156 research outputs found

    Adaptive-Truncated-HARQ-Aided Layered Video Streaming Relying on Interlayer FEC Coding

    Full text link

    Hierarchical colour-shift-keying aided layered video streaming for the visible light downlink

    No full text
    Colour-shift keying (CSK) constitutes an important modulation scheme conceived for the visible light communications (VLC). The signal constellation of CSK relies on three different-color light sources invoked for information transmission. The CSK constellation has been optimized for minimizing the bit error rate, but no effort has been invested in investigating the feasibility of CSK aided unequal error protection (UEP) schemes conceived for video sources. Hence, in this treatise, we conceive a hierarchical CSK (HCSK) modulation scheme based on the traditional CSK, which is capable of generating interdependent layers of signals having different error probability, which can be readily reconfigured by changing its parameters. Furthermore, we conceived an HCSK design example for transmitting scalable video sources with the aid of a recursive systematic convolutional (RSC) code. An optimization method is conceived for enhancing the UEP and for improving the quality of the received video. Our simulation results show that the proposed optimized-UEP 16-HCSK-RSC system outperforms the traditional equal error protection scheme by ~ 1.7 dB of optical SNR at a peak signal-to-noise ratio of 37 dB, while optical SNR savings of up to 6.5 dB are attained at a lower PSNR of 36 dB

    Ensuring compliance with data privacy and usage policies in online services

    Get PDF
    Online services collect and process a variety of sensitive personal data that is subject to complex privacy and usage policies. Complying with the policies is critical, often legally binding for service providers, but it is challenging as applications are prone to many disclosure threats. We present two compliance systems, Qapla and Pacer, that ensure efficient policy compliance in the face of direct and side-channel disclosures, respectively. Qapla prevents direct disclosures in database-backed applications (e.g., personnel management systems), which are subject to complex access control, data linking, and aggregation policies. Conventional methods inline policy checks with application code. Qapla instead specifies policies directly on the database and enforces them in a database adapter, thus separating compliance from the application code. Pacer prevents network side-channel leaks in cloud applications. A tenant’s secrets may leak via its network traffic shape, which can be observed at shared network links (e.g., network cards, switches). Pacer implements a cloaked tunnel abstraction, which hides secret-dependent variation in tenant’s traffic shape, but allows variations based on non-secret information, enabling secure and efficient use of network resources in the cloud. Both systems require modest development efforts, and incur moderate performance overheads, thus demonstrating their usability.Onlinedienste sammeln und verarbeiten eine Vielzahl sensibler persönlicher Daten, die komplexen Datenschutzrichtlinien unterliegen. Die Einhaltung dieser Richtlinien ist häufig rechtlich bindend für Dienstanbieter und gleichzeitig eine Herausforderung, da Fehler in Anwendungsprogrammen zu einer unabsichtlichen Offenlegung führen können. Wir präsentieren zwei Compliance-Systeme, Qapla und Pacer, die Richtlinien effizient einhalten und gegen direkte und indirekte Offenlegungen durch Seitenkanäle schützen. Qapla verhindert direkte Offenlegungen in datenbankgestützten Anwendungen. Herkömmliche Methoden binden Richtlinienprüfungen in Anwendungscode ein. Stattdessen gibt Qapla Richtlinien direkt in der Datenbank an und setzt sie in einem Datenbankadapter durch. Die Konformität ist somit vom Anwendungscode getrennt. Pacer verhindert Netzwerkseitenkanaloffenlegungen in Cloud-Anwendungen. Geheimnisse eines Nutzers können über die Form des Netzwerkverkehr offengelegt werden, die bei gemeinsam genutzten Netzwerkelementen (z. B. Netzwerkkarten, Switches) beobachtet werden kann. Pacer implementiert eine Tunnelabstraktion, die Geheimnisse im Netzwerkverkehr des Nutzers verbirgt, jedoch Variationen basier- end auf nicht geheimen Informationen zulässt und eine sichere und effiziente Nutzung der Netzwerkressourcen in der Cloud ermöglicht. Beide Systeme erfordern geringen Entwicklungsaufwand und verursachen einen moderaten Leistungsaufwand, wodurch ihre Nützlichkeit demonstriert wird

    Error Resilience in Heterogeneous Visual Communications

    Get PDF
    A critical and challenging aspect of visual communication technologies is to immunize visual information to transmission errors. In order to effectively protect visual content against transmission errors, various kinds of heterogeneities involved in multimedia delivery need to be considered, such as compressed stream characteristics heterogeneity, channel condition heterogeneity, multi-user and multi-hop heterogeneity. The main theme of this dissertation is to explore these heterogeneities involved in error-resilient visual communications to deliver different visual content over heterogeneous networks with good visual quality. Concurrently transmitting multiple video streams in error-prone environment faces many challenges, such as video content characteristics are heterogeneous, transmission bandwidth is limited, and the user device capabilities vary. These challenges prompt the need for an integrated approach of error protection and resource allocation. One motivation of this dissertation is to develop such an integrated approach for an emerging application of multi-stream video aggregation, i.e. multi-point video conferencing. We propose a distributed multi-point video conferencing system that employs packet division multiplexing access (PDMA)-based error protection and resource allocation, and explore the multi-hop awareness to deliver good and fair visual quality of video streams to end users. When the transport layer mechanism, such as forward error correction (FEC), cannot provide sufficient error protection on the payload stream, the unrecovered transmission errors may lead to visual distortions at the decoder. In order to mitigate the visual distortions caused by the unrecovered errors, concealment techniques can be applied at the decoder to provide an approximation of the original content. Due to image characteristics heterogeneity, different concealment approaches are necessary to accommodate different nature of the lost image content. We address this heterogeneity issue and propose to apply a classification framework that adaptively selects the suitable error concealment technique for each damaged image area. The analysis and extensive experimental results in this dissertation demonstrate that the proposed integrated approach of FEC and resource allocation as well as the new classification-based error concealment approach can significantly outperform conventional error-resilient approaches

    Enhancing Usability, Security, and Performance in Mobile Computing

    Get PDF
    We have witnessed the prevalence of smart devices in every aspect of human life. However, the ever-growing smart devices present significant challenges in terms of usability, security, and performance. First, we need to design new interfaces to improve the device usability which has been neglected during the rapid shift from hand-held mobile devices to wearables. Second, we need to protect smart devices with abundant private data against unauthorized users. Last, new applications with compute-intensive tasks demand the integration of emerging mobile backend infrastructure. This dissertation focuses on addressing these challenges. First, we present GlassGesture, a system that improves the usability of Google Glass through a head gesture user interface with gesture recognition and authentication. We accelerate the recognition by employing a novel similarity search scheme, and improve the authentication performance by applying new features of head movements in an ensemble learning method. as a result, GlassGesture achieves 96% gesture recognition accuracy. Furthermore, GlassGesture accepts authorized users in nearly 92% of trials, and rejects attackers in nearly 99% of trials. Next, we investigate the authentication between a smartphone and a paired smartwatch. We design and implement WearLock, a system that utilizes one\u27s smartwatch to unlock one\u27s smartphone via acoustic tones. We build an acoustic modem with sub-channel selection and adaptive modulation, which generates modulated acoustic signals to maximize the unlocking success rate against ambient noise. We leverage the motion similarities of the devices to eliminate unnecessary unlocking. We also offload heavy computation tasks from the smartwatch to the smartphone to shorten response time and save energy. The acoustic modem achieves a low bit error rate (BER) of 8%. Compared to traditional manual personal identification numbers (PINs) entry, WearLock not only automates the unlocking but also speeds it up by at least 18%. Last, we consider low-latency video analytics on mobile devices, leveraging emerging mobile backend infrastructure. We design and implement LAVEA, a system which offloads computation from mobile clients to edge nodes, to accomplish tasks with intensive computation at places closer to users in a timely manner. We formulate an optimization problem for offloading task selection and prioritize offloading requests received at the edge node to minimize the response time. We design and compare various task placement schemes for inter-edge collaboration to further improve the overall response time. Our results show that the client-edge configuration has a speedup ranging from 1.3x to 4x against running solely by the client and 1.2x to 1.7x against the client-cloud configuration

    The mobile Internet report

    Get PDF
    Key ponts Material wealth creation / destruction should surpass earlier computing cycles. The mobile Internet cycle, the 5th cycle in 50 years, is just starting. Winners in each cycle often create more market capitalization than in the last. New winners emerge, some incumbents survive – or thrive – while many past winners falter. The mobile Internet is ramping faster than desktop Internet did, and we believe more users may connect to the Internet via mobile devices than desktop PCs within 5 years. Five IP-based products / services are growing / converging and providing the underpinnings for dramatic growth in mobile Internet usage – 3G adoption + social networking + video + VoIP + impressive mobile devices. Apple + Facebook platforms serving to raise the bar for how users connect / communicate – their respective ramps in user and developer engagement may be unprecedented. Decade-plus Internet usage / monetization ramps for mobile Internet in Japan plus desktop Internet in developed markets provide roadmaps for global ramp and monetization. Massive mobile data growth is driving transitions for carriers and equipment providers. Emerging markets have material potential for mobile Internet user growth. Low penetration of fixed-line telephone and already vibrant mobile value-added services mean that for many EM users and SMEs, the Internet will be mobile

    Concurrent multipath transmission to improve performance for multi-homed devices in heterogeneous networks

    Get PDF
    Recent network technology developments have led to the emergence of a variety of access network technologies - such as IEEE 802.11, wireless local area network (WLAN), IEEE 802.16, Worldwide Interoperability for Microwave Access (WIMAX) and Long Term Evolution (LTE) - which can be integrated to offer ubiquitous access in a heterogeneous network environment. User devices also come equipped with multiple network interfaces to connect to the different network technologies, making it possible to establish multiple network paths between end hosts. However, the current connectivity settings confine the user devices to using a single network path at a time, leading to low utilization of the resources in a heterogeneous network and poor performance for demanding applications, such as high definition video streaming. The simultaneous use of multiple network interfaces, also called bandwidth aggregation, can increase application throughput and reduce the packets' end-to-end delays. However, multiple independent paths often have heterogeneous characteristics in terms of offered bandwidth, latency and loss rate, making it challenging to achieve efficient bandwidth aggregation. For instance, striping the flow's packets over multiple network paths with different latencies can cause packet reordering, which can significantly degrade performance of the current transport protocols. This thesis proposes three new solutions to mitigate the effects of network path heterogeneity on the performance of various concurrent multipath transmission settings. First, a network layer solution is proposed to stripe packets of delay-sensitive and high-bandwidth applications for concurrent transmission across multiple network paths. The solution leverages the paths' latency heterogeneity to reduce packet reordering, leading to minimal reordering delay, which improves performance of delay-sensitive applications. Second, multipath video streaming is developed for H.264 scalable video, where the reference video packets are adaptively assigned to low loss network paths to reduce drifting errors, thus combatting H.264 video distortion effectively. Finally, a new segment scheduling framework - which carefully considers path heterogeneity - is incorporated into the IETF Multipath TCP to improve throughput performance. The proposed solutions have been validated using a series of simulation experiments. The results reveal that the proposed solutions can enable efficient bandwidth aggregation for concurrent multipath transmission over heterogeneous network paths
    corecore