

puters, local area network (LAN) switches, modems connecting Remote Terminal Units

(RTU) and SCADA/EMS master, routers connecting to the Wide Area Network (WAN)

and station Human-Machine Interfaces (HMI) for protection relays [82]. It was demon-

strated that attacks against these access points can be carried out via distributed denial of

service (DDoS), reconnaissance, and port scanning using malware and viruses.

The requirements for privacy, availability, integrity, and authentication for SCADA com-

munication networks were summarized in [83]. Various encryption techniques, key man-

agement issues, and security/privacy policies were highlighted in [84–89]. Further, the

attacks on the physical side of the grid, in combination with cyber, were discussed in de-

tail by the authors in [90–93]. A qualitative survey of cyber attacks on various control

loops in power systems was presented in [90]. Attacks and their corresponding impacts on

real cyber-physical test-beds were conducted in [93].

Any attack on the SCADA or PMU-PDC architecture that falsifies or blocks the flow of

data can significantly impede the real-time operation. Figure. 2.3 organizes the various

false data attack models against major operation and control blocks into four areas. These

four areas include steady-state control, transient and auxiliary control, substation control

and load control [94]. In this dissertation, we limit our study to false data attacks against

steady-state controls only.

The worst-case attack scenarios against steady-state controls involve a coordination of

physical attacks, load measurement falsification, and topology alteration attacks that mis-

lead the steady-state control blocks. Fig. 2.4 illustrates the attack impacts on steady-state
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Figure 2.3: A taxonomy of false data injection attacks against various power system con-
trol and operation blocks. This dissertation focuses on false data injection attack impacts
on steady state control blocks.

control algorithms targeting the SE. Such attacks can affect various mission critical op-

erations such as the OPF, economic dispatch, AGC, AVC, real-time protection and other

control algorithms that rely on continuous streaming data. Incorrect solutions further in-

duce overloads that can lead to an increase in generation costs, unwanted line tripping, and

in the worst case, may cause extensive power failure.

2.3.1 False Data Attacks against DC State Estimator

False data injection attack against the linear state estimation was first demonstrated by the

authors in [3]. In this attack, a non-zero attack vector a is superimposed onto the original

measurement to obtain a tampered measurement set,

zb = z + a (2.18)
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The new set of estimated states can be expressed as a combination of original states and a

vector c as,

x̂b = x̂+ c (2.19)

The residual of the tampered measurement and incorrect states of the system can be ex-

pressed as,

||zb −Hx̂b||= ||(z + a)−H(x̂+ c)|| (2.20)

If the attack vector is selected as a = Hc, (2.20) becomes ||z − Hx||, and the bad

data detection system in (2.16) fails to detect the false data. There are several ways to

construct the attack vector a. One method is to construct a projection matrix of H as

P = H(HTH)−1HT . It follows that Pa = PHc = Hc = a, implying (P − I)a = 0. For

a successful attack, the adversary finds an attack vector that satisfies (P − I)a = 0.

Let (P − I) be represented by matrix B, whose column vectors are B = (b1, .., bm).

The attack vector is represented as a = (0, . . . , ai1 , 0, .., ai2 , 0, .., aik , 0, ..0)T , where the

non-zero elements of a correspond to measurements which are compromised by the ad-

versary. Then, Ba = 0 implies B∗a∗ = 0 where B∗ = (bi1 , bi2 , ..., bik) and a∗ =

(ai1 , ai2 , , ..., aik)
T . If B∗ is rank-deficient, characterizing the null space of B∗a∗ = 0

yields an infinite number of solutions such that the attack vector a∗ 6= 0. This attack vec-

tor a can now be injected to the original measurement set to construct the false data, and

used as input to the state estimator.

The false data injection attack exploits the null-space such that the attack vector is always

mapped to the zero vector for some linear transformation. As a result, the residual errors

do not change, or in other words, detection of such attacks is extremely difficult.

If a 6= Hc, the attacker can exploit the small errors associated with the measurements to

inject false data such that (2.16) holds, which can potentially lead to degradation of the
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state estimation output.

The attack model was further extended to find the sparsest attack vectors, i.e., the mini-

mum number of measurements require to be compromised (NMRC), to cause maximum

deviation in the estimated states. To tackle the combinatorial problem of meter selection

for successful attacks, a two level heuristic false data attack model was proposed in [4]

where a large network was first divided into smaller area. Next, brute force search was

used to obtain reasonable sub-solutions for each area, which was then combined to ob-

tain a global attack vector. This was compared with linear transformation of the Jacobian

matrix and heuristic approaches.

2.3.2 False Data Attacks against AC State Estimation

Similar to attacks against DC state estimator, false data attack against the non-linear AC

state estimator was investigated by the authors in [5]. Attack vectors were injected such

that (a) Kirchhoff’s Current Law (KCL) was satisfied at each node, and (b) the residual τ

of the altered SE remained below the set threshold. An illustration of false data injection

attack is shown in Figure 2.5.

The residual of the tampered measurement and incorrect states of the system can be ex-

pressed as, ∥∥∥∥zb − h(x̂b)

∥∥∥∥ =

∥∥∥∥z + a− h(x̂+ c)

∥∥∥∥ (2.21)

The necessary condition to determine the correct attack vector is a = h(x̂ + c) − h(x̂).

This ensures that the false data bypasses the bad data detector in (2.17).

A successful false data attack that remains undetected by the bad data detection systems

alters all measurements in the sub-graph which are bounded by buses having power injec-

tions.
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Figure 2.5: Illustration of false data injection attack based on [5]- Consider that the attacker
intends to alter the power injection measurement P2 at bus 2. In order to influence P2, the
attacker has to change the estimated state variables at bus 2, which can be either V2 or δ2.
This will change power flows in branches 1−2 and 1−3 according to (2.8). To compensate
for the change in line flow P12, the attacker now alters the power injection measurement
at bus 1 which is P1 to ensure KCL holds at bus 1. Now, bus 3 is a net zero injection bus.
In order to adjust the power flow P23, the attacker adjusts the power flow P34, as well as
changes the power injection P4 at bus 4 to ensure KCL holds at bus 4. Changing branch
power flow P34 and power injection P4 ensures that the total power injection at bus 3 is
zero. This leads to additional changes in the estimated values of voltage and angle at bus 3.
The false data injection may lead to incorrect state estimation, wrong generation dispatch,
uneconomic operation and system limit violations.



26

For a successful attack, it was assumed in [5] that attackers have access to the knowledge

of the power system network. The assumption of availability of complete network infor-

mation with the attackers was challenged by the authors in [6–9]. Authors in [6] proposed

to estimate the line power flows in the attack region based on the difference between the

adjacent estimated bus angles (δm − δn). It was shown that a knowledge of the angle

difference is sufficient for the attacker to estimate the branch power flows to carry out

a successful attack. In [7], a linear independent component analysis was used to infer

topology and states when partial network information was available. The false data attack

under incomplete information of circuit breaker status, transformer taps, network connec-

tivity matrix, and admittance matrix was established by Rahman et al. [8]. A stochastic

convex program was developed using scenario generation methods. Further, the concept of

general blind false data attack was introduced by Yu and Chin [9] where an approximation

of Jacobian matrix was obtained using principal component analysis. Such approximated

attack vectors were proven to be almost stealthy.

2.3.3 False Data Attacks as Load Redistribution Attacks

The authors in [16] identified false data attacks as load redistribution (LR) attacks where

the SCOPF algorithm is compromised by falsifying load measurements at specific injec-

tion buses. In LR attacks, load injections measurements are increased at certain buses and

decreased at other buses (up to 50% of their original set point), keeping the total load un-

changed, while subsequently altering related power flow measurements to satisfy KCL at

every node. A successful LR attack transferred load measurements from multiple injection

buses to the largest load bus in the system to avoid detection. Such attacks lead to a secure

operating condition with higher operation costs [13–25].

The LR attack problem in [16] was formulated as a bi-level optimization problem. Here,

the upper level problem was solved by the attacker to maximize the total generation and
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load-shedding costs. The lower level problem was solved by the system operators to min-

imize the operation cost by re-dispatching generation or by shedding loads. The operator

actions are based on falsified states obtained after an incorrect SE solution as a result of LR

attack. The bi-level optimization problem was transformed into an equivalent single level

problem using the Karush-Kuhn-Tucker (KKT) conditions to obtain the optimal attack

vector. Similar attack models were explored in [13, 17] where the altered load measure-

ments were considered not to exceed 50% of the original value and the maximum number

of compromised meters was limited to 20. The authors in [20, 21] considered LR attacks

under limited attacker budget which reflected more practical attack scenarios. The feasi-

bility of a LR attack under partial network information was further demonstrated by the

authors in [18, 19].

A similar LR attack approach was proposed by the authors in [14] where the objective

was to alter generation dispatch such that the system becomes susceptible to a single point

failure. The system failure was guaranteed by ensuring that there exists overloads after a

single line outage with the new dispatch. A bi-level optimization problem was formulated.

In the upper level, the objective of the attacker is to minimize the number of meters re-

quired to be compromised, while (1) keeping measurement changes within tolerable limits,

(2) ensuring the net load in the system remained unchanged and (3) preventing the com-

promised line flows to go beyond permitted SOL. In the lower level, the system operators

solved the SCOPF (with the perturbed measurements from the upper level) to obtain the

new dispatch. The outer level optimization was solved through meta-heuristic techniques

while quadrature programming was employed to solve the inner level problem. It was

shown that the new dispatch is not N − 1 compliant, thereby potentially leading to further

failures if not discovered quickly.

Further, the authors in [15] proposed a bi-level optimization problem for the LR attack

to congest transmission lines. The attackers solved the upper level problem to adjust the
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dynamic line ratings (DLR) of transmission lines (equipped with dynamic line limit mon-

itoring devices) to maximize line flow violations. In the lower level, the system operators

minimized the operation cost to obtain a suitable a generation dispatch. The falsified mea-

surements from the upper level resulted was shown to congest line flows. The optimization

problem was subjected to power flow constraints, load-generation constraints and flow ca-

pacity constraints, and was solved using the Karush-Kuhn-Tucker (KKT) conditions.

2.3.4 Coordinated False Data Injection and Physical Attacks

Coordinated attacks, on the other hand, are the worst kind of attacks that combine data

falsification, load redistribution and physical attacks, as shown in Fig. 2.6. The goal of

such an attack is to mask line outages by sending a combination of incorrect status and

altered measurements to the control center.

Under normal condition, the authors in [26] propose line outage residual indices to identify

disconnected lines. When the kth line is out of service, the outage residual is given as,

rk = minf0k ||∆θm,k −∆θcalm,k||2, where ∆θm,k and ∆θcalm,k are the observed and calculated

phase angle changes obtained from the PMUs on the transmission lines. In [26], the line

outage residuals were exploited as potential candidates for coordinated false data attacks.

By compromising the PMU data packet, the attacks falsified node injection measurements

at both end of the candidate transmission line, in addition to falsifying the line connection

status. A successful attack was launched by (1) keeping the load injection measurement

variations within 50% the rated values to avoid potential discovery, (2) ensuring the line

outage residual of the compromised line to be above the minimum detection threshold, and

(2) satisfying the KCL at each node to successfully pass the existing bad data detection

system in the SE. Similar topology attacks involving falsification of circuit breaker status

can be found in [27, 28].

Other coordinated attacks were considered by authors in [29, 30] where physical attacks,
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Figure 2.6: Coordinated false data and physical attacks, and their consequences: (a)
healthy power system, (b) line 3-4 is physically attacked, and the outage is masked by
a coordinated false data injection attack on measurements at nodes 3 and 4, (c) falsifica-
tion of power flow and injection measurements in attack neighborhood surrounded by all
injection buses, resulting in (d) incorrect topology and state estimation, leading to physical
overload of line 3-5.
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designed as altered power flow measurements, were combined with carefully constructed

false data injection. The coordinated attack was formulated as a bi-level optimization [29].

The upper level optimization maximized the impacts of the physical outage while the lower

level optimization minimized attack costs by finding a minimum set of measurements to

be altered. The proposed mixed-integer nonlinear program was reformulated as a mixed-

integer linear program. However, due to non-convexity of the problem, KKT or duality

based methods could not be used, and a two-stage sequential approach was proposed to

solve the problem.

The general assumptions of carrying out successful false data attacks include [2–5, 7–10,

15, 18, 30],

1. prior complete or partial knowledge on system topology and Jacobian matrix,

2. prior knowledge on transmission line limits,

3. access to dynamic line limit monitoring devices, meter measurements and meter ID

mapping in the EMS,

4. prior knowledge on historical load, generation capacity, cost, dispatch sequences

and LMP data.

5. changes to measurements within tolerable values,

6. non-attackable zero-injection buses,

7. non-attackable generator measurements, or attackable small distributed generators.
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2.4 Impact of False Data Attack

Data falsification attacks leads to incorrect state estimation, which in turn interferes with

the real-time operations of a large number of time-critical control blocks in the power sys-

tem. For example, attacks have shown to mislead power flow solutions, resulting in SOL

violations, incorrect line tripping, unwanted re-dispatch of generation and load shedding.

Load redistribution attacks were shown to increase operating costs by driving the SCOPF

to uneconomic operating conditions, resulting in non-optimal generation dispatch, initi-

ating line overloads and tripping, and resulting in load shedding. The consequences of

coordinated attacks are straightforward - when line outages are masked and system topol-

ogy is incorrect, all three major control blocks - observability analysis, state estimation

and bad data detection, fails, and results in erroneous line flows. This directly affects all

critical operational algorithms such as SCED, SCOPF and RTCA. Coordinated attacks

were shown to result in multiple line overloads and unintended islanding. In the absence

of detection and immediate corrective actions, multiple overloaded line trips can further

initiate widespread load-shedding.

It was shown in [54, 57, 95] that the electricity market is largely affected by data falsifica-

tion attacks against the state estimation. Attackers were shown to make economic profit

by altering the LMP. Successful attacks are carried out by buying virtual power at lower

prices and selling it at higher prices [54,95]. The attacker first buys and sells virtual power

P in the ex-ante market at different locations j1 and j2 with prices λDAj1 and λDAj2 . Next,

false data is injected to manipulate prices in the real-time market, and the attacker sells

and buys the virtual power P at j1 and j2 with prices λj1 and λj2. The financial gains

obtained by the attacker is, Profit = (λj1 − λj2 + λDAj2 − λDAj1 )P . Additionally, the au-

thors in [55] have discussed false data attacks on multi-step electricity pricing mechanism

where the power demand is forged by compromising smart meters, ultimately resulting in

higher prices paid by the customers for their electricity.
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Further, false data attacks have also shown to mislead the AGC [32]. Corrupt measure-

ments indicating an excess power generation in an area leads to an incorrect generation

ramping actions, and eventually results in frequency decay and load shedding. The au-

thors in [33] developed a cyber-physical test-bed to demonstrate the effect of false mea-

surement on the tie-line, leading to an increase in ACE. Sequential attacks resulted in

frequency deviation from the nominal set point, which led to mis-operation of remedial

action schemes, disconnection of generators and loads, and damage to expensive electrical

equipment, eventually triggering widespread blackouts.

The authors in [35] investigated how falsified data attacks distort the functioning of the

AVC, triggering unwanted changes in the voltage regulation commands at compromised

substations. When carried out during peak load hours, the attacks can adversely affect the

closed-loop control algorithm required to maintain voltage stability and power balance. In

the worst case, falsified measurements can lead to system-wide outages. Further investi-

gations showed that an attack on both ends of the line in a substation resulted in a total

voltage collapse.

2.4.1 Background of Cyber-Physical Impact Assessment

To analyze the risks posed by cyber attacks on the physical grid, a number of general

approaches have been proposed. These include attack trees [96], graph-theory [97, 98],

hyper-graphs [99], complex network theory [100], Petri nets [101,102], probabilistic meth-

ods [103–105], and Markov Decision Processes [106].

Ten et. al [96] proposed an attack tree model to evaluate cyber security risks considering

password policies and port auditing. Directed graphs were used in [97] to model the impact

of cyber attacks when additive bias was introduced on sensor measurements leading to

incorrect control and load shedding. Hahn et. al [98] proposed an exposure graph-based

cyber security evaluation that identified untrusted data flows within a network by studying
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security mechanisms, privileges and information objects within a network system. Fan et.

al [99] adopted a hyper-graph model of substation automation system to identify critical

cyber physical elements using extended graph centrality-based indices.

A complex network theory-based approach to model cyber-physical inter-dependencies

in a power system was proposed by Zhu et. al [100]. A vulnerability index, based on

electrical and cyber in-degree and out-degree, was used to identify the most critical and

vulnerable components within the power system network. Laprie et. al [101] proposed a

Petri net-based cyber-physical inter-dependency modeling. Chen et. al [102] combined

several smaller domain specific petri-nets into a higher level Petri net. These Petri nets

enumerated different security states and transitions due to attacker actions.

Falahati et. al [103] calculated the availability and the unavailability state probabilities of

cyber and physical devices where a large number of binary variables were used to define

device status. Mousavian et. al [104] considered attack propagation from compromised

PMUs to uncompromised PMUs through routers. Vellaithurai et. al [105] proposed CPIn-

dex that used conditional probabilities and dependency graphs to calculate the probabilities

of system files and processes becoming directly or indirectly tainted.

Davis et. al [106] used partially observable Markov decision processes to study cyber-

physical attacks causing malicious circuit breaker trips that result in line outages. Pan

and Shames [107, 108] considered attacks against power system SE where the impacts

were quantified as errors between the estimated and the actual injected powers. Moya et.

al [109] considered coordinated attack sequences combined with impacts on the physical

grid, specifically on security constrained economic dispatch. Liu et. al [110] considered

cyber attacks where attackers tampered local substation protection systems settings that

led to overloads and load shedding.

In general, finding ways to accurately capture the impacts of cyber attacks still remain
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an active field of research due to the complex interdependence between the physical grid

and the cyber communication infrastructure. The various impact analysis approaches dis-

cussed above had multiple drawbacks. For example, approaches using graph network

indices in calculating the impact may not best reflect the effects of physical failures [100].

Assuming constant rate of failures for power system states, and using DC power flow

model to calculate the impact [103] may underestimate the actual consequences of at-

tack. The approach in [102] needs enumeration of large number of physical and cyber

states as well as modeling their interdependencies, which may be impractical for large

scale analysis. Propagation models [105] become inadequate when attackers compromise

station PDCs and alter multiple measurements at a single point instead of attacking indi-

vidual PMUs. Further, the extent of line trips resulting in a cascade were not extensively

discussed in [106].

One of the major drawback of the above approaches is the failure to include in-built cor-

rective action schemes while estimating the attack impacts. While some of the corrective

actions are initiated by an operator, there are automatic special protection schemes or

remedial action schemes (RAS) that trigger control actions based on the SE results. Ex-

cluding RAS system models in simulations of the power system was one of the contributing

factors to September 2011 San Diego blackout [111]. The inclusion of these RAS in our

study results in a more realistic attack impact estimation for practical power systems.

2.4.2 Developed Impact Assessment Method

While attacks may have different impact, our approach specifically seeks to identify attack

circumstances that lead to the most severe consequences. The procedure for the impact

assessment of coordinated false data injection attacks is summarized in Figure. 2.7.

To consider realistic scenarios, we consider power networks that are N − 1 secure. Fur-

ther, we design attacks under large inter-area power transfers, an approach which is not
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Figure 2.7: Flowchart of developed impact assessment of coordinated false data attack

considered in the literature.

Next, data attacks on parameter-based RAS are considered to study scenarios that can

cause the most impact. Locations of RAS are identified through extensive inter-area trans-

fer analysis, contingency screening and modal analysis. This is more practical as addi-

tional attacks against RAS prevent timely corrective actions, and lead to transmission line

overheating, sagging and unplanned outages, thereby increasing chances of large scale

outages.

Next, false data attacks are launched from compromised phasor data concentrators (PDCs).

The false data attack was modeled as a semi-Markov process to calculate the probability

of a PDC to be in a compromised state at any given time. The rationale behind this ap-

proach is inspired by two factors - (1) from the onset of offense to the final recovery,

practical cyber attacks transition through various stages with different probability distri-

butions. For example, malwares can be launched at random. However, once a malware

infiltrates the system using stolen credentials, it stays dormant for a significantly long time
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to acquire critical system information before launching attacks in quick succession [112].

The Semi-Markov Process (SMP) can incorporate both exponential and non-exponential

distributions to capture the nature of the real attacks. (2) Propagation models based on

conditional probabilities, such as those considered in [105], become unsuitable due to the

hierarchical network of PMU-PDC data flow architecture. This is because data once fal-

sified at local-PDC level concentrate directly at super-PDCs and then at the SE buffer.

Overall, semi-Markov models are mathematically tractable and have simple interpretation

for our study.

Direct consequences of attacks are then quantified as the expected energy not served

(EENS) using a Distributed Slack (DS) AC-based cascading failure algorithm. Addition-

ally, post-attack impacts are quantified in terms of loss of system observability under both

cascading failure and controlled islanding, as well as extent of recoverability of the grid.

2.5 Modeling Realistic Scenarios

Power systems are complex, and depending on their operating conditions, impact assess-

ment can vary. To construct realistic study scenarios, we consider various operating condi-

tions. Some operating conditions, such as peak load or light load may serve as worst case

scenarios while others may have limited impacts during normal contingencies. All base-

cases are ensured to be N − 1 secure. Another aspect of scenario preparation is to identify

the location of RAS for a more realistic and practical analysis of the actual impacts of false

data attacks.

2.5.1 Transfer Analysis and Contingency Screening

Large power systems are divided into areas which are interconnected through high voltage

transmission (tie) lines that transfer bulk power over long distances. The main objective of

power transfer analysis is to understand the extent by which the current operating system
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can be moved before security limits are violated [113].

Bulk power transfers are often limited by contingencies. As lines become congested,

contingencies overload and/or trip other lines, further reducing the transfer capacity. To

facilitate smooth power transfer, system operators perform 1-D (between a single source

and a sink) or 2-D (among three independent sources or sinks) transfer analysis and screen

the most severe contingencies.

For a given transfer, critical contingencies with the smallest voltage stability and thermal

security margin are identified. The security margins are calculated based on differences

between transfer at the initial point and the last point where post-contingency power flow

solution exists [114]. All transfers are carried under maximum limits to determine bind-

ing contingencies under worse-case scenarios. After critical contingencies are identified,

locations of RAS are determined next. These RAS increase the power transfer capability,

as illustrated in Figure 2.8 and Figure 2.9.

2.5.2 Identifying Locations of Remedial Action Schemes

Remedial action schemes are corrective schemes that increase power transfer capacities

and ensure critical contingencies do not result in uncontrolled cascades [115]. Installations

of RAS are mostly based on operator experience, pre-determined simulations and lookup

tables. The general architecture of RAS is shown in Figure. 2.10.

RAS are either event-based or parameter-based. Event-based schemes are open-loop con-

trol systems that include rapid pre-determined actions such as immediate generator rejec-

tion and load shedding to prevent system wide transient instability after a critical contin-

gency has occurred. A real-world example of an event-based RAS is discussed in [116],

where multiple generators are tripped at the onset of transient instability, detected by a

pattern matching algorithm. Other examples include [117–119].
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Figure 2.8: Case I: 1-D transfer analysis (a) without RAS and (b) with RAS in the synthetic
Illinois 200-bus system. RAS increase the electric power transfer capacity between areas.

Figure 2.9: Case II: 2-D transfer analysis (a) without RAS and (b) with RAS in the syn-
thetic Illinois 200-bus system. RAS increase the electric power transfer capacity between
areas.

Figure 2.10: General architecture of remedial action schemes.
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It is to be noted that modeling of event-based RA for mitigating transient instability is not

considered in this dissertation. This is because attacks resulting in transient instability,

such as switching attacks [44], are out of scope in this study. Here, we restrict our study to

parameter based RAS and attacks that compromise the steady state stability of the system

through false data injection attacks.

To identify locations of parameter-based RAS, a modal analysis is carried out at the point

of voltage instability under maximum power transfer. This involves an Eigen analysis of

the system Jacobian matrix that identifies relative participation of buses at the point of

thermal or voltage instability [119]. Buses that have very high contribution to instability

are identified as candidate locations for RAS.

In this dissertation, we only consider parameter-based RAS for generator reduction and (in

the worst case) load curtailment. While generator re-dispatch is another viable mitigation

solution, stealthy cyber attacks have been shown to result in additional line overloads with

a new dispatch solution [120]. This further increases the risk of failures as the system

may no longer be N − 1 compliant. Line switching can also mitigate overloads, however

topology control suffers from multiple issues - (1) topology control is a NP-hard problem,

hence this approach involves high computational complexity. Additional problems include

(2) sub-optimal solutions, (3) instability of switching, and (3) performance/economic is-

sues related to re-connection of lines [121, 122]. Further, provisions for line switching,

capacitor switching, and transformer tap change options may not be available at every

location.

2.6 Attacks against Remedial Action Schemes

To motivate attacks against RAS, we first consider attack scenarios that trigger corrective

actions. Let us consider a coordinated cyber physical attack that disconnects lines and fal-
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Figure 2.11: Steady state parameter-based remedial action scheme triggering logic. Line
trips are detected via a combination of relay output status, circuit breaker auxiliary switch
contacts (89a/89b), undercurrent (U) detection devices and EMS arming conditions.

sify measurements to mask outages. The immediate impacts of such an attack are thermal

overloads of transmission lines, line disconnection, load loss and voltage instability.

Such coordinated attacks may not necessarily lead to widespread cascading failures. This

is because worldwide, utilities are guided by regulations to be N − 1 secure, and often

extend security for selected N − 1 − 1 and N − 2 contingencies. In the aftermath of

large blackouts, RAS are being widely deployed by utilities for fast corrective actions to

increase power system security in case of critical contingencies. As discussed above, these

RAS mitigate steady state thermal violations and voltage violations by reducing generator

outputs or tripping loads. Targeted attacks against parameter-based RAS becomes par-

ticularly critical as it prevents system operators or automatic controls to take necessary

corrective actions, thereby increasing the chances of large scale failures.

The schematic logic diagram for RAS is shown in Figure. 2.11. The central RAS controller

receives field analog and digital measurements. Line trips are detected generally through

relay output status and further confirmed through a combination of circuit breaker auxiliary

switch contacts (89a/89b) and undercurrent (U) detection devices [115]. Under critical

contingencies, the following logic is satisfied ,

[z89a ∩ (z89a ⊕ z89b) ∩ zU ] == 1 (2.22)

and corrective actions are immediately triggered by the central RAS controller to safeguard
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the system against the next set of credible contingencies.

To ensure the worst case impacts, FDIA against RAS can be carried out by altering:

1. the status of auxiliary switch contacts and disconnect switch (89A/89B) contacts,

2. the open line terminal status received by the central RAS controller.

As a result, attacks against RAS will block triggers for corrective actions. Without prompt

actions, line overloads will persist beyond permitted limits. Excessive current will over-

heat, sag and ultimately result in unplanned outages, thereby increasing chances of cas-

cading failures.

To disable RAS trigger signals, attackers require prior information about the target breaker

and relay that communicate with the central RAS controller. Such information can be

obtained by compromising communication channels and accessing relay mappings in the

EMS. FDIA against RAS can be launched by embedding malicious codes or launching

Denial of Service attacks against IEC 61850 generic object oriented substation events

(GOOSE) protocol [123].

2.7 Attacks against Phasor Data Concentrators

Once RAS trigger circuits are disabled, physical attacks, coordinated with data falsifica-

tion, are launched for maximum impact. Successful data attacks compromise the PMU-

PDC communication architecture. In this dissertation, we assume that attackers target

PDCs in order to falsify multiple PMU data measurements. The assumption is based on

the notion that compromising PDC at local substation requires less resources on an at-

tacker’s side compared to attacking multiple PMUs scattered across a large geographic

area. Such attacks can be carried out through a combination of reconnaissance, network

sniffing, phishing, communication interception, spoof certificates or DDoS [124]. It is
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also assumed here that attacks against PDCs incorporate in themselves attacks against the

supporting communication infrastructures.

The next step in risk assessment is to calculate the probability that a PDC remains in the

compromised state. A Semi-Markov approach is proposed to capture different stages of

a realistic attack on a PDC. Authors in [125, 126] have used SMP to model command in-

jection, SQL injection, man-in-the middle attacks, address resolution protocol and buffer

overflow attacks against SCADA cyber physical systems. One of the drawback of the

above approach is that uniformly distributed sojourn times are not realistic for practi-

cal attack scenarios. Our SMP model incorporates both exponential and non-exponential

probability distributions, while closely reflects real-life attacks.

2.7.1 Proposed Semi-Markov Process

The objective of the SMP is to calculate the steady-state probability of a PDC remaining

in a compromised state over the attack horizon. This is illustrated in Figure. 2.12.

Consider four different states of a PDC under attack, {Working, Vulnerable, Attacked and

Recovered}, denoted by [W, V, A, R] ∈ § where § is the finite state-space. In general,

there may exist other intermediate states between A and R such as masked compromised

state, undetected compromised state, triage state, fail-secure state and graceful degradation

state [127]. For simplicity, we absorb the intermediate states into the attacked state A.

Figure 2.12: States of a phasor data concentrator - (W) Working, (V) Vulnerable, (A)
Attacked, and (R) Recovered, with cumulative distributions of sojourn time Pij .
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When the PDC is in state W, assuming stochastic nature of attacks (often termed as zero-

day attacks), a transition into state V can be modeled as an exponential distribution with

rate λWV . This is because once the security is compromised and the PDC is in state V,

chances of an actual attack increases and the system transitions to state A. The time spent

in state V thus mimics a general increasing rate of failure and is modeled by a Weibull

distribution (shape parameter θ, scale parameter β) with θV A, βV A > 1.

On the other hand, unsuccessful attacks mimic a decreasing failure rate and the transition

from V → W is modeled as a Weibull distribution with θVW , βVW < 1. Transition from

W→ A represents an insider attack with prior system information, which is also assumed

to be stochastic in nature, and is modeled using exponential distributions with λWA. Once

system operators discover malicious attacks, PDCs are disconnected and patches are in-

stalled to fix the vulnerabilities. The system transitions into recovery phase. Transitions

from A→ R or R→ A for both successful/unsuccessful patch installations are considered

stochastic in nature.

For zero day attacks, a quick mitigation strategy may not be readily available given the

sophistication and novelty of attack. The transition from R → W is simply modeled

using an exponential distribution. The main idea of the overall process is to model actions

involving increasing/decreasing rate of failures with non-exponential distributions, and

stochastic actions with an exponential distribution.

The cumulative distribution functions (CDF) of the time spent in different states are sum-

marized in Table 2.1. Using the state transitions, the steady state probabilities πi are cal-

culated. The steady state probabilities represent the proportion of time the PDC spends in

different states i over the total attack horizon. The detailed mathematical modeling of the

semi-Markov Process is discussed next.
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Table 2.1: Cumulative Distribution Functions of Time Spent in Different Stages of Attacks

CDF Distribution Parameters Expression
PWV Exponential λWV 1− e−λWV t

PWA Exponential λWA 1− e−λWAt

PVW Weibull (DFR) βVW , θVW 1− e−(
t

βVW
)θVW

PV A Weibull (IFR) βV A, θV A 1− e−(
t

βV A
)θV A

PAR Exponential λAR 1− e−λARt
PRW Exponential λRW 1− e−λRW t

PRA Exponential λRA 1− e−λRAt

2.7.2 Sojourn Time and Transition Probability of Semi-Markov Pro-

cess

For the Semi-Markov Process (SMP), the system state evolution is described by three

chains: (1) J = (Jn)n∈N where Jn is the system state at the nth time, (2) S = (Sn)n∈N

where Sn is the nth transition time and (3) X = (Xn)n∈N where Xn = Sn − Sn−1 is

the sojourn time in state Jn−1 [128]. The chain (Jn, Sn)n∈N is a Markov renewal chain if

∀n ∈ N,

P (Jn+1 = j, Sn+1 − Sn = k|J0, S0, .., Jn, Sn) =

P (Jn+1 = j, Sn+1 − Sn = k|Jn)

(2.23)

Equation (2.23) denotes that the next transition state and time spent in the present state

depend only on the present state of the system. The semi-Markov chain Z = (Zk)k∈N

associated with the Markov renewal process (J, S) is Zk = JN(k). Here N(k) represents

the number of transitions that occur by time k. The average sojourn time that the SMP

spends at each state is evaluated according to,

ti =

∫ ∞
0

(1− Pij(k))(1− Pik(k))dk (2.24)

where j, k are reachable states from i and (1− Pij(k)) is the survival function of sojourn

time in the state i.

Once state transitions are defined, the average sojourn time that the system stays in a

particular state i can be calculated. For example, using equation (2.24), the sojourn time
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in state W with an exponential distribution is written as,

t1 =

∫ ∞
0

PWV PWAdt =

∫ ∞
0

e−(λWV +λWA)tdt (2.25)

Similarly, the sojourn time in state V having a Weibull distribution is written as,

t2 =

∫ ∞
0

P VWP V Adt =

∫ ∞
0

e
−( t

βVW
)θVW−( t

βV A
)θV A

dt (2.26)

Sojourn times for state A and R can be written similarly.

For the evolution of this SMP, a transition probability matrix Q is defined. The elements

of Q = Qij(k) represent the probability of transition from state i to j within time k and

are defined as,

Qij(k) = P (Jn+1 = j,Xn+1 ≤ k|Jn = i) (2.27)

If Pij denotes the cumulative distributions of sojourn time in state i corresponding to next

state j, the elements of the kernel Q can be evaluated as [129],

Qij(k) =

∫ k

0
(1− Pik(k))dPij(k) (2.28)

where j, k are reachable states from i and (1− Pij(k)) is the survival function of sojourn

time in the state i.

From Figure. 2.12, the transition probability matrix Q can be formulated as,

Q =



0 QWV QWA 0

QVW 0 QV A 0

0 0 0 QAR

QRW 0 QRA 0


(2.29)

where Qij denote the probabilities as the system transitions from state i to j. Using equa-

tion (2.28) , the element QWV can be written as,
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QWV =

∫ t

0
PWA(t)dPWV (t) =

λWV

λWA + λWV
[1− e−(λWA+λWV )t] (2.30)

Similarly, the element QVW can be written as,

QVW =

∫ t

0
P V A(t)dPVW (t)

=
θVW

βθVWVW

∫ t

0
t(θVW−1)e

−[( 1
βV A

)+( 1
βVW

)]t
dt

(2.31)

Assuming state transitions are independent of time, the one-step transition probability

matrix in the steady-state analysis of the SMP is computed as M = Q(∞). Next, using

M , the steady state probability vector of the embedded Markov chain v = {v1, v2, ..., vn}

can be calculated by solving the set of linear equations, v = vM with
∑n

i=1 vi = 1. The

steady state probabilities πi are then evaluated as,

πi =
viti∑
§ viti

, i ∈ § (2.32)

As noted previously, the steady state probabilities represent the proportion of time a PDC

spends in different states i over the total attack horizon. The attack probabilities are used

to investigate the risk-impact analysis for the coordinated false data injection and physical

attack.

2.8 Risk-Impact Analysis

To summarize, coordinated cyber attack considered in this dissertation is carried out in two

steps - (1) RAS trigger signals are disabled first, followed by (2) stealthy cyber physical

attacks launched through compromised PDCs to mask physical line outages. The impact

of coordinated attacks is (1) directly quantified as the amount of load not served after

cascading failures, and further extended to assess (2) the loss of observability under both

cascading failures and controlled islanding scenarios, as well as (3) the degree of recov-

erability of the grid after an attack. Considering post-attack impact analysis results in a
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more comprehensive impact assessment as compared to the state-of-the-art.

2.8.1 Attack Impacts due to Cascading Failures

To estimate the direct consequences of coordinated false data injection attack, a distributed

slack bus (DS) cascading failure algorithm [130] is utilized. This estimates (1) whether

attacks actually lead to widespread cascades, and (2) the quantifies impact in terms of total

load lost. The DS power-flow is based on the participation factors of the generators in the

pre-contingency state [131, 132],

PRTCFi =
Pgi∑Ng
j=1 Pgi

(2.33)

where Pgi is the ith generated power for the set of Ng generators. The generation-load

mismatch Err is given as,

Err = max(totload + loss−Dispatchgen, 0) (2.34)

This mismatch is distributed among the current generators in the system based on their

percentage of participation in total generation capacity. The new generation becomes,

Pgnewi = Pgoldi + Err + PRTCFi (2.35)

The cascading failure algorithm starts with a secure power flow solution at a given transfer

point. Under RAS attacks, a set of parent lines become overloaded. Parent lines are

disconnected to mimic physical failure and further analyzed for the next set of overloads

and failures using AC power flow analysis. The cascading process stops (1) when there

are no more line overloads or (2) when the power flow solution diverges. The cascading

failures results are stored in a database for further analysis. The total EENS is calculated

as,



48

EENS = ∆D =

∑
i∈L′ Pi∑
i∈L Pi

(2.36)

where L′ ⊂ L is the set of surviving load buses in the network after cascading failure with

corresponding load Pi.

If a set of P data concentrators are compromised to launch a successful attack, the associ-

ated riskRFDIA is evaluated as,

RFDIA = Total Attack Probability×∆D =
∏
P
πPA ×∆D (2.37)

where πA is the steady state probability of a PDC under attack. The risk index RFDIA

takes into account (a) the ease of launching successful cyber attacks through vulnerable

PDCs and (b) the corresponding load lost under uncontrolled cascading failure as a direct

consequence of the attack.

2.8.2 Loss of Observability after Cascading Failures

While most impact assessments consider direct physical consequences such as the amount

and the type of load not served, and percentage of line overloads, the analysis in this

dissertation is extended to quantify the loss of observability after cascading failures due to

line outages and elimination of untrustworthy PDCs.

For a completely observable system, sufficient measurements are available to correctly

estimate all system states. Optimal PMU placements are intended to ensure complete

observability with adequate PMU measurements [133]. The placements of PMUs can

further be extended to ensure observability due to loss of line, loss of measurement or

considering controlled islanding [134]. Loss of observability is directly associated with

risks of incorrect state estimation solution and problems during island re-synchronization.

Consider the linearized DC power flow where power flow measurements and bus voltage

angles (states) are expressed as,
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Pij = θi − θj (2.38)

With sufficient measurements, the relationship between the measurements and states is,

z = Hθ (2.39)

where H is the system Jacobian matrix. The states are estimated from the measurements

by,

θ̂ = (HTH)−1HT z = (G)−1HT z (2.40)

where G = (HTH) is the gain matrix. If there exists sufficient number of bus voltage

and current phasors measured by PMUs, the rank of the gain matrix is n, where n is

the number of system buses. When the system is not completely observable, the upper

triangular factor of G obtained using LU−decomposition has zero pivots corresponding

to unobservable buses. For example, consider the topological Jacobian matrix H for a toy

9-bus system shown in Figure. 2.13(a),
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H =

1 2 3 4 5 6 7 8 9



I4−1 −1 0 0 1 0 0 0 0 0

I4−5 0 0 0 1 −1 0 0 0 0

I4−9 0 0 0 1 0 0 0 0 −1

I6−3 0 0 −1 0 0 1 0 0 0

I6−5 0 0 0 0 −1 1 0 0 0

I6−7 0 0 0 0 0 1 −1 0 0

I8−2 0 −1 0 0 0 0 0 1 0

I8−7 0 0 0 0 0 0 −1 1 0

I8−9 0 0 0 0 0 0 0 1 −1

V4 0 0 0 1 0 0 0 0 0

V8 0 0 0 0 0 0 0 1 0

V6 0 0 0 0 0 1 0 0 0

Both the topological Jacobian matrix and the corresponding Gain matrix have full-rank,

and the system is a single observable island.

When attacks result in cascading failure and unintentional partitioning of the system, mul-

tiple physical islands are formed. The number of physical islands can be obtained by cal-

culating the total number of connected sub-graphs in the power network using Kosaraju’s

algorithm [135]. Let for the 9-bus system, attacks are launched from PDC at bus 6. The

resulting system in the aftermath of coordinated attack is shown in Figure. 2.13(b). The

new connectivity matrix organized by clustering each individual island is obtained as,
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A′ =

[
A1 A2 A3

]
=

1 3 4 5 6 2 8 9 7



l4−1 −1 0 1 0 0 0 0 0 0

l4−5 0 0 1 −1 0 0 0 0 0

l6−3 0 −1 0 0 1 0 0 0 0

l6−5 0 0 0 −1 1 0 0 0 0

l8−2 0 0 0 0 0 −1 1 0 0

l8−9 0 0 0 0 0 0 1 −1 0

The connectivity matrix and the system Jacobian matrix are organized according to the

size of the physical islands, for example, rank(A1) ≥ rank(A2) ≥ · · · ≥ rank(An). This is

because we are interested in the largest surviving island post-attack.

After successful attacks have already impacted the system, operators may rely on partial

knowledge on attacks to identify vulnerable PDCs. Attacks may be identified by analyzing

signatures on the time series data [136, 137]. All measurements, corresponding to vulner-

able PDCs and outaged lines, are removed from H . Removal of measurements lead to the

formation of a number of unobservable islands. In this scenario, when vulnerable PDC 6

is removed, the new H matrix corresponding to Figure. 2.13(c), organized by the largest

physical islands, is,
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H ′ =

[
H1 H2 H3

]
=

1 3 4 5 6 2 8 9 7



I4−1 −1 0 1 0 0 0 0 0 0

I4−5 0 0 1 −1 0 0 0 0 0

I8−2 0 0 0 0 0 −1 1 0 0

I8−9 0 0 0 0 0 0 1 −1 0

V4 0 0 1 0 0 0 0 0 0

V8 0 0 0 0 0 0 1 0 0

To quantify the observability of the largest physical island, an index referred to as the Loss

of Observability after Cascading Failure (LOCF), is proposed,

LOCF =
n1 − rank(H1)

rank(A1)
(2.41)

where n1 is the number of buses in the largest island. For Figure. 2.13(c), the LOCF =

5−3
5

= 2
5
. In other words, 40% of the largest surviving grid has lost observability.

The LOCF index is a measure of the extent to which state estimation of the largest island is

lost. Loss of large number of measurements and subsequent use of pseudo-measurements

have been shown to produce undesirable SE solutions, resulting in gross errors in estimated

voltage angles [138]. Loss of observability also adversely affects grid re-synchronization

process when remaining smaller islands are connected to the main island.

2.8.3 Loss of Observability after Controlled Islanding

Often, when the system evolves through cascading failures, intentional controlled island-

ing is used as a last resort to prevent a total system collapse. Timely taken controlled

islanding decisions damp large oscillations and separate the system into smaller stable is-

lands that can be rapidly restored [139]. The details of controlled islanding are presented
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in Chapter 4. Here, controlled islanding is assumed to be triggered when multiple lines

are outaged during the evolution of cascading failures. To quantify the impact of attacks

on the resulting islands due to line outages and elimination of untrustworthy PDCs, a new

index, Loss of Observability after Controlled Islanding (LOCI), is developed.

Let the power system be partitioned into h = {1, ..., k} islands based on real-time load-

generation. Figure. 2.13(d) shows the partitions obtained for the 9-bus system. Both theH

and theAmatrices are re-organized corresponding to individual islands. The outaged lines

and suspicious PDC measurements are subsequently removed as shown in Figure. 2.13(e)

and the matrix H is updated. To quantify the observability in newly formed islands, the

LOCI for the hth island is formulated as,

LOCIh =
nh − rank(Hh)

rank(Ah)
(2.42)

Here, nh is the number of buses, Hh and Ah are the corresponding Jacobian and connec-

tivity matrix respectively for the hth island. For Figure. 2.13(e), loss of observability for

island 1 is measured as LOCI1 = 6−4
6

= 33% and for island 2 is LOCI2 = 3−3
3

= 0%.

Similar to LOCF, LOCI helps determine the number of pseudo-measurements to be added

for a feasible state estimation solution when the new islands are operating as individual

self-sustainable grids. Bigger physical islands with large number of observable buses are

desired for a more reliable operation of the power system. The problem of creating maxi-

mally observable islands is later discussed in Chapter 4.

2.8.4 Lines Recoverable after Controlled Islanding

After controlled islanding partitions the system, the next step is to synchronize the individ-

ual islands. Contemporary method of reconnecting lines uses synchroscopes to observe the

difference in the standing phase angles between the two substation buses, which is around
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50° to 60° for 132kV and lower, 30° to 40° for 230kV lines, and 20° for lines 400kV and

above [140].

As stable islands are created based on the real-time load-generation conditions, the can-

didate set of transmission lines to be disconnected is not fixed. This is unlike traditional

approaches where pre-selected transmission lines are disconnected. Hence, the availability

and subsequent usage of PMUs cannot be assumed at all buses. Only buses with PMUs can

directly observe the system states [141], and hence can be utilized for re-synchronization.

To this end, we develop an index, Lines Recoverable after Controlled Islanding (LRCI),

which reflect the extent of recoverability of a power system considering re-synchronization

of the smaller islands.

When buses are observable at the two ends of outaged lines (after controlled islanding), the

remaining islands can be reconnected. Let Ei,j be a line between node i and j. The binary

variable γ denotes the status of the line: γi,j = 0 indicates line outage and γi,j = 1 indi-

cates line in service. Let O be the set of observable buses obtained from LU factorization

of the Gain matrix. The sets of outage and recoverable branches are defined respectively

as,

Sout = {(i, j) : Eij,∀γi,j = 0}

Srec = {(i, j) : Eij ∈ Sout, i ∈ O, j ∈ O}

To quantify the recoverability of the power grid, the LRCI is defined as,

LRCI =
Recoverable branches

Outaged branches
=
|Srec|
|Sout|

(2.43)

This index measures the number of outaged lines between different islands whose end

buses are both observable and can be safely reconnected.

From Figure. 2.13(e), it can be seen that line 5-6 cannot be connected as bus 6 is not
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observable. However, line 4-9 can be used to re-synchronize the islands as both buses 4

and 9 are either directly or indirectly observable by PMUs.

Apart from the loss of observability and degree of recoverability of the grid, the physical

impact is also quantified as the total transmission MW power flow capacity lost corre-

sponding to all lines that are not recoverable. This is important as unavailable transmission

lines cannot be used for power dispatch, essentially constraining the economic dispatch al-

gorithm.

2.9 Simulation Results

In this section, the impacts of coordinated attacks are evaluated on synthetic Illinois 200-

bus and South Carolina 500-bus test cases. All analyses are performed using DSATools™,

Gurobi and MATLAB on an Intel(R) i5-4460 CPU @ 3.20GHz 16 GB RAM.

2.9.1 Scenario Setup

The 200-Bus system is a synthetic test bed of a central part of Illinois with 245 transmis-

sion lines (both 230 kV and 115 kV), 49 generators, and six areas. The 500-bus system

is a synthetic power system of South Carolina with 13.8kV, 138kV, and 345kV lines, 90

generators, and two areas [142]. The test case details are presented in Table 2.2. The zonal

generation-load imbalance is shown in Table 2.3. These zonal imbalances determine the

power transfers between different areas of the system.

The six zones for the 200 bus system are shown in Figure. 2.14. Rural NE and Bloom-

ing are generation rich while Champaign and Rural SW are load rich. Different voltage

levels and lines with flow above 50 MW are illustrated in Figure. 2.15 and Figure. 2.16

respectively. Major tie lines are shown in Figure. 2.17.

Three different 1-D and 2-D power transfers up to maximum limits are considered. At
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Table 2.2: Basecase Scenarios

Base-case Lines Gen (MW) Load (MW) Loading
200 bus 245 1771 1750 60 %
500 bus 597 6568 6500 74 %

the point of instability during contingencies, modal analysis is used to identify parameter-

based RAS locations. For example, line 81-55 is a major and only tie-line between Rural

NE and Blooming that carries 94 MW. Loss of 81-55 increases the power flow between

Blooming and Champaign from 189 MW to 262 MW, overloading 187-121. With RAS,

the output of generator 189 is reduced to 530 MW. A total of 29 such RAS are identified,

a few of which are shown in Table 2.4.

The three major power transfer cases investigated are,

1. Case I: 1−D transfer between Blooming and Rural SW: transfer is limited by mul-

tiple contingencies at 452MW. With RAS, the transfer capability increases to 532

MW, as shown in Figure 2.8.

2. Case II: 2−D transfer from Blooming and Rural NE to Rural SW: With RAS,

Blooming and Rural NE can supply additional 50 MW and 90 MW respectively

as shown in in Figure 2.9.

3. Case III: 1−D transfer between Springfield and Champaign: RAS increase transfer

from 94 MW to 314 MW.

For 500 bus system with two regions, the maximum transfer between Upstate and Mid-

lands with RAS is 4206 MW.

2.9.2 Attack Probability of Phasor Data Concentrators

False data attacks are launched by infiltrating the PMU-PDC communication architecture.

The probability of a PDC being in a vulnerable state is calculated using the Semi-Markov
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Table 2.3: Zonal Load-Generation Imbalance

Case Zone Name Generation
(MW)

Load
(MW)

Imabalnce
(MW)

200
Bus

2 Peoria 386.82 536.81 -149.99
3 Springfield 94.3 159.22 -64.92
4 Rural SW 70.32 270.06 -199.74
5 Champaign 5.64 275.16 -269.52
6 Rural NE 94.66 81.31 13.35
7 Blooming 1120.87 427.44 693.43

500
Bus

1 Upstate 4192.15 4119.05 73.10
2 Midlands 2376.25 2380.83 -4.58

Figure 2.14: Six different zones in the Illinois 200 bus system

Table 2.4: Examples of Few Parameter-Based RAS for the 200 Bus System

Critical Contingencies Overload Remedial Action
81-178, 81-55,174-188, 174-188
186-109,134-60, 60-97, 143-96

16-15 or
187-121

Gen 189 decrease
to 530 MW

199-25
16-15 or
187-121

Gen 65 decrease
by 60 MW

45-187 187-121
Shed 100% Load at 181
Shed 30% Load at 129
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Figure 2.15: Different Voltage levels: (Red - 230 kV, Blue - 115 kV). The 230 kV lines
form the backbone of the Illinois 200 bus system.

Figure 2.16: Lines with flow greater than 50 MW in the Illinois 200 bus system
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Figure 2.17: Inter-area tie-lines in the 200 bus system. The tie-lines responsible for major
power transfer between different areas are highlighted. These tie-lines are a part of the
230 kV backbone.

process. Since attack statistics on PMU-PDC based SE are not publicly available, the

probability distribution parameters are modeled following a realistic attack [112] - λWV =

5/12, λWA = 1/12, βVW = 0.99, θVW = 0.5, βV A = 1.5, θV A = 2.7, λAR = 1, and

λRA = 1. For utilities, these parameters can be obtained from historical data of failures,

attacks and recovery times. Using the above parameters, one-step transition probability

matrix M , the sojourn time spent by PDC at each state, and transition probability matrix

of the embedded Markov chain are calculated. Finally, the steady state probabilities of

PDC are evaluated as, πW = 0.3009, πV = 0.1669, πA = 0.2852, πR = 0.2470.

2.9.3 Attack Impacts: Cascading Failure and Load Loss

To launch attacks through compromised PDCs, the attack neighborhoods are first identified

using [5]. These attack neighborhoods contain the minimum number of measurements

required to compromise (NMRC) the system. Figure. 2.18 shows the attack neighborhood

for the two systems.
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Figure 2.18: Size of false data injection attack neighborhood - all buses are ranked and
sorted based on the minimum number of measurements required to compromise (NMRC)
the system. A large jump in minimum NMRC is observed due to the distribution of zero-
injection buses and is referred to as the NMRC-gap. All buses that precede the NMRC-gap
need lesser effort to be compromised and are labeled as low-NMRC buses. For example,
point (16, 11) represents 16 out of 500 buses require 11 or less measurements to be altered.
The point (17, 1060) illustrates that a successful attack requires at least 1060 measurements
to be altered for the remaining buses to be compromised. Similar observations are made
for the remaining systems.
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In this study, single and multiple line outage attacks are considered under maximum power

transfers. Additionally, coordinated false data injection attacks are launched from the

attack neighborhoods to mask line outages.

Attacks Disconnecting Single Lines

For all the three power transfer scenarios in the 200 bus system, 93 attackable candidate

lines are identified from the set of low-NMRC buses. The selected lines have load injection

buses in the attack neighborhood which are compromised to launch coordinated attacks.

No cascading failures are observed for Case I and Case II, even after increasing the system

loading by 80.68% of its original value. One example of a case where a cascading outage

occurred is as follows:

• Case III, disconnection of line 143-96: A careful investigation of the system condi-

tions prior to the outage revealed that Springfield is importing 314 MW from Cham-

paign through Blooming. Line 143-96 has 76 MW of power flow and is a part of

the interface between Blooming and Champaign. Under normal circumstances, the

failure of line 143-96 triggers RAS that result in the reduction of generator 189 out-

put from 638 MW to 530 MW. With RAS attacks, loss of 143-96 leads to line power

flow increase in lines 188-174, 80-143, and 179-178. Sustained overloads on line

179-178 result in overloading and subsequent disconnection of multiple lines, lead-

ing to severe low voltages on several buses. Figure. 2.19 shows the changes in the

power flow of lines in the vicinity of the largest generator for the first two gener-

ations of cascades. It is however to be noted that this coordinated attack requires

compromising PDCs from both Champaign and Blooming.

For the 500 bus system, the following 14 lines are found attackable: {100-99, 101-99,

99-465, 109-108, 108-472, 108-495, 186-185, 445-185, 185-467, 280-279, 279-340, 279-

468, 341-340 and 445-461}. At maximum transfer, coordinated false data attacks did not



63

Figure 2.19: Changes in line flows in the vicinity of the largest generator bus, 189, for first
two phases of cascading failure in the 200 bus system for Case III, where attacks disable
RAS associated with line 143-96.

result in widespread cascades. However, attacks resulted in subsequent line overload and

load shedding, which corroborated the findings in [29, 30]. In all the case studies, the

transient stability of the system was verified for the single line disconnection to ensure the

attacks are not discovered by the system operators.

Attacks on Multiple Lines

Attacks disconnecting multiple lines are considered next. Attacks involving many simul-

taneous line outages, such as those described in [29] disconnecting seven lines, are ex-

tremely aggressive and have higher chances of quick discovery. This study restricts to

stealthy double line outages that are comparatively easier to conceal. All attack scenarios

are considered under both basecase and maximum power transfers. The number of all the

possible N − 2 outages under an attack are shown in Table 2.5. For each case, transient

stability is verified to ensure the attacks remain undiscovered.
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Table 2.5: All Possible Line Failures for 200 Bus

Basecase All N-1 N-1 (Attack) All N-2 N-2 (Attack)
200 bus 245 93

(
245
2

)
=29890

(
93
2

)
=4278

500 bus 597 14
(
597
2

)
=177906

(
14
2

)
=91

Table 2.6: N-2 Contingency Analysis for 200 Bus Basecase under Attack

Contingency Outage Branch Impact Cascade
A35-48 48-74, 82-195 Voltage Collapse Yes
A42-96 60-97, 186-109 Thermal Overload No
A50-80 83-146, 146-177 Thermal Overload Yes

For attacks on the 200 bus system basecase, only 2 out of 4278 N − 2 outages caused cas-

cading failures. Disconnection of lines 83-146 and 146-177 in the vicinity of the generator

bus 147, supplying 122 MW, resulted in overload of line 187-121. Under normal condi-

tions, RAS reduce the generation output of bus 189. When RAS is disabled under attack,

line overloads leads to physical outage, subsequent line overloads and generator outages,

resulting in a total voltage collapse. The impacts are concisely summarized in Table 2.6.

While several other N-2 outages also caused voltage instability or line overloads, such

lines may not be easily attackable due to the high number of load injection buses needed

to be compromised for a successful attack.

Next, attacks under maximum transfers are investigated. For Case I and Case II, no RAS

attacks resulted in cascading failures. For Case III, 7 out of 4278 RAS attacks resulted in

large load loss, between 1100 MW - 1970 MW, with the rest causing minimal load loss

of mostly radial buses. Results for cascading failures, the compromised set of PDCs, the

number of physical islands formed, and the associated risks are summarized in Table 2.7.

For the 500 bus system, RAS attacks causing double line outage did not result in cascading

failures. A maximum of 7% of the total 7750 MW load was lost under attacks. The

candidate lines disconnected under attack scenarios include {31-205, 185-467}, {31-218,

185-467}, {185-467, 279-340}, {185-467,279-468 },{40-39, 445-185} and {39-332, 445-
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Table 2.7: Risk analysis of RAS attacks due to cascading failures for Case III

No. Branch
Outage

Attacked
PDC

Load
Lost

Physical
Islands

Normalized
Risk

C1 63-184,100-184 5 1102.97 2 0.3444
C2 41-180,63-184 4,5 1970.05 200 0.1754
C3 96-143,100-184 5,7 1936.42 187 0.1724
C4 41-180,100-184 4,5 1187.51 2 0.1057
C5 93-191,63-184 5,7 1152.93 6 0.1026
C6 93-191,96-143 4,5,7 1970.05 200 0.05003
C7 63-184,96-143 4,5,7 1936.42 186 0.04918

185}. Successful attacks are launched either by compromising PDC 1 or PDC 2.

From the above simulation results, it is noted that attacks lead to loss of load and unin-

tentional islanding, however, not all attacks necessarily result in cascading failures. The

two reasons for low probability of cascading failures due to cyber attacks are as follows:

(1) Attack neighborhoods are surrounded by load injection buses with no generators or

transformers inside. When the lines connected to these load clusters are lost, power is

rerouted. This is significantly less severe than losing generators, transformers, tie-lines,

or heavily loaded lines in the vicinity of large generators, which often initiate cascades.

When radial loads are lost as a result of an attack, the power flow of lines serving the load

decreases, reducing the chances of a cascade; (2) the feasibility of attack also depends on

the distribution of zero-injection buses. For example in Figure. 2.18, 97.4% of buses in

the 500 bus system require 1060 or more measurements to be altered for a stealthy coordi-

nated attack. In such cases, attackers need an extensive attack budget to launch successful

attacks, which may not be practical.

2.9.4 Post-Attack Impacts: Observability and Recoverability

Post-attack impacts on loss of observability are considered in this section. It is to be noted

that loss of observability is assumed to be caused both due to loss of lines after cascading

failure and elimination of untrustworthy PDC measurements. Specifically, seven candi-
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Figure 2.20: Results for cascading failure scenarios C1-C7 - (a) total number of observable
buses in the largest physical island. Note their are multiple smaller islands which is a
direct consequence of uncontrolled cascading failures, and (b) the corresponding Loss of
Observability after Cascading Failures (LOCF) index of the largest island. A higher LOCF
index implies that a large portion of the largest island is unobservable.

date scenarios C1-C7, given in Table 2.7, are studied for 200 bus system. All attacks are

considered for double line outages.

Figure. 2.20 demonstrates the condition of the grid after coordinated attacks. Observ-

ability in the largest island and corresponding LOCF are recorded. Case 2 and Case 6

demonstrate a total system collapse. Case 3 and Case 7 show extensive cascading failures

resulting in a small surviving island. Case 1 and Case 4 show large portions of the grid

remain unobservable. Case 5 indicates that a large part of the affected power system is still

observable, as indicated by a low LOCF value.

To prevent line outages from evolving into cascading failures, controlled islanding is ini-
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Table 2.8: Loss of Observability and Recoverability after Controlled Islanding

No
Load-Generation
Imbalance (MW) LOCI LRCI Lines not

Recoverable
Line MVA

lostIsland 1 Island 2 Island 1 Island 2
C1 3.63 7.54 16

96
= 16% 2

103
= 1% 31

32
= 96.8% {81-178} 402

C2 9.49 1.68 17
102

= 16% 19
98

= 19% 29
32

= 90.6%
{97-200},
{137-3},
{62-159}

663

C3 6.48 4.69 17
94

= 18% 1
106

= 1% 31
32

= 96.8% {121-178} 402

C4 9.23 1.94 28
95

= 29% 11
105

= 10% 25
28

= 89.2%

{62-159},
{159-62},
{137-3},
{97-60}

663

C5 9.17 2.00 17
103

= 17% 1
97

= 1% 25
26

= 96.1% {121-178} 402

C6 7.37 3.80 33
98

= 33% 6
102

= 6% 21
24

= 87.5%
{97-200},
{120-17},
{159-57}

663

C7 4.62 6.55 32
102

= 31% 7
98

= 7% 35
38

= 92.1%
{97-200},
{85-120},
{14-15}

742

tiated after the second phase of cascades. The system is partitioned into two islands while

maintaining the load-generation conditions in each partition. The impact on observability

and recoverability is summarized in Table 2.8. The LOCI index in each island shows that

large parts of both islands, up to 33%, remain unobservable. However, from the LRCI

index, it is seen that up to 96% of lines outaged under controlled islanding can be recon-

nected back to restore the power grid to normal operating conditions.

2.10 Discussions

While the above studies demonstrate that very few coordinated attack scenarios under

heavily loaded conditions resulted in cascading failures, system-wide outages are more

common when simultaneous attacks are carried out on multiple critical system compo-

nents. These included coordinated attacks on major generators, transformers or critical

transmission lines. This confirmed some findings in [24].

For example, in the 200 bus system, attacks on line {109-17, 17-120, 60-97, 97-200,
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Table 2.9: Major Cascading Patterns in the 200 bus System

Failure Line Failure Sequence Prior to System Divergence

Generator loss

{115-112}→{ 179-178}→{164-163, 174-188}→{169-163}
{65-64}→{ 179-178}→{164-163, 174-188, 63-66}
→{165-163, 166-163, 169-163}
{189-187}→{ 179-178}→{122-96, 122-121, 164-163}
→{165-163, 166-163, 169-163, 63-66, 92-89}
{105-102 }→{ 179-178}→{164-163, 174-188}
→{165-163, 166-163, 169-163, 63-66, 69-66, 92-89}

Line loss
{188-187}→{187-121}→{147-146, 104-102, 105-102}
→{128-133, 83-186, 115-112, 65-64}
{187-121}→{179-178}→{122-96,122-121 }→{89-95, 92-89, 95-58, 164-163}
→{41-180,69-66}

and 186-109} coordinated with the loss of large generators {64, 105 or 189} or major

lines {188-187 or 187-121} triggered cascades when RAS are disabled. Cascades evolved

through multiple stages before the power flow diverged. Few major cascading patterns in

the 200 bus system for Case I, coordinated with attacks on critical system components, are

summarized in Table 2.9. Similar results are obtained for the 500 bus system. Evidence of

cascading failures as a result of a generator loss can be seen during the August 14, 2003

Northeast blackout which started with the trip of a 597 MW generator [143].

Furthermore, the impacts of attacks can become worse under the following possible sce-

narios - (1) incorrect SE solution due to gross measurement errors, missing measurements,

or incorrect topology, (2) RAS failure due to circuit breaker malfunction, delayed opera-

tions or undesired RAS-RAS interactions; (3) introduction of uncertainty in generation

due to intermittent nature of renewable resources, for example, loss of a solar array out-

put due to a cloud cover; (4) stressed transmission system and aging grid infrastructure;

(5) differences in deployment of cyber-assets across utilities; and (6) operator errors in

missing critical system warnings.

The risk impact analysis remains incomplete without a discussion of challenges faced. In

general, risk assessments pose three important questions - (1) What are the different events

that can happen? (2) How probable are such events? and (3) What are their consequences?
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While the list of scenarios under investigation can be technically infinite, only major 1-D

and 2-D realistic transfer analysis across multiple areas are considered to reflect practical

power system operating conditions. Similarly, attacks can theoretically outage any number

of lines, however, for a more practical and tractable study, attacks disconnecting single and

double line outages are considered here.

Challenges also exist when quantifying attack probabilities. This is due to the sparse nature

of attacks and the unavailability of historical data. Moreover, to keep the analysis simple,

attack on the complex network of PMU-PDC communication and cyber infrastructure is

abstracted using the Semi-Markov process. The choice of exponential and non-exponential

distribution is motivated by real-life attack patterns where different stages of attacks have

different probability distributions. In particular, Weibull distribution is used as it has a

close form solution and has the ability to model decreasing, constant and increasing failure

rates. It is to be noted that the assumption on the sojourn time probability distribution

does not directly affect the normalized risk indices. This is because the risk index of an

attack is derived from the product of steady-state probabilities of PDCs remaining in the

attack state and the total load loss. If additional details on attacks are available, other

appropriate probability distributions can possibly be used to model attacks against PDCs.

Our approach reflects one such way of abstracting cyber attacks.

There is also a major challenge in quantifying the consequences of RAS attacks. The au-

thors in [29,30,144] have formulated the attacks as multi-level optimization problems, and

have shown the outage of lines leading to overloads, unintentional islanding, and possi-

bly cascading failures. Our approach considers additional attacks on RAS to reflect more

practical power system scenarios. Actions of RAS are often localized and difficult to pa-

rameterize in an optimization problem. To overcome this, the impacts of attacks on RAS

are incorporated through a distributed slack bus cascading failure algorithm. Attack im-

pacts are then quantified as the amount of load not served. Further, the impact is quantified
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in terms of loss of observability and degree of recoverability after attacks, that gives an in-

sight on what portion of the grid can be safely operated after attack. For a more realistic

analysis, the span of the outages, the number of customers affected, substation restoration

time, the availability of black-start units, and socio-economic factors can be incorporated

in future investigations.

In general, the concept of risk analysis is a broad question by itself. In a complex power

system, a thorough risk assessment of coordinated attacks require an in-depth understand-

ing of different system components and their interactions. Risk analysis in general be-

comes heavily dependent on the knowledge of deployed cyber assets and the general de-

sign of the system under consideration. There can be multiple approaches towards risk

impact assessment and this chapter presents one way to evaluate the consequences of co-

ordinated attacks on realistic power system networks under practical operating conditions.

2.11 Conclusions

This chapter examines to what extent false data injection attacks lead to widespread power

outages. The attack model is designed as follows - physical attacks are carried out by dis-

connecting single and double lines and remedial actions schemes are disabled to maximize

the consequences of the attack. Additionally, false data is injected in targeted phasor data

concentrators to mask physical outages. The false data attack is modeled using a Semi-

Markov approach that incorporates different probability distribution of the states of a data

concentrator under attack. The consequences of the attack are analyzed using a distributed

slack bus cascading failure algorithm under different 1-D and 2-D power transfer analysis,

and quantified as the expected energy not served. Additionally, three metrices are devel-

oped considering the loss of observability after cascading failure, the loss of observability

after controlled islanding, and the extent of recoverability of the grid. From the conducted

experiments on the realistic power system test cases, it was concluded that coordinated
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attacks against power systems do not often lead to large-scale blackouts, but do result in

subsequent line overloads and load shedding. The results demonstrate that widespread

failures are mostly initiated when false data attacks are coordinated with attacks target-

ing generators, transformers, or heavily loaded lines in the vicinity of large generators.

Successful attacks often require multiple data concentrators to be compromised across

different utilities having different cyber-security policies. Further, it was observed that

the feasible attack region is largely restricted by the distribution of zero injection buses

in the network. All of the above factors make coordinated false data attacks less prone to

widespread physical failures.
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Chapter 3

Detection of False Data Attacks

3.1 Introduction

This chapter is concerned with determining the correctness of measurement data when

malicious false data injection attacks on PMU devices remain undetected by existing bad

data detection algorithms. We develop a data-driven attack detection method that is in-

dependent of both power system topology and state estimation algorithms. Multi-variate

synchronized PMU time-series measurements, aggregated in phasor data concentrators

at different regional control centers, are utilized for attack detection. A large amount of

real-time current, voltage and power flow measurements are collected under diverse load-

generation profiles, and different system topologies. This data corresponded to multiple

events such as line faults and trips, generation and load fluctuations, shunt disconnections

and false data attacks. Various deep-learning algorithms and traditional classifiers are uti-

lized to analyze this massive volume of data to detect anomalies in PMU measurements.

The performance of the false data attack detectors are then compared for accuracy and

training time. The developed data-driven deep-learning detection techniques are able to

identify false data attacks repeatedly in a very short period of time, prior to each cycle of

the state estimation, thereby providing an early warning to the system operators.

3.2 Background

Detecting anomalous time series data for critical real-time processes has been investigated

thoroughly in [145]. Anomaly detection on large scale time series data can be found
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in [146–151]. Various techniques were used for detection, some of which include calcu-

lating correlation, entropy, periodicity and self-similarity for single time series data, and

using principal component analysis (PCA), hierarchical temporal memory, distance mea-

surements and box-modeling on multiple time series data.

In power systems, data-driven approaches and various machine learning algorithms have

been widely used for detection, classification and diagnosis of faults and cyber attacks [152–

160]. For example, the authors in [152,153] used neural networks, decision trees and sup-

port vector machine (SVM) for fault identification. Identification of Denial of Service,

data integrity, man-in-the-middle and replay attacks have been considered in [154–158].

The authors in [159] use common path mining to identify fault replay attacks, relay trip-

ping attacks and relay disabling attacks based on malicious remote commands identified

by Snort intrusion detection systems. The authors in [160] proposed an intrusion detection

system which identified power system faults and maintenance operations from different

cyber events such as disabled relays, command injection and fault replay.

In [161], the authors trained a deep belief network, combined with Gaussian-Bernoulli

Deep Boltzmann Machine, on artificially generated data-set using verified compromised

load patterns. The authors in [162] combined normal demand usage pattern and demand

forecasts to identify unnatural deviations in power consumption to detect false data attacks.

Based on difference between falsified and rated voltage data, the authors in [163] proposed

two different indices to identify anomaly - the control signal from controller to static VAR

compensator and node voltage stability index, to detect falsified measurements. The au-

thors in [164, 165] used principal component analysis to identify anomalies in power flow

measurements by analyzing regular and irregular sub-spaces. Further, the authors in [166]

used margin setting algorithm on hourly PMU angle and frequency measurements to de-

tect falsified measurements. Two types of attack were considered - playback attack where

the PMU data was played back in reverse, and time attack where the PMU data was re-
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sampled respectively.

To detect false data attacks from normal conditions, various binary classification tech-

niques were proposed [167–170]. The authors in [167] proposed to detect false data using

SVM. The sparsity (fraction of compromised measurements) and variance (deviation from

normal measurements) of the attack vector were exploited for this purpose. In [168], the

authors solved the binary classification problem by studying the deviation in measure-

ments and applying supervised method and unsupervised classification methods. The au-

thors in [169] employed mean and standard deviation of wavelet coefficients of estimated

states with a convolutional neural network (CNN). The authors in [170] obtained load data

over a period of five years. False data was added as instances in the load data set, and

the correlation between previous and current power flow measurements were exploited to

identify the attacks using recurrent neural networks (RNN).

The various false data injection detectors discussed above had multiple drawbacks. For

example, cases of false data were investigated on maximum four transmission lines [164].

This is not very realistic as our analysis in Figure 2.18 in Chapter 2 indicate that very

often, more than four line measurements are often required to be simultaneously altered

for a successful attack to cause large impact. Further, studying past states estimates to

detect data attacks [169] may often produce false positives if the state estimator solution is

incorrect due to gross errors or missing measurements. Further, detection of FDIA under

gross measurement errors with high variance, or cases of contingencies or sudden loss of

load, or loss of sensor measurement, all of which can alter the temporal correlation of the

data, were not considered [167, 168].

Our proposed method to identify false data injection attack addresses the above draw-

backs. For example, our approach of attack detection utilizes multi-variate PMU packet

data streams accumulated at data concentrators. Analyzing the data concentrated at

PDCs for false data serves as an early warning tool prior to each cycle of state esti-
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mation. As a result, our method do not depend on state estimation or system topology.

Further, in contrast to binary classification, our approach is a multi-class classification

problem where the proposed data filter is able to distinguish various normal operating

conditions, several different types contingencies, and various of false data. Further, the

developed approach is robust in detecting anomalous data under large variances of noise,

missing measurements and garbage data.

3.3 Synchrophasor System Architecture

Voltage and current measurements from instrument transformers are sampled by PMUs

and converted to digital signals using an analog-digital converter. Time stamp information

from Global Positioning System (GPS) is added to synchronize all PMU measurements.

Data is then sent to the data concentrator in the form of packets through wide area networks

(WAN). Packets from several PMUs are combined at the regional PDCs after it has been

synchronized and grouped. Data from regional PDCs are forwarded to the control centers,

where they are used for state estimation or archived in superPDCs [165].

The IEEE Standard for Synchrophasors for Power Systems (C37.118.1-2011) defines four

different message types: data, configuration, header, and command. Any standard PMU

provides current and voltage data in both in rectangular and polar format. The phasors

provided by the PMUs are 16-bit integer values. These phasors can be single or three

phase positive, negative or zero sequence values. Industry grade PMUs often support 8

voltage and 12 current measurements, at the rate of 60 messages per second while PDCs

can process data from more than 500 PMUs at a maximum data rate of 240 messages per

second [171]. A large number of data packets are available in the PMU buffer prior to

calculation of the state variables. One estimate suggests that a network with 100 PMUs

having 20 different measurements each at 30 messages per second can generate about 50

gigabyte of data per day [172].
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3.4 False Data Attack Injection

This multi-variate data flowing through the PMU-PDC hierarchical communication in-

frastructure can be subjected to decryption and modification before being sent to the main

control center [38–41]. The PMU-PDC architecture can be targeted by reconnaissance

attacks [173] and traffic analysis attacks [174] where attackers gather system or com-

munication information from open ports or IP address. Attacks also include packet data

injection [173] where malicious sensor or command/request packets are injected in correct

data format. Other kinds of attacks include Denial of Service which disrupts communi-

cation channels by injecting huge volume of traffic often making the system unrespon-

sive [173], time synchronization attacks which involves GPS spoofing to disrupt synchro-

nized PMU measurements [38] and man-in-the-middle attack data integrity attacks that

compromise measurements [175]. Once the PMU network is infiltrated, the attacker may

either compromise the time series measurements at individual PMUs or those aggregated

at the PDC. Modified packet data with false measurements pass the inbuilt cyclic redun-

dancy check [165] as shown in Figure 3.1.

As seen in Chapter 2, such attacks potentially interfere with real-time operation and may

result in a targeted (unwanted) action from the operator on the otherwise healthy system

with large economic or reliability consequences.

In this chapter, we are particularly interested in false data attacks that can be carried out at

different substation PDCs where multiple PMU data streams aggregate. Assuming that the

SE runs every minute, and the sampling rate of PMUs are 30 messages/second [69], this

leads to accumulation of 1800 measurements in the data buffer. Once all the time series

measurements accumulate in the PMU buffer, the SE uses the last set of received measure-

ments, or the mean of the measurements to estimate the states of the system. Thus, the SE

renders itself blind to sudden changes on voltage/current time series during an attack. Fal-



78

Figure 3.1: Normal PMU packet (top) and compromised PMU packet (bottom) with false
phasor measurement in channel #1 altering voltage data. Further, a modified checksum is
injected to avoid detection.
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sified data values will persist in the next SE cycle, inevitably corrupting the system states.

Thus, analyzing the historically stored data in the PMU-PDC data buffer, prior to SE, will

lead to good insights into the behavior of the system during data falsification attacks and

normal or transient events.

To develop a false data detector that is independent of system topology and SE algorithms,

we focus our concentration on the inherent characteristics of the compromised data. There

are two specific ways attackers can falsify data streams - (a) using fault replay attacks to

pretend a transient fault prior to changing measurements, or (b) by changing a number of

time series simultaneously. The minimum number of measurements required to compro-

mise the system to carry out a successful attack is visualized in Figure. 2.18. First, we

first combine fault replay attacks with carefully constructed attack vector. At a particu-

lar instant of time, the original set of PMU measurements are replaced with the altered

measurements to mimic fault replay attack following the equation,

ztfalse = z2bad + [sin(ω1t− θ) + cos(ω2t− θ)]e−ξ1t+ξ2 (3.1)

with ωi, ξi and t as oscillation frequency, damping coefficients and time of occurrence

of fault replay attack respectively. The sinusoidal part models the oscillatory behavior of

voltage and current phasor while the exponential part models the damping under power

system faults with normal clearing [176]. Apart from simulating fault replay attacks, false

data is also injected by simultaneously changing a number of time series measurements.

In both the cases, the final values of the altered data stream correspond to the the attack

vector the adversary targets to inject to change the required states.
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Figure 3.2: Overview of the proposed Convolutional Neural Network (CNN)-based false
data filter. This data filter, installed at regional control center, serves as an early warning
system to detect falsified data stream prior to each cycle of state estimation.

3.5 Detecting False Data Attacks

For detecting modified PMU data streams, we propose a false data filter that exploits the

spatio-temporal characteristics of PMU packet data concentrating at regional PDC. The

overview of the entire process is given in Figure. 3.2. To ensure that our proposed false

data detection method is independent of network size, we divide the power network into

several cyber-security regions corresponding to different utility jurisdictions (and their se-

curity policies). The false data filter can then be integrated in each regional PDC to monitor

aggregated PMU time series measurements. This eliminates the need of analyzing every

time series from each and every PMU in large network (which might also be practically

infeasible given that data sharing policies may be restricted between different utilities).

Let us consider the PDC data set A where,

1. A contains d multi-variate PMU packet data items, A = {A1, A2, ..., Ad}.

2. Each data item Ai, i = {1, ..., d}, consists of n univariate voltage and current phasor

data stream, represented as aij and stored in the data concentrator for d different

instances.

3. Depending upon the PMU sampling rate and buffer length, the length of each time
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series aij , j = {1, ..., n} takes values corresponding to synchronized time stamps

{1, ..., t}.

Given a set of PMU observations A, we aim to classify this multi-variate data item into

k different classes where C1 = {A1
C1 , A

2
C1 , .., A

k1
C1}, C2 = {A1

C2 , A
2
C2 , .., A

k2
C2},..., Ck =

{A1
Ck , A

2
Ck , .., A

k3
Ck} corresponding to different events. Our fundamental approach to iden-

tify anomalies in data stream is based on the underlying correlation between different

PMU data packets in the multivariate dataset. We start by extracting features from each

time series data item using Pearson’s correlation coefficient, which is defined between two

different time series a1 and a2 as,

σ(a1, a2) =

∑t
t=1(a

t
1 − ã1)(at2 − ã2)

(t− 1)σa1σa2
(3.2)

where ãi and σai are the mean and standard deviation of time series i. Once the correlation

coefficients for all time series item are computed, we use the correlation matrix Υ(A)

to classify our data set. As this is a multi-class classification problem, we represent our

classes by k-dimensional vector by one hot encoding (binary coding which is all 0 except

for a single 1 at the index of the particular class).

To identify FDIA against PMU based state estimation, we exploit recent advances in deep

learning. Deep learning has proven to be very effective in extracting features from different

data sets and has been used widely in areas of natural language processing and computer

vision [177]. We first use a convolutional neural network to extract high level features

from raw PMU data without relying on prior domain knowledge. The CNN extracts high-

level features from the correlation matrix to classify different power system events. The

performance of the filter is then compared with (a) other deep learning algorithms such

as Recurrent Neural Networks (RNN), Long Short Term Memory (LSTM), and (b) tradi-

tional classifiers such as SVM and ensemble methods. A brief introduction of all the three

algorithms, CNN, RNN and LSTM, is presented next.
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3.5.1 Convolutional Neural Networks

Convolutional Neural Networks (CNN) are deep neural networks which exploit spatial

correlation by studying local connections between adjacent neurons. For a detailed dis-

cussion on CNN, we refer the readers to [178–180]. The process of feature extraction from

multiple time series dataset and event classification using CNN is summarized in Figure

3.3.

The CNN network is represented as a feed-forward process of cascading functions fk,

operating on inputs X and learnable parameters Wk as

f(X) = fk(....f3(f2(f1(X,W1),W2, ),W3), ...Wk) (3.3)

The input to the CNN is the correlation matrix Υ(A) of size h × b × d where h, b, d are

the dimensions of the input image (correlation matrix) to the network. High level features

are extracted from the input image by CNN over multiple layers. The convolution layer

performs a convolution between a portion of the input with learnable filters (or weights

W ). The discrete convolution between the input Υ(Ai) and weight W can be written as,

(Υ ∗W )(i) =
∞∑

j=−∞

ΥjW(i−j) (3.4)

Multiple filters are used to obtain several feature maps F from the inputs at each layer.

These feature maps are stacked together and fed as inputs to the next layer. These filters

have small spatial dimensions but extend to the entire input depth. They resemble local

receptive fields, learning from one specific sub-region of the input (image). Unlike tradi-

tional neural network, CNN introduces the concept of parameter sharing where each filter

is used at every position of the image. The number of filters and convolution layers can be

varied depending on the input dimension of the data and computation capacity.
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Figure 3.3: Overview of feature extraction and classification process using CNN

Once the feature maps are generated after convolving with different filters, each element is

passed through a non-linear activation function which squashes the output between certain

thresholds. These include non-linear activation functions such as sigmoid, rectified linear

units (ReLu) or leaky-Rectified linear unit (LeakyReLU) which introduce non-linearity

between the input and output of the convolutional layer. To alleviate the problem of dying

gradients in ReLu, LeakyReLU is used by introducing an additional parameter α = 0.001.

The non-linear layer can then be expressed as, gi,j,k = max(αF ,F).

After the non-linear activation function is applied to the feature maps, the output is further

down sampled along the spatial dimensions using a pooling layer. This layer combines

local feature from a small neighborhood into one single value F ′. This can be done using

average, weighted average, max-pooling or L2 − norm. In this thesis, we consider the

max-pooling function which returns the maximum value within the local neighborhood,

given as Li,j,k = max(F ′i,j,k).

To reduce over-fitting of the data (especially when the number of attack samples is not

large), a dropout layer is used. At the time of training, the dropout layer ‘drops’ a random

set of neurons with a probability p. This ensures that the network is less biased to specific

weights of neurons and provides better generalization.

The expected output of any particular neuron is given as, E(neuron) = pŷ + (1 − p)ŷ,

where ŷ was the original output of the neuron. The final layer of the CNN-based data

classifier is the fully-connected (FC) layer. Local features extracted from the feature maps
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by previous layers are combined in this layer to produce an output vector of dimension k,

where k is the number of classes. The final classification is performed using a Softmax

classifier which is given as fk(v) = evk/
∑

k e
vk . Once the vector of final scores v is

computed by the fully-connected layer, the Softmax function normalizes it to have values

within (0, 1). The Softmax function is combined with the cross-entropy loss function as,

L = −log(evk/
∑
k

evk) (3.5)

This loss function minimizes the cross-entropy between the original and the predicted

distribution. In other words, the objective function minimizes the negative log likelihood

of the correct class. The k-dimension vector obtained in the output layer can be intuitively

thought of as normalized class probabilities for different events under study.

3.5.2 Recurrent Neural Networks

In addition to CNN, the recurrent neural network is another deep learning architecture that

uses iterative learning and allows provisions for ‘memory’ [181, 182]. One of the major

advantage is that they not only analyze the current input but can also learn from the past

inputs and incorporate long-term dependencies. In general, the structure of RNN can be

iteratively described through time t = 1→ T using the following set of equations [183],

ut = Whvvt +Whhht + bh

ht = e(ut)

ot = Wohht + bo

zt = g(ot)

(3.6)

Here, W is vector of different weights, b is the set of biases, v is the input sequence, h are

the hidden states and o is the output sequence respectively. The variables e and g refer to

the non-linear functions at the hidden and output gates. Two of the major drawbacks of
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using RNN are the problem of exploding and vanishing gradients during back-propagation

[184, 185].

3.5.3 Long Short Term Memory

To overcome the problems of RNN, the authors in [186] proposed long short term memory.

The LSTM uses ‘memory units’ to store information for longer periods of time. It also

incorporates ‘gated units’ such as the ‘input’, ‘forget’ and ‘output’ gates to control the flow

of new information into the memory, decide how long it stays and when it is used for the

output respectively. In general, the structure of LSTM can be iteratively described through

time t = 1→ T using the following set of equations [183],

ht = tanh(Whhht−1 +Whvvt +Whmm̃t−1)

igt = e(Wighht +Wigvvt +Wigmm̃t−1)

it = tanh(Wihht +Wivvt +Wimm̃t−1)

ot = e(Wohht +Wovvt +Womm̃t−1)

ft = e(Wfhht +Wfvvt +Wfmm̃t−1 + bf )

mt = mt−1 � ft + it � igt

m̃t = mt � ot

zt = g(Wyhht +Wymm̃t)

(3.7)

where W is the vector of different weights, b is the set of biases, ig is the vector of input

gates, i is the vector of memory unit inputs and o is the vector of output gates respec-

tively. Other variables include the vector of forget gates f , input vector v, hidden states

h, memory states m, memory state to determine if information can leave the memory unit

m̃, output vector z, and desired output of the supervised learning y. The variables e and g

refer to the non-linear functions at different gates while � refers to element wise multipli-

cation. Detailed description of the functioning of different layers of LSTM can be found



86

in [183, 186].

3.5.4 Parameter Updates

Each of the deep learning algorithm is used to train the multivariate PMU time series

data to classify data falsification attacks and other power system events. To ensure that

the networks are able to learn features extracted from the time series data, the weights in

CNN, RNN and LSTM are updated using back-propagation method after each forward

run, [187], i.e. weights w are incremented based on the gradient of the loss function after

each iteration t using learning rate λ,

w(t+ 1) = w(t)− λ∇L(w(t)) (3.8)

Different variants of gradient descend algorithms such as batch gradient, stochastic gradi-

ent and mini-batch gradient can be used. In this study, we use mini-batch technique which

divides the entire training data into batches and updates the weights more frequently. Ad-

vantages of using mini-batch include higher convergence rate, avoidance of local min-

ima, and lower memory requirement. These advantages become significant when a large

amount of PMU time series dataset is trained [187].

To improve the convergence rate of the deep learning model, we use Nesterov Adam

(Nadam) gradient descent optimization algorithm. Nadam incorporates the momentum

update from RMSProp and Nesterov accelerated gradient, combining exponentially de-

caying past gradients and their squares [188]. The gradient of the loss function gt at

iteration t, the first order and second order moments of the gradient m̂t and v̂t respectively

are,

gt = ∇L(w(t)) (3.9)

m̂t =
β1mt−1 + (i− β1)gt

1− βt1
; v̂t =

β2vt−1 + (i− β2)g2t
1− βt2

(3.10)
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The Nadam update can then be written as [188],

w(t+ 1) = w(t)− λ√
v̂t + η

[β1m̂t +
(1− β1)
1− βt1

gt] (3.11)

where β1 and β2 are the exponential decay rates of first and second order moment esti-

mates, and η = 10−8 is used to prevent division by zero.

3.5.5 Traditional Classifiers

The performance of the proposed deep learning based data filter is compared with different

traditional classifiers [189, 190]. Methods used to extract features from the multi-variate

time series include 1) variances explained by the first few principal components (PC) , 2)

statistical properties such as mean, standard deviation and variance of detail and approxi-

mate wavelet coefficients [191], and 3) correlation coefficients. The features obtained are

used with traditional classifiers such as Support Vector Machine (SVM) [192], Bagged

trees [193], Boosted [194] and RUS-Boosted trees [195]. Bagging first trains multiple

smaller classifiers and then obtains the mean of the resulting outputs to reduce the classi-

fication error. On the other hand, Boosting combines the predictions of multiple smaller

classifiers (also called ‘decision stubs’) to learn and further predict the output. To alleviate

the class imbalance problem, an extension of AdaBoost called RUS-Boosted tree is used.

It achieves a more uniform class distribution by randomly dropping instances of classes

with more labeled dataset. This is particularly useful as the number of false data injection

scenarios is comparatively smaller to the number of normal and event scenarios.

3.6 Simulation Results

In this section, the effectiveness of the proposed CNN-based data filter to classify different

power system events from false data is investigated on IEEE-30 bus and IEEE-118 bus

system. All simulations are carried out using DSATools, MATLAB and Python on an Intel



88

Table 3.1: PMU Placement

System PMU Bus
IEEE-30 Bus 2,4,6,10,12,15, 27
IEEE-118 Bus 12,15,32,49,54,56,59,69,70,77,80,85

Table 3.2: Different Events under Study

Scenario IEEE-30 Bus IEEE-118 Bus
Bus/Branch faults 283 1152
Line Trip 163 680
Load Changes 420 364
Generation Changes 115 216
Shunt Disconnection 120 224
False Data 200 400
Normal 200 256
Total 1501 3292

Core i5-4460 CPU @ 3.20Ghz and 8 GB RAM.

3.6.1 Scenario Setup

We consider fully observable electric power grids. The candidate PMU buses are given in

Table 3.1. For IEEE-30 bus system, thirty-five time series are collected. For IEEE-118 bus

system, we divide the network into four cyber-security zones shown in Figure 3.4. From

each zonal PDC, 25 PMU time series are collected. To ensure that the proposed classifier

is robust under different power system operating conditions, we consider four scenarios

with varying load-generation patterns and network topologies,

• Scenario 1: Peak load

• Scenario 2: Light load

• Scenario 3: Light load with one generator switched off

• Scenario 4: N-1 contingent system under peak load

Six different events are simulated under each scenario along with normal operation con-
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Figure 3.4: Four areas in the IEEE-118 bus.

ditions. Faults are randomly simulated between 0 to 100% of the transmission line length

and are cleared after 5 cycles. Random load and generation changes between 2% to 10%

are considered to mimic real-time fluctuations in PMU measurements under daily normal

operating conditions. Other events such as line trips due to schedule maintenance and

shunt disconnections are also considered to encompass a large variety of data set.

To generate falsified data streams that mimic fault replay attacks combined with false data,

the parameters in (3.1) are set as ω1, ω2 ∈ (1, 3), ξ1 ∈ (−0.3,−0.8) and ξ2 = 0.05. In

addition to fault replay, FDIA also includes changing a set of PMU measurement packets.

The final value of the falsified attack vector can be obtained by the methods described in

Chapter 2, Section 2.3.1.

For IEEE-30 bus and IEEE-118 bus systems, a total of 1501 and 3292 different scenarios

are simulated, respectively, which are summarized in Table 3.2. PMU voltage buffer data

for few scenarios is given in Figure 3.5 for illustration.
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Figure 3.6: Sample Gray-scale visualization of correlation matrix for six events - (a) Three
phase faults, (b) Line trip for maintenance, (c) Load changes, (d) Generation changes, (e)
Shunt disconnection, (f) False data attack. The correlation matrix is used as a feature for
the CNN-based data filter.

3.6.2 Feature Extraction and Training

First, we obtain the correlation matrix Υ consisting of pairwise correlations between each

time-series. This is the input to the CNN architecture. Once enough training samples

are provided, the CNN learns from the features and updates the weight at different layers

by minimizing the cross-entropy loss function. Gray-scale image representation of the

correlation matrix in Figure 3.6 shows different signatures for various power system events

and attacks.

For IEEE-30 bus and IEEE-118 bus systems, the size of the inputs are 35 × 35 × 1 and

25×25×1 respectively. The original dataset is divided into 80% training and 20% testing

sets.

For CNN, the learning rates and different parameters such as filter size, number of layers

and dropout were varied. To prevent over-fitting of the data, several precautions are taken,
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1. The data was split into training and validation sets using 10-fold cross-validation

(CV). To account for class imbalance, we have used stratified k-fold CV which

takes into account the relative distribution of classes. This method helps preserve

the sample distribution in each class.

2. The training and validation accuracies and losses are monitored for every epoch.

The training is stopped when the validation accuracy shows no improvements above

0.0001, which is set as the minimum change to qualify as improvement after 10

epochs. The average number of epochs before early-stopping was found to vary

roughly between 25 to 30.

3. The training data is randomly shuffled before each epoch.

Classification using RNN and LSTM is performed using the same correlation matrix. To

compare how CNN with traditional machine learning algorithms (such as SVM, Boosted

and Bagged trees), we extract the following features from the time series - (1) princi-

pal components, (2) wavelets decomposition coefficients, and (3) correlation coefficients.

The first 10 principal components are used as features as they explained around 98% of

the variation in data. Statistical features of mean, standard deviation and variance were

obtained from detailed and approximate wavelet coefficients. Additionally, Pearson’s cor-

relation was used to calculate the pairwise correlation between different time series data.

All extracted features are then used as inputs to the traditional classifiers.

3.6.3 Attack Detection Results

We compare the performance of 15 different CNN models whose corresponding architec-

tures and accuracies are shown in Table 3.3. It is seen that CNN-2d results in the highest

classification accuracy of 98.67% with λ = 0.0001. The parameters for CNN-2d model

are given in Table 3.4. The performance of the CNN-based data filter is summarized in the
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Table 3.3: Different CNN Models for IEEE-30 Bus

Network Filter 1 Filter 2 Filter 3 Filter 4 Accuracy Time(sec)
CNN-1a 3x3x8 - - - 96.87 421
CNN-1b 3x3x16 - - - 98.10 498
CNN-1c 5x5x8 - - - 95.51 487
CNN-1d 5x5x16 - - - 97.34 518
CNN-1e 5x5x32 - - - 97.71 605
CNN-2a 3x3x16 3x3x16 - - 98.23 597
CNN-2b 5x5x16 5x5x16 - - 96.58 617
CNN-2c 3x3x16 5x5x16 - - 97.11 536
CNN-2d 3x3x8 3x3x8 - - 98.67 540
CNN-2e 3x3x8 5x5x8 - - 98.24 532
CNN-3a 3x3x16 3x3x16 5x5x32 5x5x32 98.10 745
CNN-3b 3x3x16 3x3x16 3x3x32 3x3x32 97.10 720
CNN-3c 3x3x8 3x3x8 3x3x16 3x3x16 98.02 652
CNN-3d 3x3x8 3x3x8 3x3x16 5x5x16 94.57 789
CNN-3e 3x3x8 3x3x8 5x5x16 5x5x16 95.58 765

Table 3.4: CNN-2d Model Parameters for IEEE-30 Bus

Parameters CNN-1 CNN-2 Max-Pool FC
Input size 35x35x1 35x35x8 33x33x8 17x17x8
Filter size 3 3 2x2 -
Filters 8 8 1 -
Stride 1 1 2 -
Padding 1 1 - -
Output size 35x35x8 33x33x8 17x17x8 6
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confusion matrices shown in Figure. 3.7. For IEEE-30 bus, CNN correctly classifies all

false data attacks, shunt disconnections, generation changes and normal operations. One

instance of fault is misclassified as shunt disconnection while two line trips are misclas-

sified as load changes. This was due to similarity in transient signatures of voltage and

current data streams between a line trip and a sudden 10% reduction of the largest load of

96 MVA at bus 5.

The plots for training and validation accuracies for IEEE-30 bus system are shown in

Figure. 3.8. It is seen for 300 iterations, the error on the validation set does not exceed

that of the training set. Observations from Table 3.3 indicate that increasing the number

of layers in the network does not result in an increase in accuracy. On the other hand, it

leads to increased computation time, more learnable parameters, and over-fitting of data

with higher validation loss compared to training loss.

For detecting false data attacks, the CNN-2d model in Table 3.4 with 2 layers, dropout

probability of 0.5 and fully connected layer with 512 neurons with a 98.67% accuracy was

chosen as the desired filter.

Similar observations are made for CNN on IEEE-118 bus system where the best perform-

ing filter had an accuracy of 94.53% for batch size = 32, epochs = 30, hidden units = 512,

10-fold CV, dropout = 0.5 and two filters of size 3× 3× 8 and 3× 3× 8 respectively.

Next, we compare the proposed CNN-based filter with RNN and LSTM based classifiers.

To reduce the training time, early stopping was employed when there was no further im-

provement in validation accuracy after 10 epochs. The accuracies and training time for

both the power system networks with the three deep learning algorithms are compared in

Table 3.5. It is seen that both RNN and LSTM classifiers under-perform when compared

to the proposed CNN-based filter.

One of the reasons CNN has a superior performance is because of the ability to recognize
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Figure 3.8: Accuracy and training loss obtained for the developed CNN-based data filter
on both test data and validation data for the IEEE-30 Bus system.

Table 3.5: Accuracy (%) and Execution Time for Deep Learning Algorithms

Test Case IEEE-30 Bus IEEE-118 Bus
Algorithm CNN RNN LSTM CNN RNN LSTM
Accuracy 98.67 91.18 83.18 94.53 71.01 72.61
Time (sec) 540 2006 3244 145 5950 7688
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the spatial patterns in the input data. CNN is particularly effective for our analysis where

we utilize the inter-time series correlation matrix to detect FDIA. CNN is able to extract

features by performing convolutions with smaller filters and learning from the entire cor-

relation matrix image.

When compared with other deep learning algorithms, RNN misclassified 25 instances of

false data as faults and 15 instances as shunt, while LSTM misclassified 36 instances of

false data as faults for IEEE-30 and IEEE-118 bus systems. In the case of RNN or LSTM,

information in the hidden layers from the previous time steps are added into the next step.

Both RNN and LSTM save the present state of the system and combine it with future

steps to take into account time dependencies. For the classification of false data attacks,

it is not necessary to learn the historical pattern within the input vector, but it is sufficient

to study the spatial correlations between time series. Moreover, RNN and LSTM are

computationally expensive and require larger training time compared to CNN, as shown

in Table 3.5. This demonstrates that the proposed CNN-based filter is able to accurately

identify all normal, transient, and false data events with very high accuracy among other

machine learning algorithms.

Next, we evaluate the performance of traditional classifiers. The results are summarized

in Table 3.6. It is seen that SVM performed poorly for all given features and failed to cor-

rectly classify no more than 62.50% of the time series on an average. A significant num-

ber of false data attacks were seen to be misclassified as transient faults, and generation

changes were seen to be misclassified as load changes. Among the traditional classifiers,

Boosted trees showed a superior performance with an accuracy of 93.78% when com-

bined with correlation between multiple time series. Statistical parameters obtained from

wavelets and PCA, when combined with boosted trees resulted in 94.02% and 82.37% ac-

curacy respectively. Bagged trees, combined with mean of wavelet coefficients, resulted in

93.56% accuracy while RUS-Boosted trees, combined with correlation, resulted in 92.66%
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Table 3.6: Accuracy (%) of Traditional Classifiers for IEEE-30 Bus

Classifier Var Corr Mean_WV SD_WV Var_WV
SVM 80.05 51.16 59.88 60.92 60.53

Bagged Trees 81.69 91.05 93.56 92.70 91.26
Boosted Trees 82.37 93.78 93.55 92.57 94.02
RUS-Boosted 83.75 92.66 91.97 88.21 87.23

accuracy. Both Boosted and Bagged trees misclassified instances of FDI as shunt changes

and line faults. The training time for SVM, Bagged and Boosted trees were around 18,

27 and 91 seconds. Comparing results in Table 3.3 and Table 3.6 show that CNN has bet-

ter performance at the expense of higher offline learning time compared to the traditional

classification methods.

3.7 Discussions

We observe that CNN outperforms deep learning algorithms such as RNN and LSTM,

as well as traditional classification algorithms to detect false data streams in PMU-PDC

architecture. With the increase in number of data streams, the training time for CNN

increases, but this should be of little concern as the model can be trained off-line with large

amount of available historical data. Taking advantage of the high sampling rate of PMUs

and large amount of data available in the buffer, the CNN-based filter can be potentially

employed as a data filter, independent of existing bad data detectors, to detect anomalous

data streams in PMU-based state estimators.

3.7.1 Parameter Tuning and Loss Functions

To study the effectiveness of different optimization algorithms in updating the CNN weights

iteratively, we use different variations of gradient descent. The optimizer with the highest

accuracy is then tuned for its hyper-parameters such as learning (λ) and decay rates (β).

In order for the network to learn, the loss function is minimized by updating the weights in
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the direction opposite to the gradient of the loss. A mini-batch gradient descent is utilized

on multiple time series data with different optimizers to update parameters in the CNN-2d

model.

The corresponding accuracies are: Stochastic Gradient Descent = 95.15%, Adagrad =

97.52%, Adadelta = 97.23%, Adam = 97.01%, Adamax = 95.35% and Nadam = 98.67%.

From Figure 3.9 (a), it is seen that Nadam has the fastest learning rate and the lowest train-

ing loss compared to other optimizers.

Next, we tune the CNN-2d model for various learning (λ) and decay rates (β1, β2) with

Nadam. Learning rates were varied between 1 and 10−6. The accuracy varied slightly

between 97.8% and 98.67% when learning rate is between 0.001 to 10−6. It is seen from

Figure 3.9 (b) that for a fixed epoch of 30, the network under-performed for learning rates

above 0.01 resulting in exponentially increased test loss. A low learning rate results in

reliable training at the cost of increased computation time. If higher learning rates are used,

it is possible that the optimizer overshoots, increasing losses and decreasing accuracy.

Next, we analyze the effect of different loss functions on our model. Test loss and accura-

cies corresponding to different loss functions are shown in Figure 3.9 (c)-(d). Hinge and

squared-hinge loss showed poor learning performance with higher test loss, while other

loss functions such as mean squared error, mean absolute error, mean squared logarith-

mic error, categorical hinge, categorical cross-entropy and Kullback-Leibler divergence

showed considerable low losses and high accuracies, with categorical cross-entropy hav-

ing the highest accuracy of 98.67%.

All PMU data streams are then tested on the CNN-2d model with Nadam optimizer and

cross entropy loss function with parameters λ = 0.001, decay rates β1 = 0.9 and β2 =

0.99.

For RNN and LSTM, Nadam optimizer with categorical cross-entropy loss function was
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Figure 3.9: For CNN-based filter, (a) Training cost with different optimizers - (b) For
Nadam optimizer, test loss with different learning rates, (c)-(d) test loss and accuracy with
different loss functions - 1. mean squared error 2. mean absolute error, 3. mean squared
logarithmic error, 4. hinge loss, 5. squared-hinge loss, 6. categorical hinge, 7. categorical
cross-entropy and 8. Kullback-Leibler divergence
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Table 3.7: Different Parameters and Accuracy (%) of RNN for IEEE-30 bus

Batch
Size Epochs Hidden

Units
Learning

Rate
Cross

Validation Accuracy Time (s)

32 15 128 0.000001 5 70 2030
32 30 512 0.0001 5 30 1800
32 30 300 0.00001 5 78.9 1420
32 30 300 0.00001 10 91.18 2006
32 20 300 0.00001 10 90.42 1550
50 30 200 0.00001 10 87.73 1022

Table 3.8: Different Parameters and Accuracy (%) of LSTM for IEEE-30 bus

Batch
Size Epochs Hidden

Units
Learning

Rate
Cross

Validation Accuracy Time (s)

32 30 300 0.00001 5 67.81 4782
32 30 300 0.00001 10 70.88 7679
32 30 128 0.0001 10 72.79 3761
32 30 256 0.0001 10 73.18 6656
50 25 128 0.0001 10 83.18 3244
32 25 200 0.00001 10 66.2 3782

considered to compare with the CNN model. The parameters such as batch size, number

of hidden units, epochs, learning rates and cross validations were varied. The resultant

accuracies and computation times are shown in Table 3.7 and Table 3.8. It is observed that

both RNN and LSTM have lower accuracies and significantly higher computation times.

3.7.2 Robustness under Noisy and Faulty Measurements

To ensure that the proposed CNN filter is robust, we consider noisy PMU measurements

as well as missing/garbage measurements. A white Gaussian noise with SNR varying

between 30 and 80 dB is added [196]. The convergence plots for training and validation

accuracies and the corresponding test accuracy and loss are shown in Figure. 3.10.

It is seen that CNN exhibits good performance over the noise of SNR above 30 dB. The

average accuracy for noisy signal between SNR 30 to 80 dB was 94.7% with CNN and

55.25%, 89.85% and 89.99% with SVM, Bagged and Boosted trees respectively. Com-

pared to traditional classifiers, under a SNR below 30 dB, correlations with SVM, Boosted
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Figure 3.10: Training and validation accuracies, and training and validation loss for the
developed CNN filter under different PMU measurement noise - white Gaussian noise
between SNR 30dB to 80dB for CNN

and Bagged Trees had 43.3%, 67.2% and 69.0% accuracies respectively, compared to CNN

which had 71.3% accuracy. This illustrates that the developed filter is able to correctly

identify anomalous data streams even when the PMU data is corrupted with large noise or

errors.

To account for faulty measurements or non-responsive/garbage PMU data channels, we

simulate three cases of PMU time series data,

1. Case 1 - 2 ∼ 3 time series measurements were randomly dropped to 0 at random

instances of time,
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Table 3.9: Accuracy (%) and Execution Time for IEEE-118 bus with Faulty Measurements

Faulty Measurements Case 1 Case 2 Case 3
Accuracy 94.68 94.56 94.71
Time (sec) 147 155 140

2. Case 2 - 3 ∼ 5 time series measurements were dropped randomly to 0 at particular

instance of time, and

3. Case 3- all measurements from a random PMU were dropped to a random garbage

value at a particular time.

The accuracies of the proposed filter with faulty measurements are shown in Table 3.9. It

can be seen from all the above analysis that CNN is able to successfully identify instances

of data falsification attacks from faulty measurements with significantly high accuracies.

3.8 Conclusions

False data injection attack targets PMU-based state estimator and is a major threat to the

reliable operation of electric grids. If such attacks are not detected promptly, they may lead

to line overloads resulting in incorrect dispatch, undesired actions such as line tripping or

load shedding, or in the worst case, widespread blackouts. It is thus crucial to identify

any falsified data stream prior to each cycle of state estimation. This chapter developed

a data-driven attack detection algorithm by utilizing the historical PMU data archived at

regional PDCs. The features of the PMU time series data are subsequently used to train

multiple machine learning models to discover and detect false data and events in real-time.

It is observed that the convolutional neural network based detector demonstrates a superior

performance over all other classifiers such as recurrent neural networks, long short term

memory, support vector machine, and Bagged-and-Boosted trees. Additionally, the CNN-

based data classifier was able to accurately classify more than 94% of the false data streams

under large PMU measurement errors. This makes the CNN based detector suitable to be



104

employed at regional substations for detecting anomalous PMU data streams. The model

can be periodically trained offline with updated dataset, and subsequently deployed to

safeguard against false data in near real-time, prior to each run of the state estimator. As a

result, this approach provides the utilities an early warning system to detect sophisticated

data attacks and enable better decision making for reliable grid operations.
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Chapter 4

Mitigation of False Data Attacks

4.1 Introduction

The proliferation of phasor measurement units, albeit transformative to grid operations,

has increased the risk of cyber-threats in power systems. One consequence of these cyber-

threats is incorrect operator actions based on misleading data. While a single operator

action might not result in a cascading outage, a series of wrong actions impacting critical

lines and transformers, combined with pre-existing faults or scheduled maintenance, may

result in a widespread blackout. Examples of such cyber-attack induced cascading failures

were explored in Chapter 2.

This chapter first provides a background of current mitigation approaches to counter data

falsification attacks. Next, this chapter addresses power system recovery plans when so-

phisticated cyber-attacks, combined with other system pre-conditions, have already im-

pacted the system. Traditionally, controlled islanding techniques serve as countermeasures

to stabilize the system following a fault by creating smaller islands that can be restored

rapidly. However, controlled islanding is only effective when the received measurements

are trustworthy. We investigate how existing islanding methods need to be modified to

accommodate uncertainty of PMU measurements under false data attacks.

Two controlled islanding strategies are developed under the lack of knowledge, or partial

knowledge of cyber attacks. Under the lack of knowledge of attacks, the multi-objective

optimization problem maximizes the observability of the islands using a minimum number

of PMUs. When partial knowledge of attack is available, the size of the island with vul-
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nerable measurements is minimized to contain the impacts of attacks. In both the cases,

additional objectives are included to minimize the load-generation imbalance of the is-

lands and the total line powerflow disconnection. The islanding problem is configured as

a multi-objective optimization problem which provides system operators the flexibility to

create islands according to their preferences. The trade-offs between multiple optimal so-

lutions are investigated on realistic power system scenarios by varying objective priority,

relative weights, and solution degradation tolerances. The developed islanding approach

is designed as an effective strategy to quickly recover power grids from unexpected cyber

and physical events.

4.2 Background

Phasor measurement units (PMU) can significantly enhance grid situational awareness.

Specifically, by providing accurate real-time measurements, PMUs improve network ob-

servability, to yield accurate state estimation solutions. However, PMUs are thought to

be vulnerable to sophisticated cyber-attacks [38, 41, 197, 198]. Attacks originating from

the cyber space exploit existing vulnerabilities in commonly used IEC 61850 and IEEE

C37.118 PMU/SCADA control and communication architecture [38, 42]. Attacks can

modify time stamps to change phase angle measurements [38], or inject false data in volt-

age and current measurements to alter the estimated states [197, 198]. The worst-case

attacks could be unobservable [198] and result in wrong power flow, incorrect generator

dispatch, and line overloads [18, 199]. Attacks may result in a series of incorrect operator

actions impacting critical lines and transformers, resulting in load shedding and uninten-

tional islanding [29, 30].
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4.2.1 Mitigation Approaches to Counter False Data Attacks

For system response and recovery from cyber attacks, current critical infrastructure pro-

tection (CIP) standards propose utilization of redundant systems, backup and storage of in-

formation, proper incident handling, attack containment, eradication and resolution [200].

However, countermeasures to alleviate the impact of ever increasing sophisticated cyber-

attacks still remain rudimentary. Several novel preventive mitigation techniques have been

proposed to prevent cyber attacks from adversely impacting the electric grid.

The first line of preliminary defense includes defending an optimal set of meters that pro-

tect a set of state variables [201]. The problem of optimal meter protection was proven to

be a variant of the minimum Steiner tree problem, thus NP-hard, and was solved using (a)

Steiner vertex enumeration and (b) mixed integer linear programming with a tree pruning

heuristic [201].

Rahman et al. [202] proposed the randomization of state estimation measurement sets

while maintaining complete observability. Additionally, physical line admittance values

were proposed to be altered using Flexible AC Transmission System (FACTS) devices to

deter attacks.

Khanna et al. [203] proposed a generator mismatch index and a zero injection bus index

based on power mismatch. False data attacks against AGC was detected by exploiting

inconsistencies between the observed and the predicted frequency deviations [204]. For

correct computation of ACE, power export deviation estimates were replaced by load fore-

cast. Further, direct time-delay attacks against ACE was mitigated through a two-stage

methodology [205] - (1) tuning of PI controller gain to extend the region of stable opera-

tion followed by (2) allowable load shedding. Safety boundaries for both the stages were

obtained using extreme learning machine techniques.
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To mitigate effects of false data attacks against distributed energy resources, Johnson et

al. [206] proposed adjusting frequency and voltage ride-though trip settings, establishing

maximum ramp rates for DER during normal and start-up operation, constraining watt-

power factor controls to prevent voltage excursions and limiting active-power control by

frequency-watt functions.

Other preventive measures include (a) IP Fast Hopping to conceal IP address to prevent

unauthorized access [207] and (b) temporary disconnection of suspicious PMUs for trou-

bleshooting [204, 208].

Most of the above threat mitigation approaches are, to an extent, preventive in nature.

Research on impact mitigation, when successful cyber attacks have already bypassed the

inherent system security and yielded severe consequences, are limited. Kushal et al. [209]

proposed the use of autonomous battery backup system, independent of the central EMS,

to counter attacks targeting load curtailment. The authors in [210] propose re-closing

strategic lines that limit inrush currents and power swings as a recovery mechanism when

attacks result in multiple line trips. Ashrafuzzaman et al. [211] conceptualized the Grid-

watch model that aimed to create independent self-sustainable partitions with local control,

denying attackers access to the most valuable assets such as generators and transformers.

A detail analysis on local controls are however missing.

In the worst case scenarios, coordinated false data attacks result in a series of incorrect

operator or automatic control actions that can impact critical lines, generator and trans-

formers. When combined with faults and other system pre-conditions, it may result in

widespread blackouts, as discussed in Chapter 2.
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4.2.2 Traditional Controlled Islanding Approaches

Controlled islanding is the last resort solution that prevents cascading failures by isolating

the faulty regions from the rest of the grid, and creating smaller partitions that can be

restored rapidly [139, 141, 212–219]. An example of controlled islanding that partitions

the system into four islands following a delayed clearing of generator fault is illustrated in

Figure. 4.1.

Typically after a severe disturbance such as large faults, sudden loss of large generators,

load clusters or critical tie-lines, there exist two kinds of motions. Generators close to the

fault point have fast non-coherent motions while those further away exhibit slow coherent

motions. For a total of n states, the system is partitioned into (n− r) fast states and r slow

states [220]. The number of slow states r correspond roughly to the number of generator

clusters that exhibit slow oscillations (coherency) w.r.t other clusters in their neighbor-

hood and is independent of the disturbance size. To identify the coherent generators, the

following steps are performed [220, 221],

1. linearize the non-linear electro-mechanical model of the system, ẍ = M−1Kx =

Ax, where M,K,A are the inertia, connection and system matrix respectively,

2. compute the eigenvectors and eigenvalues [V,D] = eig(A),

3. find the largest eigen-gap r which approximately defines the number of coherent

areas in the system,

4. compute the basis matrix V for r slowest modes,

5. perform Gaussian elimination on V and assign the elements of the first r rows as the

reference generators,

6. assign the rest of the generators to the reference generators.
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Figure 4.1: Visualization of generator angle, frequency and voltage under fault and island-
ing conditions - (a) Generator angle exceeds set point due to stuck breaker after fault, (b)
controlled islanding partitions the system into 4 islands to prevent system wide instability
by maximizing the load-generation balance in each island, (c) island frequency is restored
to 60 Hz, (d) voltage stabilizes to 1 p.u. with controlled islanding.
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These inter-area coherent generator clusters are connected through long distance trans-

mission lines and have weak electrical connections between them. During controlled

islanding, the partitions are obtained based on the coherent generator sets and weak in-

terconnections between areas [214,219,222,223]. An example in Figure 4.2 demonstrates

the coherent groups of generators for a fault on line 25-199 in the 200-bus system. It is

seen that generator cluster containing generator buses 49, 50, 51, 52, 53 and 65 in Coherent

Group 1, near the fault location, exhibit large oscillations compared to other generators in

Coherent Group 2.

The coherent set of generators can also be quickly identified using a hierarchical clustering

on real-time PMU measurements [224]. Figure 4.3 shows the coherent generators obtained

from the hierarchical clustering algorithm.

Traditionally, islanding pursues two objectives: (1) minimizing the load-generation imbal-

ance in each island to enhance the steady-state stability [139,219], and (2) minimizing the

total line power-flow disconnection to enhance the system transient stability [215–218].

Minimizing the load-generation imbalance improves steady state stability, prevents fre-

quency excursions, minimizes load loss and reduces dependencies on large black-start

units [139, 225]. The idea of creating balanced partition was investigated by Sun. et

al [139] where the objective is to constrain the total active power injections (positive for

generation and negative for load) in an island within a user-defined tolerance. The splitting

problem is a typical satisfiability checking problem and a three-phase method was intro-

duced to reduce the computational complexity. The power network was first simplified

using (a) node removal and merging, (b) node combination on same voltage level and (c)

edge cut off, and an exhaustive search was then performed to find feasible solutions.

On the other hand, most research consider the objective of minimizing the line power

flow disconnection during controlled islanding [218, 226–229]. This is because islands
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Figure 4.2: Visualization of rotor angles for coherent Generators following delayed clear-
ing of fault on line 25-199 in the 200 bus system. There exists two distinct coherent set of
generators. Coherent group 1 is near the fault and has large swings. Coherent group 2 is
further away from the fault location.
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Figure 4.3: Coherent generators obtained using hierarchical clustering algorithm on rotor-
angle time series data. Two distinct coherent set of generators are obtained following fault
on line 25-199. The clusters are indicated by different colors.
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with negative transient stability index are more susceptible to collapse than islands with

load-generation imbalance [215]. This is because load-generation imbalance can be miti-

gated using load and generator shedding. The problem of minimizing the line power flow

disconnection is formulated as a variant of max-flow/min-cut problem and solved using

efficient heuristics. Provisions to minimize both MW and MVAR flow outage were con-

sidered in [217,218,230]. A multilevel recursive bisection algorithm was applied with in-

termediate steps of coarsening, partitioning, un-coarsening and solution refinement [218].

Trodden et al. [230] used a piece-wise linear AC power flow to accommodate both volt-

age and reactive power constraints during islanding. Additional penalties were introduced

to reduce transmission line disconnection, generator shut-down, and outage of heavily-

loaded lines. To mitigate large imbalances, provisions to include black-start units were

proposed by Tortós et al. [227]. Further, mixed integer linear programming models for

controlled islanding were proposed by authors in [216, 217, 228]. These models intro-

duced system splitting at the busbar-switch level [216] and recursive linearization based

on electrical distance [217]. Additional discussions on the existence of multiple islanding

solutions was presented in [228].

Traditional controlled islanding techniques have shown to stabilize the system from evolv-

ing into a cascading failure by creating smaller islands that can be restored rapidly. How-

ever, the islanding decision is particularly effective for steady state and transient stability

assuming that the received information about the status of the system is trustworthy. This

chapter questions this assumption and specifically seeks to modify existing controlled is-

landing techniques by incorporating cyber attack uncertainty, an approach which has not

been considered in the literature. As a result, our approach seeks to curtail attacks and

limit the adverse impacts to the largest extent possible.
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4.3 Incorporating Cyber Attack Uncertainties in Island-

ing

Controlled islanding is only effective when the received information about the status of the

system is trustworthy. As sophisticated attacks may prevent system operators to identify

what part of the network is compromised, we study how existing islanding methods need to

be modified to accommodate PMU measurement uncertainties. The developed controlled

islanding strategies are considered under two distinct scenarios of cyber threats,

1. Scenario 1 under complete attack uncertainty: maximize the island observability

with minimum number of additional (non-secure) PMUs; and

2. Scenario 2 under partial attack uncertainty: isolate vulnerable PMUs to a small

island.

Figure. 4.4 illustrates the overall process developed in the chapter. With no prior knowl-

edge of false measurements, designing a recovery approach is inherently difficult. If the

locations of the vulnerable PMUs, that provide synchronized measurements, cannot be

identified, the attack impacts are minimized by creating islands that require a minimal

number of PMU measurements for maximal observability in state estimation. To the best

of our knowledge, the problem of creating maximally observable islands with minimum

PMUs has not been addressed before. In contrast, if the operators can identify the loca-

tion of the potential attack by analyzing PMU measurements [231], the aforementioned

mitigation approach isolates vulnerable PMUs to only a small part of the system while

creating stable and observable islands. With this introduction, the main contributions of

this chapter over the existing controlled islanding schemes can be summarized as,

1. Incorporating measurement uncertainties: Two new strategies are developed for con-

trolled islanding under the lack of knowledge, or partial knowledge of false mea-
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Figure 4.4: Flowchart of recovery process from successful cyber attack

surements on the system. The problem of controlled islanding is formulated as

a multi-objective optimization problem that yields stable and observable islands,

while ensuring wrong PMU measurements impact a minimal number of partitions.

Trade-offs between the observability of islands, the total line power flow disconnec-

tion, and the size and location of the islands are investigated.

2. Minimizing the loss of observability: A new method is developed to minimize the

loss of observability during the partition process. This approach is particularly ef-

fective when system operators seek to obtain reliable state estimation solutions for

the newly-formed islands with minimum PMUs in each island.

4.4 Scenario 1: Islanding under Complete Uncertainty

In this section, a controlled islanding strategy with two competing objectives will be devel-

oped to (1) maximize the observability of islands and (2) minimize the number of utilized
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PMU measurements. The most notable advantage is that more resources can be deployed

to secure a small subset of PMUs for maximal observability. This leads to a more reli-

able state estimation and improves the island re-synchronization process. The minimum

number of retained PMUs for observability also depends on additional steady-state and

transient stability objectives described in Section 4.6. For the rest of the chapter, it is

assumed that,

1. the power network is completely observed by a redundant set of PMUs [133], and

2. there exists a subset of PMUs that observe critical generators, transformers, and

tie-lines, and are secured by prior design [232].

To formulate this problem, first, the power network is represented as a graph G(N ,Z),

whereN is the set of all buses and Z is the set of all transmission lines [215]. Further, ZS

and Z\S denote the set of lines with secure and non-secure PMU measurements respec-

tively.

4.4.1 Objective 1: Maximize Island Observability

A non-PMU bus is observable when it is incident to a line with a current phasor mea-

surement from a neighboring PMU [134]. Loss of observability occurs when lines with

secure or nonsecure PMU measurements are disconnected during islanding [134, 233].

This chapter explores a new scenario that leads to further loss of observability.

Consider the situation when the system is already impacted by sophisticated false data

injections that may remain undetected for a long time. To stabilize the system, prompt

controlled islanding decisions are imperative. In the absence of any information on the

trustworthiness of the measurements, the approach introduced here aims to utilize only a

small number of strategically placed nonsecure PMUs to minimize the impact of wrong

PMU measurements in each island. Additional security can now be established for the
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smaller set of PMUs, thereby improving system recovery. In this process, other nonsecure

PMU measurements, which may be possibly compromised, are not used, which leads to

the unobservability of buses.

To take into account the loss of observability under both situations, two binary variables

are defined. Variable zi,j,∀(i, j) ∈ Z denotes a line status as,

zi,j =


0 if line (i, j) is disconnected

1 if line (i, j) is in service
(4.1)

and the second binary variable di,j,∀(i, j) ∈ Z\S denotes the measurement status,

di,j =


1 if line measurement (i, j) is retained

0 if line measurement (i, j) is discarded
(4.2)

Note that lines with secure measurements can be disconnected during islanding, however,

their measurements are never intentionally discarded. Non-secure lines can be discon-

nected, and their measurements discarded, which is accounted for by the product of the

two binary variables, di,jzi,j .

Remark 1. The product of the two binary variables di,jzi,j is replaced by an additional

binary variable vi,j and the following set of linear constraints,

vi,j ≤ di,j (4.3)

vi,j ≤ zi,j (4.4)

vi,j ≥ di,j + zi,j − 1 (4.5)

The constraints (4.3)-(4.4) imply vi,j = 0 when di,j = 0 or zi,j = 0. The constraint (4.5)

implies vi,j = 1 only when both the variables are one.
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The observability decision matrix Z ∈ Rm×m is defined as,

Z =

ZS 0

0 Z\S

 =



.

zj,k

.

0

0

.

vi,j

.


(4.6)

where the diagonal sub-matrices ZS and Z\S correspond to lines that are secure (j, k) ∈

ZS and non-secure (i, j) ∈ Z\S , respectively.

Next, the matrix for topological observability H at the bus/branch level is constructed

using the line current measurements. The elements of matrix H corresponding to states

Vi and Vj are set as 1 when a line current flow between nodes i and j is measured, and is

shown as [65],

H =


HS

H\S

 =

V̂i . V̂k . V̂j V̂n



. . . . . . .

Ij,k 0 0 1 . 1 0

. . . . . . .

. . . . . . .

Ii,j 1 0 0 . 1 0

. . . . . . .

(4.7)

where the sub-matrices HS,H\S correspond to the secure and the non-secure lines re-

spectively. The system is fully observable when the gain matrix G = HTH has a full

rank [234]. To incorporate the measurement uncertainties during controlled islanding, a

new gain matrix is constructed as,

G = (ZH)T (ZH) = HTZTZH = HTZH (4.8)

Here, Z is a binary diagonal matrix and hence ZTZ = Z.
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When diagonal elements of Z become zero during controlled islanding, it drives an entire

column of G to zero. In this scenario, a node becomes unobservable if it is not observed

directly or indirectly by another PMU. Thus, the objective of maximizing the system ob-

servability is defined as,

F̃1 = rank(HTZH) (4.9)

The rank(HTZH) = rank(G) is the number of the corresponding non-zero eigenval-

ues. As G is positive semi-definite, rank(G) is a quasiconcave function and NP-hard

to maximize. Instead, rank(G) is replaced with trace(G), which serves as a convex

proxy [235]. Hence, (4.9) becomes convex as,

F1 = trace(HTZH) (4.10)

Remark 2. The convex proxy or convex hull of a function is the largest convex under-

estimator of the function. The convex hull of the function rank(G̃) is the nuclear norm

||G̃||∗ where ||G̃||∗=
∑m

i=1 σi, i.e, the sum of singular values. When G̃ is symmetric and

positive semi-definite, σi = λi, i.e. the singular values are equal to the eigenvalues and the

nuclear norm reduces to trace(G̃). The proof [236] relies on the fact for any function F ,

the conjugate of the conjugate F ∗∗ is the convex hull of the function F . The conjugate of

the rank function can be written as φ∗(A) = sup||G̃||≤1(Trace(AT G̃)−φ∗(G̃)). The con-

jugate of the conjugate can similarly be written as φ∗∗(B) = sup||A||≤1(Trace(BTA) −

φ∗(A)). Using Von Neumann’s trace theorem and some algebraic manipulation, it can

be proved that φ∗∗(B) =
∑m

i=1 σi = ||B||∗. When matrix G̃ is symmetric and positive

semi-definite, G̃v = λv ⇒ G̃T G̃v = G̃T λv. Since G̃T = G̃, hence G̃T G̃v = λ2v.

Further λ ≥ 0,
√
λ2 = λ, thus the singular values are equal to the eigenvalues. The

trace of the positive semi-definite matrix G̃ is equal to the sum of eigenvalues and hence
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||G̃||∗= trace(G̃). The trace(G̃) is the convex hull of rank(G̃), and is a convex function.

Remark 3. While using commercial solvers, coding the expression trace(HTZH) in

(4.10) creates matrices that hold binary variables (instead of floating point numbers). For

a large power system, this consumes extensive memory. Instead, using the properties of

the trace of matrix products, the term in (4.10) is conveniently written as,

trace(HTZH) = trace(ZHHT ) = Zi,i

n∑
j=1

H2
ij (4.11)

4.4.2 Objective 2: Minimize the Number of Retained PMUs

The challenging problem of system recovery under complete uncertainty is addressed by

creating smaller islands that require a minimum number of additional non-secure PMU

measurements for maximal observability. This allows the system operators to deploy tar-

geted resources to secure a specific subset of PMUs. The objective of retaining a minimum

number of additional non-secure PMUs is formulated as,

F2 =
∑

(i,j)∈Z\S

βidi,j (4.12)

where βi is the measure of vulnerability defined for PMU i. One way to calculate βi

is to measure how frequently PMU i appears in all possible attack scenarios, using the

algorithm in [5]. It can also be estimated based on how often a measurement leads to bad

data based on historical data.

To ensure all non-critical PMU line measurements are either simultaneously used or dis-

carded by the operator, an additional constraint is added as,

di,j = di,k ∀k, ∀(i, j), (i, k) ∈ Z\S (4.13)
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Combining objectives F1 and F2 allows the system operators to maximize island observ-

ability using a minimum number of additional non-secure PMUs. During the post-attack

recovery, this approach leads to minimizing the resources required, by securing only a

small subset of PMUs.

4.5 Scenario 2: Islanding under Partial Uncertainty

In this section, a new controlled islanding strategy under partial information on cyber-

attacks is developed to,

1. isolate vulnerable PMUs to a small island, and

2. maximize the observability of the islands.

The size of the island also depends on the additional load generation and transient stability

objectives described in Section 4.6.

4.5.1 Objective 1: Isolate PMUs under Attack

Consider false data injections that alter specific PMU measurements to bypass the state es-

timator. Partial information on potentially vulnerable PMUs may be identified by scanning

ports, user logs, and registry entries [237]. False measurements are also discerned by ana-

lyzing PMU measurements using model-based and data-driven detection techniques [168,

231]. With model-based approaches, false data may be partially detected by (1) estimation-

based methods that compare the estimated states with the state measurements, and (2)

direct calculation-based methods that combine measurements and system parameters to

detect anomalies. On the other hand, data-driven methods employ various supervised and

unsupervised machine learning algorithms to detect data anomalies.

Assume node i is flagged as vulnerable based on the partial information that may be ob-

tained from any of the above described methods. To ensure effective isolation, the objec-
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Figure 4.5: Scenario 2: (a) PMUs (shaded nodes) identified as untrustworthy, (b) 1-hop
and (c) 2-hop distance neighbors. All PMUs at R-hop distance are assumed vulnerable
and will be isolated in a single small island. Additional nodes are added during the opti-
mization process to maintain island stability and observability.

tive is to isolate all possible vulnerable PMUs into a single island. The idea is illustrated

in Fig. 4.5. Centered at node i, all nodes Ni at a radius R are labeled as vulnerable. A

standard breadth-first search is employed for this purpose, where the search starts at the

root node i and explores all neighboring nodes in the same level before moving at the next

depth [238]. The value of R may be determined by the system operator based on the PMU

communication network architecture. The process is repeated for each suspected node.

The optimization problem is designed as follows. First, a binary variable xi,∀i ∈ N is

defined that denotes the placement of node i in an island as,

xi,h =


1 if node i is in island h

0 otherwise
(4.14)

The size of the island with vulnerable PMUs is minimized with the objective function

defined as,

F3 = x1,h + x2,h + ...+ xn,h =
n∑
i=1

xi,h (4.15)

In (4.15), h = 1 is explicitly set to indicate that all potentially compromised PMUs are

contained in partition ‘1’. This smaller partition is denoted by sub-graph G ′ ⊆ G. When
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combined with additional objectives described in Section 4.6, the optimization problem in

(4.15) will isolate all possible vulnerable PMUs while creating stable partitions.

4.5.2 Objective 2: Maximize Island Observability

An additional objective is introduced to maximize the observability of the newly formed

islands. Buses may lose observability when multiple lines are disconnected during island-

ing. An observability decision matrix is defined as,

Z = diag(zi,j) ∀(i, j) ∈ Z\S (4.16)

where zi,j is described in (4.1). The decision matrix Z takes into account the impact of

physical line disconnection on system observability. The optimization problem is defined

as maximizing the trace(HTZH), where H is the topological observability matrix de-

scribed in (4.7). This problem is similar to (4.10).

4.6 Additional Objectives and Islanding Constraints

4.6.1 Load-Generation Balance

For Scenario 1 and Scenario 2 additional objectives are considered to maintain the load-

generation balance and minimize the total power flow outage. Consider Pi as the net

injected power at node i. The load-generation imbalance in each island is minimized

as [239],

F̃4 =
K∑
h=1

∣∣∣∣∣∣
n∑
i=1

Pixi,h

∣∣∣∣∣∣ (4.17)

To tackle the absolute values, the equation in (4.17) is written as a linear program by in-

troducing slack variables. Let the slack variable Sh =
∣∣∑n

i=1 Pixi,h
∣∣ denote the mismatch
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in island h. Accordingly, (4.17) is written as,

F4 =
k∑

h=1

Sh (4.18)

with two additional constraints which are defined as,

n∑
i=1

Pixi,h ≥ −Sh (4.19a)

n∑
i=1

Pixi,h ≤ Sh (4.19b)

The process of islanding is guided by coherent generator sets and weak interconnection be-

tween areas [213,214]. Balanced islands in (4.18) prevent frequency excursions, minimize

load interruption and reduce dependencies on black-start units.

4.6.2 Line Power Flow Disconnection

On the other hand, the objective to minimize the total line powerflow disconnection is

defined as [217],

F5 =
1

2

∑
(i,j)∈Z

(1− zi,j)Pi,j (4.20)

Minimizing the line powerflow outage prevents the creation of islands with a negative

transient-stability margin, and thereby avoids system collapse [215].

4.6.3 Partitioning and Connectivity Constraints

The details of the partition and the connectivity constraints are described below [217]. The

binary variables zi,j and xi,h are coupled through another binary variable wi,j,h as,
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zi,j =
∑
h

wi,j,h (4.21)

wi,j,h ≤ xi,h (4.22)

wi,j,h ≤ xj,h (4.23)

zi,j = zj,i (4.24)

The constraint restricting a node to a single island is given by,

∑
h

xi,h = 1 (4.25)

Additionally, ensuring at least M nodes are present in an island is enforced by the con-

straint,

∑
i∈N

xi,h ≥M (4.26)

For each island h, one bus j is designated as a source node - (a) to act as a reference bus

for state estimation, and (b) to ensure islands are connected. The source node is set as,

uj,h = 1 j ∈ Ns (4.27)

whereNs is the set of all source nodes. The following constraint is added to ensure coher-

ent generators are connected in each area,

xi,h = 1, i ∈ Vgen, Vgen ⊂ V, h ∈ K (4.28)
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To ensure islands are connected, an arbitrary network flow variable fi,j,h ∈ R is defined

as,

0 ≤ fi,j,h ≤ nzi,j (4.29)

The source variable and the connectivity flow variable together ensure that the optimiza-

tion problem yields connected islands by exploiting basic network flow concepts. If a unit

flow fi,j,h is sent from uj,h to each node in area h and if each node consumes one unit flow

(with fi,j,h and fj,i,h being the node inflow and outflow respectively), islands are connected

when,

uj,h
∑
i∈N

xi,h − xj,h +
∑
i,j∈N ,
(i,j)∈Z

fi,j,h =
∑
i,j∈N ,
(j,i)∈Z

fj,i,h (4.30)

4.7 Multi-Objective Optimization

The two islanding strategies under cyber-attack uncertainties are formulated as multi-

objective optimization problems, which find pertinent trade-offs between all the afore-

mentioned objective functions. The multi-objective optimization problem for Scenario 1

is written as,

minimize F = [F1, F2, F4, F5] =

[−trace(HTZH),
∑

(i,j)∈Z\S

βidi,j,

k∑
h=1

Sh,
∑

(i,j)∈z

1

2
(1− zi,j)Pi,j]

subject to (4.3) - (4.5), (4.13), (4.19a) - (4.19b), (4.21) - (4.30)

(4.31)
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Table 4.1: Methods for multi-Objective Optimization

Solution Formulation

Hierarchical
minimize Fi i = 1, ..., 4

subject to Fj ≤ F ∗j + ηj, j = 1, .., i− 1

Weighted-sum minimize
∑4

i=1 γiFi

ε−constraint
minimize

∑
i γiFi +

∑
j ρjFj i 6= j

subject to Fj ≤ εj j = 1, .., i− 1, i+ 1, ..4

Weighted

Chebyshev

minimize b+
∑4

j=1 ρjFj

subject to γi[F
∗
i − Fi] ≤ b, i = 1, ..., 4

Benson
minimize

∑4
i=1 bi

subject to F 0
i − Fi = bi, i = 1, .., 4

where di,j, vi,j, zi,j, xi,h, wi,j,h ∈ {0, 1} and Sh, fi,j,h ∈ R are the optimization variables.

Similarly, the multi-objective optimization problem for Scenario 2 is written as,

minimize F = [F1, F3, F4, F5] =

[−trace(HTZH),
∑
i

xi,h=1,

k∑
h=1

Sh,
∑

(i,j)∈z

1

2
(1− zi,j)Pi,j]

subject to (4.19a) - (4.19b), (4.21) - (4.30)

(4.32)

where zi,j, xi,h, wi,j,h ∈ {0, 1} and Sh, fi,j,h ∈ R are the optimization variables. Any vector

solution of (4.31) and (4.32) is a Pareto optimal (non-dominated) solution. Due to the

competing nature of the objectives, no ideal solution exists that simultaneously minimizes

every objective [240, 241]. The choice of an acceptable solution largely depends on the

preference of the reliability coordinator overseeing the islanding.
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4.7.1 Solution Approaches

The multi-objective optimization problems are solved using the hierarchical optimization

approach and the results are compared with four different scalarization techniques, (1)

weighted sum, (2) ε-constraint, (3) weighted Chebyshev and (4) Benson’s method. The

different approaches are outlined in Table 4.1.

Hierarchical Optimization

The hierarchical approach allows the system operator to assign an objective priority and

solve each individual objective in the multi-objective problem iteratively [242]. The op-

timal solution for the lower priority objective is obtained from among all solutions that

degrade the higher priority objective by the system operator defined tolerance η. The ob-

jective function is defined as Fi, i = 1, ..., 4, with constraints iteratively added as.

Fj ≤ F ∗j + ηj, j = 1, .., i− 1 (4.33)

where F ∗j is obtained from the upper level optimization. Additionally, the tolerance ηj in

the hierarchical approach allows system operators to define optimal solution degradation.

For example, if the optimal solution for the minimum load-generation imbalance (priority

= 1) is 20 MW and η1 = 5 MW, the optimization will minimize the loss of rank (priority =

2) considering an imbalance of 20 + 5 = 25 MW or better. In general, an optimal solution

for a lower priority objective is selected from among all solutions that degrade the optimal

solution of the higher priority objective by η. Note that solutions do not remain Pareto

optimal when solution degradation tolerances are used for hierarchical approach.
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Weighted-Sum Approach

This weighted-sum approach captures relative importance between objectives through

weights γi. The objective function is defined as,

4∑
i=1

γiFi (4.34)

For γi > 0,∀γ, every solution of (4.34) is a supported, non-dominated solution [241].

ε−Constraint Approach

The ε−constraint approach transforms the less important objective into bounded con-

straints with operator-specified tolerances and optimizes the most important objective(s).

The objective function is defined as,

∑
i

γiFi +
∑
j

ρjFj i 6= j (4.35)

with the following constraint,

Fj ≤ εj (4.36)

The optimal solution is obtained under the assumption that bounds εj do not result in an

empty feasible space. The additional term
∑

j ρjFj with ρ being small positive scalar

ensures that any optimal solution obtained using the ε−constraint approach is strictly non-

dominated solution, in addition to being efficient [241].

The implementation of the ε−constraint approach is explained as follows. First, the objec-

tive function that minimizes the total load-generation imbalance in each island in (4.18)

is converted into inequality constraints as
∑k

h=1 Sh ≤ εload. Here, εload depends on the

available blackstart capacity in the islands. Similarly, the objective function in (4.15) is
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converted to a constraint
∑n

i=1 xi,h=1 ≤ εsize to ensure that the maximum size of the island

with vulnerable PMUs is constrained to a pre-determined fraction of the entire system. For

example, when εsize = 20, vulnerable PMUs are isolated in a single small island that will

not contain more than 20 nodes.

Weighted Chebyshev Approach

This approach minimizes the maximum weighted difference between the current solution

and a reference point (often the ideal solution F ∗) set by the system operator [241]. The

objective function is defined as,

max
i=1,...,4

{
γi[F

∗
i − Fi]

}
+

4∑
j=1

ρjFj, (4.37)

The additional term
∑4

j=1 ρjFj(r) with small positive scalar values of ρ guarantees strict

non-dominated solutions.

Benson’s Approach

Similar to weighted Chebyshev, Benson’s approach obtains efficient solutions by maximiz-

ing the sum of the non-negative distances between the current solution and a dominated

feasible reference solution F 0
i . The objective function is defined as,

n∑
i=1

vi (4.38)

with the following constraints,

F 0
i − Fi = vi, i = 1, .., 4

v ≥ 0

(4.39)
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4.7.2 Solution Trade-off

By varying (a) the scalarization parameters, (b) the objective priority, and (c) the objec-

tive degradation tolerances, the system operators may obtain a range of solutions for the

islanding problem. The quality of the solutions is evaluated in terms of the trade-offs be-

tween multiple objectives. For a chosen optimal solution r∗, the trade-off utility (TU)

quantifies the maximum ratio of the worst deterioration to the best improvement among

all other solutions ri [243],

Trade-off Utility(r∗) =
maxi[r∗ − ri]

maxi[ri − r∗]
(4.40)

Solutions with a smaller TU value are preferred as they reflect greater desirability among

other alternatives.

4.7.3 Improving Computation Time

Controlled islanding is a general graph partition problem that is NP-hard, i.e., there ex-

ists no known algorithm to solve the problem in polynomial time [139]. To improve the

computation time, three steps are taken.

First, for the ε−constraint approach, the objective function to minimize the total load-

generation imbalance in each island in (4.19) is converted into an inequality constraint as∑k
h=1 Sh ≤ εload. Here, εload depends on the available black-start capacity in the islands.

Similarly, the objective function in (4.15) is converted to a constraint
∑n

i=1 xi,h=1 ≤ εsize

to ensure that the maximum size of the island with vulnerable PMUs is limited to a pre-

determined fraction of the entire system in Scenario 2. For example, when εsize = 20,

vulnerable PMUs are isolated in a single small island that will not contain more than 20

nodes.



134

Second, critical elements such as the slack bus and nodes in areas completely unaffected

by false data, are pre-assigned as not vulnerable in Scenario 2. Pre-assignment of buses

prior to islanding has been shown to drastically reduce the computation time [217].

Third, the integrality constraints on binary variables are relaxed, until binary solutions are

obtained.

4.8 Case Studies

The developed controlled islanding strategies under complete and partial uncertainty are

tested on the synthetic Illinois 200-bus, South Carolina 500-bus and Texas 2000-bus sys-

tems [142]. A branch-and-cut approach [244] is employed to solve the multi-objective

mixed integer program in Gurobi, on an Intel(R) i5-4460, 3.20GHz with 16 GB RAM.

A combination of cutting planes and branch-and-bound method is used to solve the mixed

integer optimization problem [244]. In the process, the integer variables are relaxed and

valid inequalities are generated to constrain the feasible solution set such that the extreme

points are binary. The feasible region is divided into subsets and the optimization problem

is solved over each subset. The optimality gap is explicitly set to 0 to ensure the linear

relaxations of the integer problem and the dual of the relaxation have feasible integral

solutions. For more details on the time complexity of generating valid inequalities, the

readers are referred to discussions in [245].

4.8.1 Test Case and Parameter Setup

The power system network is made observable through an optimal PMU placement scheme

[133] where each node is observed at least by two PMUs. Any critical element (genera-

tor/line), that is not already observed, is made observable by additional PMUs. All PMUs

observing critical elements in the network are assumed secure [232]. The detailed case
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Table 4.2: Details of the Studied Test Cases

System Load
(MW)

Generation
(MW)

# Secure
PMUs

# Non-secure
PMUs

200 1750 1765 25 130
500 7750 7832 63 394
2000 67109 68728 132 1247

descriptions including the total number of secure and non-secure PMUs are summarized

in Table 4.2.

The trade-offs between the competing objectives, i.e., (1) maximizing the observability

of islands with minimum additional nonsecure PMUs, (2) maintaining steady-state and

transient stability, and (3) minimizing the size of the island with vulnerable PMUs, and

their actual impacts on the studied power systems are explored through the multi-objective

optimization approach.

For Scenario 1 under complete uncertainty, the observability of the islands is maximized

while utilizing a limited number of non-secure PMUs. With no prior information on false

data, each non-critical PMU is assumed equally vulnerable, and the corresponding weights

βi are set to one.

For Scenario 2 under partial knowledge of an attack, the vulnerable PMUs are isolated to

only a small part of the system. If PMU i is regarded as vulnerable, a distance of R = 3

is set to label all neighboring PMUs as vulnerable. A total of 27, 13, and 19 buses are

initially designated as untrustworthy for the 200, 500, and 2000-bus systems, respectively.

The parameters βi and R can be tuned by the operator when more information becomes

available. For both scenarios, additional objectives described are incorporated to maintain

island stability.

The scalarization parameters for the multi-objective optimization are given in Table 4.3 -

Table 4.5. In the weighted-sum approach, every solution is a non-dominated solution when
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Table 4.3: Scalarization Parameters

System γ1 γ2 γ3 γ4 εload εsize

200 0.1 1 1 1 10 40
500 0.01 1 1 1 30 50

2000 0.01 0.1 1 1 50 350

Table 4.4: Reference Solutions for Chebyshev’s Approach

System Rank Size(G ′)∗ Imbalance(MW) Flow Out(MW)
200 412 29 0 28.03
500 1028 24 0 274.26

2000 4232 303 0 5373.29

Table 4.5: Reference Solutions for Benson’s Approach

System Rank Size(G ′) Imbalance(MW) Flow Out(MW)
200 400 50 20 50
500 1000 200 350 2000

2000 4000 400 20 7000
∗ Size(G′) refers to the size of partition with vulnerable PMUs

weights γi > 0. The weights γi associated with the four objectives are given in Table 4.3.

In the ε-constraint approach [241], the objectives pertaining to the load-generation imbal-

ance and the size of the island with vulnerable PMUs are converted into inequalities to

reduce the objectives of the optimization. The tolerances εload and εsize, given in Table 4.3,

reflect to what extend the system operators can relax the objectives without incurring major

risks. Extremely tight tolerances may result in an empty feasible space.

Methods such as Chebyshev’s approach and Benson’s approach utilize ideal (reference)

solutions supplied by the system operator. For Chebyshev’s approach, the ideal solution

is considered as the best solution each objective can individually achieve in the feasible

region. Examples of the reference solutions are given in Table 4.4 . Chebyshev’s approach

aims to find the closest solution to the ideal solution [241].

For Benson’s approach, the reference solution is set as any dominant solution, the ex-

amples of which are given in Table 4.5. Benson’s approach generates a Pareto optimal

solution that is as far away from the dominant reference solution as possible [246].
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4.8.2 Performance of Controlled Islanding Under Uncertainty

For Scenario 1, the observability of islands is maximized using a minimum number of

non-secure PMUs, while maintaining island stability. The hierarchical approach in Ta-

ble 4.1 is used to solve the problem.

Fig. 4.6 demonstrates the performance of the developed islanding strategy for Scenario

1 under complete uncertainty considering the two objectives of interest in this paper, i.e.,

the rank of the islands and the percent of non-secure PMUs retained. It is observed in Fig.

4.6 that the percent of the retained rank in the islands reduces at a much slower rate as the

number of retained non-secure measurements is decreased. For example, retaining only

60% of the non-critical PMUs results in almost 90% observability in the islands for Sce-

nario 1. Additionally, when maintaining load-generation balance has a higher priority, the

islands have a total of 17.57 MW imbalance, and 437.61 MW line flow is disconnected.

When maintaining transient-stability has a higher priority, the line flow disconnection re-

duces to 240.05 MW at the expense of 348.62 MW of load-generation imbalance. Similar

results are noted for the 500-bus and 2000-bus systems in Fig. 4.6. This demonstrates that

the optimization problem is successful in identifying a small number of nonsecure PMUs

to maximize the island observability while maintaining island stability.

For Scenario 2, the size of the island with vulnerable PMUs is minimized while maximiz-

ing the island observability, steady-state and transient stability. A wide range of island-

ing solutions are obtained by varying the objective priority and the solution degradation

tolerance in the hierarchical optimization approach described in Table I. The results are

summarized in Table 4.6 - Table 4.8.

Table 4.6 illustrates the effect of optimal solution degradation. Consider rows 1 and 3 of

Table 4.6. With objective degradation tolerance of 50 MW for flow disconnection and 10

MW for load-generation imbalance, the size of the uncertain island G ′ decreases from 42
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Figure 4.6: Scenario 1: Maximizing island observability with minimum number of non-
secure measurements. For example, retaining 60% of the non-secure sensors help observe
almost 90% of the grid. The percentage of the retained rank in the islands reduces at a
much slower rate as the number of retained non-secure measurements is decreased.
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Table 4.6: Scenario 2: Hierarchical optimization for 200-bus system

Optimal Solution [Priority, Degradation]
Rank Size(G ′) Imbalance(MW) Flow Out(MW) Time(s)

196 [3,0] 42 [2,0] 9.80 [4,0] 28.03 [1,0] 0.27
197 [3,0] 29 [2,0] 32.3 [4,0] 54.16 [1,50] 0.36
197 [3,0] 38 [2,0] 0.0 [4,10] 35.76 [1,50] 0.69

Table 4.7: Scenario 2: Hierarchical Optimization for 500-bus system

Optimal Solution [Priority, Degradation]
Rank Size(G ′) Imbalance(MW) Flow Out(MW) Time(s)

499 [3,0] 191 [2,0] 226.35 [4,0] 274.26 [1,0] 0.69
500 [4,0] 24 [1,0] 337.67 [2,0] 1955.3 [3,0] 0.55
500 [1,0] 62 [3,0] 1944.58 [2,0] 1664.5 [4,0] 1.44
499 [3,0] 191 [4,0] 226.35 [2,0] 1664.5 [1,0] 0.70

Table 4.8: Scenario 2: Hierarchical Optimization for 2000-bus system

Optimal Solution [Priority, Degradation]
Rank Size(G ′) Imbalance(MW) Flow Out(MW) Time(s)

1979 [4,0] 312 [1,0] 370.5 [2,0] 8519.1 [3,0] 511.5
1980 [4,0] 352 [1,40] 0.0 [2,0] 5650.4 [3,0] 131
1891 [4,0] 351 [1,40] 8.9 [2,10] 5526.9 [3,0] 3.4

to 38, the imbalance improves from 9.8 MW to 0 MW. The improvements, however, come

at an expense of a 7.7 MW increase in flow outages. The system remains 98% observable

in both cases.

In addition to the objective degradation, hierarchical optimization allows the system opera-

tors to assign individual importance to objectives during the islanding process. The impact

of objective prioritization is explored in Table 4.7 for the 500-bus system. Consider row

1 in Table 4.7 - only 274 MW line powerflow is disconnected when the top priority is

minimizing the total line flow disconnection. On the other hand, consider row 2 when

isolating uncertain measurements is the top priority. The vulnerable PMUs are contained

in an island of size 4.8% of the entire system. This example shows the flexibility of the

optimization process in designing islands that cater to a particular operator’s need.

The solutions obtained from the hierarchical optimization approach are compared to dif-
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ferent scalarization methods. Here, Scenario 2 is considered for comparison purposes.

The results of the scalarization methods are summarized in Table 4.9 - Table 4.11. Con-

sider the 200-bus system in Table IX. For all four scalarization methods, it is observed that

flow disconnection of around 35 MW yields partitions with imbalances less than 3 MW

and observability around 98%. Additionally, the size of the uncertain island is restricted

to only 19% of the entire system. Fig. 4.7 illustrates the partitions for the 200-bus system

corresponding to row 1 of Table 4.9. All solutions are Pareto optimal.

The trade-offs between the Pareto optimal solutions are more prominent for larger systems

and hence investigated on the 500-bus and the 2000-bus systems. Consider the results for

the 500-bus system summarized in Table 4.10. The weighted-sum approach yields 0.36

MW imbalance and 1529 MW of flow disconnection while restricting the size of the is-

land with vulnerable PMUs to 16% of the size of the entire network. In comparison, the

optimal solution obtained from the ε−constraint approach reduces the size of the smaller

island by 38.75% at the expense of 321 MW of additional line flow outage and 5.7 MW

of additional imbalance. The Chebyshev method reduces the line MW flow outage by 541

MW compared to the ε−constraint, while drastically increasing the load-generation im-

balance to 517 MW, and expanding the size of the smaller island to 20% of the entire grid.

The partitions may collapse if the islands lack substantial black-start capability. Similar

observations are made for the 2000-bus system in Table 4.11. The results conducted on

the test systems demonstrate that the proposed recovery scheme is effective in isolating

attacks while creating balanced and observable islands. The optimal islanding decisions

ultimately depend on how system operators choose to maintain a balance between multiple

competing objectives.

The computation times for the hierarchical optimization are summarized in Tables 4.6 -

4.8 while those for the scalarization approaches are given in Table 4.12. The compari-

son demonstrates that hierarchical approaches often lead to a larger solution time. This is
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Table 4.9: Scenario 2: Scalarization Results for the 200-Bus System

Scalarization Rank Size(G ′) Imbalance(MW) Flow Out(MW)
Weighted-Sum 197 38 0.07 35.76
ε−Constraint 196 39 2.93 34.98
Chebyshev 197 38 0.07 35.76

Benson 197 38 0.07 35.76

Table 4.10: Scenario 2: Scalarization Results for the 500-Bus System

Scalarization Rank Size(G ′) Imbalance(MW) Flow Out(MW)
Weighted-Sum 499 80 0.36 1529.44
ε−Constraint 499 49 6.08 1850.77
Chebyshev 498 101 517.53 1309.32

Benson 499 80 0.36 1529.44

Table 4.11: Scenario 2: Scalarization Results for the 2000-Bus System

Scalarization Rank Size(G ′) Imbalance(MW) Flow Out(MW)
Weighted-Sum 1981 374 4.07 5468.49
ε−Constraint 1981 350 12.83 5518.02
Chebyshev 1979 340 1.85 5743.29

Benson 1980 353 0.02 5501.86

Figure 4.7: Details of the partitions for the 200 bus system corresponding to Scenario 2,
as described in row 1 of Table 4.9
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attributed to the fact that the hierarchical technique solves multiple single-objective prob-

lems in an iterative manner to obtain the final solution.

However, the provision for optimal solution degradation makes the hierarchical approach

particularly attractive for larger power systems when prompt islanding decisions are needed

at the expense of non-optimal but acceptable solutions. For example, as shown for the

2000-bus system in Table 4.8, the solution degradation reduces the computation time from

511s to 3.4s - a reduction of almost 99% at the expense of 4.45% decrease in observability

and 8.9 MW increase in imbalance. Solution degradation in fact offers similar flexibility

as the ε−constraint approach. The hierarchical method is more intuitive, as preferences on

objectives are assigned according to their importance.

In contrast, the correct choice of weights in scalarization methods may not be readily

determined unless multiple instances of the optimization problem are solved. Furthermore,

the reference solutions for Chebyshev and Benson’s approach have to be pre-determined,

which may not be feasible during the fast islanding decision-making process. A drawback

of the hierarchical approach is that the number of additional constraints that are imposed

in each iteration step increases as the number of objectives becomes large. This is of little

concern here as the number of objectives is limited to four in this chapter. Overall, the

hierarchical approach offers greater flexibility in designing islands in a very short period

at the expense of non-optimal but acceptable solutions.

Admittedly, the multi-objective islanding problem remains NP-complete and is compu-

tationally challenging. To improve the solution time, the integrality constraints on some

variables are relaxed and the impact on the optimal solution is investigated. For exam-

ple, when variables zi,j and wi,j are relaxed in the 200-bus system, binary solutions are

promptly obtained. Similar results are noted when the binary variable zi,j is relaxed for

the 500 and the 2000-bus systems. The improvements in the computation time are illus-

trated in Table. 4.12.
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Table 4.12: Simulation Time in (s) for Scalarization Methods

System 200 Bus 500 Bus 2000 Bus
Relaxation No Yes No Yes No Yes

Weighted Sum 0.07 0.05 0.63 0.18 69.96 0.70
ε-Constraint 0.00 0.00 0.30 0.18 10.00 1.58
Chebyshev 0.15 0.00 1.52 0.33 148.82 2.85

Benson 0.15 0.033 0.80 0.25 14.64 6.72

4.8.3 Comparison of multiple solutions

The approach introduced in this chapter allows system operators to create islands consid-

ering a wide spectrum of choices, which in turn affect the operation of the islands. For

example, a loss of substantial MW flow outage negatively impacts the transient stability

of the system, thereby increasing the chances of further outages. On the other hand, low

observability increases dependency on pseudo-measurements and yields poor state esti-

mation results. Furthermore, a higher load-generation imbalance results in load loss, large

frequency excursions, and increased reliance on black-start units.

The trade-off utility, TU, quantifies the preference of one optimal solution over the other

competing solutions. Consider the results in Table 4.10 for an evaluation on the trade-

offs. As the optimal solutions have different orders of magnitude, the total MW line flow

disconnection is weighted by 0.1 to ensure uniformity during comparison. Let the pre-

ferred solution r∗ corresponding to row 1 is r∗ = [80, 499, 0.36MW, 152.9MW]. The TU

between r∗ and all other solutions, as computed using equation (4.40) as,

TU =
max[(80−49),(152−130.9)]

max[(101−80),(499−498),(517−0.36),(6−0.36),(185−152)]

≈ 0.06

The TU for all points in Table 4.10 are similarly computed as [0.06, 0.10, 24.2, 0.06]. Solu-

tion r∗ has the lowest TU and is preferred over all other solutions. Intuitively, r∗ balances

all four objectives of (a) restricting the size of the uncertain islands, (b) minimizing loss of
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rank, (c) minimizing load-generation imbalance, and (d) minimizing the net flow outage,

among all other solutions.

4.8.4 Discussions

This section discusses the limitations of the developed islanding strategies and introduces

possible solutions. The first limitation arises when attacks are distributed and span mul-

tiple regions. In such scenarios, isolating vulnerable PMUs in one single island will not

be desired. While such large-scale distributed attacks are rare due to the inherent safety

measures of the electric grid, they are not impossible. The developed method can be ex-

tended to create multiple smaller islands to isolate attacks. This comes at the expense of

an increase in the number of binary variables, longer computation times, and difficulties

in the coordination of multiple smaller islands.

Second, the optimization problem of controlled islanding remains NP-hard. As future

work, the authors plan to explore approximation algorithms [247, 248]. These approxi-

mation techniques can help find near-optimal solutions and accelerate computation times

when a prompt and reliable islanding solution is desired.

Lastly, the set of candidate lines for controlled islanding is not fixed and changes with the

real-time load, generation, and flow information. To ensure line open signal is sent to the

correct set of circuit breakers during partitioning, additional studies leveraging topology

signals at substations are underway.

4.9 Conclusion

The growing sector of organized cyber-crime seeks to jeopardize power system operations

through increasing volume of sophisticated attacks. Carefully crafted threats can bypass

the existing cyber-security defense mechanisms, remain undetected and are capable of
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triggering widespread failures. This chapter presents controlled islanding methods that in-

corporate different degrees of PMU measurement uncertainties under false data injection

attacks. Uncertainties are considered under the the lack of knowledge, or partial knowl-

edge on PMU measurement trustworthiness. When attacks remain undetected, the impact

of measurements in each island is minimized by creating islands that require a minimal

number of PMU measurements for a state estimation solution. This allows system opera-

tors to allocate additional security to a minimum number of nodes in the network, thereby

improving recovery plans. When partial information on bad data is available, the impact

is minimized by isolating the vulnerable PMUs in a single island. This prevents malicious

attacks from spreading to larger sections of the grid.

The findings demonstrate that system operators can successfully limit the impact of bad

PMU data while creating islands that display maximal observability and sufficient steady-

state and transient stability margins. The developed approach offers considerable flexibil-

ity to operators in designing islands that cater to a particular objective. The improvements

to traditional islanding address post-incident analysis, enable quick recovery, and ensure

continuity of grid operations. Such a consistent and collaborative approach will help con-

tain threats and help power utilities minimize operational losses and financial threats in the

face of contingencies.





147

Chapter 5

Summary and Future Research

Electric power systems serve as the backbone of modern society by generating and trans-

mitting electrical power to geographically diverse customers. Often, these customers re-

quire power for critical loads such as hospitals, emergency response centers, and manu-

facturing process plants that are uninterruptible. It is therefore necessary for the power

systems to be highly reliable. The reliability of the electricity service is improved by

continuously monitoring the system state to detect and quickly mitigate any abnormal be-

havior. State estimation methods have been developed to estimate the state of the power

network based on measurements obtained from PMU and SCADA meters strategically

placed in the system. This has led to an increase in the dependency on the network com-

munication infrastructure. Consequently, this has ushered a new era of sophisticated cyber

attacks on the power state estimation. One such threat is false data injection attack that

aims to change time-critical measurements flowing through the communication network.

Such attack has been shown to cause incorrect generation dispatch, uneconomic opera-

tion, line overloads, voltage violations, increase in load shedding, and in the worst-case,

widespread failure of the power grid. This thesis carried out an extensive analysis on the at-

tack impacts, detection, and successful recovery methods from such growing cyber-threats.

This chapter summarizes the main findings of our work and provides recommendations for

future research directions.
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5.1 Summary

For the impact analysis of false data injection attacks, the research was set up in the follow-

ing way. On synthetic electric networks modeled after real systems, two different loading

conditions, winter low and summer high, were considered. Extensive 1-D and 2-D transfer

analysis were carried out to screen critical contingencies in the system. For each critical

contingency, the corresponding RAS were identified. These realistic power system scenar-

ios were utilized to estimate the risks associated with cyber intrusions, specifically attacks

that combined physical line failures with measurement falsification. Additional attacks

were modeled against RAS to block line disconnection trigger signals coming from auxil-

iary switch contacts of circuit breakers. To study the impact of line failures, a distributed

slack-bus cascading failure algorithm was used to assess whether attacks actually led to

widespread cascades. A new cyber-physical risk index was developed which combined

the actual impact on the system in terms of load lost, along with the effort needed by

the attacker to launch a successful coordinated false data attack. Additional indices were

proposed to quantify the attack impacts considering cascading failures, and controlled is-

landing.

5.1.1 Key Findings 1

Investigations revealed the following key outcomes,

1. In the studied power system test cases, it was observed that most coordinated false

data injection attacks did not lead to large scale outages. This was mainly because

attack neighborhoods are surrounded by load injection buses with no generators or

transformers inside. When lines connected to these load clusters are lost, power

is rerouted. When radial loads are lost, the power flow of lines serving the load

decreases, thereby reducing the chances of a cascade.
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2. Coordinated attacks resulted in subsequent line overloads and load shedding.

3. Widespread failures were mostly initiated when attacks were coordinated with loss of

generators, transformers or heavily loaded lines in the vicinity of large generators.

4. Successful attacks often required multiple PDCs to be compromised across different

utilities.

5. Feasible attack space largely depended on the distribution of zero injection buses in

the network.

Next, the historical PMU time series data was utilized to verify the correctness of PMU

measurements. The developed data filter was designed to be independent of the exist-

ing state estimation bad data detector. First, multi-variate voltage, current and power flow

measurement time series were collected from the phasor data concentrator data buffer prior

to each cycle of state estimation. Then, a convolutional neural network-based data classi-

fier was trained on the multi-variate time series data to detect various event signatures and

identify false data attacks. The detection method was based on the pairwise correlation be-

tween PMU time-series data. The convolutional neural network model was then compared

with other deep learning algorithms such as recurrent neural networks and long short term

memory, and traditional classifiers such as bagged and boosted trees. To ensure that the

proposed classifier is robust under different power system operating conditions, different

scenarios were considered with varying load-generation patterns and network topologies.

Additionally, the proposed false data attack detector was tested on various levels of mea-

surement noises and missing measurements.

5.1.2 Key Findings 2

It was found that,
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1. The CNN-based filter was able to identify false data attacks at a higher accuracy

rate compared to other deep learning and traditional classifiers such as RNN, LSTM,

SVM, and Bag and Boosted Trees.

2. The CNN model was successfully able to identify false data injection attacks un-

der a wide variety of power system load-generation and topology conditions. In

addition, the developed filter was found to exhibit significantly high accuracies un-

der instances of high signal-to-noise ratio in the PMU data, and cases of multiple

missing/garbage data.

3. While the detection method is extremely fast, one of the major challenge is the train-

ing time. However, this is of little concern as the model can be trained periodically

off-line at regional substations with limited data streams.

Finally, this study considered the worst-case situations when successful cyber-attacks have

already yielded severe consequences such as multiple line failures. Such worst case sce-

narios may arise due to a series of incorrect operator actions impacting critical lines and

transformers, combined with other system conditions such as faults and maintenance. The

mitigation strategy to limit the impact of coordinated false data attack was formulated as a

controlled islanding problem under PMU measurement uncertainties. Two multi-objective

islanding methods are developed that serve as an efficient post-attack mitigation strat-

egy when wrong PMU measurements remain completely or partially undetected. While

minimizing the attack impacts, the trade-offs between multiple objectives are quantified

on the observability, the steady-state stability, the transient-state stability, and the size of

newly formed islands. The multi-objective optimization was solved using hierarchical ap-

proaches and the optimal solutions were investigated by varying the objective priority, the

relative weights, and the solution degradation tolerance. The hierarchical approach was

then compared with various scalarization methods that transformed the multi-objective to

a single-objective problem.
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5.1.3 Key Findings 3

The results indicate the following key outcomes,

1. The developed controlled islanding methods is able to minimize the impacts of false

data attacks in each island, while creating islands that display maximal observabil-

ity, large steady state and transient state stability.

2. When attacks remain undetected, the developed method resulted in islands that re-

quire a minimal number of PMU measurements for a SE solution. This enables

operators to deploy security resources to a small subset of PMUs during the recov-

ery process.

3. When partial information on an attack is available, our method successfully isolated

vulnerable PMUs in a single island to enable quicker isolation of attacks.

4. It was further noted that the hierarchical approach of solving the multi-objective

problem gave considerable flexibility to system operators compared to scalarization

approaches in designing islands that cater to a particular objective

5. The modifications to traditional controlled islanding methods to incorporate attack

uncertainties improve the post-incident analysis, and ensure prompt recovery and

continuity of operations following a successful cyber attack.

5.2 Future Research Directions

Cyber attacks are a direct consequence of the increased dependency of smart grid architec-

ture on digital communication systems. This section highlights future research direction in

areas of recovery from successful attacks. While developing recovery plans to mitigate the

undesired attack consequences, it should be ensured that the recovery approach is resilient



152

in itself to prevent further failures. With this motivation, we aim to investigate different

operational uncertainties as an effort to improve the resiliency of the newly formed islands.

The operational uncertainties will be investigated on (1) traditional islanding approach and

(2) the islanding approach developed in Chapter 4 of this dissertation. Traditional con-

trolled islanding approach disconnects pre-selected circuit breakers, and will be consid-

ered as a base case. Multi-objective controlled islanding schemes from Chapter 4 will be

used to create islands that consider minimizing the total line MW and MVAR flow discon-

nection, maximizing the system observability, and minimizing the total load-generation

imbalance in each island.

The resiliency of the islands will be investigated under various scenarios of uncertainty.

Some of these include contingencies due to thermal violations or faults and reactive power

violations due to voltage constraints inside the smaller island. Further, uncertainty due

to failure and loss of renewable energy resources, variation in capacity production, and

renewable prediction errors due to intermittency, will be incorporated in the study. To

this end, a modified failure interaction model, based on [249] will be utilized to study

the impact, and the method will further be verified using an AC-based cascading failure

algorithm. The results of the analysis will be utilized to develop a resilience metric that

assesses the stability of the newly formed islands under multiple operational uncertain-

ties. The information from the developed resilience metric will enable system operators

to improve the initial islanding procedures, and develop targeted corrective actions to pre-

vent the smaller islands from collapsing. All simulations will be carried out under the

synthetic Illinois 200-bus and the South Carolina 500-bus systems under different system

load-generation conditions.
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Glossary

AC Alternating Current.

ACE Area Control Error.

AGC Automatic Generation Control.

AMI Advanced Metering Infrastructure.

AVR Automatic Voltage Regulator.

CDF Cumulative Distribution Function.

CIP Critical Infrastructure Protection.

CNN Convolutional Neural Network.

DC Direct Current.

DFR Decreasing Failure Rate.

DLR Dynamic Line Rating.

DOE Department Of Energy.

DS Distributed Slack.

EENS Expected Energy Not Served.

EMS Energy Management System.
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FACTS Flexible Ac Transmission System.

FDA/FDIA False Data Attack/False Data Injection Attack.

GOOSE Generic Object Oriented Substation Event.

GPS Global Positioning System.

IEC International Electrotechnical Commission.

IEEE Institute Of Electrical And Electronics Engineers.

IFR Increasing Failure Rate.

IP Internet Protocol.

KCL Kirchhoff’s Current Law.

KKT Karush–Kuhn–Tucker Conditions.

KVL Kirchhoff’s Voltage Law.

LAN Local Area Network.

LMP Locational Marginal Price.

LOCF Loss Of Observability After Cascading Failures.

LOCI Loss Of Observability After Controlled Islanding.

LR Load Redistribution.

LRCI Lines Recoverable After Controlled Islanding.
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LSTM Long Short Term Memory.

MVA Mega Volt Ampere.

MW Mega Watt.

NERC North American Electric Reliability Corporation.

NISTIR National Institute Of Standards And Technology Interagency Internal Report.

NMRC Number Of PMUs Required To Compromise.

NP Non-Deterministic Polynomial-Time.

OPF Optimal Power Flow.

PCA Principal Component Analysis.

PDC Phasor Data Concentrator.

PMU Phasor Measurement Unit.

RAS Remedial Action Schemes.

RNN Recurrent Neural Network.

RTCA Real Time Contingency Analysis.

RTU Remote Terminal Unit.

SCADA Supervisory Control And Data Acquisition.

SCED Security Constraint Economic Dispatch.
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SCOPF Security Constraint Optimal Power Flow.

SE State Estimation.

SMP Semi-Markov Process.

SNR Signal-To-Noise Ratio.

SOL System Operating Limits.

SQL Structured Query Language.

SVM Support Vector Machine.

TU Trade-Off Utility.

VAR Volt-Ampere Reactive.

WAN Wide Area Network.
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