3,295 research outputs found

    Photochemical transformation of perfluoroalkyl acid precursors in water using engineered nanomaterials

    Get PDF
    The production of perfluoroalkyl acids (PFAAs) has been phased out over recent decades; however, no significant decline in their environmental concentrations has been observed. This is partly due to the photochemical decomposition of PFAAs precursors (PrePFAAs) which remain in extensive use. The decomposition of PrePFAAs may be accelerated by the light-activated engineered nanomaterials (ENMs) in water. In light of this hypothesis, we investigated the photochemical transformation of three PrePFAAs, which are 8:2 fluorotelomer sulfonic acid (8:2 FTSA), 8:2 fluorotelomer alcohol (8:2 FTOH), and 2-(N-ethylperfluorooctane-1-sulfonamido ethyl] phosphate (SAmPAP), in the presence of six ENMs under simulated sunlight irradiation. The transformation rates of 8:2 FTSA and 8:2 FTOH were increased by 2–6 times when in the presence of six ENMs. However, most of ENMs appeared to inhibit the decomposition of SAmPAP. The transformation rates of PrePFAAs were found to depend on the yield of reactive oxygen species generated by ENMs, but the rates were also related to compound photo-stability, adsorption to surfaces, and photo-shielding effects. The PrePFAAs are transformed to perfluorooctanoic acid (PFOA) or/and perfluorooctane sulfonate (PFOS) with higher toxicity and longer half-life, PFOA or PFOS and a few PFAAs having shorter carbon chain lengths. Higher concentrations of the PFAAs photodegradation products were observed in the presence of most of the ENMs

    Perfluorinated alkyl substances (PFASs) in northern Spain municipal solid waste landfill leachates

    Get PDF
    Landfill leachates have been recognized as significant secondary sources of poly- and perfluoroalkyl substances (PFASs). This study presents data on the occurrence and concentration of 11 perfluoroalkyl carboxylates (PFCAs) and 5 perfluoroalkyl sulfonates (PFSAs) in leachates from 4 municipal solid waste landfill sites located across northern Spain. To the best of our knowledge, this is the first report of the presence of PFASs in Spanish landfill leachates. Two of the landfill sites applied on-site treatment using membrane bioreactors (MBR), and its effect on PFASs occurrence is also reported. Total PFASs (∑PFASs) in raw leachates reached 1378.9 ng/L, while in treated samples ∑PFASs was approximately two-fold (3162.3 ng/L). PFCAs accounted for the majority of the detected PFASs and perfluorooctanoic acid (PFOA) was the dominant compound in raw leachates (42.6%), followed by shorter chain PFHxA (30.1%), PFPeA and PFBA. The age of the sites might explain the PFASs pattern found in raw leachates as all of them were stabilized leachates. However, PFASs profile was different in treated samples where the most abundant compound was PFHxA (26.5%), followed by linear perfluorobutane sulfonate (L-PFBS) (18.7%) and PFOA (17.7%). The overall increase of the PFASs content as well as the change in the PFASs profile after the MBR treatment, could be explained by the possible degradation of PFASs precursors such as fluorotelomer alcohols or fluorotelomer sulfonates. Using the volume of leachates generated in the landfill sites, that served 1.8 million people, the discharge of 16 ∑PFASs contained in the landfill leachates was estimated as 1209 g/year.The authors thank financial support from the Spanish Ministry of Economy and Competitiveness (Project CTM2013-44081-R)

    PFASs: What can we learn from the European Human Biomonitoring Initiative HBM4EU

    Get PDF
    Per- and polyfluoroalkyl substances (PFASs) were one of the priority substance groups selected which have been investigated under the ambitious European Joint programme HBM4EU (2017–2022). In order to answer policy relevant questions concerning exposure and health effects of PFASs in Europe several activities were developed under HBM4EU namely i) synthesis of HBM data generated in Europe prior to HBM4EU by developing new platforms, ii) development of a Quality Assurance/Quality Control Program covering 12 biomarkers of PFASs, iii) aligned and harmonized human biomonitoring studies of PFASs. In addition, some cohort studies (on motherchild exposure, occupational exposure to hexavalent chromium) were initiated, and literature researches on risk assessment of mixtures of PFAS, health effects and effect biomarkers were performed. The HBM4EU Aligned Studies have generated internal exposure reference levels for 12 PFASs in 1957 European teenagers aged 12–18 years. The results showed that serum levels of 14.3% of the teenagers exceeded 6.9 μg/L PFASs, which corresponds to the EFSA guideline value for a tolerable weekly intake (TWI) of 4.4 ng/kg for some of the investigated PFASs (PFOA, PFOS, PFNA and PFHxS). In Northern and Western Europe, 24% of teenagers exceeded this level. The most relevant sources of exposure identified were drinking water and some foods (fish, eggs, offal and locally produced foods). HBM4EU occupational studies also revealed very high levels of PFASs exposure in workers (P95: 192 μg/L in chrome plating facilities), highlighting the importance of monitoring PFASs exposure in specific workplaces. In addition, environmental contaminated hotspots causing high exposure to the population were identified. In conclusion, the frequent and high PFASs exposure evidenced by HBM4EU strongly suggests the need to take all possible measures to prevent further contamination of the European population, in addition to adopting remediation measures in hotspot areas, to protect human health and the environment. HBM4EU findings also support the restriction of the whole group of PFASs. Further, research and definition for additional toxicological dose-effect relationship values for more PFASs compounds is neededEuropean Union’s Horizon 2020 research and innovation program under grant agreement No 73303

    Per- and poly-fluoroalkyl substances (PFASs) in the urban, industrial, and background atmosphere of Northeastern China coast around the Bohai Sea: Occurrence, partitioning, and seasonal variation

    Get PDF
    Air samples were collected using high-volume samplers at two coastal towns on the Bohai Sea in China, 320 km apart, and at a background site (North Huangcheng Island) in the Bohai Sea, 50 km from the coast. A suite of neutral and ionic per- and poly-fluoroalkyl substances (PFASs) was investigated. Urban activity was related to high levels of neutral PFASs at Tianjin while perfluorooctanoic carboxylic acid (PFOA) was dominant in the atmosphere at Weifang, possibly due to industrial sources. Polyfluoroalkyl phosphoric acid diesters (diPAPs) occurred in the particle phase only, with a total concentration range of 0.02-6.72 pg m(-3). The dominant homologue was 6:2 diPAP. PFASs profiles at NHI suggested direct atmospheric transport of neutral and ionic PFASs from source regions. Temperature-dependent partitioning of fluorotelomer alcohols (FTOHS) was observed in winter, when total concentrations and particle-phase fractions of FTOHs were significantly higher as compared to those in summer. Correlation analyses suggested more active gas-phase degradation of FTOHs in summer and likely heterogeneous degradation in both seasons. Overall, it is necessary to account for ionic PFASs in both gas and particle phases and particulate matter was important for atmospheric transport and for determining the fate of PFASs, especially in areas close to a source region. (C) 2017 Elsevier Ltd. All rights reserved.</p

    Zürich II Statement on Per- and Polyfluoroalkyl Substances (PFASs): Scientific and Regulatory Needs

    Get PDF
    Per- and polyfluoroalkyl substances (PFASs) are a class of synthetic organic chemicals of global concern. A group of 36 scientists and regulators from 18 countries held a hybrid workshop in 2022 in Zürich, Switzerland. The workshop, a sequel to a previous Zürich workshop held in 2017, deliberated on progress in the last five years and discussed further needs for cooperative scientific research and regulatory action on PFASs. This review reflects discussion and insights gained during and after this workshop and summarizes key signs of progress in science and policy, ongoing critical issues to be addressed, and possible ways forward. Some key take home messages include: 1) understanding of human health effects continues to develop dramatically, 2) regulatory guidelines continue to drop, 3) better understanding of emissions and contamination levels is needed in more parts of the world, 4) analytical methods, while improving, still only cover around 50 PFASs, and 5) discussions of how to group PFASs for regulation (including subgroupings) have gathered momentum with several jurisdictions proposing restricting a large proportion of PFAS uses. It was concluded that more multi-group exchanges are needed in the future and that there should be a greater diversity of participants at future workshops
    • …
    corecore