
W&M ScholarWorks W&M ScholarWorks

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects

Summer 2018

Enhancing Usability, Security, and Performance in Mobile Enhancing Usability, Security, and Performance in Mobile

Computing Computing

Shanhe Yi
College of William and Mary - Arts & Sciences, yishanhe0203@gmail.com

Follow this and additional works at: https://scholarworks.wm.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Yi, Shanhe, "Enhancing Usability, Security, and Performance in Mobile Computing" (2018). Dissertations,
Theses, and Masters Projects. Paper 1530192793.
http://dx.doi.org/10.21220/s2-pka0-2q70

This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M
ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized
administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1530192793&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wm.edu%2Fetd%2F1530192793&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.21220/s2-pka0-2q70
mailto:scholarworks@wm.edu

Enhancing Usability, Security, and Performance in Mobile Computing

Shanhe Yi

Xiangyang, Hubei, China

Master of Science, Huazhong University of Science and Technology, 2013
Bachelor of Engineering, Huazhong University of Science and Technology, 2010

A Dissertation presented to the Graduate Faculty
of The College of William & Mary in Candidacy for the Degree of

Doctor of Philosophy

Department of Computer Science

College of William & Mary
May, 2018

© Copyright by Shanhe Yi 2018

ABSTRACT
We have witnessed the prevalence of smart devices in every aspect of human
life. However, the ever-growing smart devices present significant challenges in
terms of usability, security, and performance. First, we need to design new
interfaces to improve the device usability which has been neglected during the
rapid shift from hand-held mobile devices to wearables. Second, we need to
protect smart devices with abundant private data against unauthorized users.
Last, new applications with compute-intensive tasks demand the integration of
emerging mobile backend infrastructure. This dissertation focuses on
addressing these challenges.

First, we present GlassGesture, a system that improves the usability of Google
Glass through a head gesture user interface with gesture recognition and
authentication. We accelerate the recognition by employing a novel similarity
search scheme, and improve the authentication performance by applying new
features of head movements in an ensemble learning method. As a result,
GlassGesture achieves around 96% gesture recognition accuracy. Furthermore,
GlassGesture accepts authorized users in nearly 92% of trials, and rejects
attackers in nearly 99% of trials.

Next, we investigate the authentication between a smartphone and a paired
smartwatch. We design and implement WearLock, a system that utilizes one’s
smartwatch to unlock one’s smartphone via acoustic tones. We build an acoustic
modem with sub-channel selection and adaptive modulation, which generates
modulated acoustic signals to maximize the unlocking success rate against
ambient noise. We leverage the motion similarities of the devices to eliminate
unnecessary unlocking. We also offload heavy computation tasks from the
smartwatch to the smartphone to shorten response time and save energy. The
acoustic modem achieves a low bit error rate (BER) of 8%. Compared to
traditional manual personal identification numbers (PINs) entry, WearLock not
only automates the unlocking but also speeds it up by at least 18%.

Last, we consider low-latency video analytics on mobile devices, leveraging
emerging mobile backend infrastructure. We design and implement LAVEA, a
system which offloads computation from mobile clients to edge nodes, to
accomplish tasks with intensive computation at places closer to users in a timely
manner. We formulate an optimization problem for offloading task selection and
prioritize offloading requests received at the edge node to minimize the
response time. We design and compare various task placement schemes for
inter-edge collaboration to further improve the overall response time. Our results
show that the client-edge configuration has a speedup ranging from 1.3x to 4x
against running solely by the client and 1.2x to 1.7x against the client-cloud
configuration.

TABLE OF CONTENTS

Acknowledgments vii

Dedication viii

List of Tables ix

List of Figures x

1 Introduction 1

1.1 Challenges . 2

1.2 Head Gesture Interface of Smart Glasses 4

1.2.1 Problem Statements . 4

1.2.2 Contributions . 5

1.3 Smartwatch-assisted Smartphone Authentication 5

1.3.1 Problem Statements . 6

1.3.2 Contributions . 7

1.4 Edge Computing based Mobile Backend 7

1.4.1 Problem Statements . 8

1.4.2 Contributions . 9

1.5 Dissertation Organization . 9

2 GlassGesture: Exploring Head Gesture Interface of Smart Glasses 10

2.1 Introduction . 10

2.2 Related Work . 14

i

2.3 GlassGesture System Design . 15

2.3.1 System Overview . 15

2.3.2 Head Gesture Recognition 16

2.3.2.1 Head Gesture Library 17

2.3.2.2 Activity Detector 19

2.3.2.3 Gesture Detector 19

2.3.2.4 Gesture Recognizer 20

2.3.2.5 Efficient Similarity Search 22

2.3.3 Head-Gesture-based Authentication 24

2.3.3.1 Two-factor Authentication using Head Gesture . . 24

2.3.3.2 Threat Model . 25

2.3.3.3 Authentication Setup 26

2.3.3.4 Feature Set and Data Collection 26

2.3.3.5 Training and Classification 27

2.3.3.6 Feature Selection 28

2.4 Evaluation . 29

2.4.1 Gesture Recognition . 29

2.4.1.1 Gesture Recognition with command gestures . . . 29

2.4.1.2 Number and Alphabet Input 30

2.4.1.3 Gesture Recognition Performance 31

2.4.2 Authentication Evaluation 32

2.4.2.1 Impact of Number of Training Samples 33

2.4.2.2 Authentication against Type-II attacker 34

2.4.2.3 Impact of Peak Features 35

2.4.2.4 Impact of Feature Selection 35

2.4.2.5 Imitator Attack . 36

2.4.3 System Performance . 37

ii

2.4.4 Other considerations . 37

2.5 Chapter Summary . 38

3 WearLock: Unlocking Your Phone via Acoustics using Smartwatch 39

3.1 Introduction . 39

3.2 System Overview . 43

3.2.1 System Architecture . 43

3.2.2 Smartwatch-assisted Unlocking Protocol 44

3.3 Acoustic Modem Design . 45

3.3.1 The Acoustic Channel . 46

3.3.1.1 Ambient Noise . 46

3.3.1.2 Sound propagation and attenuation 46

3.3.1.3 Multipath Effect 48

3.3.1.4 Microphone and Speaker Characteristics 49

3.3.2 OFDM Design . 49

3.3.2.1 Modulation and Demodulation 49

3.3.2.2 Sub-carrier Frequency Range 50

3.3.2.3 Preamble Design 51

3.3.2.4 Silence Detection and Signal Detection 51

3.3.2.5 Synchronization 51

3.3.2.6 Channel Estimation and Equalization 52

3.3.2.7 Adaptive Modulation 53

3.4 Secure Unlocking . 56

3.4.1 Threat Model . 56

3.4.2 One Time Password . 57

3.4.3 Security Discussion. 57

3.4.3.1 Brutal Force Attack 57

iii

3.4.3.2 Co-located Attack 58

3.4.3.3 Record and Replay Attack 58

3.4.3.4 Relay Attack . 59

3.5 Performance Optimizations . 59

3.5.1 Computation Offloading . 60

3.5.2 Computation Reduction . 61

3.5.2.1 Leveraging Motion Sensor-based Filtering 61

3.6 Evaluation . 62

3.6.1 Implementation Details . 62

3.6.2 Communication Range . 63

3.6.3 Adaptive Modulation . 64

3.6.4 Sensor-based Filtering . 65

3.6.5 System Delay . 65

3.6.6 Field Test . 67

3.7 Discussion and Limitations . 68

3.7.1 Non-omnidirectional Microphone/Speaker 68

3.7.2 Acoustic Frequency Range 68

3.7.3 Bluetooth Proximity . 69

3.8 Related Work . 69

3.8.1 Acoustic Communication on Mobile Devices 69

3.8.2 Reduced-Effort Authentication 70

3.9 Chapter Summary . 71

4 LAVEA: Latency-aware Video Analytics on Edge Computing Platform 72

4.1 Introduction . 72

4.2 Background and Motivation . 75

4.2.1 Edge Computing Network 75

iv

4.2.2 Serverless Architecture . 77

4.2.3 Video Edge Analytics for Public Safety 78

4.3 LAVEA System Design . 80

4.3.1 Design Goals . 80

4.3.2 System Overview . 80

4.3.2.1 Edge Computing Node 80

4.3.2.2 Edge Client . 81

4.3.3 Edge Computing Services 81

4.3.3.1 Profiler Service . 81

4.3.3.2 Monitoring Service 82

4.3.3.3 Offloading Service 83

4.4 Edge-front Offloading . 83

4.4.1 Task Offloading System Model and Problem Formulation . 84

4.4.2 Prioritizing Edge Task Queue 88

4.5 Inter-edge Collaboration . 89

4.5.1 Motivation and Challenges 89

4.5.2 Inter-Edge Task Placement Schemes 90

4.6 System Implementation and Performance Evaluation 93

4.6.1 Implementation Details . 93

4.6.2 Evaluation Setup . 93

4.6.2.1 Testbed . 93

4.6.2.2 Datasets . 94

4.6.3 Task Profiler . 94

4.6.4 Offloading Task Selection 95

4.6.5 Edge-front Task Queue Prioritizing 98

4.6.6 Inter-Edge Collaboration . 99

4.7 Related Work . 101

v

4.7.1 Distributed Data Processing 102

4.7.2 Computation Offloading . 103

4.8 Discussions and Limitations . 103

4.9 Chapter Summary . 104

5 Conclusion and Future Work 106

Bibliography 110

vi

ACKNOWLEDGMENTS

This dissertation would not have been possible without the guidance,
encouragements, patience, and support from many kind and talented people.

I would like to express my deepest gratitude to my advisor, Professor Qun Li. In
the past 6 years, he helped me grow my academic career, by patient guidance,
hearty encouragements, constructive discussions, and unconditional support.
His passion, critical thinking, rigor, energy, hardworking, and wisdom will always
inspire me. It has been my greatest honor to be one of his students.

I would like to thank my dissertation committee members, Professor Weizhen
Mao, Professor Andreas Stathopoulos, Professor Dmitry Evtyushkin and
Professor Kai Zeng, for their tremendous encouragements, valuable feedbacks,
and insightful comments. I would like to give special thanks to Dr. Kai Zeng, who
introduced me to wireless network research and opened the door for me to
pursue the academic path before I decided to apply to a PhD program.

I am grateful to my colleagues and collaborators including Dr. Zhengrui Qin,
Zijiang Hao, Yutao Tang, Lele Ma, Dr. Ed Novak, Dr. Yafeng Yin, Yunlong Mao,
Dr. Fengyuan Xu, Dr. Hao Han, Qingyang Zhang, Cheng Li, Dr. Hui Zeng, and
Dr. Weisong Shi. I appreciate all the collaborations and helpful discussions that I
had with them over the years.

I would like to thank our Computer Science Department Chair, Professor Robert
Michael Lewis, Graduate Director Professor Denys Poshyvanyk and former
Graduate Directors Professor Gang Zhou and Professor Evgenia Smirni, and the
fantastic Computer Science administration team, Vanessa Godwin, Jacqulyn
Johnson, and Dale Hayes.

vii

I would like to dedicate this dissertation to my beloved wife and my parents for

their endless love, support, and sacrifice.

viii

LIST OF TABLES

2.1 Head gesture candidates. 18

2.2 FPR and TPR of authentication on two gestures. 34

2.3 Average Time Cost . 37

3.1 Sensor-based Filtering . 65

3.2 Field Test Result. The average BER is around 0.08. 68

ix

LIST OF FIGURES

2.1 Head Movements . 12

2.2 System Architecture . 15

2.3 Collected Sensor Trace: The user sits still for about 17s, then stands

up and walks for about 10s, then runs for a few seconds and stops.

In each activities (marked in accelerometer plot), she performs sev-

eral head gestures such as nodding, shaking, looking up/down/left/right

(sensor coordinate reference [28]). 16

2.4 Gesture frequency of a user seated, working at a desk for about 20

minutes. The number in the name is the repetition count. “cw” is

short for clockwise, “ccw” is short for counter-clockwise. 19

2.5 Thresholds under different activities. The threshold will be set small

when the user is sitting or standing, to enable even tiny head ges-

ture detection (0.15). It will be set much larger when user is walking

or running (0.7 and 1.3 respectively). 20

2.6 DTW workflow . 22

2.7 K-S test results for gesture Nod and Shake 27

2.8 (a) Confusion matrix of command gestures (sitting, tiny). TPR:

92.87%, FPR: 5.7%. (b) Confusion matrix of command gestures

(sitting, normal). TPR: 96.99%, FPR: 2.4%. (c) Confusion matrix

of command gestures (walking, normal). TPR: 94.88%, FPR: 4.6% 30

2.9 Accuracy changes with sampling lengths (nED) and numbers of

nearest neighbours. 31

x

2.10 Accuracy and scaled running time using DTW change with sam-

pling lengths (nDTW). 31

2.11 Running time comparison between our scheme and linear scan-

ning. 32

2.12 The average TPR (a) and FPR (b) change with different ratios of

training samples. 33

2.13 The F1-score of certain category of features is excluded. 35

2.14 F1-Scores of one-class SVM with or without feature selection for

gesture nod (a) and shake (b). 36

3.1 The architecture of WearLock. 43

3.2 The Protocol of WearLock. 45

3.3 The OFDM modem of WearLock. 46

3.4 Receiver’s SPL in distance of different volume settings. Measured

in a quiet room with the SPL of ambient noise about 15-20 dB in a

line-of-sight scenario. 47

3.5 The received signal comparison of LOS direct path (BER=0.0) and

Body-blocked NLOS (BER=0.54). 48

3.6 The BER of different modulations changes with Eb/N0 55

3.7 Time Cost (a) and Power Consumption (b) Comparison on Offload-

ing and Local Processing on Wearable. 60

3.8 The BER in distances and transmission modes (near-ultrasound). 63

3.9 The BER in adaptivemodulation under different BER constrains(near-

ultrasound). 64

3.10 The BER under jamming and subchannel selection. (QPSK, audi-

ble sound) . 65

3.11 The computation delay of each phase on different devices. 66

xi

3.12 The communication delay between smartphone and smartwatch. . 66

3.13 Compare the total delay in different configurations with manually

entering pin codes. 67

4.1 An overview of edge computing environment 76

4.2 Round trip time between client and edge/cloud. 77

4.3 Bandwidth between client and edge/cloud. 77

4.4 The architecture of edge computing platform 82

4.5 The task graph of OpenALPR. 85

4.6 OpenALPR profile result of client type 1 (RPi2 quad-core 0.9 GHz) 95

4.7 OpenALPR profile result of client type 2 (RPi3 quad-core 1.2 GHz) 95

4.8 OpenALPR profile result of a type of edge node (i7 quad-core 2.30

GHz) . 96

4.9 OpenALPR profile of a type of cloud node (AWS EC2 t2.large Xeon

dual-core 2.40 GHz) . 96

4.10 The comparison of task selection impacts on edge offloading and

cloud offloading for wired clients (RPi2). 97

4.11 The comparison of task selection impacts on edge offloading and

cloud offloading for 2.4 GHz wireless clients (RPi3). 97

4.12 The comparison result of three task prioritizing schemes. 98

4.13 Performance with no task placement scheme. 99

4.14 Performance of STTF. 99

4.15 Performance of SQLF. 99

4.16 Performance of SSLF. 99

4.17 Numbers of tasks placed by the edge-front node. 101

xii

Chapter 1

Introduction

The rapid adoption of smart devices, including smartphones, wearables, smart appli-

ances, has made the Internet more ubiquitously and intelligently connected. As a result,

people always find themselves interfacing with various smart devices to accomplish ev-

eryday tasks. For example, a user at work receives a suspicious event notification on her

smartwatch sent by her indoor home security camera. She checks the corresponding

video clip on her smartphone, and finds out that her pet at home spills its food all over

the kitchen floor. As a remedy, she instructs the cleaner robot to wipe the kitchen area

via a voice command on her smartphone immediately. This example showcases several

latest trends of mobile computing in the era of wearables and Internet of Things (IoTs):

• Mobile devices are becoming the very first stop of computation requests. They can

either solely carry out simple tasks, or chain up any smart devices or computing

nodes in the edge or cloud network to accomplish complex assignments.

• Mobile devices are demanding multi-channel interfaces for better service coverage

and better user experience. Such interfaces can be humane-to-machine interfaces

that enable user to see (graphical user interface), talk (conversational user interface

and voice user interface), and control (touch user interface and gesture interface)

the mobile devices [93]. The interfaces also includemachine-to-machine interfaces

1

that coordinate smart devices to get things done automatically without any user

intervention.

• Mobile devices are consuming and generating all kinds of data in large volume and

at high rate. Unlike traditional applications (e.g., music/video streaming, web brows-

ing) that consume data from remote servers, new types of applications, which sense

the ambient environments, collect data from human body, exchange information

with nearby devices, are generating data rapidly as well. Analyzing these data and

making corresponding decisions needs tremendous system support from both the

mobile device and its backend.

These trends are the results of impacts on human living styles from 1) the advancement of

techniques in relevant domains (e.g., wireless communication, computer vision, speech

recognition/synthesis, sensors); 2) the invention and adoption of new type of mobile de-

vices (e.g., smart speaker, smartwatch, smart eyeglass, smart lock); and 3) the ground-

breaking innovations in mobile applications (e.g. virtual reality, augment reality, live video

broadcasting, real-time language translation).

1.1 Challenges

The prevalence of smart devices in every aspect of human life presents significant chal-

lenges in terms of usability, security, and performance. In this dissertation, we mainly

address the challenges in three directions:

• New interface design. Evolving of mobile devices, from smartphones to wear-

ables (e.g., smartwatch, smart glasses) witnesses significant usage pattern shift.

To reduce the hardware and software development cost of wearables and improve

their compatibility, manufacturers tend to re-purpose legacy mobile operating sys-

tem and hardware that were originally designed for smartphones and tablets, while

giving less consideration to the adaption of user interfaces in the era of wearable

2

devices. As a result, user interfaces may be difficult to use, error-prone, and inse-

cure. We need to design new user interface to improve the usability of new smart

devices.

• User authentication. Smartphone is becoming the hub of wearables, networked

devices, and smart things [103], and valuable personal data are either processed at

or flow through these devices. Therefore, it is crucially important to enhance security

and preserve privacy of smart devices, since one corrupted device may compromise

the whole chain of super-connected devices. As the first step of user interfacing,

user authentication poses rigorous challenges on designing authentication schemes

with well-balanced trade-off between security and convenience.

• Mobile backend infrastructure. Mobile devices are heterogeneous and resource-

limited. The hardware upgrades can hardly keep up the pace with the resource

demands such as new types of applications and services (e.g., AR/VR, video ana-

lytics, cognitive tasks). To make such applications scalable among mobile devices,

existing mobile backends are usually deployed on cloud infrastructure. However,

the prevalent cloud infrastructure suffers from unexpected latency and low band-

width. Therefore, it is challenging to design and leverage new type of mobile back-

end infrastructure that can provide low latency and high bandwidth to support new

applications with performance guarantee on mobile devices.

To explore the opportunities inherent in these challenges, we have designed and im-

plemented three mobile systems. Generally speaking, our research focuses on the ad-

vanced interfaces and system design between user and device, between device and de-

vice, and between device and backend, to enhance the usability, security, and perfor-

mance.

3

1.2 Head Gesture Interface of Smart Glasses

Along the emerging trends towards wearables, one typical category of wearable devices

is smart glasses (eyewear), which is a pair of glasses equipped with a heads-up, near-eye

display, a rich set of sensors, and an embedded mobile operating system. In this project,

we investigate the interface design of smart glasses, whose current interfaces (legacy

smartphone touch user interface and voice user interface) are difficult to use, error-prone,

and provide no or insecure user authentication. For example, Google Glass uses a legacy

smartphone touch user interface via a mounted touchpad and a voice user interface that

a user can instruct the device using voice commands. On one hand, during operating, the

user cannot precisely tap without seeing the touchpad, impeding user authentication that

leverages unlocking touch gestures on the touchpad. On the other hand, the voice user

interface cannot work in every scenario, for instance, when the user is talking directly with

someone, or in a conference/meeting.

1.2.1 Problem Statements

Based on our observations on the legacy interfaces of smart glasses, we aim to design a

new interface to improve the usability. Our main research problem is how to design user

interface for smart glasses that is easy-to-use, hand-free, and secure. Toward this, we

design and build GlassGesture, which improves Google Glass through a head gesture

user interface with gesture recognition and gesture-based authentication. For gesture

recognition, GlassGesture enables simple head gestures as input, which can be accu-

rately recognized regardless of the noise of body movements in different activities. We

propose a novel similarity search scheme to accelerate computation-intensive template

matching during recognition. For gesture-based authentication, GlassGesture can iden-

tify owner through features extracted from head movements. We employ an ensemble

learning method working with new features based on peak analyses to improve the au-

thentication performance.

4

1.2.2 Contributions

• For gesture recognition, our system increases the input space of the Glass by en-

abling small, easy-to-perform head gestures. We propose a reference gesture li-

brary exclusively for head movements. We utilize activity context information to

adaptively set thresholds to separate head movements from body movements for

robust gesture detection. We use a weighted dynamic time warping (DTW) algo-

rithm to match templates for better accuracy. We accelerate the gesture matching

with a novel template searching scheme, which reduces the time cost by at least

55%.

• For authentication, we propose that “head gestures can be used as passwords”.

We design a two-factor authentication scheme, in which we ask users to perform

head gestures to answer questions that show up in the private near-eye display.

To characterize head gestures, we identify a set of useful features and propose

new features based on peak analyses. We also exploit several optimizations such

as one-class ensemble classifier, and one-class feature selection, to improve the

authentication performance.

• We prototype our system on Google Glass. It is efficient, accurate, and extensible

to general smart eyewears. We design experiments to evaluate gesture recogni-

tion in different user activities. We collect a total of around 6000 gesture samples

from 18 users to evaluate the authentication performance. Our evaluation shows

that GlassGesture achieves accurate gesture recognition. It can reliably accept the

authorized users and reject attackers.

1.3 Smartwatch-assisted Smartphone Authentication

Since mobile devices are collecting and storing a wide variety of sensitive information of

the owner, it is critical to provide effective protection for smartphone. While most mobile

5

operating systems have built-in screen lock applications, a significant portion of users

never lock their mobile devices. We have found that the root cause is the difficult rec-

onciling of security and convenience. Naively reducing unlock frequency of existing au-

thentication methods is usually at the cost of information security or ends up with even

worse user experience. In the second project, we try to solve this problem without security

sacrifice by finding the most suitable authentication method for mobile devices. Most au-

thenticators on smartphone can be categorized into passwords, biometrics, and tokens.

Complex passwords are recommended for strong security but they are also very hard to

memorize and input. Biometrics, which is uniquely tied to human body, is impossible to

replace once being compromised. Token-based methods authenticate users via a small

piece of trusted hardware. Compared with passwords or biometrics, token-based authen-

tication has unique advantages such as easy-to-use, replaceable, coming for free in the

wearable era when consumers own or intent to own at least one trusted wearable device.

1.3.1 Problem Statements

As we are utilizing a wearable device as a secure token for authentication, the research

problem becomes how to securely and user-friendly unlock smartphone via a trusted com-

panion wearable. The difficulty is how to find the most suitable authentication channel and

address technical challenges of the system. We present WearLock, a system that uses

acoustic tones as the authentication channel to automate the unlocking securely. Un-

like other authentication channels (e.g., NFC, WiFi, and Bluetooth), acoustics has the

most desirable communication range for near-range authentication. We propose sev-

eral optimizations to improve system performance. First, we build an acoustic modem

with sub-channel selection and an adaptive modulation to maximize unlocking success

rate against ambient noise. Second, we exploit the motion similarities via sensors when

smartwatch and smartphone are on the same body to eliminate unnecessary unlockings.

Last, we offload heavy signal processing tasks from the smartwatch to the smartphone to

6

speed up computation and save energy.

1.3.2 Contributions

• We propose a novel automated and secure unlocking scheme for smartphone via a

trusted wearable device. It requires minimal amount of effort from users. WearLock,

the implemented system, secures the acoustic channel by adapting the transmis-

sion power and modulation configurations, and sends an one-time-password (OTP)

tokens for validation via acoustics to unlock the smartphone.

• We are the first, to the best of our knowledge, to exploit the adaptive modulation

of acoustics on common-of-the-shelf (COTS) mobile devices for robust data trans-

mission. The acoustic modem can adapt to ambient noise levels and interfering

signals.

• To optimize the system performance, we offload the heavy computation to the phone,

and leverage multi-source information including wireless connectivities and motion

similarities to reduce unnecessary audio transmissions.

• We build WearLock on unmodified COTS smartphone and smartwatch devices and

evaluate the system extensively. WearLock’s acoustic modem achieves an average

bit error rate (BER) of 8% in our experiments. WearLock achieves at least 18%

speedup of unlocking even on a low-end mobile device, compared to entering PINs.

1.4 Edge Computing based Mobile Backend

Edge computing (a.k.a., fog computing [9], cloudlets [78], MEC [66], etc.) is proposed

as a new computing paradigm to support latency-sensitive and bandwidth-hungry appli-

cations [36, 99]. Most mobile applications get help from backends deployed on remote

servers or cloud nodes located in data centers. All the data generated on mobile devices

7

will be uploaded to the data center before processing. However, the role change of mo-

bile device from data consumer to producer results in huge amount of data generated at

the edge of the network. Transferring data at such scale to the distant cloud will add bur-

dens to the network and lead to unacceptable response time, especially for data analytic

applications.

1.4.1 Problem Statements

There are many benefits to carry out video analytics at the edge of the network, in terms

of, gathering more client side information, shortening the response time, saving network

bandwidth, lowering the peak workload to the cloud, and so on. The ability to provide

low latency video analytics is critical for applications in the fields of public safety, counter-

terrorism, self-driving cars, VR/AR, etc [83]. In the last project, we consider the research

problem how to improve the performance of video analytic application on mobile device

with edge computing based mobile backend. The research problem is formulated as a re-

sponse time minimization problem, and divided into three sub-problems. First, we select

and offload client tasks for execution on the edge node to reduce time cost. We formu-

late this problem as a mathematical optimization problem to select offloading tasks and

allocate bandwidth among clients. Unlike mobile cloud computing, we need to consider

the resource contention and response time when more and more tasks are running on

edge node whose resources are relatively limited compared with cloud node. Second,

we prioritize the offloaded tasks at the edge node to minimize the makespan, because

the offloaded tasks cannot be started when the corresponding inputs are not ready. In the

ideal case, this problem can be formulated as a two-stage job shop model with an optimal

solution. However, we need to address the problem with new constraints such as task

priorities and dependencies. Last, we enable inter-edge collaboration to further improve

the overall response time. We compare several task placement schemes and propose a

prediction-based scheme that works efficiently in the edge computing network.

8

1.4.2 Contributions

• We have designed an edge computing platform based on a serverless architecture,

which is able to provide flexible computation offloading to nearby clients to speed

up computation-intensive and delay-sensitive applications. Our implementation is

lightweight-virtualized, event-based, modular, and easy to deploy and manage on

either edge or cloud nodes.

• We have formulated an optimization problem for offloading task selection and priori-

tized offloading requests to minimize the response time. The task selection problem

decides the offloading decision and bandwidth allocation, under the latency con-

straint, which is tuned to adapt to the workload on the edge node as the offloading

target. The task prioritizing is modeled as a two-stage job shop problem and a

heuristic is proposed with the topological ordering constraint.

• We have evaluated several task placement schemes for inter-edge collaboration

and proposed a predication-based method which efficiently estimates the response

time.

1.5 Dissertation Organization

The dissertation is organized as follows. In Chapter 2, we introduce the work of designing

head gesture interface for Google Glass. In Chapter 3, we present an novel user authen-

tication system works on a smartphone-smartwatch pair within the acoustic channel. In

Chapter 4, we present a system that supports low-latency video analytics on mobile de-

vice with edge computing backend. Finally, we conclude the dissertation and discuss the

future work in Chapter 5.

9

Chapter 2

GlassGesture: Exploring Head

Gesture Interface of Smart Glasses

2.1 Introduction

In recent years, we have seen an emerging trend towards wearables, which are designed

to improve the usability of computers worn on the human body, while being more aesthet-

ically pleasing and fashionable at the same time. One category of wearable devices is

smart glasses (eyewear), which are usually equipped with a heads-up, near-eye display

and various sensors, mounted on a pair of glasses. Among many kinds of smart eyewear,

Google Glass (Glass for short) is the most iconic. However, since Glass is a new type of

wearable device, the user interface is less than ideal.

On one hand, there is no virtual or physical keyboard attached to the Glass. Currently,

there are two most prominent input methods for Glass. However, each of these input

methods suffers in certain scenarios. First, there is a touchpad mounted on the right-

hand side of the device. Tapping and swiping on the touchpad is error-prone: 1) The user

needs to raise their hands and fingers to the side of their forehead to locate the touchpad

and perform actions, which can be difficult or even dangerous when the user is walking

or driving. 2) Since the touchpad is very narrow and slim, some gestures, such as slide

10

up/down, or tap can be easily confused. 3) When the user puts Glass on their head, or

takes it off, it is very easy to accidentally touch the touchpad, causing erroneous input.

Second, Glass supports voice commands and speech recognition. A significant drawback

is that voice input cannot be applied in every scenario; for example, when the user is

talking directly with someone, or in a conference or meeting. An even worse example is

that other people can accidentally activate Glass using voice commands, as long as the

command is spoken loudly enough to be picked by Glass. Additionally, disabled users are

at a severe disadvantage using Glass if they cannot speak, or have lost control of their

arms or fine motor skills.

On the other hand, authentication on Google Glass is very cumbersome and is based

solely on the touchpad [30]. As a wearable device, Glass contains rich private informa-

tion including point-of-view (POV) photo or video recording, deep integration of social and

communication apps, and personal accounts of all kinds. There will be a severe informa-

tion leak if Glass is accessed bymalicious users. Thus, any user interface for Glass needs

to provide schemes to reject unauthorized access. However, the current authentication

on Glass is far from mature: a “password” is set by performing four consecutive swiping

or tapping actions on the touchpad similar to a traditional four digit PIN code. This system

has many problems. First, the entropy is low, as only five touchpad gestures (tap, swipe

forward with one or two fingers, or swipe backward with one or two fingers) are available

to form a limited set of permutations. Second, gestures are difficult to perform correctly on

the narrow touchpad, especially when the user is in non-static activities. Third, unortho-

dox passwords are hard to remember. Finally, this system is susceptible to shoulder

surfing attacks. Any attacker can easily observe the pattern from possibly several meters

away, with no special equipment. If we want to reap the benefits of wearables, it must

provide a user interface with high usability and security. We feel that the future of smart

eyewears is very exciting, but is currently thwarted by poor user interfaces, which is one

of the biggest problems.

To solve all of these problems, we propose the use of head gestures (gesture for short)

11

Figure 2.1: Head Movements

as an alternative user interface for smart eyewear devices like Google Glass. Because

using head gestures is an intuitive option, we can leverage them as a hands-free and

easy-to-use interface. A head gesture is a short burst of consecutive movements of the

user’s head, as illustrated in Fig. 2.1. Motion sensors (i.e. the accelerometer and gyro-

scope) on Glass are able to measure and detect all kinds of head movements due to their

high electromechanical sensitivity. However, smart eyewear presents new challenges for

head gesture interface design. We need to answer questions such as “What are easy-to-

perform head gestures?”, “How do we accurately recognize these gestures?”, “How do

we make the system efficient on resource-limited hardware?”, and “How does the system

reject unauthorized access?” and so on.

In this chapter, we present GlassGesture, a system aims at improving the usability of

Glass by providing an advanced user interface built on various sensors (e.g., accelerom-

eter and gyroscope) [102]. We are the first work, to the authors’ knowledge, to consider

head-gesture-based recognition/authentication problems for smart glasses. First, Glass-

Gesture leverages head gesture recognition for interactions. Because head gestures are

easy-to-perform, intuitive, hands-free, user-defined, and accessible for the disabled. For

example, it is usually considered inappropriate or even rude to operate Glass through the

provided touchpad or voice commands. Head gestures, in comparison, can be tiny and

not easily noticeable to mitigate the social awkwardness. Second, the head gesture user

interface can authenticate users. In particular, head gestures have not been exploited in

12

authentication yet in the literature. We propose a novel head-gesture-based authentica-

tion scheme by using simple head gestures to answer security questions. For example,

we ask user to answer a yes-or-no question, by shaking (no) or nodding (yes) her head.

However, an attacker who knows the answer to the security questions can access the

device. As a second factor, we further propose to leverage unique signatures extracted

from these head gestures to identify the owner of the device. Compared to the original,

touchpad-based authentication, our proposed head-gesture-based authentication is more

resistant to shoulder surfing attacks , and requires less effort from the user.

In summary, we make the following contributions:

• For gesture recognition, our system increases the input space of the Glass by en-

abling small, easy-to-perform head gestures. We propose a reference gesture li-

brary exclusively for head movements. We utilize activity context to adaptively set

thresholds for robust gesture detection. We use a weighted dynamic time warping

(DTW) algorithm to match templates for better accuracy. We speed up the gesture

matching with a novel scheme, which reduces the time cost by at least 55%.

• For authentication, we propose that “head gestures can be used as passwords”.

We design a two-factor authentication scheme, in which we ask users to perform

head gestures to answer questions shown in the near-eye display. To character-

ize head gestures, we identify a set of useful features and propose new features

based on peak analyses. We also explore several optimizations such as one-class

ensemble classifier, and one-class feature selection, to improve the authentication

performance.

• We prototype our system on Google Glass. We design experiments to evaluate

gesture recognition in different user activities. We collect a total of around 6000

gesture samples from 18 users to evaluate the authentication performance. Our

evaluation shows that GlassGesture achieves accurate gesture recognition. It can

reliably accept the authorized users and reject attackers.

13

2.2 Related Work

Our work is related to activity recognition, gesture recognition, and user authentication.

Activity Recognition. Activity recognition on smart mobile devices has been widely in-

vestigated. Researchers show that when the smart device is carried with the user, it can

provide context information about the user such as if they are sitting or walking, or if they

are using some transportation (e.g., cycling, driving) [57, 72, 74]. However, in this work,

we are not aiming at improving upon the state-of-the-art activity recognition systems. We

use a simply trained activity detector, to tune parameters for gesture detection.

Gesture Recognition. It has been shown that gestures as input can be precise, and fast.

While there is a broad range of gesture recognition techniques based on vision, wireless

signal, touch screen [17,70,94], we focus mainly on motion-sensor-based gesture recog-

nition because it is low-cost, computationally feasible, and easy to deploy on mobile de-

vices [55]. We differ from these works in that we propose a head gesture based interface

for smart glasses. And we carefully design the system to work with head gestures which

faces different challenges such as noise from user activities, performance on resource-

constrained devices. For head gesture recognition, existing work mainly focuses on

vision-based methods [58], while GlassGesture utilizes sensor mounted on user’s head.

For gesture recognition on Google Glass, Head Wake Up and Head Nudge [27] are two

built-in gesture detectors as experimental features which monitor the angle of head. A

similar open-sourced implementation can be found in [40]. In contrast, GlassGesture is

more advanced which can recognize self-defined, free-form head gestures efficiently and

accurately.

User Authentication. There has been research on authentication based on the unique

patterns users exhibit while interacting with phone through touch screens and motion sen-

sors [7,16,25,52,81,87]. These systems show that such authentication schemes are less

susceptible to shoulder surfing and don’t require the user to memorize any password or

pattern. For authentication on Google Glass, work [15] and [67] are touchpad-gesture-

14

based authentication, which needs continuous user effort to hold up fingers on the touch-

pad. Our work is orthogonal that tries to bring easy authentication to smart glasses using

head gestures, which is simple, hands-free, and requires less effort.

2.3 GlassGesture System Design

In this section, we present the system design of GlassGesture. First, we give an overview

of our system architecture. Then we introduce each module and elaborate its correspond-

ing components.

2.3.1 System Overview

Head Gesture Recognition

Activity Detector

Gesture Detector

Gyroscope

Accelerometer

Data Collection

Enrollment

Gesture

Templates

Gesture

Recognizer

Input /

Command

Controller

Feature

Extractor

Head-Gesture-based

Authentication

Training /

Retraining

Classifier

Accept /

Deny

Figure 2.2: System Architecture

Our system consists of two modules, which together form our gesture-based inter-

face. The first module allows users to input small gestures using their heads; the second

module authenticates users based on their head gestures. The architecture of our system

is illustrated in Fig. 2.2, which shows that the Gesture Recognition module is the corner

stone. We leverage an activity detector to tune the parameters for more accurate gesture

detection, based on user activity context. An enrollment submodule is in charge of man-

aging the gesture templates. The gesture recognizer runs a template matching algorithm

to recognize potential gestures. The gesture-based authentication module is built on top

15

of the first module. It extracts features from the raw sensor data for training. With trained

classifiers, we form a two-step authentication mechanism using simple head gestures. In

the following sections, we present the design details of each module.

2.3.2 Head Gesture Recognition

sitting

walking running

nod

shake

look
up

look
left

look
right

look
down

look
up

look
left

look
right

look
down

look
up

look
down

look
rightlook

left

Figure 2.3: Collected Sensor Trace: The user sits still for about 17s, then stands up and walks
for about 10s, then runs for a few seconds and stops. In each activities (marked in accelerometer
plot), she performs several head gestures such as nodding, shaking, looking up/down/left/right
(sensor coordinate reference [28]).

We have made some preliminary observations from the collected trace in Fig. 2.3:

• Different activities add different amounts of noise. It is not easy to derive a general

criterion for gesture detection in all of the many kinds of activities the user may be

participating in at the time the gesture is made.

• Head gestures consist of mostly rotations rather than accelerations. We see obvious

gyroscope readings while the user is performing head gestures in various activities,

compared to relatively noisy accelerometer readings. Therefore it is possible to

provide head gesture detection/recognition through the gyroscope data.

16

• Head gestures can be used rather frequently by the user. We need an efficient

recognition scheme for performance considerations.

In summary, we face three challenges in designing this module.

1. Head gesture library: There is no library, which defines the most suitable head

gestures for smart glasses.

2. Noise: Sensors on Glass are used to collect head movements, while at the same

time may also collecting noise from other user activities, which will deteriorate the

performance of the gesture recognition. It is challenging to derive a general criterion

for head gesture detection in all kinds of activities.

3. Computation: In recognition tasks, computing-intensive algorithmsmay be invoked

frequently, resulting in unsatisfactory performance. Therefore, it must be optimized

to be extremely efficient, without sacrificing substantial recognition accuracy.

2.3.2.1 Head Gesture Library

We need to provide a head gesture library as reference since head gestures are quite

different from traditional hand gestures. For example, 1) head gestures mainly consist

of rotational movement. 2) users moving their heads have limited freedom in 3D space.

(e.g. usually humans can only look up and down in less than 180◦. 3) In order to convey

more information, we need a new set of head gestures beside the traditional ones that are

already used (e.g., shaking for “no” and nodding for “yes”). In light of these constraints,

we develop six basic candidate gesture categories adapted from work [55] and [2]: 1)

nod, 2) look up/down/left/right, 3) shake, 4) circle, 5) triangle, and 6) rectangle. To clear

up confusion when drawing (performing, acting out the gesture), we ask the user to move

her head just like drawing something in the air in front of herself using the nose like a pen

tip.

17

Gesture Styles Number
of strokes

Easy
to perform

Frequency
in Fig. 2.4

Easy
to repeat Decision

1 up and down 3+ 5.2 low no keep

2 up/down/left/right 1 4.9 high yes
(81%) keep,repeat

3 left and right 3+ 4.4 low no keep
4 cw/ccw 1 3.0 very low neutral keep

5 cw/ccw,
directions 3 2.2 very low no drop

6 cw/ccw,
start points 4 1.4 very low no drop

Table 2.1: Head gesture candidates.

With the purpose of trying to figure out what gestures are suitable, we performed a

simple survey to rank them on how easy each category is to be performed for untrained

users. It is important to note that the survey, and all data collections in the entire project,

have gone through the IRB approval process. In total, we have received 22 effective

responses. The study results are presented in Table 2.1. Our survey results indicate

that nodding and shaking are popular and usually convey special social meanings (e.g.

“yes” and “no”). Circles are easy to perform since they are single-stroke. The rectan-

gle and triangle gestures are the least favored, due to the multiple strokes they entail.

Simple “look up/down/left/right” gestures are easy and fast, but they appear frequently in

daily head movement as shown in Fig. 2.4, another study we have done to understand

the frequency of daily life head gestures. This leads us to believe there will be signifi-

cant false positives if they are utilized naively. However, 81% of participants think these

one-direction gestures are easy to be performed repeatedly. We decide to keep these

gestures, as long as the user is willing to repeat them two or three times consecutively

to reduce the false positive rate. It is important to note that this head gesture library is

a reference. GlassGesture allows the user to define arbitrary head gestures. We also

evaluate our gesture recognition system with “number” and “letter” input later in this work.

18

up1
down1

left1
right1

up2
down2

left2
right2

up3
down3

left3
right3

cw cirlce

ccw circle

cw rect

ccw rect

triangle up

triangle right

triangle down

triangle left

shake no

G
e
s
tu

re
 C

o
u
n
ts

0

10

20

30

Figure 2.4: Gesture frequency of a user seated, working at a desk for about 20 minutes. The
number in the name is the repetition count. “cw” is short for clockwise, “ccw” is short for counter-
clockwise.

2.3.2.2 Activity Detector

The observations made in Fig. 2.3 motivate the need for a user activity context service, to

help detect head gestures in different activities. Normally, Google Play Service provides

activity APIs, which can be leveraged. Unfortunately, it is not supported on Glass at the

time of writing. To fill this gap, we have implemented a simple activity detector using the

accelerometer data. Samples from the accelerometer are chunked by an overlapping

sliding window. We extract features, including mean, standard deviation (std), root mean

square (rms), from each axis in every chunk. We collect traces of user wearing Glass in

different activities and train a decision tree classifier due to its simplicity and efficiency.

The classifier currently gives one of the four outputs: 1) sitting/standing, which indicates

that the user’s head is fixed and the user’s body is not moving; 2) walking; 3) running;

and 4) driving. By using a 50 Hz sensor sampling rate, and a 10-second window with

a 5-second overlap, the classifier gives an average accuracy of 98% in our preliminary

experiments, which is adequate for use in our system.

2.3.2.3 Gesture Detector

The goal of the gesture detector is to capture every potential gesture from the sensor’s

time series data. To find a potential gesture, we begin with windowing (30 samples) the

gyroscope samples, and we calculate the rolling standard deviation (std). A threshold

19

on the gyroscope rolling std for the gesture detector will be set according to the current

activity context, the output of activity detector. To determine the thresholds, we collect

user gyroscope data in different activities with and without the head gestures and apply a

histogram-based method as shown in Fig. 2.5. In our current implementation, we disable

the gesture recognition function when the user is running or driving for safety concerns.

If the rolling std is below the current threshold, we know that there is no gesture, and the

samples are discarded. Otherwise, we start to buffer both accelerometer and gyroscope

readings. We keep these buffered samples until the rolling std drops below the threshold,

indicating that user is no longer moving and the gesture has finished. We then check the

sample length and drop all the buffered samples if the length is too short or too long (a

head gesture usually ranges from 30 to 240 samples at 50 Hz sampling rate).

Figure 2.5: Thresholds under different activities. The threshold will be set small when the user
is sitting or standing, to enable even tiny head gesture detection (0.15). It will be set much larger
when user is walking or running (0.7 and 1.3 respectively).

2.3.2.4 Gesture Recognizer

The gesture recognizer is the core of the gesture recognition module. A head gesture

is defined as a time series of gyroscope samples about 0.5s to 2s long. The raw gy-

roscope sensor data, S, can be written as an infinite stream of four-tuples, i.e. S =

{(x, y, z, t)1, (x, y, z, t)2, ...}. Likewise, a gesture G, is defined as a subset of sequential

elements in S, i.e. G = St∈[t1,t2] ⊆ S. We refer to gestures that the system has already

learned as “gesture templates”, denoted as Gt. Because the system is passively listen-

20

ing, the user can perform any gesture at any time, so the problem becomes finding the

gesture G in the infinite time series S and identifying which template Gt is the closest

match.

Gesture Template Enrollment. GlassGesture selects templates, from the gestures

recorded as the user does, in a gesture template enrollment procedure. This allows the

system to be maximally accurate for its user. During enrollment, we require users to sit

still when they are recording a new gesture. The recorded time series are normalized and

error cases are filtered out. We will create templates from the recorded gestures using a

clustering algorithm called affinity propagation, which has been proposed as an effective

method [3]. The selected gesture, i.e. the affinity propagation cluster center, is stored as

a gesture template in the system for recognition later.

Weighted Dynamic TimeWarping. We use the weighted DTW algorithm to measure

how well two gestures match, which has several advantages such as simplicity, working

directly on raw data, and computational feasibility on wearables [55]. DTW calculates the

distance between two gestures, by scaling one in the time domain until the distance is

minimized. As the workflow shown in Figure 2.6, the algorithm takes two time series; a

potential gesture G and a gesture template Gt. It calculates a distance measure between

them. Assuming that G is of length l and Gt is of length lt, where i ∈ [1, l], j ∈ [1, lt], given

a 3-axis gyroscope time series, we have

dtw(G,Gt) =
√
wxD2

l,lt
(x) + wyD2

l,lt
(y) + wzD2

l,lt
(z) (2.1)

The function D denotes the matching distance or cost, which is calculated as

Di,j = d(G(i), Gt(j)) +min{Di−1,j−1, Di,j−1, Di−1,j} (2.2)

where d is a distance metric; we use Euclidean distance (ED). We also add weights

(wx, wy, wz) to each axis to better capture the differences of gestures, since we have

21

found that head gestures have different movement distributions along each axis. For ex-

ample, a nodding gesture has stronger component in the x-axis than the y-axis or z-axis.

Weights are calculated by the std on each axis of the template as

wx =
std(Gtx)

std(Gtx) + std(Gty) + std(Gtz)
(2.3)

The best match (minimal Dl,lt) is optimized in the sense of an optimal alignment of those

samples. We can say that G matches Gt, if dtw(G,Gt) is below a certain threshold. To

recognize which gesture is presented in a given window, we need to run DTW iterating

all templates. Whichever template has the lowest DTW distance with the target, and is

below a safety threshold, is selected as the recognition result.

Gesture
Templates
Iterator

Detected
Potential
Gesture

DTW

Axis
Weight

DTW
Score
ListG'

Gesture
Label

GT

Figure 2.6: DTW workflow

2.3.2.5 Efficient Similarity Search

DTW is a pair-wise template matching algorithm, which means that in order to detect a

gesture naively, we need to traverse all gesture templates. It costs O(N2) to compare two

time series at length of N (we set l = lt = N for simplicity), which is not efficient when

there is a large number of gesture templates. We propose several schemes to optimize

the performance.

Firstly, to reduce the search complexity, we want to build a k-dimensional (k-d) tree to

do k-Nearest Neighbor (kNN) searches. However, tree branch pruning based on the tri-

angle inequality will introduce errors if applied directly on DTW distances between gesture

22

templates, since DTW distance is a non-metric and does not satisfy the triangle inequal-

ity [96]. Therefore, we build the tree using Euclidean distance (ED) instead, which is

a metric distance, and thus preserves the triangle inequality, allowing us to do pruning

safely.

Secondly, to further reduce the computation, we down-sample the inputs before cal-

culating the ED. Then we build the k-d tree. To recognize a target gesture, we first use the

down-sampled target gesture to do the kNN search over the k-d tree. Then, we iterate

over all k candidate templates to calculate the DTW distance with the target to find the

best match with no down-sampling for the best accuracy.

The construction of a k-d tree is given in Alg. 1. And the kNN search is given in Alg. 2.

Say we havem templates, which are all of lengthN . It costsO(m∗N2)when iterating over

all the templates to match a target gesture, using DTW. The set ofm gesture templates in

N -space (each template is of length N) can be firstly down-sampled to nED-space (each

template is at nED length, nED ≪ N). We build a k-d tree of O(m) size in O(m logm)

time to process the down-sampled templates, of which the cost can be amortized. The

kNN search query can be answered in O(m
1

nED + k), where k is the number of query

results. In total, the time cost is O(m
1

nED + k + k ∗N2).

Algorithm 1 Build KD-Tree
1: procedure Build KDTrees(T, nED)
2: for each template t in T do
3: downsampling to length-nED

4: stored in Tdown.
5: end for
6: Build a KD Tree from Tdown using Euclidean distance, as Tr
7: end procedure

Lastly, we can also down-sample the gesture data before running DTW after the kNN

search. The time cost will become O(m
1

nED + k + k ∗ nDTW
2) where nDTW ≪ N is the

down-sampled length for DTW. However, it is non-trivial to choose proper nDTW , since

we don’t want the down-sampling to remove important features of the time series. If this is

the case, then the DTW algorithm may fail at differentiating two slightly different gestures.

23

Algorithm 2 kNN search.
1: procedure kNN Search(Tr, t, k)
2: put k nearest neighbors of target t in tree Tr into C.
3: for each candidate in C do
4: run DTW on target and candidate.
5: end for
6: return index of minimal DTW distances
7: end procedure

We decide nDTW through our experiments in the evaluation section.

2.3.3 Head-Gesture-based Authentication

Our system provides gesture-based authentication as an enhancement to secure the

head gesture interface. One important question motivates us is that “can user head ges-

tures be used as a password?”. In addition, we also need to answer challenging questions

such as “what are the most suitable head gestures for authentication?”, “how do we select

relevant features to distinguish different users?”, and “how difficult are those gestures to

be forged?”.

2.3.3.1 Two-factor Authentication using Head Gesture

As we mentioned previously, Glass does not have a secure and convenient authentica-

tion scheme. To secure the head gesture interface in GlassGesture, we propose the use

of signatures extracted from simple head gestures. Specifically, we will ask the user to

perform one or two simple gestures. In order to lead the user to perform a natural and

instinctual gesture, when a user authenticates through GlassGesture, a “yes or no” se-

curity question, that can be answered using head gestures, is presented on the near-eye

display. The user answers the question with head movements. In this way, the instinctual

gestures (nodding and shaking) can be considered as containing signature head move-

ments. After that, the answer (gestures) will be verified by the system. Features are

extracted from motion sensors, then fed into a trained classifier. If the answer is correct

and the classifier labels the gesture as belonging to the user, the user will be accepted.

24

Otherwise, it will reject the user. Thus, we form a two-factor authentication scheme. The

user must know the answer to the security question (give the answer through a head

gesture) and perform the gesture in the correct way. While we mainly test the feasibil-

ity of the “nod” and “shake” gestures, since they convey social meanings in answering

questions, we do not rule out the possibility of other head gestures. This scheme has

several advantages over the existing authentication done on the touchpad. First, the user

does not have to remember anything, as the signatures we extract are inherent in their

movement/gesture. Second, nod and shake are simple gestures taking almost no effort

from user. Finally, an attacker cannot brute-force this system even with significant effort,

because 1) the near-eye display is a private display, which can prevent shoulder surfing

on the secure questions; 2) the signature of the head gestures are hard to observe by

the human eye, unaided by any special equipment. Furthermore they are difficult to forge

even with explicit knowledge of the features. Even with a recording of the user performing

the gesture correctly, the attacker will have to wear the Glass and perform the gesture

themselves in order to authenticate. This makes enumerating all possible inputs nearly

impossible.

2.3.3.2 Threat Model

We have identified three types of possible attackers. The Type-I attacker has no prior

information whatsoever. This attacker simply has physical access to the user’s Glass

and attempts to authenticate as the user. Type-I attack is very likely to fail and ultimately

amounts to a brute force attack, which can be mitigated by locking the device after a

few consecutive authentication failures. The Type-II attacker may know the answer to the

user specific security questions, but will try to authenticate with head gestures in their own

natural styles (not trying to imitate the correct user’s motions or features). The Type-III

attacker, themost powerful attacker, not only knows the answers to the security questions,

but also is able to observe authentication instances (e.g., through a video clip). The

25

attacker can try to perform the gesture in a similar manner as the owner, in an attempt

to fool the system. Note that, there is no security mechanism which can guarantee that

the attacker will not be able to obtain the data on the device once the attacker has the

physical access. The proposed authentication method can slow the attacker down, foil

naive or inexperienced attackers, and make the task of extracting data from the device

more difficult.

2.3.3.3 Authentication Setup

In the offline setup phase, the user first needs to establish a large set of security ques-

tions with answers. These questions could be something like “Is Ford the maker of your

first car?”, “Is red your favorite color?” etc. Next, the user is asked to contribute an initial

training set, from which a classifier model can be built. Because the classifier requires

some training samples before sufficient accuracy is achieved (>30 training samples in our

evaluation), the system can leverage the gesture recognition module to opportunistically

collect instances of the “nod” and “shake” gestures. Whenever GlassGesture recognizes

these gestures, we store these instances for classifier training in the authentication mod-

ule.

2.3.3.4 Feature Set and Data Collection

We select statistical features such as, mean, standard deviation (std), root mean square

(rms), kurtosis, skewness, median absolute deviation (mad), zero-crossing rate (zcr) and

inter-quartile range (iqr). We also add features like energy, duration and inter-axis correla-

tion (iac). Additionally, we add a new category of features called peak features (including

average peak-to-peak duration, average peak-to-peak amplitude, and peak number) by

analysing peaks in the motion sensor data, which we have found effective at character-

izing movements like head gestures. We collect motion sensor data of gesture samples

from 18 users (gender: m/f: 14/4; age: 20-30: 11, 30-40: 5, 40+: 2.) while they are

26

answering yes or no questions using head gestures. We extract features from the raw

accelerometer and gyroscope data on each axis, in total 84 unique features, for each sam-

ple. To test the effectiveness of the selected features, we run a two-sample Kolmogorov-

Smirnov test (K-S test) to see whether the features of different users are from differentiable

distributions. From the results in Fig. 2.7, we can find that all the p-values, returned by

K-S test, are smaller than the significant level (0.05), which indicates the effectiveness of

selected features.

Figure 2.7: K-S test results for gesture Nod and Shake

2.3.3.5 Training and Classification

SVM classifiers have been widely used in biometric-based authentication systems and

radial basis function (RBF) kernels have been shown to have good performance [7, 81].

For the authentication problem, a one-class classifier is the most practical model since, at

the training phase, the system can only gather training samples from the authorized user.

However, ideally, if the system is able to gather enough negative instances, the one-

class classifier might be outperformed by a two-class classifier, eventually. Therefore,

for practicality concern, we report the one-class classifier results to assess our gesture-

based authentication system. The training phase happens offline. We use grid search to

get the optimal parameters for the one-class SVM classifier (OCSVM) with RBF kernel

in 10-fold cross validation. To further improve the classification performance, we employ

a one-class ensemble SVM method (OCESVM) [68] to combine multiple classifiers. The

27

basic idea is that we collect and rank multiple sets of parameters by the true positive rate

(TPR) with a constraint on the false positive rate (FPR <1%) during the grid search. Then

the top-r (we set r = 5 empirically) classifiers are chosen to form an ensemble classifier

using majority voting on the classification decisions. We use the trained model to classify

the test samples. The test samples can be labeled in one of two ways: 1) samples from

the authorized user; 2) samples from unauthorized users. We will present the evaluation

of our training and classification in the next section.

2.3.3.6 Feature Selection

The rationale of our feature selection method is that different gestures have different

weights in a 3-D space. While our features are extracted from three axes, it is possi-

ble that a gesture in 3D space may be well characterized by features extracted from

data of only one (1D) or two axes (2D). Therefore, we apply recursive feature elimination

(RFE) [33] to eliminate redundant or useless features, which will increase accuracy and

reduce delay. In RFE, the training process will recursively select a subset of the features.

However, RFE usually works with multi-class classifiers, not one-class classifiers. There-

fore, we propose a new way of applying RFE in one-class classification. The training set

in one-class classification are all positive instances (same class labels). The basic idea

is to divide the training set into several groups evenly and manually assign each group a

different virtual class label, to turn the one-class training set into a multi-class one. Then

we apply RFE on the “fake” multi-class training set, during which we use a 10-fold cross

validation and vote on the features in each run. Since features which top the voting result

contribute most in differentiating those virtual groups, we eliminate features with more

than e votes and finally train a one-class SVM classifier with the rest of features. The

problem here is how to determine the value of e. Through our experiments we empirically

set e = 3, which gives the best performance in most of our trials. We will evaluate this

feature selection scheme in experiments.

28

2.4 Evaluation

Currently, we have implemented GlassGesture as a Google Glass application using Glass

SDK. We adopt FastDTW implementation [76] to build the gesture recognition module.

For gesture authentication module, we compile libSVM [14] as native code to implement

the classifier via Android NDK. Themodel is trained offline on a remotemachine (MacBook

Air, i5-1.3GHz and 4GB-RAM). In this section, we will evaluate our system in two modules

individually. We will report performance metrics in terms of TPR (tp
tp+fn), FPR (fp

fp+tn),

accuracy and F1-Score (2tp
2tp+fp+fn) for gesture recognition and authentication.

2.4.1 Gesture Recognition

We prime our system with eight command gesture templates: nod and shake, left and

right 3 times, triangle and rectangle, and cw/ccw circle. We also prepare our system for

number and alphabet input. We choose those head gestures in order to evaluate the

capability of gesture recognition on various gestures.

2.4.1.1 Gesture Recognition with command gestures

For each of these command gestures we conduct gesture data collection three times,

once with as little head movement as possible (tiny) in sitting, and a second time with a

normal/natural amount of head movement (normal) in sitting, and a third time in a normal

amount of head movement in walking. This experiment is repeated for multiple rounds

with each round collecting about 10 gestures. The results of accuracy in Figure 2.8 is in

the form of confusion matrices.

Gesture in sitting. From results in Figure 2.8 (a, b), we can see that for several ges-

tures, such as nod, left3, right3, shake, the accuracy is perfect, even in the tiny gesture

case. The reason behind is that the gesture has a repeating pattern in itself, which distin-

guishes it from other miscellaneous movements. The most easily confused gestures are

clockwise circle and triangle, because of similar shapes in a clockwise direction. When

29

the user tries to make her gesture very tiny, the head movement space is suppressed

greatly, which will make these two gestures indistinguishable. Since our system allows

users to define their own gestures, we can notify them in case new gestures are too similar

to any pre-existing templates to ensure the best user experience.

Gesture in walking. When a user is walking, it is rather natural that the user will

perform gestures in an obvious, unconstrained way. Otherwise, this gesture will just be

buried in the noise of her walking. From the confusion matrix in Figure 2.8 (c), we find

minor deterioration of accuracy in recognizing gestures such as right3 and rect, which we

believe is caused by noise of walking movement. However, the triangle and clockwise

circle are more distinguishable, which as we find is easier for the user to perform while

walking rather than sitting.

Figure 2.8: (a) Confusion matrix of command gestures (sitting, tiny). TPR: 92.87%, FPR: 5.7%.
(b) Confusion matrix of command gestures (sitting, normal). TPR: 96.99%, FPR: 2.4%. (c) Con-
fusion matrix of command gestures (walking, normal). TPR: 94.88%, FPR: 4.6%

2.4.1.2 Number and Alphabet Input

Next, we evaluate gesture recognition accuracy when we use head gesture as number

and alphabet input method. Users are asked to draw 0-9 and a-z for at least 10 times to

evaluate the accuracy. While 35 of total 36 gestures are 100% identified, the only error

is one instance of number 9 is mis-recognized as number 7. The failures are due to the

limitation of template matching, i.e. writing 7 and 9 are just too similar if user doesn’t

30

write them carefully via head movement. One way to improve the result in this case is to

explore different styles of writing, which is out of the scope of this dissertation.

Table 1

Sample
lengnth

Accuracy Running Time Running Time Running Time Accuracy

5 0.8289 0.001 0.001 0.001 1.0 82.89

10 0.88 0.003 0.003 0.003 1.0 88.00

20 0.9129 0.013 0.013 0.013 1.0 91.29

30 0.9436 0.026 0.026 0.026 1.0 94.36

40 0.9636 0.049 0.049 0.049 1.0 96.36

50 0.9701 0.075 0.075 0.075 1.0 97.01

60 0.972 0.106 0.106 0.106 1.0 97.2

70 0.9721 0.145 0.145 0.145 1.0 97.21

80 0.9745 0.20 0.2 0.20 1.0 97.45

90 0.9755 0.234 0.234 0.234 1.0 97.55

100 0.9786 0.296 0.296 0.296 1.0 97.86

110 0.9816 0.345 0.345 0.345 1.0 98.16

120 0.9836 0.45 0.45 0.45 1.0 98.36

130 0.9812 0.50 0.5 0.50 1.0 98.12

140 0.985 0.55 0.55 0.55 1.0 98.5

150 0.985 0.649 0.649 0.649 1.0 98.5

160 0.987 0.70 0.7 0.70 1.0 98.7

170 0.9912 0.84 0.84 0.84 1.0 99.12

180 0.9912 0.87 0.87 0.87 1.0 99.12

190 0.996 0.90 0.9 0.90 1.0 99.6

200 0.9932 0.95 0.95 0.95 1.0 99.32

210 0.996 1.0 1.0 1.0 1.0 99.6

220 0.9952 0.95 0.95 0.95 1.0 99.52

230 0.996 0.97 0.97 0.97 1.0 99.6

Table 2

Features F1-Scores

peak 94.96

mean 95.45

std 96.5

rms 95.98

zcr 96.73

kurtosis 95.12

mad 96.48

skewness 95.55

iqr 96.2

iac 95.74

energy 95.46

sma 96.26

F1
-S

co
re

s

94

94.75

95.5

96.25

97

Feature Excluded

pe
ak

mea
n std rm

s zcr

ku
rto

sis mad

ske
wne

ss iqr iac

en
erg

y
sm

a

0%

50%

100%

Down-sampling Length n
10 30 50 70 90 110 130 150 170 190 210 230

DTW Accuracy
DTW run time (scaled)

Table 1-1

Sample
lengnth

Accuracy Running Time Max Time Scaled Time Accuracy

10 0.880487 0.803 208.3056 0.385491316604066 88.0487

30 0.97317 6.763755 208.3056 3.24703464525198 97.317

50 0.970731 18.3576 208.3056 8.81282116275319 97.0731

70 0.97073 36.2835 208.3056 17.4183987372399 97.073

90 0.97317 58.877 208.3056 28.2647225998725 97.317

110 0.97317 88.0657 208.3056 42.2771639360632 97.317

130 0.975609 120.4559 208.3056 57.826529867656 97.5609

150 0.975609 157.4438 208.3056 75.5830856203578 97.5609

170 0.978048 197.1578 208.3056 94.6483435874984 97.8048

190 0.978048 208.3056 208.3056 100 97.8048

210 0.9756 205.29 208.3056 98.5523192847432 97.56

230 0.9756 204.148 208.3056 98.0040863039688 97.56

Table 3-1

Sampling
Length v.s. K

10-NN Search Linear Scanning kNN Search Linear Scanning Accuracy

2 0.1524 2.59350929534 0.0587620797325968 1.01 0.69

6 0.44867 2.59350929534 0.172997259275749 0.99 0.8634

10 0.735 2.59350929534 0.283399793985949 0.999 0.9219

14 1.147 2.59350929534 0.442257909798481 1.02 0.9487

18 1.413 2.59350929534 0.544821644764825 1.0 0.9707

22 1.726 2.59350929534 0.665507543428229 0.997 0.9829

26 2.043 2.59350929534 0.787735753895638 1.02 0.9878

30 2.387 2.59350929534 0.920374569040082 1.022 0.9951

34 2.703 2.59350929534 1.04221720155649 1 0.9975

1-0.2833

Table 3-2

Sampl
ing
Lengt
h v.s.
K

Sampl
e Len
5

Sampl
e Len
10

Sampl
e Len
15

Sampl
e Len
20

Sampl
e Len
25

2 0.556 0.69 0.7097 0.7195 0.717

6 0.7585 0.8634 0.839 0.8463 0.8317

10 0.8585 0.9219 0.9024 0.8829 0.8731

14 0.9243 0.9487 0.9219 0.9048 0.9048

18 0.9607 0.9707 0.939 0.9243 0.9219

22 0.9731 0.9829 0.9561 0.9414 0.9414

26 0.9804 0.9878 0.9707 0.9609 0.956

30 0.9878 0.9951 0.9804 0.978 0.9829

34 0.9951 0.9975 0.9951 0.9975 0.9975

Pr
oc

es
si

ng
 T

im
e

(s
ec

on
d)

0

0.55

1.1

Nearest Neighbour k
2 6 10 14 18 22 26 30 34

kNN Search
Linear Scanning

Ac
cu

ra
cy

55%

70%

85%

100%

Nearest Neighbour k
2 6 10 14 18 22 26 30 34

Sample Len 5
Sample Len 10
Sample Len 15
Sample Len 20
Sample Len 25

Figure 2.9: Accuracy changes with sampling lengths (nED) and numbers of nearest neighbours.

Table 1

Sample
lengnth

Accuracy Running Time Running Time Running Time Accuracy

5 0.8289 0.001 0.001 0.001 1.0 82.89

10 0.88 0.003 0.003 0.003 1.0 88.00

20 0.9129 0.013 0.013 0.013 1.0 91.29

30 0.9436 0.026 0.026 0.026 1.0 94.36

40 0.9636 0.049 0.049 0.049 1.0 96.36

50 0.9701 0.075 0.075 0.075 1.0 97.01

60 0.972 0.106 0.106 0.106 1.0 97.2

70 0.9721 0.145 0.145 0.145 1.0 97.21

80 0.9745 0.20 0.2 0.20 1.0 97.45

90 0.9755 0.234 0.234 0.234 1.0 97.55

100 0.9786 0.296 0.296 0.296 1.0 97.86

110 0.9816 0.345 0.345 0.345 1.0 98.16

120 0.9836 0.45 0.45 0.45 1.0 98.36

130 0.9812 0.50 0.5 0.50 1.0 98.12

140 0.985 0.55 0.55 0.55 1.0 98.5

150 0.985 0.649 0.649 0.649 1.0 98.5

160 0.987 0.70 0.7 0.70 1.0 98.7

170 0.9912 0.84 0.84 0.84 1.0 99.12

180 0.9912 0.87 0.87 0.87 1.0 99.12

190 0.996 0.90 0.9 0.90 1.0 99.6

200 0.9932 0.95 0.95 0.95 1.0 99.32

210 0.996 1.0 1.0 1.0 1.0 99.6

220 0.9952 0.95 0.95 0.95 1.0 99.52

230 0.996 0.97 0.97 0.97 1.0 99.6

Table 2

Features F1-Scores

peak 94.96

mean 95.45

std 96.5

rms 95.98

zcr 96.73

kurtosis 95.12

mad 96.48

skewness 95.55

iqr 96.2

iac 95.74

energy 95.46

sma 96.26

F1
-S

co
re

s

94

94.75

95.5

96.25

97

Feature Excluded

pe
ak

mea
n std rm

s zcr

ku
rto

sis mad

ske
wne

ss iqr iac

en
erg

y
sm

a

0%

50%

100%

Down-sampling Length n
10 30 50 70 90 110 130 150 170 190 210 230

DTW Accuracy
DTW run time (scaled)

Table 1-1

Sample
lengnth

Accuracy Running Time Max Time Scaled Time Accuracy

10 0.880487 0.803 208.3056 0.385491316604066 88.0487

30 0.97317 6.763755 208.3056 3.24703464525198 97.317

50 0.970731 18.3576 208.3056 8.81282116275319 97.0731

70 0.97073 36.2835 208.3056 17.4183987372399 97.073

90 0.97317 58.877 208.3056 28.2647225998725 97.317

110 0.97317 88.0657 208.3056 42.2771639360632 97.317

130 0.975609 120.4559 208.3056 57.826529867656 97.5609

150 0.975609 157.4438 208.3056 75.5830856203578 97.5609

170 0.978048 197.1578 208.3056 94.6483435874984 97.8048

190 0.978048 208.3056 208.3056 100 97.8048

210 0.9756 205.29 208.3056 98.5523192847432 97.56

230 0.9756 204.148 208.3056 98.0040863039688 97.56

Table 3-1

Sampling
Length v.s. K

10-NN Search Linear Scanning kNN Search Linear Scanning Accuracy

2 0.1524 2.59350929534 0.0587620797325968 1.01 0.69

6 0.44867 2.59350929534 0.172997259275749 0.99 0.8634

10 0.735 2.59350929534 0.283399793985949 0.999 0.9219

14 1.147 2.59350929534 0.442257909798481 1.02 0.9487

18 1.413 2.59350929534 0.544821644764825 1.0 0.9707

22 1.726 2.59350929534 0.665507543428229 0.997 0.9829

26 2.043 2.59350929534 0.787735753895638 1.02 0.9878

30 2.387 2.59350929534 0.920374569040082 1.022 0.9951

34 2.703 2.59350929534 1.04221720155649 1 0.9975

1-0.2833

Table 3-2

Sampl
ing
Lengt
h v.s.
K

Sampl
e Len
5

Sampl
e Len
10

Sampl
e Len
15

Sampl
e Len
20

Sampl
e Len
25

2 0.556 0.69 0.7097 0.7195 0.717

6 0.7585 0.8634 0.839 0.8463 0.8317

10 0.8585 0.9219 0.9024 0.8829 0.8731

14 0.9243 0.9487 0.9219 0.9048 0.9048

18 0.9607 0.9707 0.939 0.9243 0.9219

22 0.9731 0.9829 0.9561 0.9414 0.9414

26 0.9804 0.9878 0.9707 0.9609 0.956

30 0.9878 0.9951 0.9804 0.978 0.9829

34 0.9951 0.9975 0.9951 0.9975 0.9975

Pr
oc

es
si

ng
 T

im
e

(s
ec

on
d)

0

0.55

1.1

Nearest Neighbour k
2 6 10 14 18 22 26 30 34

kNN Search
Linear Scanning

Ac
cu

ra
cy

55%

70%

85%

100%

Nearest Neighbour k
2 6 10 14 18 22 26 30 34

Sample Len 5
Sample Len 10
Sample Len 15
Sample Len 20
Sample Len 25

Figure 2.10: Accuracy and scaled running time using DTW change with sampling lengths
(nDTW).

2.4.1.3 Gesture Recognition Performance

To demonstrate the performance of gesture recognition, we evaluate it with the process-

ing of 36 gestures of number (0-9) and alphabet (a-z). Firstly, we want to determine the

proper down-sampling length nED for calculating Euclidean distant used in kNN search

and nDTW for calculating DTW used in template matching. In Figure 2.9, we evaluate the

31

Table 1

Sample
lengnth

Accuracy Running Time Running Time Running Time Accuracy

5 0.8289 0.001 0.001 0.001 1.0 82.89

10 0.88 0.003 0.003 0.003 1.0 88.00

20 0.9129 0.013 0.013 0.013 1.0 91.29

30 0.9436 0.026 0.026 0.026 1.0 94.36

40 0.9636 0.049 0.049 0.049 1.0 96.36

50 0.9701 0.075 0.075 0.075 1.0 97.01

60 0.972 0.106 0.106 0.106 1.0 97.2

70 0.9721 0.145 0.145 0.145 1.0 97.21

80 0.9745 0.20 0.2 0.20 1.0 97.45

90 0.9755 0.234 0.234 0.234 1.0 97.55

100 0.9786 0.296 0.296 0.296 1.0 97.86

110 0.9816 0.345 0.345 0.345 1.0 98.16

120 0.9836 0.45 0.45 0.45 1.0 98.36

130 0.9812 0.50 0.5 0.50 1.0 98.12

140 0.985 0.55 0.55 0.55 1.0 98.5

150 0.985 0.649 0.649 0.649 1.0 98.5

160 0.987 0.70 0.7 0.70 1.0 98.7

170 0.9912 0.84 0.84 0.84 1.0 99.12

180 0.9912 0.87 0.87 0.87 1.0 99.12

190 0.996 0.90 0.9 0.90 1.0 99.6

200 0.9932 0.95 0.95 0.95 1.0 99.32

210 0.996 1.0 1.0 1.0 1.0 99.6

220 0.9952 0.95 0.95 0.95 1.0 99.52

230 0.996 0.97 0.97 0.97 1.0 99.6

Table 2

Features F1-Scores

peak 94.96

mean 95.45

std 96.5

rms 95.98

zcr 96.73

kurtosis 95.12

mad 96.48

skewness 95.55

iqr 96.2

iac 95.74

energy 95.46

sma 96.26

F1
-S

co
re

s

94

94.75

95.5

96.25

97

Feature Excluded

pe
ak

mea
n std rm

s zcr

ku
rto

sis mad

ske
wne

ss iqr iac

en
erg

y
sm

a

0%

50%

100%

Down-sampling Length n
10 30 50 70 90 110 130 150 170 190 210 230

DTW Accuracy
DTW run time (scaled)

Table 1-1

Sample
lengnth

Accuracy Running Time Max Time Scaled Time Accuracy

10 0.880487 0.803 208.3056 0.385491316604066 88.0487

30 0.97317 6.763755 208.3056 3.24703464525198 97.317

50 0.970731 18.3576 208.3056 8.81282116275319 97.0731

70 0.97073 36.2835 208.3056 17.4183987372399 97.073

90 0.97317 58.877 208.3056 28.2647225998725 97.317

110 0.97317 88.0657 208.3056 42.2771639360632 97.317

130 0.975609 120.4559 208.3056 57.826529867656 97.5609

150 0.975609 157.4438 208.3056 75.5830856203578 97.5609

170 0.978048 197.1578 208.3056 94.6483435874984 97.8048

190 0.978048 208.3056 208.3056 100 97.8048

210 0.9756 205.29 208.3056 98.5523192847432 97.56

230 0.9756 204.148 208.3056 98.0040863039688 97.56

Table 3-1

Sampling
Length v.s. K

10-NN Search Linear Scanning kNN Search Linear Scanning Accuracy

2 0.1524 2.59350929534 0.0587620797325968 1.01 0.69

6 0.44867 2.59350929534 0.172997259275749 0.99 0.8634

10 0.735 2.59350929534 0.283399793985949 0.999 0.9219

14 1.147 2.59350929534 0.442257909798481 1.02 0.9487

18 1.413 2.59350929534 0.544821644764825 1.0 0.9707

22 1.726 2.59350929534 0.665507543428229 0.997 0.9829

26 2.043 2.59350929534 0.787735753895638 1.02 0.9878

30 2.387 2.59350929534 0.920374569040082 1.022 0.9951

34 2.703 2.59350929534 1.04221720155649 1 0.9975

1-0.2833

Table 3-2

Sampl
ing
Lengt
h v.s.
K

Sampl
e Len
5

Sampl
e Len
10

Sampl
e Len
15

Sampl
e Len
20

Sampl
e Len
25

2 0.556 0.69 0.7097 0.7195 0.717

6 0.7585 0.8634 0.839 0.8463 0.8317

10 0.8585 0.9219 0.9024 0.8829 0.8731

14 0.9243 0.9487 0.9219 0.9048 0.9048

18 0.9607 0.9707 0.939 0.9243 0.9219

22 0.9731 0.9829 0.9561 0.9414 0.9414

26 0.9804 0.9878 0.9707 0.9609 0.956

30 0.9878 0.9951 0.9804 0.978 0.9829

34 0.9951 0.9975 0.9951 0.9975 0.9975

Pr
oc

es
si

ng
 T

im
e

(s
ec

on
d)

0

0.55

1.1

Nearest Neighbour k
2 6 10 14 18 22 26 30 34

kNN Search
Linear Scanning

Ac
cu

ra
cy

55%

70%

85%

100%

Nearest Neighbour k
2 6 10 14 18 22 26 30 34

Sample Len 5
Sample Len 10
Sample Len 15
Sample Len 20
Sample Len 25

Figure 2.11: Running time comparison between our scheme and linear scanning.

gesture recognition accuracy at different down-sampling lengths (nED) and numbers of

nearest neighbours (k). We found that when the nED is set as 10, it gives best accuracy.

In Figure 2.10, we change the nDTW in the linear scanning using DTW distance metric.

The time cost grows exponentially with the input length, while the accuracy can reach a

satisfactory level when down-sampling length is as small as 40 or 50. Next, we show the

processing speedup of our scheme against the linear scanning baseline. The results are

shown in Figure 2.11. We set nED = 10, nDTW = 50. The number of nearest neighbours

to be searched can be set to 10-14, which is a reasonable trade-off between process-

ing speed and accuracy based on Figure 2.11 and Figure 2.9. The running time will be

reduced by 70% when k = 10 and 55% when k = 14. We use k = 14 in our system.

2.4.2 Authentication Evaluation

We have collected motion sensor data from 18 users while they are answering yes-and-no

questions using head gestures. We have gathered around 100-150 trials for each gesture

of each user.Those data are pre-processed and used for feature extraction, model training

and evaluation.

32

Table 1

Ratio Shake-TPR-
OCSVM

Nod-TPR-
OCSVM

Shake-TPR-
OCESVM

Nod-TPR-
OCESVM

Average-
TPR-OCSVM

Average-
TPR-
OCESVM

Shake-FPR-
OCSVM

Nod-FPR-
OCSVM

Shake-FPR-
OCESVM

Nod-FPR-
OCESVM

Average-
FPR-OCSVM

Average-
FPR-
OCESVM

0.1 51.2 52.41 67.7 69.31 0.51805 0.68505 0.018 0.018 0.026 0.026 0.00018 0.00026

0.2 68.7 69.167 83.47 84.626 0.689335 0.84048 0.06 0.055 0.096 0.173 0.000575 0.001345

0.3 76.42 76.468 87.73 89.57 0.76444 0.8865 0.08 0.0986 0.155 0.156 0.000893 0.001555

0.4 80.05 81.397 88.74 90.48 0.807235 0.8961 0.158 0.0935 0.210 0.248 0.0012575 0.00229

0.5 83.56 84.02 91.10 91.39 0.8379 0.91245 0.191 0.1386 0.27 0.331 0.001648 0.003005

0.6 86.38 86.745 91.58 91.47 0.865625 0.91525 0.187 0.1486 0.254 0.292 0.001678 0.00273

0.7 87.68 87.75 92.26 92.10 0.87715 0.9218 0.1988 0.169 0.35 0.294 0.001839 0.00322

0.8 88.85 88.33 91.96 92.14 0.8859 0.9205 0.228 0.2 0.347 0.3 0.00214 0.003235

0.9 90.07 89.22 92.26 92.07 0.89645 0.92165 0.233 0.174 0.259 0.33 0.002035 0.002945

1.0 92.09 92.10 92.33 92.43 0.92095 0.9238 0.25 0.19 0.26 0.35 0.0022 0.00305

(a) TPR v.s. Training Size

0%

25%

50%

75%

100%

Training Size

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Average-TPR-OCSVM
Average-TPR-OCESVM

(b) FPR v.s. Training Size

0%

0.1%

0.2%

0.3%

0.4%

Training Size

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Average-FPR-OCSVM
Average-FPR-OCESVM

Figure 2.12: The average TPR (a) and FPR (b) change with different ratios of training samples.

2.4.2.1 Impact of Number of Training Samples

Before training the model, we want to decide an appropriate size of training samples

since it will be a trade-off between authentication accuracy and user convenience. We

run the one-class SVM (OCSVM) training process with 10-fold cross validation. Based

on trained models, we also build a one-class ensemble SVM classifier (OCESVM). As

plotted in Figure 2.12, we increase the percentage of training samples from 0.1 to 1.0,

use the rest as test samples, and report average TPR and FPR of all users. We find

that 30 samples (0.2 ratio) is sufficient to achieve an average TPR higher than 70% and

keep an average FPR lower than 0.3%. OCESVM shows great gain of TPR and slight

deterioration of FPR when the sizes of training samples are small. Therefore, in our

system, we build the training set passively and continuously in the background every

time the user performs those gestures. We employ OCESVM when the size of training

samples is insufficient, and fall back to OCSVM for system overhead concern when the

gathered training samples are adequate. This scheme eases the burden of training on

users significantly while maintaining high TPR and low FPR at the same time.

33

Single TPR FPR
GlassGesture Nod 92.43% (+/-3.09) 0.09% (+/-0.22)
GlassGesture Shake 92.33% (+/-3.32) 0.17% (+/-0.33)
GlassGesture Left3 89.08% (+/-6.36) 0.48% (+/-0.79)
GlassGesture Right3 89.61% (+/-5.99) 0.52% (+/-0.87)
Multiple and Comparison TPR FPR
GlassGesture
(2 gestures) 99.16% 0.61%
Touchpad+
Voice (5 events) [67] 97.14% 1.27%
Touchscreen
GEAT (3 gestures) [81] 98.2% 1.1%

Table 2.2: FPR and TPR of authentication on two gestures.

2.4.2.2 Authentication against Type-II attacker

In order to understand the authentication performance, we evaluate the authentication

against Type-II attackers, which are more powerful than Type-I attackers. We utilize the

whole data set to train the model with 10-fold cross-validation for each user. While training

model for a certain user, we use data samples from all other users as Type-II attacking

trials. The result is shown in Table 2.2 in metrics of TPR and FPR and compared with

several existing works. From the result, we can tell that our authentication system can

identify authorized users with a high TPR as average 92.38% and defend against Type-II

attackers with a low FPR as average 0.13% if using Nod and Shake gestures. We are

careful to bother no authorized user with occasional false positives. However, since ges-

tures are very short, cost nothing, and are easy to perform, we assume that the user is

willing to go through authentication multiple times which can basically eliminate the false

positives. We compare authentication performance using two consecutive gestures with

work [67] and [81], where both one class classifiers are used. Work [67] combines touch-

pad and voice commands to authenticate user in Google Glass. Our scheme requires

fewer gestures, less effort, and produces better result. Work [81] is about touchscreen-

based authentication on smartphone, while we show that we can achieve competitive

performance using head gestures on Google Glass. Another work [15] uses a two-class

34

SVM classifier, which only reports the average error rate (AER, defined as 1
2(1−tpr+fpr))

as 0.04 while using 5 touchpad gestures on Glass. Our scheme requires fewer gestures,

and better result when multiple gestures are combined.

2.4.2.3 Impact of Peak Features

With the intention to investigate the impact of peak features, we use an feature-excluding

method to verify the effectiveness of peak features. We collect number of true positive,

false negative and false positive to calculate the F1-score as a metric to show the overall

performance of the classification. In Figure 2.13, the F1-score is lowered the most when

peak features are excluded. Some other important features are mean, energy, kurtosis

and skewness.

Table 1

Sample
lengnth

Accuracy Running Time Running Time Running Time

5 82.89 0.001 0.1 0.001 1.0

10 88.00 0.003 0.3 0.003 1.0

20 91.29 0.013 1.3 0.013 1.0

30 94.36 0.026 2.6 0.026 1.0

40 96.36 0.049 4.9 0.049 1.0

50 97.01 0.075 7.5 0.075 1.0

60 97.2 0.106 10.6 0.106 1.0

70 97.21 0.145 14.5 0.145 1.0

80 97.45 0.20 20 0.20 1.0

90 97.55 0.234 23.4 0.234 1.0

100 97.86 0.296 29.6 0.296 1.0

110 98.16 0.345 34.5 0.345 1.0

120 98.36 0.45 45 0.45 1.0

130 98.12 0.50 50 0.50 1.0

140 98.5 0.55 55 0.55 1.0

150 98.5 0.649 64.9 0.649 1.0

160 98.7 0.70 70 0.70 1.0

170 99.12 0.84 84 0.84 1.0

180 99.12 0.87 87 0.87 1.0

190 99.6 0.90 90 0.90 1.0

200 99.32 0.95 95 0.95 1.0

210 99.6 1.0 100.0 1.0 1.0

220 99.52 0.95 95 0.95 1.0

230 99.6 0.97 97 0.97 1.0

Table 2

Features F1-Scores

peak 94.96

mean 95.45

std 96.5

rms 95.98

zcr 96.73

kurtosis 95.12

mad 96.48

skewness 95.55

iqr 96.2

iac 95.74

energy 95.46

sma 96.26

F1
-S

co
re

s

94

94.75

95.5

96.25

97

Feature Excluded

pe
ak

mea
n std rm

s zcr

ku
rto

sis mad

ske
wne

ss iqr iac

en
erg

y
sm

a

0

25

50

75

100

Down-sampling Length n

10 30 50 70 90 110 130 150 170 190 210 230

DTW Accuracy
DTW run time (scaled)

Table 1-1

Sample
lengnth

Accuracy Running Time Max Time Scaled Time

10 88.0487 0.803 208.3056 0.385491316604066

30 97.317 6.763755 208.3056 3.24703464525198

50 97.0731 18.3576 208.3056 8.81282116275319

70 97.073 36.2835 208.3056 17.4183987372399

90 97.317 58.877 208.3056 28.2647225998725

110 97.317 88.0657 208.3056 42.2771639360632

130 97.5609 120.4559 208.3056 57.826529867656

150 97.5609 157.4438 208.3056 75.5830856203578

170 97.8048 197.1578 208.3056 94.6483435874984

190 97.8048 208.3056 208.3056 100

210 97.56 205.29 208.3056 98.5523192847432

230 97.56 204.148 208.3056 98.0040863039688

Table 3-1

Sampling
Length v.s. K

10-NN Search Linear Scanning kNN Search Linear Scanning Accuracy

2 0.1524 2.59350929534 0.0587620797325968 1.01 0.69

6 0.44867 2.59350929534 0.172997259275749 0.99 0.8634

10 0.735 2.59350929534 0.283399793985949 0.999 0.9219

14 1.147 2.59350929534 0.442257909798481 1.02 0.9487

18 1.413 2.59350929534 0.544821644764825 1.0 0.9707

22 1.726 2.59350929534 0.665507543428229 0.997 0.9829

26 2.043 2.59350929534 0.787735753895638 1.02 0.9878

30 2.387 2.59350929534 0.920374569040082 1.022 0.9951

34 2.703 2.59350929534 1.04221720155649 1 0.9975

1-0.2833

Table 3-2

Sampl
ing
Lengt
h v.s.
K

Sampl
e Len
5

Sampl
e Len
10

Sampl
e Len
15

Sampl
e Len
20

Sampl
e Len
25

2 55.60 69.0 70.97 71.95 71.7

6 75.85 86.34 83.9 84.63 83.17

10 85.85 92.19 90.24 88.29 87.31

14 92.43 94.87 92.19 90.48 90.48

18 96.07 97.07 93.9 92.43 92.19

22 97.31 98.29 95.61 94.14 94.14

26 98.04 98.78 97.07 96.09 95.60

30 98.78 99.51 98.04 97.8 98.29

34 99.51 99.75 99.51 99.75 99.75

Ac
cu

ra
cy

50.00

62.50

75.00

87.50

100.00

Nearest Neighbour k
2 6 10 14 18 22 26 30 34

Sample Len 5
Sample Len 10
Sample Len 15
Sample Len 20
Sample Len 25

Pr
oc

es
si

ng
 T

im
e

(s
ec

on
d)

0

0.275

0.55

0.825

1.1

Nearest Neighbour k

2 6 10 14 18 22 26 30 34

kNN Search
Linear Scanning

Figure 2.13: The F1-score of certain category of features is excluded.

2.4.2.4 Impact of Feature Selection

To show how our feature selection method helps in our case, we compare the F1-scores

of classification with and without feature selection. From Figure 2.14, we can find that for

majority of users (13/18 and 12/18 respectively), feature selection improves the classifi-

cation.

35

(b) F1-Scores for Gesture Shake

0.91

0.93

0.95

0.97

0.99

Users

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

User No-Feature-
Elimination-Nod

Feature-
Elinimation-Nod

No-Feature-
Elimination-Shake

Feature-
Elinimation-Shake

1 0.970712634822804 0.981064164813048 0.95168891035562
08

0.96186841616400
79

2 0.94940293176339 0.984371152826074 0.97880605255014
49

0.98090578769025
02

3 0.936368960076514 0.967995645811087 0.93950979391833
63

0.94394297973808
43

4 0.981544179933442 0.981191276176811 0.94770114859205
01

0.96080850194569
33

5 0.974685154683817 0.974658697633644 0.98403929967267
7

0.98614487147633
43

6 0.936060252127949 0.953387137056492 0.97833611047346
61

0.98220531037925
13

7 0.968910300835591 0.96606507648221 0.96605273137229
14

0.96094355392396
36

8 0.947761851559355 0.967223846057612 0.94968577780436
57

0.97087930061075
56

9 0.949889797144104 0.976349716512782 0.97475931440771
5

0.96791501006041
47

10 0.981066934330525 0.975226104620665 0.96030243110765
97

0.96355139517591
97

11 0.96505675666997
5

0.97431156188700
9

0.95843500469964
16

0.96411994610664
44

12 0.969963112989188 0.97358593484418 0.96336546905175
66

0.97785440803140
04

13 0.979543807796695 0.985331010840062 0.96368995299561
74

0.97681284010158
9

14 0.95467931123233 0.958728323913761 0.97810852172170
68

0.96687764131161
06

15 0.956424628051517 0.957884218670643 0.93011320030182
35

0.92603595848983
71

16 0.962513604732848 0.974798122261357 0.96737088581507
5

0.96719252914391
36

17 0.957360836577722 0.954819986367234 0.97116626827574
96

0.96879843951916
62

18 0.965050690312375 0.97820358897685 0.94553998726364
11

0.95820213742935
29

(a) F1-Scores for Gesture Nod
F1

-S
co

re

0.92

0.938

0.955

0.973

0.99

Users

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

No Feature Selection
With Feature Selection

Figure 2.14: F1-Scores of one-class SVM with or without feature selection for gesture nod (a) and
shake (b).

2.4.2.5 Imitator Attack

In this evaluation, we want to know whether an Type-III attacker (imitator), can fool the

authentication system. We start by taking a short video of a victim while she is performing

gesture-based authentication, and then present this video to attackers. We give attackers

enough time to learn, practice, and mimic the victim. And we only start the authentication

process whenever each attacker feels she is ready. We give 5 attackers 10 chances

for each gesture and unlimited access to the reference video. In all of our tests (100

trials), attackers are never able to fool the system and (falsely) identified as authorized

users. From the experiment, we find that an imitator fails in mimicking the head gesture

because 1) it is not easy to recover every details of head gestures recorded by sensitive

motion sensors through vision observation; 2) it is not easy to control the head movement

precisely and make it like a natural movement during mimicking. We suspect that the

different muscle distributions of head and neck in human individuals will add different

features to the sensor recordings.

36

DTW
per instance

Training
per user

Classification
per instance

30.2 ms 42.8 s 28.6 ms

Table 2.3: Average Time Cost

2.4.3 System Performance

We report the running time of several important functions in Table 2.3: DTW time cost in

gesture recognition, training time cost (offline on a remote machine), and classification

time cost in authentication. The time cost of gesture recognition grows linearly with the

number of templates, while the time of running one instance of DTW is rather small as

30.2 ms. The training is offloaded to a remote machine and cost average 42.8 seconds

per user, which is affordable since the request of training and retraining is relatively rare

after the initial setup. Classification runs on the Glass, of which the cost (28.6 ms) of

single instance is almost unnoticeable by users.

2.4.4 Other considerations

Due to space limit, we briefly discuss other practical considerations. 1) Authentication

Frequency: The frequency is depend on the usage pattern of user. The default setting is

to authenticate user after booting or being taken-off, which is infrequent. 2) Biometric In-

variance: We have been keeping collecting gesture samples from several users during a

week. We have not noticed much difference in recognition/authentication accuracy. How-

ever, we do add template adaptation [55] and classifier retraining to our system in case

of any performance deterioration. And we have fail-safe authentication after consecutive

failures. We are still lack of enough data to claim that human head gesture is invariant

in a long term. We plan to investigate this problem in the future. 3) Power Consumption:

Based on the energy consumption reported in [72] and [54], the battery life of constantly

sampling sensors is 265 mins (300 mins daily in normal usage). We are expecting a

much longer lifetime since our implementation is not always-on. The device will enter a

37

low-power mode after a short period of inactive. It responses to wake-up events [27] and

then the gesture interface will be enabled accordingly.

2.5 Chapter Summary

In this chapter, we propose GlassGesture to improve the usability of Google Glass. Cur-

rently, Glass relies on touch input and voice command and suffers from several drawbacks

which limits its usability. GlassGesture provides a new gesture-based user interface with

gesture recognition and authentication, which enables users to use head gestures as input

and protects Glass from unauthorized attackers. We utilize activity context information to

adaptively set threshold for gesture detection. We optimize the performance of GlassGes-

ture using several novel schemes including efficient similarity search, weighted dynamic

time warping (DTW) and an ensemble scheme of one class SVM classifiers. We propose

a new category of features which are effective at characterizing head gestures. Glass-

Gesture achieves high gesture recognition accuracy. For authentication, GlassGesture

can accept authorized users and reject attackers with high confidence.

38

Chapter 3

WearLock: Unlocking Your Phone

via Acoustics using Smartwatch

3.1 Introduction

Smartphone stores a wide variety of sensitive information of the owner, such as identi-

ties, locations, banking accounts, photos and videos, addresses, contacts, emails, text

messages, and social account profiles, etc. Effective protection of smartphone data is

critical against the compromise of personal information. When not in use, unattended

smartphones should be locked with a personalized credential to prevent access from

unauthorized persons. Every smartphone operating system now has a built-in screen

lock application, which enables users to unlock their smartphones via PINs, passwords,

patterns, etc. However, the reality is that a significant portion of users never lock their

smartphones. A recent study [89] indicated that 53 out of 150 (35%) of participants have

never enabled any sort of screen locks and the primary reason was due to the inconve-

nient input methods of screen locks. In another study [37], a large portion of participants

(57.1%) indicated that they use none or naive screen lock (e.g., slide-to-unlock) while lots

of participants (46.8%) agreed that unlocking their phones can be annoying and many of

them (25.5%) admitted that they want a way to unlock their phone much easier. There-

39

fore, the problem of user authentication on mobile devices is how to balance the security

and the user experience [1].

To address this problem, one direction is to reduce the number of unlocks upon existing

authenticationmechanisms. There are two common approaches. One is to provide partial

functionality on lock screens, such that the user can interact with the smartphone before

unlocking. This technique potentially reduces the number of unlocks, thus easing the

unlock burden on users but at the cost of information security. For example, this approach

may display several lines of an incoming email on a locked screen for user. However,

these few lines may contain sensitive data. Further judgments from users are needed

to determine what functionality or information is safe on the locked screen. The other

approach is to choose the right moment to surface the authentication instead of enforcing

it at every user session [75], which eventually relies on some sort of implicit authentication

methods. This scheme is not suitable for screen lock due to noticeable delays [37].

Another more promising direction to solve this problem without security tradeoff is to

find the most suitable authentication method for mobile devices. The commonly seen

authenticators on smartphone can be categorized into passwords (“what you know”), bio-

metrics (“who you are”), and tokens (“what you have”) [63]. The term password here in-

cludes words, phrases, patterns, PINs, or their combinations, which are used as secrets

for authentication. However, this approach is problematic on mobile devices for several

reasons. First, simple passwords are easy to guess while strong passwords are hard

to remember. Second, the input environments on mobile devices introduce difficulties

for users to enter passwords consisting of characters, digits, and symbols. Third, even

though pattern or graphical passwords are much easier to input but all those passwords

including previously mentioned are susceptible to shoulder surfing attacks or smudge at-

tacks.

Alternatively, biometric-based authentication uses unique features (e.g. fingerprints,

eye iris, faces, voices, etc.) extracted from the human body and is considered conve-

nience and secure. Recent work has also considered various gestures and inputting

40

habits [16,35,87,102] as biometrics. However, one big disadvantage of biometric-based

authentication is that those biometrics are uniquely tied to human body and are not as

replaceable as passwords or tokens when being compromised or disclosed [10,48,110].

The token-based authentication usually includes contact-less proximity card, smart card

with static or dynamic tokens. The advantages of token are easy-to-use, no need to

memorize passwords, while the disadvantage is the cost of additional hardware.

In this work, we seek a smartphone authentication solution in line with token-based

method. Ideally, we want a secure screen lock that 1) authenticates user on every user

session; 2) is resistance to malicious observers; 3) requires minimal effort from user.

Originally, the token-based solution is less favored due to the cost of additional hardware.

However, due to the increasing popularity of smart things and wearables, this solution has

re-gained attentions [8,49,90]. Based on a market research of Kantar Wearable Technol-

ogy [46] and Morgan Stanley [59], 12% of US consumers own at least one wearable de-

vice while 55% of consumers have intentions to buy at least one wearable device. Hence,

we envision that many smartphone users will possess at least one peripheral wearable

device, such as a smartwatch or smartband, in the near future. Therefore, we decide

to leverage pervasively co-located trusted devices for token-based authentication to cre-

ate an automated and secure screen lock approach. Nevertheless, it is not easy to find a

proper channel to conveniently establish a secure range to associate smartphone with co-

located trusted devices (e.g. a smartwatch in our system). Solutions utilizing Near Field

Communications (NFC) tags as trusted devices require users to manually attach a tag

close to the phone’s NFC antenna to achieve proximity of 10 cm or less. Solutions based

on Bluetooth-enabled wearables, speakers and cars, can constantly connect to smart-

phones, but the connection range of Bluetooth cannot be guaranteed. Variants such as

device model, paired device, and local environment may sustain a Bluetooth connection

up to 100 meters in distance [31]. In our preliminary experiment, we have confirmed that

“android trusted device” based on Bluetooth does not lock one’s phone until the trusted

device is 10-15 meters away in line-of-sight case or 2-3 rooms away in none-line-of-sight

41

case. If someone takes your smartphone and stays not too far away from your trusted

device, he may access your unlocked phone since your trusted device is still connected

via Bluetooth.

To address these concerns, in this project, we propose to exploit the acoustic chan-

nel to build the trusted relationship between a smartphone and its associated smartwatch

and automatically unlock the phone when the smartwatch is nearby. To this end, we build

WearLock, a system to automatically unlock smartphones via an acoustic channel be-

tween a smartphone and its associated wearable (a smartwatch in this work) [100]. To be

noted that our system is not meant to replace current smartphone authentication schemes

(password or biometric based authentications), but to provide a secure and efficient al-

ternative which can significantly reduce authentication effort of users. The assumption is

that with a given noise level, we canmaintain a secure and ranged acoustic channel within

roughly 1m distance between two devices using speaker and microphone. Microphones

and speakers are commonly available on these devices, eliminating the need for extra

hardware additions. The communication range of acoustic channel is shorter than the

Bluetooth and longer than NFC or magnetic-based channel [43], which is more desirable

for the purpose of unlocking smartphones. One challenge is to build a robust and reliable

acoustic modem scheme to secure the acoustic channel when devices are nearby. The

other is to carefully design a system to accommodate the limited battery capacity and

computation power of wearable hardware.

In summary, we make the following contributions:

• We proposed a novel automated and secure unlocking scheme for smartphone via

a trusted wearable device. It requires minimal amount of effort from user.

• We are the first, to the best of our knowledge, to exploit the adaptive modulation

of acoustics on common of-the-shelf (COTS) mobile devices for robust data trans-

mission. The acoustic modem can adapt to ambient noise levels and interfering

signals.

42

• We built WearLock on unmodified COTS smartphone and smartwatch devices and

evaluated the system extensively.

3.2 System Overview

In this section, we describe the system architecture of WearLock and the smartwatch-

assisted unlocking protocol.

MIC

BLE/WIFI

SPEAKER

OTP Acoustic
Modem

Phone Watch

Sensor

WearLock
Controller (Watch)

OTP

MIC

Acoustic
Modem

Sensor

WearLock
Controller (Phone)

BLE/WIFI

Android
Keyguard

Figure 3.1: The architecture of WearLock.

3.2.1 System Architecture

Figure 3.1 illustrates the architecture of WearLock, which consists of a smartphone and

a smartwatch. The smartphone usually has a speaker and microphone, a wireless inter-

faces (Bluetooth or WiFi), and optionally motion sensors. The smartwatch usually has a

microphone, a wireless interface and optionally motion sensors. Each device runs an in-

stance of WearLock Controller, as the agent executing our proposed unlocking protocol,

which takes input from underlying hardware and controls the the output channels such

as speaker for emitting acoustics, wireless radio for sending configurations, and Android

Keyguard for enabling or disabling lock screen. The one time password (OTP) module is

responsible for the one time password generation and verification. The acoustic modem

43

is an OFDM modem which enables data such as OTP to be transmitted over the acoustic

channel using proper modulation schemes.

The smartphone and the smartwatch communicate with each other through both the

wireless and the acoustic channels. The wireless channel serves as the secure control

channel, transmitting acoustic channel configuration information, including the pilot sub-

channel, the null sub-channel, and the data sub-channel. The acoustic channel conveys

data payload in data sub-channels along with pilot sub-channels. The motion sensor will

be used to construct a pre-filter to skip unnecessary unlocking requests by matching the

motion pattern. In the following sections, we will provide further details on the acoustic

OFDM modem design, the secure unlocking scheme, and several system optimizations.

3.2.2 Smartwatch-assisted Unlocking Protocol

Figure 3.2 illustrates the overall protocol of WearLock between the smartphone and the

smartwatch. The protocol has two phases: 1) Phase 1 is Request-to-Send/Clear-to-Send

(RTS/CTS) phase for channel probing; and 2) Phase 2 is the data transmission phase for

OFDM modulated OTP token.

Smartphone’s view: To avoid continuous probing and monitoring, we design to start

our protocol when the user clicks the power button. The smartphone detects the presence

or absence of the wireless link with the smartwatch. When the wireless link presents,

the smartphone continues to evaluate the motion patterns of the smartphone and the

smartwatch, respectively. If the motion patterns match, it is assumed that both devices

are co-located and the smartphone continues to operate by verifying recorded audio token

from the smartwatch. If the token is valid, then the Android Keyguard service will set the

smartphone in screen unlocked state. During this process, if the wireless link, or the

motion pattern, or the token validation fails, subsequent computations will be skipped and

the Android Keyguard will remain the smartphone locked.

Smartwatch’s view: The smartwatch runs a thin client, which cooperates with the

44

smartphone controller. The smartwatch transmits information such as Bluetooth/WiFi sta-

tus, sensor data, and recorded acoustics over the wireless channel to the smartphone.

Phone Watch

Phase 2
Send OFDM

modulated data

Send Phase 1
audio clip (RTS)
recording sensor

Receive:
recorded audio
and sensor from

watch

Recording RTS
and sensor

Recording
modulated data

Check
Bluetooth

Link
Provide Required

Information

Preprocessing
and

Demodulation

Sensor-based
Filtering

KeyGuard

Channel probing
processing

UnlockedLocked

User Click

Figure 3.2: The Protocol of WearLock.

3.3 Acoustic Modem Design

We designed and implemented a software modem for reliable data transmission over

the acoustic channel. The goal is to meet the challenge of achieving robust communi-

cation under different ambient noise environments. We first discuss important charac-

teristics of the acoustic channel. Then, we will describe our modem design, which in-

cludes signal detection using preamble identification, time synchronization using pream-

ble and cyclic prefix, channel estimation and equalization with pilot tone, and signal mod-

ulation/demodulation. Figure 3.3 shows the block diagram of the OFDM modem design.

45

Energy-based
Silence Detection)

Preamble
Detection

Signal
Present

OFDM
block

1

OFDM Block-by-block Decoding

OFDM
block

2

OFDM
block

n

Time-to-
Frequency

(FFT)

Channel
Estimation &
Equalization

Constellation
De-mapping

Yes

WearLock
Controller
(Phone)

Constellation
MappingS/P P/SPilot Tone

Insertion

OFDM
block

1

OFDM
block

n
Preamble

Frequency-to=Time
conversion

(IFFT)
Preamble

Insert
Cyclic
Prefix

Insertion

TX RX

Time-domain
Synchronization

WearLock
Controller
(Watch)

Figure 3.3: The OFDM modem of WearLock.

3.3.1 The Acoustic Channel

Before diving into the design of acoustic modem, it is necessary to understand the impor-

tant aspects of the acoustic channel, which significantly shape our design decisions. Next,

we will discuss details of our OFDM modem design followed by practical considerations

of our implementation.

3.3.1.1 Ambient Noise

Ambient noise directly affects the Signal-Noise-Ratio (SNR) at the receiver side. While

ambient noise introduces challenges, it also provides opportunities for co-location detec-

tion [47]. To measure the sound or noise power, we use the sound pressure level (SPL),

which is defined as

SPL = 20 log10
p

pref
(3.1)

where p is the root mean square (RMS) power and pref is a reference value.

3.3.1.2 Sound propagation and attenuation

In the open air, the sound attenuation is mainly caused by spreading loss. Assume that

SPLtx and SPLrx are the sound pressure levels at the transmitter and the receiver, re-

spectively, and the distance between the transmitter and the receiver is d, then the sound

46

attenuation in the open air is defined as:

SPLtx − SPLrx = 20g log10(
d

d0
) (3.2)

where g is a geometric constant, with g = 1 for spherical propagation from a point source,

and d0 is a reference distance, i.e., the distance between transmitter’s microphone and

speaker [19].

0 20 40 60 80 100 120 140 160
Distance(cm)

20

30

40

50

60

70

80

S
P
L(

d
B

)

Vol=1.0
Vol=0.75
Vol=0.5
Vol=0.25
Vol=0.1

Figure 3.4: Receiver’s SPL in distance of different volume settings. Measured in a quiet room
with the SPL of ambient noise about 15-20 dB in a line-of-sight scenario.

In WearLock, we control the propagation range of acoustic signal by adjusting the

speaker volume. We have measured the SPL at the receiver under line-of-sight (LOS)

scenarios with different distances and volume settings, and the results are shown in Fig-

ure 3.4. From the figure, we can see that SPL attenuationmatches well with the theoretical

value in spherical propagation, decreasing by about 6 dB when the distance is doubled.

Therefore, the Signal-to-Noise (SNR) at the receiver side can be estimated by

SNRrx = SPLrx − SPLnoise (3.3)

where SPLnoise is the SPL of ambient noise.

While in most cases of LOS propagation, the signal experiences only spreading loss,

47

0.00 0.02 0.04 0.06 0.08 0.10
Time in second

1.0

0.5

0.0

0.5

1.0

A
m

p
lit

u
d
e

0 5000 10000 15000 20000
Frequency in Hz

60

40

20

0

20

40
S
P
L

in
 d

B
Direct path
Body blocked

Figure 3.5: The received signal comparison of LOS direct path (BER=0.0) and Body-blocked
NLOS (BER=0.54).

it is possible that occasional signal transmission occurs through human body when the

LOS path is partially blocked by the user’s body. Human body signal occlusion between

the transmitter and receiver results in heavy absorption loss and delay spreading. We

have measured the same signal transmitted under both signal paths. From the results

plotted in Figure 3.5, we can see a drop as large as 20dB in the received signal strength,

with increased bit error rate (BER) of the acoustic transmission. Careful attention to both

signal path configurations is needed in order to maintain a robust acoustic communication

system.

3.3.1.3 Multipath Effect

Signals that reflect off a local structural features form additional signal components that

contain the same information as the original signal but may be delayed in time or weaker

in signal strength. An experiment using COTS smart devices located randomly within 5

meter rang has shown that in a typical indoor environment severe multi-path propagation

exists [50], which means it is possible that one symbol will interfere with other symbols

from other multipath components. In our preliminary evaluation, our acoustic signal is

very short (about 1-2 OFDM symbols) and its power is controlled for transmission in a

48

1-2 meter short range, we have not observed significant multipath fading. We always

received the strongest direct path component, followed by very weak multipath compo-

nents sometimes. However, we do observe a delay spreading of multipath effect in NLOS

cases.

3.3.1.4 Microphone and Speaker Characteristics

Ringing effect and rise effect adversely affect speaker and microphone performance [61].

Ringing is the effect that the speaker generates a longer output than the real length of

input with a reverberation tail slowly reduced to zero. Similarly, rise effect is due to the

fact that the speaker unit cannot reach to its highest power instantly. To overcome these

effects, we define a guard interval Tg larger than the largest reverberation length to reduce

the inter-symbol interference (ISI), and we also apply fading at the beginning of the signal.

3.3.2 OFDM Design

WearLock leverages orthogonal frequency division multiplexing (OFDM) modulation to

encode the acoustic token. OFDM efficiently utilizes the spectrum by allowing overlap in

the frequency domain. It is also more resistant to frequency selective fading by enabling

sub-channel selection and equalization techniques.

3.3.2.1 Modulation and Demodulation

The OFDM modulation and demodulation are implemented through Fast Fourier’s Trans-

formation (FFT) algorithms. Considering a data sequence input to the inverse FFT (IFFT),

X = [X0, X1, · · · , Xk, · · · , XN−2, XN−1] (3.4)

where Xk = XI(k) + jXQ(k), which is in the form of quadrature amplitude modulation

(QAM). The real and imaginary axes are often called the in phase, or I-axis, and the

49

quadrature, or Q-axis. Usually, the conversion back and forth between a binary data and

the QAM-represented data input is done through a constellation mapping/de-mapping. To

get the baseband modulated time-domain signal, we apply the IFFT:

xn =
1

N

N−1∑
k=0

XA(k)e
j(2π

N
fktn+XP (k)) (3.5)

where fk = k/(N∆t), Fs = 1/∆t is the sampling rate, and tn = n∆t, and

XA(k) =
√

XI(k)2 +XQ(k)2 (3.6)

XP (k) = arctan(XQ(k)/XI(k)) (3.7)

Then the final representation of the signal is its real part sn = Re (xn). We directly

use this base-band signal as our output acoustic signal and send it through the speaker.

To demodulate a received time-domain signal, we apply the FFT and then look at the

complex representation of Xk in the result, and de-map it according to the constellation

diagram. However, due to the characteristics of the acoustic channels, which present

delay, attenuation and phase distortion issues, we need to implement synchronization,

sub-carrier selection, channel estimation and channel equalization.

3.3.2.2 Sub-carrier Frequency Range

Originally, we want to work on the near-ultrasound frequency ranged from 15kHz to 20kHz

for the following reasons: 1) the frequency range of most ambient noise in our scenarios

is below 15kHz; 2) humans are most sensitive to frequencies between 2,000 and 5,000

Hz; and 3) many new smart devices support native 44.1kHz or even higher sampling rate

which indicates that the frequency response is acceptable below 20kHz. However, in real

device experiment (A Moto 360 Android watch), we have found that there is a manda-

tory built-in low-pass filter, which limits the frequency range no higher than 7kHz, where

50

the signal fades significantly from 5kHz to 7kHz1. Therefore, our final design supports a

smartphone-smartwatch pair utilizing audible acoustic signals (1kHz-6kHz) and an em-

ulated smartphone-smartphone pair utilizing inaudible near-ultrasound acoustic signals

(15kHz-20kHz).

3.3.2.3 Preamble Design

Existing preambles used in OFDMmodems are usually based on PN-sequence or linearly

frequency modulated (LFM) signals. The PN-sequence signal is a sequence of signal

that has very strong auto-correlation output and weak cross-correlation output. The LFM

signal is also known as Chirp signal or Sweep signal, which has nice Doppler-shift insen-

sitivity and can be accurately detected in matched filtering. In our modem, we adopted a

chirp signal for signal detection and coarse synchronization. The chirp signal increases

from fmin to fmax in a time frame Tp.

3.3.2.4 Silence Detection and Signal Detection

The purpose of signal detection is to find the target signal in the recorded acoustic stream.

First, we use an energy-based detector to filter out the section of silence. When there is a

strong signal with SPL that surpasses our predefined noise level, wewill perform the signal

detection, relying on the detection of a known preamble. A cross-correlator calculates a

normalized score and compares against a threshold value. Once we have detected a

target signal, we will send this audio buffer to the next processing block.

3.3.2.5 Synchronization

Finding the start of a frame is critical to all the following operations and thus the system

performance. Our synchronization has two steps: a coarse time-domain synchronization

and a fine time-domain synchronization. The coarse synchronization in time-domain is
1We deem the reason of filtering as the main microphone usage in Android wear is speech recognition.

We are planning to test on more android wear models.

51

done during the preamble detection through cross-correlation of the received signal and

the known preamble. The preamble is a chirp signal, which correlates well with the original

chirp even if there is a frequency shift. This property ensures that we can always find

a coarse start of the frame. During the processing of the OFDM symbol, we perform

the fine time-domain synchronization by leveraging the cyclic prefix. The cyclic prefix

is a technique prefixing a symbol with a repetition of its end, which usually serves as a

guard interval to eliminate ISI and is a technique to improve the robustness of multi-path

propagation. For the purpose of fine time-domain synchronization, we use a window-

based method, to iteratively find the best match of the head and tail of the signal after

various delay adjustments. Assume the time domain signal is x(t), and the length of

cyclic prefix is Tg, we have

argmin
tf

tc+tf+Tg∑
t=tc+tf

x(t)x(t+ Ts), ∀tf ∈ [−τ, τ] (3.8)

where Ts is length of symbol excluding the guard interval, tc is the coarse delay, and τ is

the searching range for tf of a finer synchronization.

3.3.2.6 Channel Estimation and Equalization

Acoustic channel requires channel estimation and equalization techniques to overcome

the distortions caused by fast fading, delay spreading, and multipath propagation. We

insert equal-spaced unit-powered pilot tones for the purpose of equalization. To get the

channel estimation, we extract pilot tones in frequency domain after proper synchroniza-

tion as z(k) where k ∈ P, the pilot sub-channel set. Since it is equal-spaced in the fre-

quency domain, we then apply a FFT-based interpolation with a proper interpolation length

to expand it to estimate the data channel frequency response H(k), k ∈ P ∪ D, where D

is the data sub-channel set. And H(k) = z(k) when k ∈ P . Then, the equalization on the

52

pilot and data channel is calculated as follows:

ŝ(k) =
z(k)

H(k)
, k ∈ P ∪ D (3.9)

By equalizing the known a-priori pilot sub-channels to unit-power, we equalize the data

channels at the same time.

3.3.2.7 Adaptive Modulation

WearLock supports modulations such as BASK/QASK, BPSK/QPSK, 8PSK and 16QAM.

We adopt an adaptive modulation scheme, which has a Request-to-Send/Clear-to-Send

(RTS/CTS) phase before the data transmission phase. The motivation of adaptive modu-

lation is that in every round, we want to make sure that the acoustic signal can be delivered

reliably from smartphone to the nearby smartwatch in spite of the ambient noise and in-

terfering signals. As is well known, the higher the order of modulation, the higher the date

rate R. R can be calculated by

R =
|D|rc log2M

Tg + Ts
(3.10)

whereM is the modulation order, |D| is size of data sub-channel set, rc is the coding rate

for channel coding, and rc = 1 if no channel coding is used. Higher order modulations

are more vulnerable to ambient noise and interference. This usually requires a higher

SNR to maintain the same error rate as a lower order modulation. Therefore, dynamically

adaptive modulation are adopted by many communication systems, in which they sense

the channel quality and adapt the modulation under certain constraints. Unlike traditional

adaptive modulation for communication systems which seeks to maximize the system

data rate, our design goal is to utilize the propagation loss in transmission to select a

modulation mode to maintain a BER under a target BER. In the RTS/CTS phase, Wear-

Lock sends out a preamble with a block-based pilot symbol as a channel probing packet,

which will serve the purpose of sub-channel selection and modulation selection.

53

Channel probing and sub-channel selection: It is important for WearLock to find

the long-term or short-term noise which lasts for at least the time of transmission, like

periodically-restarting air conditioner, which overlays certain frequencies for undefined

duration. By sending a channel probing packet, WearLock can get an estimate of the

channel state information and rank all the candidate sub-channels by the noise power.

WearLock also chooses sub-channels in a priority order from low frequency to high fre-

quency, and from low noise power to high noise power. We will assess the performance

of sub-channel selection in our evaluation.

Pilot-based SNR indicator: From the channel probing result, we can also estimate

the pilot signal SNR as an indicator for adaptive modulation. In order to measure and

compare the performance of different modulation schemes, we use a normalized signal-

to-noise ratio (SNR) as metric: Eb/N0, which is the ratio of the energy per bit to noise

power spectral density. It can be calculated as

Eb

N0
=

C

N
· B
R
∝ PSNR · B

R
(3.11)

where B is the bandwidth, and R is the data rate, as we have discussed previously.

The C
N is the carrier to noise power ratio, which will be estimated using a pilot-based

SNR [95], that can be calculated from the spectrum result:

PSNR =
Ek∈P [X(k) ·X∗(k)]− Ek∈N [X(k) ·X∗(k)]

Ek∈N [X(k) ·X∗(k)]
(3.12)

where N is the null sub-channel set.

Deciding transmission mode: We have measured how BERs of different modula-

tions change in terms of different Eb
N0

in a quiet room (15-20db SPL) and LOS. We control

the ambient noise by an external speaker playing white noise audio. The result is shown

in Figure 3.6, in which the scatter plots are fitted by logarithmic tread-lines. The ranking

order of our measures closely matches the theoretic result [85]. Due to hardware limita-

54

tions, 16QAM is not usable in real experiments or at least needs heavy error correction

techniques. Also due to the uneven responses of amplitude modulation and phase mod-

ulation of the audio hardware, amplitude-shift keying needs less SNR per bit than phase-

shift keying. Therefore, we setup three transmission modes in total: QASK, QPSK, and

8PSK.
B

E
R

0.001

0.01

0.1

Eb/N0 in dB

0 7 14 21 28 35 42 49 56 63 70

0.1
MaxBER

Min Eb/N0

8PSK
16QAM
QPSK
QASK
BPSK
BASK

Figure 3.6: The BER of different modulations changes with Eb/N0

Ambient noise measurement: The ambient noise is measured in the first processing

phase at both sides. The smartphone also conducts a self-recording while the smartwatch

is actively recording the incoming signals. By detecting the preamble existing in those

recordings, we can coarsely align the two time series. The time series before the preamble

are used to calculate the ambient noise. The ambient noise similarity is used to filter the

cases that those devices are apparently not co-located. The noise level is also used to

set proper speaker volume to control the transmission range.

How adaptive modulation works: According to our preliminary measurements in

Fig. 3.4, in the first phase, a probing packet is sent out using a SPL(volume) that surpasses

the SPL of noise at least a minimal SNR around 1 meters:

SPLtx − 20 log10(
1.0

d0
)− SPLnoise > SNRmin (3.13)

where SNRmin can be decided from a minimal Eb/N0, such as marked in Fig. 3.6. This

55

ensures that the receiver in the range receives this probing packet. WearLock has no

explicit ranging and we use this as the bound on the transmission range, if a receiver falls

within this range, it will be able to receive the signal which is beyond the minimal SNR.

The actual received SNR is estimated by the pilot-based SNR and will be reported in the

CTS signal. After the transmitter gets the SNRrx, this one is used to select the modulation

scheme that can reach a BER at least smaller than a decided bound, the MaxBER as we

have also marked in Fig. 3.6. For example, if the rx’s SNR converts to Eb/N0 = 35dB

and MaxBER = 0.1, we can send the signal using 8PSK, since we can get a guaranteed

BER. If MaxBER = 0.01, then we can choose the modulation scheme as either QPSK or

QASK.

3.4 Secure Unlocking

Existing work uses SIC to secure information transmitted in the acoustic channel. How-

ever, in our scenario, it is not feasible since most android wearable devices are not

shipped with speakers. Therefore, we employed one time password (OTP) scheme to

make use the acoustic channel with no secret disclosed.

3.4.1 Threat Model

We assume that the wireless link is securely established, and used as a secure control

channel for the OFDM communication. The acoustic channel is assumed to be insecure

and an attacker can eavesdrop. We also assume that the attacker cannot take posses-

sion of the smart watch since it is hard to steal the watch from user’s wrist without being

caught. An attacker may take control of the phone and try to peak into it for the purpose

of online payment, private photos and emails, etc. In order to fool the WearLock system,

we assume that an attacker may try to perform various attacks. One is the co-located

attack, in which the attacker holds the user’s phone to get as close to the target as pos-

sible without being discovered. Another one is a record-and-replay attack, in which the

56

attacker makes use of recording and replay devices to capture the acoustic signal and

replay it to the smartphone. Jamming or Denial-of-Service attacks are not considered,

since we can simply turn back to traditional locking scheme on smartphones. Currently,

our design cannot protect acoustic channel against sophisticated relay attack which relies

on some sort of relay to extend the range of between those two devices. However, we

will argue the difficulty of launching this attack in acoustic channel, then discuss potential

counter-measures.

3.4.2 One Time Password

To defend against replay attacks, we employ a counter based one time password scheme

(i.e., IETF RFC 4226 [60]). Assume that the phone and watch have negotiated a secret

key k and a counter c through the wireless control channel (e.g., Bluetooth), which can

also be updated at anytime. The one time password is generate by keyed hash message

authentication code (HMAC) using HMAC-SHA-1, as HMAC(k, c). Then a dynamic trunca-

tion (DT) technique is used to extract a 32 bit binary from the 160-bit result, which ensures

that the outputs on different counter inputs are uniformly distributed. The final digits are

generated by the DT result taking modulo 10Digit, where Digit is the number of digits.

3.4.3 Security Discussion.

As we have mentioned, an attacker possessing the victim’s phone, will try various attacks.

We have identified the following attacks and explained why our system can defend against

or at least mitigate these attacks.

3.4.3.1 Brutal Force Attack

An attacker who takes possession of the victim’s phone, will try to mount brutal force

attack when the victim wearing the smartwatch is in another room or quite far away while

the Bluetooth connection is still live. The attacker needs to properly guess the acoustic

57

modem parameters and guess the OTP. A 32 bits OTP has a large keyspace as 232 and

we can easily increase the keyspace by adding more data channels or using higher order

modulations. The smartphone will be locked up after three consecutive failures, which

makes the brutal force attack unrealistic.

3.4.3.2 Co-located Attack

Being similar to brutal force attack, the attack just tries to get close enough to the victim

to perform a successful unlock. The defense against this attack lies in the design of the

modem that there is high bit error rate when the transmission distance is beyond around

1 meter. Getting closer to the user and covering the smartphone stealthily may not work,

since it will obstruct the direct path and result in significant loss when acoustic channel

becomes NLOS.

3.4.3.3 Record and Replay Attack

Since an attacker can monitor the acoustic channels, disclosing the OTP token may suffer

from a replay attack, in which an attacker can record the token signal and replay it to the

watch like in the man-in-the-middle (MITM) attack. This attack is defeated by examining

the timing window, since in the protocol, we can measure the software stack delay and

wireless round-trip-time. A MITM attacker with recorder and player in the loop definitely

adds delay in the acoustic path. Every time the power button is pressed, a Bluetooth

message is sent to the watch indicating the start of the protocol, and the watch replies a

Bluetooth message and starts recording. Then the smartphone starts to send acoustic to-

ken, after which smartphone also sends a Bluetooth message of stopping recording. And

the watch will stop recording as well. This procedure has two phases, and it is interactive,

which means we can examine the result of the first phase, and abort the second phase

if there is anything suspicious. Because the OTP token is sent in the second phase, we

avoid the disclosure of OTP token in such attack.

58

3.4.3.4 Relay Attack

Sophisticated relay attack will try to use record and replay in a live manner, to circumvent

the time window based protection. If this attack can be performed in ideal case, our

current design cannot protect acoustic channel against this attack. However, this attack

is very hard to mount since it needs very flat frequency and phase response speaker and

microphone to avoid acoustic distortions in the ADC and DAC. Otherwise, we can use

fingerprinting method to unique identify those acoustic hardwares to check if there are

relays. Additionally, high quality speaker/microphone usually cannot be made in small

sizes, which enlarges the chance being spotted by victim. Another potential counter-

measure is to employ distance bounding protocol [11].

3.5 Performance Optimizations

WearLock Controllers are the running instances of our system on the smartphone and

smartwatch. One task ofWearLockController is to gather information from various sources

and make the final decisions on questions such as where to run the computation and

when to abort a transmission, which gives us plenty of opportunities for performance op-

timizations. The rationale is that the change of the way of unlocking smartphone using

a paired smartwatch does not actually reduce the frequency of unlocking. Every audio

transmission is followed by a series of computations, which would be heavy burdens on

wearable devices. Even though the microphone and speaker power consumptions are

relatively low, digit signal processing computations such as cross correlation, FFT based

Modulation and Demodulation, FFT based interpolation are all relatively computationally

intensive, consuming more power. We believe that by well addressing those questions,

we can not only save energy for wearable devices but also reduce the delay of processing.

We conduct computation load balance and computation reduction as two main solutions.

59

3.5.1 Computation Offloading

To mitigate the power drain on wearables, we leverage the natural computation pattern

of the smartphone and its paired wearable, offloading heavy computation tasks from the

smartwatch to the smartphone. Since all the acoustic modem and digital signal processing

libraries are implemented as a common module shared by both phone-side and watch-

side apps, we can easily partition the computations among these two devices.

In order to understand the trade-off here, we have measured the time cost of process-

ing after the recording and the corresponding rough power consumption, in Figure 3.7.

The processing mainly consists of a sliding window based cross correlator and an OFDM

demodulator. Since it is not possible to tear apart the Android smartwatch and connect

it to a power meter, we run our system for 50 rounds of acoustic unlocking and rely on

the Android OS battery status to roughly measure the power consumption by the API

provided by Android Framework. To be noted that, this energy consumption measure is

pretty rough, as the measurement procedure keeps the device awake, violating the life-

cycle design pattern of an Android wear app. We anticipate more energy saving in daily

usage. From the result, we can see that by offloading to the smartphone, it not only saves

energy but also reduces the computation time.

Galaxy
Nexus

Nexus 6 Moto 360

(a)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

T
im

e
 C

o
st

 (
s)

Offloaded
to Phone

Processing
on Watch

(b)

0

20

40

60

80

100

B
a
tt

e
ry

 L
e
v
e
l
R

e
m

a
in

e
d
 (

%
)

Phone
Watch

Figure 3.7: Time Cost (a) and Power Consumption (b) Comparison on Offloading and Local Pro-
cessing on Wearable.

60

3.5.2 Computation Reduction

The basic idea of the computation reduction is to leverage a series of filters using informa-

tion such as wireless network, ambient noise and motion sensors, to avoid unnecessary

follow-up heavy computation. For example, we can set a rule that the WearLock only

works when the Bluetooth link exists. Therefore, if there is no Bluetooth link, all the pro-

tocols and algorithms will not run. Alternatively, the technique used in Sound-Proof [47]

is complementary to WearLock by leveraging the similarity of ambient noise, to eliminate

unnecessary acoustic transmission, which can be implemented in the RTS/CTS phase

of adaptive modulation. If the ambient noise similarity is below a threshold, we believe

those two deices are not co-located with a high confidence and then the transmission

is aborted. Additionally, we can also leverage the activity context information or hand

movement derived from sensor units to reduce the number of acoustic transmissions.

3.5.2.1 Leveraging Motion Sensor-based Filtering

When the user is engaged in activities, or the smartphone is hold by the same hand that

wears the watch, we can use the raw inertial sensor data to detect the device movement

similarity. This will serve as a filter that can eliminate unnecessary acoustic transmission

if the similarity distance is lower or higher than predefined thresholds. In order to use

sensor traces, we need to convert the 3-axis sensors to its magnitude representation by

s ←
√

s2x + s2y + s2z, since it is challenge to obtain accurate relative orientation between

those two devices. The alignment of the sensor time series is not necessary since we

use Dynamic Time Warping (DTW) to find the best alignment in the time domain [55].

The procedure is presented in Alg. 3.

Even though the time complexity of DTW is O(n2) assuming two inputs are both in

length of n, it is very cheap since n is usually small ranging from 50 to 150 samples. We

will verify the feasibility and measure the time cost in the evaluation.

61

Algorithm 3 Sensor-based Filter
1: procedure Sensor-based Filtering
2: for each first phase do
3: while recording do
4: spx,y,z ← phone accelerometer
5: swx,y,z ← watch accelerometer
6: end while
7: sp← Normalized(Magnitude(spx,y,z))
8: sw ← Normalized(Magnitude(swx,y,z))
9: if DTW(sp, sw) > dh then
10: abort protocol ▷ save the computation
11: else if DTW(sp, sw) < dl then
12: skip second phase ▷ save the computation
13: else
14: continue to the second phase
15: end if
16: end for
17: end procedure

3.6 Evaluation

In this section, we will first briefly discuss the implementation details. Then, we will eval-

uate our system in terms of communication range, adaptive modulation, sensor-based

filtering, system delay, a filed test and a case study. The metrics we are reporting are

mostly bit error rate (BER) and time cost.

3.6.1 Implementation Details

We have implemented our system on Android OS, consisting of an Android phone app

and an Android wear app. We have wrapped theMessageAPI and ChannelAPI of Android

Wear SDK for implicit message/file transferring so that we do not need to handle the

underlying networking using either Bluetooth or WiFi. We have also ported the wear app

to a smartphone in order to test near-ultrasound frequency in WearLock. The OFDM

modem is written in pure JAVA libraries, which can be running on both sides. The digital

signal processing library is also written in JAVA and we plan to move on native DSP

library in the future. The default FFT size is 256 and the sampling rate is 44.1 kHz, which

gives about 172Hz sub-channel bandwidth. We index our channels from 1-256. and in

62

default we pick channel {16, 17, 18, 20, 21, 22, 24, 25, 26, 28, 29, 30} as data channels, and

{7, 11, 15, 19, 23, 27, 31, 35} as pilot channels for working at 1-6kHz frequency band. The

rests are null channels. We shift this channel assignment with higher index when we

want 15-20kHz frequency band. This channel assignments will be adjusted during sub-

channel selection. The preamble size is 256 samples, the post-preamble guard size is

1024 samples and the CP duration is 128 samples. All those parameters can be easily

tuned in the setting activity of our app.

3.6.2 Communication Range

The communication range is a very important performance metric. Ideally, we want to

the communication range to be strictly constrained within one meter. However, the per-

formance varies due to different modulations and ambient noise. In Figure 3.8, we show

the communication range of the acoustic modem in terms of BER in three different trans-

mission modes. They are measured at an office room with a line-of-sight setup. We can

see that by constraining the max BER we can adaptively change the transmission mode

to guarantee that the signal fades significantly when the current communication range is

increased.

0 20 40 60 80 100
Distance(cm)

0.00

0.05

0.10

0.15

0.20

B
E
R

QASK
QPSK
8PSK

Figure 3.8: The BER in distances and transmission modes (near-ultrasound).

63

0 20 40 60 80 100
Distance(cm)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

B
E
R

AM-0.05
AM-0.10
AM-0.15
8PSK
QPSK
QASK

Figure 3.9: The BER in adaptive modulation under different BER constrains(near-ultrasound).

3.6.3 Adaptive Modulation

To understand the performance of adaptive modulation, we have conducted two experi-

ments. First, we enable adaptive modulation selection in the previous measurements to

show the effectiveness of adaptive modulation. In Figure 3.9, by constraining the BER,

we can adaptively change the modulation schemes, which can allow us to have shorter

packets or more redundant bits. It also guarantees that an eavesdropper located nearby

will have a larger BER since a higher order modulation is more vulnerable to noise and in-

terference. Next, we demonstrate WearLock adaptation to ambient noise in sub-channel

selections. We use audible frequency range for this experiment and employ an external

tone generator as an acoustic jammer, the Audacity, which supports at most 6 mono-

tracks simultaneously. We use QPSK modulation with the smartwatch and smartphone

placed at a fixed distance about 15cm. The jammed sub-channel indexes are randomly

selected every time. The result, depicted in Figure 3.10, shows that when the sub-channel

selection is enabled, the modem is able to avoid the noisy or interfered sub-channels and

maintain a stable BER. Since we have a wide bandwidth, in which there are 24 data sub-

channel candidates and 32 sub-channels in total. For a 6-digit pin code (24 bit in binary)

using QPSK, it needs 12 sub-channels. A jammer or noise source needs to block at least

more than half of those sub-channels.

64

1 2 3 4 5 6
Number of Subchannel Jammed

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

B
E
R

W/o Subchannel Selection
W/ Subchannel Selection

Figure 3.10: The BER under jamming and subchannel selection. (QPSK, audible sound)

3.6.4 Sensor-based Filtering

We have also evaluated the sensor-based filtering to see how much similarity in sensor

data we can leverage to reduce the number of acoustic transmissions. We tested the

smartphone and the smartwatch in same activities such as sitting, walking and jogging,

and also in different activity combinations. The normalized DTW scores and the running

time are reported in Table 3.1. The activity context can be queried through Google Play

Service APIs. By setting a threshold on the DTW scores (0.1 in our case), we can reduce

the Max BER or skip the second phase when the DTW score is under the threshold.

Activities sitting walking running different cost(ms)
DTW Scores 0.05 0.02 0.06 0.20 45.9

Table 3.1: Sensor-based Filtering

3.6.5 System Delay

The system delay is important since users will lose their patience with the WearLock

technique if it is much slower than entering a password. There are two types of delay:

computation delay and communication delay. We have broken down the computation

delay into phase 1 channel probing processing, phase 2 pre-processing and phase 2

demodulation in Figure 3.11 when the computation is carried out on different devices. We

65

Nexus 6 Galaxy Nexus Moto 360

0
4
0

0
8

0
0

1
2
0

0
T
im

e
 (

m
s)

Phase 1 Channel Probing
Phase 2 Preprocessing
Phase 2 Demodulation

Figure 3.11: The computation delay of each phase on different devices.

Message File

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

T
im

e
 (

m
s)

WiFi
Bluetooth

Figure 3.12: The communication delay between smartphone and smartwatch.

have also measured the communication delay in WiFi/Bluetooth message and file transfer

in Figure 3.12. Every experiment is repeated at least 20 times. We did not measure the

modulation since the generation is very fast. Part of them can be generated ahead-of-time

and therefore the cost can be amortized. For purpose of comparison, we also measured

the time cost for a user entering 4/6-digit PIN codes on an Android device using similar

method as [37]. The results are also aligned to the medians of measurements in [37]. We

compare the results with three different configurations as shown in Figure 3.13:

• Config1: the fastest case where the smartwatch offloads computation via WiFi to a

high end smartphone (Nexus 6)

66

• Config2: the slowest case where the smartwatch offloads computation via Bluetooth

to a low end smartphone (Galaxy Nexus)

• Config3: local processing case where the processing is on the smartwatch (Moto

360)

The results indicate that WearLock has a delay advantage over manually unlocking even

on a low end device and slow Bluetooth link with a speedup of at least 17.7%. For the

fastest case, the WearLock speedup is at least 58.6%. Notably, WearLock experiences

less delay and only needs the user to click the power button.

Config 1 Config 2 Config 3 4-digit
pin

6-digit
pin

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

T
im

e
 (

s)

Figure 3.13: Compare the total delay in different configurations with manually entering pin codes.

3.6.6 Field Test

We tested WearLock with the smartphone and smartwatch hold or worn in different con-

figurations: same hand and different hands. We also tested them in different locations as

offices, classrooms, cafes and grocery stores where the typical sounds in those scenarios

are human voice and noises from sources such as keyboard typing, cafe machines, air

conditioners, etc. We report the BER results in Table 3.2. From the results, we find that

near-ultrasound may have less interference but significant signal fade due to direct path

blocking in the same hand case. The audible sound is less convenient but more usable in

67

most noise cases. It would be better to use inaudible sound in quiet spaces and audible

sound in noisy spaces as long as the volume is controlled. We can easily integrate this

choice to current mobile OS since it is in line with how smartphone users set their the

sound notification preferences.

BER v.s. Locations Office Class Room Cafe Grocery Store
Diff. Hand (Audible) 0.0486(8PSK) 0.0333(8PSK) 0.0263(QPSK) 0.0119(QPSK)
Same Hand (Audible) 0.0889(8PSK) 0.0512(8PSK) 0.0655(QPSK) 0.0648(QPSK)
Diff. Hand (Near-ultrasound) 0.0556(8PSK) 0.0417(QPSK) 0.0233(QPSK) 0.0139(QPSK)
Same Hand (Near-ultrasound) 0.1054(QPSK) 0.1875(QPSK) 0.1971(QPSK) 0.2060(QPSK)

Table 3.2: Field Test Result. The average BER is around 0.08.

3.7 Discussion and Limitations

3.7.1 Non-omnidirectional Microphone/Speaker

Even though the microphone/speaker units are omni-directional, they are not exposed

fully to the outside of smart device cases, which all results in certain direction-limited

effect, just like uni-directional units. During our experiments, the real performance of

the acoustic modem is heavily affected by whether the speaker-mic pair are directed to

each other (i.e., line of sight). This effect increases the BER and shorts the working

range. However, the imposed limitation of working range will not hinder the security and

can be mitigated by relaxing the acceptable BER threshold. We can also leverage the

diverse specifications of smartphone and smartwatch in which multiple microphones and

speakers are built-in at various positions for the purpose of stereo play/recording and

noise cancellation.

3.7.2 Acoustic Frequency Range

Due to the frequency range limitation of the mobile acoustic hardware, the implemented

system can work on audio range (1-6Khz) on a phone-watch pair, and near-ultra sound

range (15-20Khz) in a phone-phone pair. This brings the limitation that the acoustic is

68

either audible or can be possibly heard by babies or animals. This is one limitation of

our work and we leave this to the smartphone manufacture when devices with higher

sampling rate will be shipped. For example, several latest models of Samsung Galaxy

Note supports 96kHz and higher audio recording/playback. Device with higher sampling

rate can utilize higher and more frequency bands with less noise and more bandwidth.

3.7.3 Bluetooth Proximity

According to the document of Bluetooth proximity profile that even the link between de-

vices has been securely enabled, the device can be spoofed into assuming that the other

device is close due to the internal design of Bluetooth protocol, which means that naively

using Bluetooth proximity profile for secure distance measurement is not encouraged [92].

Currently secure distance measurement using Bluetooth requires additional development

upon existing stacks. Comparatively, our system on mobile and wearable devices can be

easily implemented in the application level and ported to other devices. However, we

do admit that a solution via Bluetooth is promising, and we leave this in our future work

to explore secure ranged and easy-to-implement token-based authentication in wireless

channel.

3.8 Related Work

There are two main areas related to our work. First, we will briefly outline the acoustic

communication on mobile device and justify the difference of our work. Then, we will

discuss the existing work about reduced-effort authentication.

3.8.1 Acoustic Communication on Mobile Devices

WearLock extends acoustic communications to more smart devices. Dhwani [61] aims to

replace NFC with an acoustic orthogonal frequency division multiplexing (OFDM) modem

69

secured by a self-interference cancellation (SIC) technique. Dolphin [51] and PriWhis-

per [105] also leverage similar idea for secure acoustic channel. However, their schemes

are not suitable for practical and efficient implementation on phone-watch pairs, since

most smartwatches have no speakers and generating a cancellation signal imposes both

energy and processing burdens on wearable devices. We use a different secure scheme

tailed for smartwatch which acts as a listener in acoustic channel and conduct offloading

to shift computation and energy burdens on smartwatch to more capable smartphone.

Work [50] used On-off keying on chirp signals to overcome one of the main limitations of

acoustic communication on mobile devices: the short communication range. However,

our work make a good use of the relatively short communication range, and we use OFDM

which yields much higher data rate. Google NearBy [29] is an Android Framework API

to provide near filed communication and interaction using Bluetooth, WiFi and acoustics.

The acoustic signal is modulated in Dual-tone multi-frequency signaling (DTMF), which

is slower and less spectrum-efficient compared to the OFDM. However, the NearBy API

requires the devices to support near-ultrasound in 18.5kHz-20khz and therefore is not

supported on Android Wear devices yet. Other work requires the provision of special

acoustic communication hardware [56, 77, 90]. WearLock requires no additional special

hardware.

3.8.2 Reduced-Effort Authentication

The reduced-effort authentication is about techniques that seek to reduce or eliminate the

human effort involved in the proces of authentication. The simplest schemes utilize short-

range radio communication using Bluetooth or NFC. ZIA [18] is one of the earliest work

with zero-interaction authentication, leveraging an authentication token. WearLock can

be taken as a natural extension from PC and electronic tokens to the nowadays common

smartphone-smartwatch pairs. Work [75] has proposed the combination of multiple sig-

nals to define a security confidence level and subsequent the authentication only at certain

70

levels. Their scheme can reduce the authentication frequency but requires large effort in

data collection and training. Similarly, work [53] has proposed a method to lock the de-

vice when the user’s physical separation is detected. Their method is complementary to

ours and can be combined. Another way of reducing effort in authentication is to leverage

device co-location or localization [34,47,88,107]. Sound-Proof [47] has proposed to lever-

age similarities in ambient noise signals for user authentication. Sound-of-silent [88] has

proposed to utilize the silence patterns in recordings to provide co-location context. How-

ever, these techniques cannot defend against co-located attackers due to the co-location

granularity issues. WearLock relies on the presence of a validated acoustic signal that is

designed not to be detectable more than one meter away from the generating device.

3.9 Chapter Summary

In this chapter, we show that a convenient and secure smartphone unlocking can be

achieved by leveraging a paired smartwatch. We argue that the smartwatch is an ideal

wearable token device that is theft-proof and has constant connections to the phone.

Smartphone users can save much effort from unlocking. WearLock, the implemented

system, secures the acoustic channel by adapting the transmission power and modula-

tion configurations, and sends an OTP tokens for validation via acoustics to unlock the

smartphone. To optimize the system performance, we offload the heavy computation to

the phone, and leverage multi-source information including sensor data to reduce unnec-

essary audio transmissions. WearLock can achieve an average bit error rate of 8% in

our experiments. WearLock achieves at least 18% speedup even on a low-end device,

compared to entering PINs.

71

Chapter 4

LAVEA: Latency-aware Video

Analytics on Edge Computing

Platform

4.1 Introduction

Edge computing (also termed fog computing [9], cloudlets [78], MEC [66], etc.) has

brought us better opportunities to achieve the ultimate goal of a world with pervasive

computation [78]. This new computing paradigm is proposed to overcome the inherent

problems of cloud computing and provide supports to the emerging Internet of Things

(IoT) [36, 84, 99]. When using the cloud, all the data generated shall be uploaded to the

cloud data center before processing. However, considering nowadays a huge amount of

data is being intensively generated at the edge of the network, transferring the data at

such scale to the distant cloud for processing will add burdens to the network and lead to

unacceptable response time, especially for latency-sensitive applications. More specifi-

cally, as for edge computing, we aim to provide edge analytics, which focuses on data

analytics at or near the places (the network edge) where data is generated [80]. Data an-

alytics done at the edge of the network has many benefits such as gathering more client

72

side information, cutting short the response time, saving network bandwidth, lowering the

peak workload to the cloud, and so on.

Among many edge analytic applications, in this project, we focus on delivering video

analytics at the edge. The ability to provide low latency video analytics is critical for appli-

cations in the fields of public safety, counter-terrorism, self-driving cars, VR/AR, etc [83].

In video edge analytic applications, we consider typical client devices such as mobile

phones, body-worn cameras or dash cameras mounted on vehicles, web cameras at toll

stations or highway checkpoints, security cameras in public places, or even video cap-

tured by UAVs [91]. For example, in “Amber Alert”, our system can automate and speedup

the searching of objects of interest by vehicle recognition, vehicle license plate recogni-

tion and face recognition utilizing various web cameras deployed at highway entrances,

or dash cameras or cameras of smartphones mounted on cars.

Simply uploading all the captured video or redirecting video streams to the cloud can-

not meet the requirement of latency-sensitive applications, because the computer vision

algorithms involved in object tracking, object detection, object recognition, face and op-

tical character recognition (OCR) are either computation intensive or bandwidth hungry.

In addressing these problems, mobile cloud computing (MCC) is proposed to run heavy

tasks on resource rich cloud node to improve the response time or energy cost. This tech-

nique utilizes both the mobile and cloud for computation. An appropriate partition of tasks

that makes trade-off between local and remote execution can speed up the computation

and preserve mobile energy at the same time [20,32,38,62,82]. However, there are still

concerns of cloud about the limited bandwidth, the unpredictable latency, and the abrupt

service outage. Existing work has explored adding intermediate servers (cloudlets) be-

tween mobile client and the cloud. Cloudlet is an early implementation of the cloud-like

edge computing platform with virtual machine (VM) techniques. The edge computing

platform in our work has a different design on top of lightweight OS-level virtualization

which is modular – easy to deploy, manage, and scale. Compared to VM, the OS-level

virtualization provides resource isolation in a much lower cost. The adoption of container

73

technique leads to a server-less platform where the end user can deploy and enable edge

computing platform on heterogeneous devices with minimal efforts. The user programs

(scripts or executable binaries) will be encapsulated in containers, which provide resource

isolation, self-contained packaging, anywhere deploy, and easy-to-configure clustering.

The end user only needs to register events of interest and provide corresponding handler

functions to our system, which automatically handles the events behind the scene.

In this chapter, we present the Latency-Aware Video Edge Analytics (LAVEA) sys-

tem [98]. We are considering a 3-tier mobile-edge-cloud deployment and we put most

of our efforts into the mobile-edge side and inter-edge side design. We divide the re-

sponse time minimization problem into three sub-problems. First, we select client tasks

that benefit from being offloaded to edge node in term of time cost. We formulate this

problem as a mathematical optimization problem to choose tasks for offloading and al-

locate bandwidth among clients. Unlike existing work in mobile cloud computing, we

cannot make the assumption that edge node is as powerful as cloud node with unlimited

resources. Therefore, we consider the increasing resource contention and response time

when more and more tasks are running on the edge node by adding a latency constraint

to the optimization problem. Second, upon receiving offloading task requests at each

epoch, the edge node runs these tasks in an order to minimize the makespan. However,

the offloaded tasks cannot start when the corresponding inputs are not ready. To address

this problem, we employ a classic two-stage job shop model and adapt the Johnson’s

rule [44] with topological ordering constraint in a heuristic to prioritize the tasks. Last, we

enable inter-edge collaboration which leverages nearby edge nodes to reduce the overall

task completion time. We have investigated the performance of several task placement

schemes for inter-edge collaboration. The findings provide us insights that lead to an

efficient prediction-based task placement scheme.

In summary, we make the following contributions:

• We have designed an edge computing platform with serverless architecture, which

74

is able to provide flexible computation offloading to nearby clients to speed up

computation-intensive and delay-sensitive applications. Our implementation is lightweight-

virtualized, event-based, modular, and easy to deploy and manage on either edge

or cloud nodes.

• We have formulated an optimization problem for offloading task selection and priori-

tized offloading requests to minimize the response time. The task selection problem

co-optimizes the offloading decision and bandwidth allocation , and is constrained

by the latency requirement, which can be tuned to adapt to the workload on edge

node for offloading. The task prioritizing is modeled as a two-stage job shop problem

and a heuristic is proposed with the topological ordering constraint.

• We have evaluated several task placement schemes for inter-edge collaboration

and proposed a predication-based method which efficiently estimates the response

time.

4.2 Background and Motivation

In this section, we briefly introduce the background of edge computing and relevant tech-

niques, present our observations from preliminary measurements, and discuss the sce-

narios that motivate us.

4.2.1 Edge Computing Network

In this work, we consider an edge computing network as shown in Figure 4.1, in which

we focus on two types of nodes, the client node (we call it client for short) and the edge

server node (we call it edge, edge node, or edge server for short). We assume that clients

are one-hop away from edge server via wired or wireless links. When a client connects

to the edge node, it implicitly indicates that the client will first connect to the correspond

access points (APs) using cable or wireless link and then utilize the services provided

75

WiFi BS
CloudEdge Computing

Server

WAN

WiFi BS

Edge Computing
Server

LAN

WiFi BS

Server

WiFi BS
Server

Figure 4.1: An overview of edge computing environment

by connecting to the co-located edge node. In a sparse edge node deployment, a client

will only connect to one of the available edge nodes nearby at certain location. While in

a dense deployment, a client may have multiple choices of selecting the multiple edge

servers for service access. Implicitly, we assume that there is a remote cloud node which

can be reached via the wide area network (WAN).

To understand the factors that impact the feasibility of realizing practical edge comput-

ing systems, we have performed several preliminary measurements in different network

setups and shown the results in Figure 4.2 and Figure 4.3. In these experiments, we

measure the latency and bandwidth of combinations between clients nodes with different

network interfaces connecting to edge (or cloud) nodes. According to the measurements

of bandwidth, all clients have benefits in utilizing a wire-connected or advanced-wireless

(802.11ac 5 GHz) edge computing node. In terms of latency, wire-connected edge nodes

is the best while the 5 GHz wireless edge computing nodes have larger means and vari-

ances in latency compared to the cloud node in the closest region due to the intrinsic

nature of wireless channels. Based on the observations, in this work, we pragmatically

76

assume that edge nodes are wired to APs via cables to deliver services with better la-

tency and bandwidth against the cloud. Therefore, in such a setup, the cloud node can

be considered as a backup computing node, which will be utilized only when the edge

node is saturated and experiences very long response time.

wired
edge

WiFi 5G
edge

WiFi 2.4Ghz
edge

ec2
east

ec2
west

0
5

0
1

0
0

1
5

0
2

0
0

R
T
T
 (

m
s)

wired client
WiFi 2.4GHz
WiFi 5GHz

Figure 4.2: Round trip time between client and edge/cloud.

wired
edge

WiFi 5G
edge

WiFi 2.4Ghz
edge

ec2
east

ec2
west

0
5

0
1

0
0

B
a
n
d
w

id
th

 (
M

b
p
s)

wired client
WiFi 2.4GHz
WiFi 5GHz

Figure 4.3: Bandwidth between client and edge/cloud.

4.2.2 Serverless Architecture

Serverless architecture or Function-as-a-Service (FaaS), such as AWS Lambda, Google

Cloud Functions, Azure Functions, is an agile solution for developer to build cloud comput-

ing services without the heavy lifting of managing cloud instances. To use AWS Lambda

77

as an example, AWS Lambda is an event-based, micro-service framework, in which a

user-supplied Lambda function as the application logic will be executed in response to

the event of interest. The AWS cloud will take care of the provisioning and resource man-

agement for running Lambda functions. At the first time a Lambda function is created, a

container will be built and launched based on the configurations provided. Each container

will also be provided a small disk space as transient cache during multiple invocations.

AWS has its own way to run Lambda functions with either reusing an existing container

or creating a new one. Recently, there is AWS Lambda@Edge [4], that allows using

serverless functions at the AWS edge location to apply moderate computations in re-

sponse to content distribution network (CDN) events. We strongly advocate the adoption

of serverless architecture at the edge computing layers, as serverless architecture natu-

rally solves two very important problems for edge computing: 1) serverless programming

model greatly reduces the burden on users or developers in developing, deploying and

managing edge applications, as there is no need to understand the complex underlying

procedures or distributed system management to run the applications; 2) the function is a

very good abstract that is flexible to run on either edge or cloud, which lowers the barrier

of edge-cloud inter-operatability and federation. Recent works have shown the potentials

of such architecture in low latency video processing tasks [24] and distributed computing

tasks [45], and there have been research efforts of incorporating serverless architecture

in edge computing [21].

4.2.3 Video Edge Analytics for Public Safety

Video surveillance is of great importance for public safety. Besides the “Amber Alert”

example, there are many other applications in this field. For example, secure cameras

deployed at public places (e.g. the airport) can quickly spot unattended bags [109], police

with body-worn cameras can identify suspects and suspicious vehicles during approach-

ing, and so on. Because those scenarios are urgent and critical, the applications need to

78

provide the quickest responses with best efforts. However, most tasks in video analytics

are undoubtedly computationally intensive [71]. If such application is running solely on

resource constrained mobile clients or IoT devices directly, the latency in computation,

battery drain (if battery-powered), or even heat dissipation will eventually ruin the user

experience, failing to achieve the application performance goals. If deployed on cloud

nodes, transferring large volume of multimedia data will incur unacceptable transmission

latency and additional bandwidth cost. Being proposed as a dedicated solution, the edge

computing platform enables the quickest responses to these video analytics tasks which

require both low latency and high bandwidth.

In this work, we mainly focus on building the video edge analytics platform and we

demonstrate our platform with the application of Automated License Plate Recognition

(ALPR). Even though we integrate specific application, our edge platform is a general

design and can be extended for other applications with minor modifications. An ALPR

system usually has four stages: 1) image acquisition, 2) license plate extraction, 3) li-

cense plate analysis, and 4) character recognition [5, 23]. Each stage involves various

computer vision, pattern recognition, and machine learning algorithms. Migrating the ex-

ecution of some algorithms to powerful edge/cloud node can significantly reduce the re-

sponse time [86]. However, offloaded tasks require intermediate data, application state

variables, and corresponding configurations to be uploaded. For example, some compu-

tational tasks that produce a large amount of intermediate data will add delay to the whole

processing time if offloaded to the remote cloud. In general, we believe that an edge com-

puting platform that is carefully designed to handle the computation offloading will assist

ALPR system to expand on more resource-constrained devices at more locations and

provide better response time at the same time.

79

4.3 LAVEA System Design

In this section, we present our system design. First, we will discuss our design goals.

Then, we will overview our system design and introduce several important edge comput-

ing services.

4.3.1 Design Goals

• Latency. The ability to provide low latency services is recognized as one of the

essential requirements of edge computing system design.

• Flexibility. Edge computing system should be able to flexibly utilize the hierarchical

resources from client nodes, nearby edge nodes and remote cloud nodes.

• Edge-first. By edge-first, we mean that the edge computing platform is the first

choice of our computation offloading target.

4.3.2 System Overview

LAVEA is intrinsically an edge computing platform, which supports low-latency video pro-

cessing. The main components are edge computing node and edge client. Whenever a

client is running tasks and the nearby edge computing node is available, a task can be

decided to run either locally on the client or remotely on the edge server. We present the

architecture of our edge computing platform in Figure 4.4.

4.3.2.1 Edge Computing Node

In LAVEA, the edge computing node provides edge computing services to nearby mobile

devices. The edge computing node attached to the same access point or base station

as clients is called the edge-front. By deploying edge computing node with access point

or base station, we ensure that edge computing service can be as ubiquitous as Internet

access. Multiple edge computing nodes can collaborate and the edge-front will always

80

serve as the master and be in charge of the coordination with other edge nodes and cloud

nodes. As shown in Figure 4.4, we use the light-weight virtualization technique to provide

resource allocation and isolation for different clients. Any client can submit tasks to the

platform via client APIs. The platform will be responsible for shaping workload, managing

queue priorities, and scheduling tasks. Those functions are implemented via internal APIs

provided by multiple micro-services such as queueing service, scheduling service, data

store service, etc. We will introduce several important services later in this section.

4.3.2.2 Edge Client

As a resource constrained device, an edge client prefers to run lightweight data process-

ing tasks locally and offload heavy tasks to the edge computing node nearby. In LAVEA,

the edge client has a thin client design, to make sure all the clients can run it without intro-

ducing too much overhead. According to the available computation resource, the device

spawns at least one worker to make progress on the assigned job. The most important

components of client node design are the profiler and the offloading controller, acting as

participants in the corresponding profiler service and offloading service. With profiler and

offloading controller, a client can provide offloading information to the edge-front node

and fulfill offloading decisions received.

4.3.3 Edge Computing Services

Here, we will briefly introduce some important edge computing services.

4.3.3.1 Profiler Service

Similar to work [20, 62, 82], our system uses a profiler to collect metrics of task perfor-

mance on various devices, since it is difficult to derive an analytic model to accurately

capture the behavior of the whole system. However, we have found that the execution of

video process tasks on certain device is relatively stable, when the input and algorithmic

81

Host or Host Cluster Hardware

Host OS

Container

Container Manager (Docker Engine)

HDFS SQL KV
Store

Data Store
Service

Offloading
Service

Queueing
Service

Scheduling
Service

Edge Front Gateway

Worker

Task Queue

Container Container Container Container

Monitoring
Service

Worker Worker

Task Scheduler

Worker Worker Worker

Worker Worker Worker

Producer

Workload Optimizer

Producer

Graph

Queue Prioritizer

Task Worker

Profiler
Service

Edge Computing Platform API

Platform Internal API

OS-level Virtualization

Edge Computing Platform SDK
Edge Computing Platform Client API

Application

Profiler
Offloading Controller

Worker Worker Worker

Task Scheduler

Local Worker
Stack

OS or Container

Edge Computing
Node

 Access Potint

Security Camera

Dash Camera Smartphone and Tablet

Laptop

Figure 4.4: The architecture of edge computing platform

configurations are fixed. Therefore, we add a profiling phase during the deployment on

every new type of client devices and edge devices. The profiler will execute instrumented

tasks multiple times with different inputs and configurations on the device and measure

metrics including but not limited to the execution time, input/output data size, etc. The

time-stamped logs will be gathered to build the task execution graph for specific tasks,

inputs, configurations, and devices. The profiler service will collect those information, on

which LAVEA relies for offloading decisions.

4.3.3.2 Monitoring Service

Unlike profiler service which gathers pre-run-time execution information with pre-defined

inputs and configurations, the monitoring service is used to continuously monitor and col-

lect run-time information such as the network, system load, etc., from not only the clients

but also nearby edge nodes. Monitoring the network between client and edge-front is

necessary since most edge clients connect to edge-front server via wireless links. The

condition of wireless link is changing from time to time. Therefore, we need to constantly

82

monitor the wireless link, to estimate the bandwidth and the latency. Monitoring the sys-

tem load on the edge clients and edge servers provides flexible workload shaping and

task offloading from the client to the edge. This information is also broadcasted among

nearby edge nodes. When an edge-front node is saturated or unstable, some tasks will

be assigned to nearby edge nodes, according to the system load, the network bandwidth,

and network delay between edge nodes, as long as there is still benefit compared to

assigning tasks to cloud node.

4.3.3.3 Offloading Service

The offloading controller tracks tasks running locally at the client, and exchanges infor-

mation with the offloading service running on the edge-front server. The data gathered in

profiler and monitoring services will be used as inputs to the offloading decision problem

which is formulated as an optimization problem to minimize the response time. Every

time when a new client registers itself to the offloading services, after the edge-front node

collects enough prerequisite information and statistics, the optimization problem is solved

again and the updated offloading decisions will be sent to all the clients. Periodically, the

offloading service also solves the optimization problem, and updates offloading decisions

with its clients.

4.4 Edge-front Offloading

In this section, we consider selecting tasks to run on the edge as a computation offloading

problem. Traditional offloading problems are about offloading schemes between clients

and remote powerful cloud servers. In literature [20,62,82], these system models usually

assume the task will be instantly finished remotely once the task is offloaded to the server.

However, we argue that this assumption will not hold in edge computing environment as

we need to consider the various delays at the server side especially when lots of clients

83

are sending offloading requests. We call it edge-front computation offloading from the

perspective of client:

• Tasks will be only offloaded from client to the nearest edge node, which we call the

edge front.

• The underlying scheduling and processing is agnostic to clients.

• When a mobile node is disconnected from any edge node or even cloud node, it will

resort to local execution of all the tasks.

We assume that edge node is wire-connected to the access point, which indicates

that the out-going traffic can go through edge node with no additional communication

cost. The only difference between offloading task to edge node and cloud node, is that

the task running on edge node may experience resource contention and scheduling delay

while we assume task offloaded to cloud node will get enough resource and be scheduled

to run immediately. In light work load case, if there is any response time reduction when

this task is offloaded to cloud, then we know that there is definitely benefit when this task

is offloaded to the edge. The reasons are 1) an edge server is as responsive as the server

in the cloud data center, 2) running a task on edge server experiences shorter data trans-

mission delay as client-edge link has much larger bandwidth than edge-cloud link which

is usually limited and imbalanced by the Internet service providers (ISPs). Therefore, in

this section, we focus on the task offloading only between client and edge server, and we

will discuss integrating nearby edge nodes for the heavy work load scenario in the next

section.

4.4.1 Task Offloading System Model and Problem Formulation

Throughout the chapter, we call a running instance of the application a job, which consists

a set of tasks. The job is the unit of work that user submits to our system while the task

is the unit of work for our system to make scheduling and optimization decisions. These

84

tasks from each application will be queued and processed either locally or remotely. By

remotely, we mean run the task on an edge node. In our edge application scenario, all

clients are running instances of applications processing same kind of jobs. However, our

system can be easily extended to support heterogeneous applications.

In our ALPR application, each task is usually a computer vision algorithm. For exam-

ple, We have analyzed an open source ALPR project called OpenALPR [64] and illustrate

its task graph in Figure 4.5. We choose to work on the granularity of task since these tasks

are modularized and can be flexibly pipelined with tuned parameters to make trade-off be-

tween quickness and accuracy.

Input

Motion
Detection

Plate
Detection

Plate
Character
Analysis

image

video frame

motion
region

Output

image
still

Character
Recognition

no plate
detected

plate candidate

Result
Generation

Plate
Character
Analysis

Character
Recognition

Plate
Character
Analysis

Character
Recognition

plate candidate

Figure 4.5: The task graph of OpenALPR.

In the model, we consider there are N clients and only one edge server connected

as shown in Figure 4.1. The edge server could be a single server or a cluster of servers.

Each client i, i ∈ [1, N], will process the upcoming job upon request (e.g., recognizing the

license plates in video streams). We expect that such job consists of heavy computation

tasks could benefit from offloading some tasks to the edge server. Without loss of gen-

erality, we use a graph of task to represent the complex task dependencies inside a job,

85

which is essentially similar to the method call graph in [20], but in a more coarse granu-

larity. For a certain kind of job, we start with its directed acyclic graph (DAG), G = (V,E),

which gives the task execution sequence. Each vertex v ∈ V weight is the computation or

memory cost of a task (cv), while each edge e = (u, v), u, v ∈ V, e ∈ E weight represents

the data size of intermediate results (duv). Thus, our offloading problem can be taken as a

graph partition problem, in which we need to assign a directed graph of tasks to different

computing nodes (local, edge, or cloud), with the purpose to minimize certain cost, in our

problem, which is the job finish time.

The remote response time includes the communication delay, the network transmis-

sion delay of sending data to the edge server, and the task execution time on that server.

We use an indicator Iv,i ∈ {0, 1} for all v in V and for all i ∈ [1, N]. If Iv,i = 1, the task v

at client i will run locally, otherwise, it will run on the remote edge server. For those tasks

running locally, the total execution time for client i is a summation:

T local
i =

∑
v∈V

Iv,icv/pi (4.1)

where pi is the processor speed of client i.

Similarly, we use

T
local
i =

∑
v∈V

(1− Iv,i)cv/pi (4.2)

to represent the execution time of the path not taken which is running the offloaded tasks

locally instead. In the network, when there is an offloading decision, the client need to

send the intermediate data (outputs of previous task, application status, configurations,

etc) to the edge server in order to continue the computing. The network delay is modeled

as

Tnet
i =

∑
(u,v)∈E

|Iu,i − Iv,i|duv/ri + βi (4.3)

where ri is the connection rate assigned for this client connecting to the edge server and

βi is the communication latency which can be estimated using round trip time between

86

the client i and the edge server.

For each client, the remote execution time is

T remote
i =

∑
v∈V

(1− Iv,i)(cv/p0) (4.4)

where p0 is the processor speed of the edge server.

Then our offloading task selection problem can be formulated as

min
Ii,ri

N∑
i=1

(T local
i + Tnet

i + T remote
i) (4.5)

The offloading task selection is represented by the indicator matrix I. This optimization

problem is subject to the following constraints:

• The total bandwidth

s.t.
N∑
i=1

ri ≤ R (4.6)

• Like existing work, we restrict the data flow to avoid ping-pong effect in which inter-

mediate data is transmitted back and forth between client and edge server.

s.t. Iv,i ≤ Iu,i, ∀e(u, v) ∈ E, ∀i ∈ [1, N] (4.7)

• Unlike existing offloading frameworks for mobile cloud computing, we take the re-

source contention or scheduling delay at the edge side into consideration by adding

an end-to-end delay constraint.

s.t. T
local
i − (Tnet

i + T remote
i) > τ, ∀i ∈ [1, N] (4.8)

where τ can be tuned to avoid selecting borderline tasks that if offloaded will get no

gain due to the resource contention or scheduling delay at the edge.

87

Optimization Solver. The proposed optimization is a mixed integer non-linear pro-

gramming problem (MINLP), where the integer variable stands for the offloading decision

and the continuous variable stands for the connection rate. To solve this optimization prob-

lem, we start from relaxing the integer constraints and solve the non-linear programming

version of the problem using Sequential Quadratic Programming method, a constrained

nonlinear optimization method. This solution is optimal without considering the integer

constraints. Starting from this optimal solution, we optionally employ branch and bound

(B&B) method to search for the optimal integer solution or simply do an exhaustive search

when the number of clients and the number of tasks of each job are small.

4.4.2 Prioritizing Edge Task Queue

The offloading strategy produced by the task selection optimizes the “flow” time of each

type of job. At each time epoch of running, the edge-front node receives a large number

of offloaded tasks from the clients. Originally, we follow the first come first serve rule to

accommodate all the client requests. For each request at the head of the task queue,

the edge-front server first checks whether the input or intermediate data (e.g. images

or videos) is ready; otherwise the server waits. This scheme is easy to implement but

substantial computation is wasted if the network IO is busy with a large size file and there

is no task that is ready for processing. Therefore, we improve the task scheduling with

a task queue prioritizer to maintain a task sequence which minimizes the makespan for

the task scheduling of all offloading task requests received at a certain time epoch. Since

the edge node can execute the task only when the input data has been fully received or

the depended tasks have finished execution, we consider that an offloaded task has to go

through two stages: the first stage is the retrieval of input or intermediate data and state

variables; the second stage is the execution of the task.

We study our scheduling problem using the flow job shop model and apply the John-

son’s rule [44]. This scheme is optimal and the makespan is minimized, when the number

88

of stages is two. Nevertheless, this model only fits in the case that all submitted job re-

quests are independent and have no priorities. When considering task dependencies,

a successor can only start after its predecessor finishes. By enforcing the topological

ordering constraints, the problem can be solved optimally using the B&B method [12].

However, this solution hardly scales against the number of tasks. In this case, we adapt

the method in [6], i.e., grouping tasks with dependencies and executing all tasks in a

group sequentially. The basic idea is applying Johnson’s rule in two levels. The first level

is to decide the sequence of tasks within each group. The difference in our problem is that

we need to decide the best sequence among all valid topological orderings. The bottom

level is a job shop scheduling problem in terms of grouped jobs (i.e., a group of tasks with

dependencies in topological ordering), in which we can utilize Johnson’s rule directly.

4.5 Inter-edge Collaboration

In this section, we improve our edge-first design in the case when the incoming workload

saturates our edge-front node. We will first discuss our motivation and list the correspond-

ing challenges. Then we will introduce several collaboration schemes we have proposed

and investigated.

4.5.1 Motivation and Challenges

The Edge computing node possesses more resources than client nodes but less than the

cloud node. While serving an increasing number of client nodes nearby, the edge-front

node will be eventually overloaded and become non-responsive to new requests. As a

baseline, we can optionally choose to offload further requests to the remote cloud. We

assume that the remote cloud has unlimited resources and is capable of handling all the

requests. However, running tasks remotely in the cloud, the application need to bear

with unpredictable latency and limited bandwidth, which is not the best choice especially

when there are other nearby edge nodes that can accommodate those tasks. We as-

89

sume that under the condition when all available edge nodes nearby are exhausted, the

mobile-edge-cloud computing paradigm will simply fall back to the mobile cloud comput-

ing paradigm. The fallback design is a future work. In this chapter, we mainly investigate

the inter-edge collaboration with the primary purpose to alleviate the burden on edge-front

node.

When the edge-front node is saturated with requests, it can collaborate with nearby

edge nodes by placing some tasks to these not-so-busy edge nodes, such that all the

tasks can get scheduled in a reasonable time. This is slightly different from balancing the

workload among the edge nodes and the edge-front node, in that the goal of inter-edge

collaboration is to better serve the client nodes with submitted requests, rather than simply

making the workload balanced. For example, an edge-front node that is not overloaded

does not need to place any tasks to the nearby edge nodes, even when they are idle.

The challenges of inter-edge collaboration are two-fold: 1) we need to design a proper

inter-edge task placement scheme that fulfills our goal of reducing the workload on the

edge-front node while offloading a proper amount of workload to the qualified edge nodes;

2) the task placement scheme should be lightweight, scalable, and easy-to-implement.

4.5.2 Inter-Edge Task Placement Schemes

We have investigated three task placement schemes for inter-edge collaboration.

• Shortest Transmission Time First (STTF)

• Shortest Queue Length First (SQLF)

• Shortest Scheduling Latency First (SSLF)

The STTF task placement scheme tends to place tasks on the edge node that has the

shortest estimated latency for the edge-front node to transfer the tasks. The edge-front

node maintains a table to record the latency of transmitting data to each available edge

90

node. The periodical re-calibration is necessary because the network condition between

the edge-front node and other edge nodes may vary from time to time.

The SQLF task placement scheme, on the other hand, tends to transfer tasks from the

edge-front node to the edge node which has the least number of tasks queued upon the

time of query. When the edge-front node is saturated with requests, it will first query all

the volunteer edge nodes about their current task queue length, and then transfer tasks

to the edge node that has the shortest queue reported.

The SSLF task placement scheme tends to transmit tasks from the edge-front node to

the edge node that is predicted to have the shortest response time. The response time is

the time interval between the time when the edge-front node submits a task to an available

edge node and the time when it receives the result of the task from that edge node. Unlike

the SQLF task placement scheme, in which the edge-front node keeps querying all the

edge nodes and may have a performance issue when the number of nodes is very large,

we have designed a novel method for the edge-front node to measure the scheduling

latency efficiently. During the measurement phase before the edge-front node chooses

the task placement target, edge-front node sends a request message to each available

edge node, which appends a special task to the tail of the task queue. When the special

task is executed, the edge node simply sends a response message to the edge-front

node. The edge-front node receives the response message and records the response

time. Periodically, the edge-front node maintains a series of response times for each

available edge node. When the edge-front node is saturated, it will start to reassign tasks

to the edge node having the shortest response time. Unlike the STTF and SQLF task

assignment schemes, which choose the target edge node based on the current or most

recent measurements, the SSLF scheme predicts the current response time for each

edge node by applying regression analysis to the response time series recorded so far.

The reason is that the edge nodes are also receiving task requests from client nodes, and

their local workload may vary from time to time, so the most recent response time cannot

serve as a good predictor of the current response time for the edge nodes. As the local

91

workload in the real world on each edge node usually follows certain pattern or trend,

applying regression analysis to the recorded response times is a good way to estimate

the current response time. To this end, we record the measurements of response times

from each edge node, and offload tasks to the edge node that is predicted to have the

least current response time. Once the edge-front node starts to place tasks to a certain

edge node, the estimation will be updated using piggybacking of the redirected tasks,

which amortizes the overhead of measurement.

Each of the task placement schemes described above has some advantages and dis-

advantages. For instance, the STTF scheme can quickly reduce the workload on the

edge-front node. But there is a chance that tasks may be placed to an edge node which

already has intensive workload, as STTF scheme gathers no information of the workload

on the target. The SQLF scheme works well when the network latency and bandwidth

are stable among all the available edge nodes. When the network overheads are highly

variant, this scheme fails to factor the network condition and always chooses edge node

with the lowest workload. When an intensive workload is placed under a high network

overhead, this scheme potentially deteriorates the performance as it needs to measure

the workload frequently. The SSLF task placement scheme estimates the response time

of each edge node by following the task-offloading process, and the response time is a

good indicator of which edge node should be chosen as the target of task placement in

terms of the workload and network overhead. The SSLF scheme is a well trade-off be-

tween previous two schemes. However, the regression analysis may introduce a large

error to the predicted response time if inappropriate models are selected. We believe that

the decision of which task placement scheme should be employed for achieving good sys-

tem performance should always give proper considerations on the workload and network

conditions. We evaluated those three schemes through a case study in the next section.

92

4.6 System Implementation and Performance Evaluation

In this section, we first brief the implementation details of our system. Next, we introduce

our evaluation setup and present evaluation results.

4.6.1 Implementation Details

Our implementation aims at a serverless edge computing architecture. As shown in the

system architecture of Figure 4.4, our implementation is based on docker container for the

benefits of quick deployment and easy management. Every component has been docker-

ized and its deployment is greatly simplified via distributing pre-built images. The creation

and destruction of docker instances is much faster than that of VM instances. Inspired

by the IBM OpenWhisk [42], each worker container contains an action proxy, which uses

Python to run any scripts or compile and execute any binary executable. The worker

container communicates with others using a message queue, as all the inputs/outputs

will be jsonified. However, we don’t jsonified image/video and use its path reference in

a shared storage. The task queue is implemented using Redis as it is in memory with

good performance. The end user only needs to 1) deploy our edge computing platform

on heterogeneous devices with just a click, 2) define the event of interests using provided

APIs, and 3) provide a function (scripts or binary executable) to process such event. The

function we have implemented utilizes the open source project OpenALPR [64] as the

task payload for workers.

4.6.2 Evaluation Setup

4.6.2.1 Testbed

We have built a testbed consisting of four edge computing nodes. One of the edge nodes

is the edge-front node, which is directly connected to a wireless router using a cable.

Other three nodes are set as nearby edge computing nodes for the evaluation of inter-

93

edge collaboration. These four machines have the same hardware specifications. They

all have a quad-core CPU and 4 GB main memory. The three nearby edge nodes are

directly connected to the edge-front node through a network cable. We make use of two

types of Raspberry Pi (RPi) nodes as clients: one type is RPi 2 which is wired to the router

while the other type is RPi 3 which is connected to router using built-in 2.4 GHz WiFi.

4.6.2.2 Datasets

We have employed three datasets for evaluation. One dataset is the Caltech Vision Group

2001 testing database, in which the car rear image resolution (126 images with resolution

896x592) is adequate for license plate recognition [69]. Another dataset is a self-collected

4K video containing rear license plates taken on an Android smartphone and is converted

into videos of different resolutions (640x480, 960x720, 1280x960, and 1600x1200). The

other dataset used in inter-edge collaboration evaluation contains 22 car images, with the

various resolution ranging from 405x540 pixels to 2514x1210 pixels (file size 316 KB to

2.85 MB). The task requests use the car images as input in a round-robin way, one car

image for each task request.

4.6.3 Task Profiler

Beside the round trip time and bandwidth benchmark we have presented in Figure 4.2

and Figure 4.3 to characterize the edge computing network, we have done the profiling

of the OpenALPR application on various client, edge and cloud nodes.

In this experiment, we use both dataset 1 (workload 1) and dataset 2 (workload 2) at

various resolutions. The execution time of each task is shown in Figure 4.6, Figure 4.7,

Figure 4.8, and Figure 4.9. The results indicate that by utilizing an edge node, we can get

a comparable amount of computation power close to clients for computation-intensive

tasks. Another observations is that, due to the uneven optimization on heterogeneous

CPU architectures, some tasks are better to keep local while some others should be

94

896x592
workload1

640x480
workload2

960x720
workload2

1280x960
workload2

1600x1200
workload2

0
2

0
0

4
0

0
6

0
0

8
0

0
C

lie
n
t

R
P
i2

 E
x
e
cu

ti
o
n
 T

im
e
(m

s)

MotionDetecton
PlateDetection
PlateAnalysis
OCR

Figure 4.6: OpenALPR profile result of client type 1 (RPi2 quad-core 0.9 GHz)

896x592
workload1

640x480
workload2

960x720
workload2

1280x960
workload2

1600x1200
workload2

0
2

0
0

4
0

0
6

0
0

8
0

0
C

lie
n
t

R
P
i3

 E
x
e
cu

ti
o
n
 T

im
e
(m

s)

MotionDetecton
PlateDetection
PlateAnalysis
OCR

Figure 4.7: OpenALPR profile result of client type 2 (RPi3 quad-core 1.2 GHz)

offloaded to edge computing nodes. This observation justifies the need of computation

offloading between clients and edge nodes.

4.6.4 Offloading Task Selection

To understand how much execution time can be reduced by splitting tasks between the

client and the edge, or between the client and the cloud, we design an experiment with

95

896x592
workload1

640x480
workload2

960x720
workload2

1280x960
workload2

1600x1200
workload2

0
2

0
0

4
0

0
6

0
0

8
0

0
E
d
g
e
 E

x
e
cu

ti
o
n
 T

im
e
(m

s)

MotionDetecton
PlateDetection
PlateAnalysis
OCR

Figure 4.8: OpenALPR profile result of a type of edge node (i7 quad-core 2.30 GHz)

896x592
workload1

640x480
workload2

960x720
workload2

1280x960
workload2

1600x1200
workload2

0
2

0
0

4
0

0
6

0
0

8
0

0
E
C

2
 T

2
 L

a
rg

e
 E

x
e
cu

ti
o
n
 T

im
e
(m

s)

MotionDetecton
PlateDetection
PlateAnalysis
OCR

Figure 4.9: OpenALPR profile of a type of cloud node (AWS EC2 t2.large Xeon dual-core 2.40
GHz)

workloads generated from dataset 2 on two setups: 1) one edge node provides service to

three wired client nodes that have the best network latency and bandwidth; 2) one edge

node provides service to three wireless 2.4 GHz client nodes that have latency with high

variance and relatively low bandwidth. The result of the first case is very straightforward:

the clients simply upload all the input data and run all the tasks on the edge node in

edge offloading or cloud node in cloud offloading, as shown in Figure 4.10. This is mainly

96

640x480
workload2

960x720
workload2

1280x960
workload2

1600x1200
workload2

0
1

2
3

4
R

e
sp

o
n
se

 T
im

e
 p

e
r

fr
a
m

e
 p

e
r

cl
ie

n
t(

s) Client-edge opt
Client only
Edge only
Client-cloud opt
Cloud only

Figure 4.10: The comparison of task selection impacts on edge offloading and cloud offloading
for wired clients (RPi2).

640x480
workload2

960x720
workload2

1280x960
workload2

1600x1200
workload2

0
1

2
3

4
R

e
sp

o
n
se

 T
im

e
 p

e
r

fr
a
m

e
 p

e
r

cl
ie

n
t(

s) Client-edge opt
Client only
Edge only
Client-cloud opt
Cloud only

Figure 4.11: The comparison of task selection impacts on edge offloading and cloud offloading
for 2.4 GHz wireless clients (RPi3).

because using Ethernet cable can stably provide lowest latency and highest bandwidth,

which makes offloading to edge very rewarding. We didn’t evaluate 5 GHz wireless client

since this interface is not supported on our client hardware while we anticipate similar re-

sults as the wired case. We plot the result of a 2.4 GHz wireless client node with offloading

to an edge node or a remote cloud node in the second case in Figure 4.11. Overall, the

97

results showed that by offloading tasks to an edge computing platform, the application we

had chosen experienced a speedup up to 4.0x on wired client-edge configuration com-

pared to local execution, and up to 1.7x compared to a similar client-cloud configuration.

For clients with 2.4 GHz wireless interface, the speedup is up to 1.3x on client-edge con-

figuration compared to local execution, and is up to 1.2x compared to similar client-cloud

configuration.

5 10 15 20 25 30 35
Number of task offloading requests.

0
5

R
e
sp

o
n
se

 T
im

e
(s

)

Our scheme
SIOF
LCPUL

Figure 4.12: The comparison result of three task prioritizing schemes.

4.6.5 Edge-front Task Queue Prioritizing

To evaluate the performance of the task queue prioritizing, we collect the statistical results

from our profiler service and monitoring service on various workloads for simulation. We

choose the simulation method because we can set the numbers and types of client and

edge nodes to overcome the limitation of our current testbed to evaluate more complex

deployments. We add two simple schemes as baselines: 1) shortest IO first (SIOF):

sorting all the tasks against the time cost of the network transmission; 2) longest CPU

last (LCPUL): sorting all the tasks against the time cost of the processing on the edge

node. In the simulation, based on the combination of client device types, workloads and

offloading decisions, we have in total seven types of jobs to run on the edge node. We

98

increase the total number of jobs and evenly distributed them among the seven types

and report the makespan time in Figure 4.12. The result shows that LCPUL is the worst

among those three schemes and our scheme outperforms the shortest job first scheme.

4.6.6 Inter-Edge Collaboration

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 2 4 6 8 10 12

T
h

ro
u

g
h

p
u

t
(t

a
sk

s/
se

c)

Time (min)

Edge-front node
Edge node #1
Edge node #2
Edge node #3

Figure 4.13: Performance with no task place-
ment scheme.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 2 4 6 8 10 12

T
h

ro
u

g
h

p
u

t
(t

a
sk

s/
se

c)

Time (min)

Edge-front node
Edge node #1
Edge node #2
Edge node #3

Figure 4.14: Performance of STTF.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 2 4 6 8 10 12

T
h

ro
u

g
h

p
u

t
(t

a
sk

s/
se

c)

Time (min)

Edge-front node
Edge node #1
Edge node #2
Edge node #3

Figure 4.15: Performance of SQLF.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 2 4 6 8 10 12

T
h

ro
u

g
h

p
u

t
(t

a
sk

s/
se

c)

Time (min)

Edge-front node
Edge node #1
Edge node #2
Edge node #3

Figure 4.16: Performance of SSLF.

We also evaluate the three task placement schemes (i.e., STTF, SQLF and SSLF)

discussed in Section 4.5, through a controlled experiment on our testbed. For evaluation

purpose, we configure the network in the edge computing system as follows. The first

edge node, denoted as “edge node #1”, has 10 ms RTT and 40 Mbps bandwidth to the

edge-front node. The second edge node, “edge node #2”, has 20 ms RTT and 20 Mbps

bandwidth to the edge-front node. The third edge node, “edge node #3”, has 100 ms RTT

and 2 Mbps bandwidth to the edge-front node. Thus, we emulate the situation where

99

three edge nodes are in different distances to the edge-front node, from near to far.

We use the third dataset to synthesize a workload as follows. In the first 4 minutes,

the edge-front node receives 5 task requests per second, edge node #1 receives 4 task

requests per second, edge node #2 receives 3 task requests per second, and edge node

#3 receives 2 task requests per second, respectively. No task comes to any of the edge

nodes after the first 4 minutes. For the SSLF task placement scheme, we implement a

simple linear regression to predict the scheduling latency of the task being transmitted,

since the workload we have injected is uniform distributed.

Figure 4.13 illustrates the throughput on each edge node, when no task placement

scheme is enabled on the edge-front node. The edge-front node has the heaviest work-

load and it takes about 12.36 minutes to finish all the tasks. We consider this result as

our baseline.

Figure 4.14 is the throughput result of STTF scheme. In this case, the edge-front node

only transmits tasks to edge node #1, because edge node #1 has the highest bandwidth

and the shortest RTT to the edge-front node. Figure 4.17 reveals that the edge-front

node transmits 120 tasks to edge node #1 and no task to other edge nodes. As edge

node #1 has heavier workload than edge node #2 and edge node #3, the STTF scheme

has limited improvement on the system performance: the edge-front node takes about

11.29 minutes to finish all the tasks. Figure 4.15 illustrates the throughput result of SQLF

scheme. This scheme works better than the STTF scheme, because the edge-front node

transmits more tasks to less-saturated edge nodes, efficiently reducing the workload on

the edge-front node. However, the edge-front node intends to transmit many tasks to

edge node #3 at the beginning, which has the lowest bandwidth and the longest RTT to

the edge-front node. As such, the task placement may incur more delay then expected.

From Figure 4.17, the edge-front node transmits 0 task to edge node #1, 132 tasks to

edge node #2, and 152 tasks to edge node #3. The edge-front node takes about 9.6

minutes to finish all the tasks.

Figure 4.16 demonstrates the throughput result of SSLF scheme. This scheme consid-

100

ers both the transmission time of the task being placed and the waiting time in the queue

on the target edge node, and therefore achieves the best performance of the three. As

mentioned, edge node #1 has the lowest transmission overhead but the heaviest work-

load among the three edge nodes, while edge node #3 has the lightest workload but

the highest transmission overhead. In contrast, edge node #2 has modest transmission

overhead and modest workload. The SSLF scheme takes all these situations into consid-

eration, and places the most number of tasks on edge node #2. As shown in Figure 4.17,

the edge-front node transmits 4 tasks to edge node #1, 152 tasks to edge node #2, and

148 tasks to edge node #3 when working with the SSLF scheme. The edge-front node

takes about 9.36 minutes to finish all the tasks, which is the best result among the three

schemes. We infer that the third scheme will further improve the task completion time if

more tough network conditions and workloads are considered.

STTF SQLF SSLF

0
5

0
1

0
0

1
5

0
N

u
m

b
e
r

o
f

ta
sk

 p
a
lc

e
d

0
task

0
task

0
task

4
tasks

Edge node #1
Edge node #2
Edge node #3

Figure 4.17: Numbers of tasks placed by the edge-front node.

4.7 Related Work

The emergence of edge computing has drawn attentions due to its capabilities to reshape

the land surface of IoTs, mobile computing, and cloud computing [13, 36, 83, 84, 97, 99,

101

101]. Satyanarayanan [79] has briefed the origin of edge computing, also known as fog

computing [9], cloudlet [78], mobile edge computing [66] and so on. Here we will review

several relevant research fields towards video edge analytics, including distributed data

processing and computation offloading in various computing paradigms.

4.7.1 Distributed Data Processing

Distributed data processing has close relationship to the edge analytics in the sense that

those data processing platforms [22,104] and underlying techniques [39, 65, 73] can be

easily deployed on a cluster of edge nodes. In this chapter, we pay specially attentions to

distributed image/video data processing systems. VideoStorm [106] made insightful ob-

servation on vision-related algorithms and proposed resource-quality trade-off with multi-

dimensional configurations (e.g. video resolution, frame rate, sampling rate, sliding win-

dow size, etc.). The resource-quality profiles are generated offline and a online scheduler

is built to allocate resources to queries to optimize the utility of quality and latency. Their

work is complementary to ours, in that we do not consider the trade-off between quality

and latency goals via adaptive configurations. Vigil [109] is a wireless video surveillance

system that leveraged edge computing nodes with emphasis on the content-aware frame

selections in a scenario where multiple web cameras are at the same location to opti-

mize the bandwidth utilization, which is orthogonal to the problems we have addressed

here. Firework [108] is a computing paradigm for big data processing in collaborative

edge environment, which is complementary to our work in terms of shared data view and

programming interface.

While there should be more on-going efforts for investigating the adaptation, improve-

ment, and optimization of existing distributed data processing techniques on edge com-

puting platform, we focus more on the task/application-level queue management and

scheduling, and leave all the underlying resource negotiating, process scheduling to the

container cluster engine.

102

4.7.2 Computation Offloading

Computation offloading (a.k.a. Cyber foraging [78]) has been proposed to improve re-

source utilization, response time, and energy consumption in various computing environ-

ments [20, 32,62,82]. Work [41] has quantified the impact of edge computing on mobile

applications and found that edge computing can improve response time and energy con-

sumption significantly for mobile devices through offloading via both WiFi and LTE net-

works. Mocha [86] has investigated how a two-stage face recognition task from mobile

device can be accelerated by cloudlet and cloud, In their design, clients simply capture

image and sends to cloudlet. The optimal task partition can be easily achieved as it has

only two stages. In LAVEA, our application is more complicated in multiple stages and we

leverage client-edge offloading and other techniques to improve the resource utilization

and optimize the response time.

4.8 Discussions and Limitations

In this section, we will discuss alternative design options, point out current limitations, and

identify future work that can improve the system.

Measurement-based Offloading. In this work, we utilize a measurement-based of-

floading (static offloading), i.e, the offloading decisions are based on the outcome of pe-

riodic measurements. We consider this as one of the limitations of our implementations,

as stated in [38] and there are several dynamic computation offloading schemes have

been proposed [26]. We are planning to improve the measurement-based offloading in

the future work.

Video Streaming. Our current data processing is image-based, which is one of the

limitations of our implementation. The input is either in the format of image or in video

stream which is read into frames and sent out. We believe that utilizing existing video

streaming techniques in between our system components for data sharing will further im-

103

proves the system performance and opens more potential opportunities for optimization.

Discovering Edge Nodes. There are different ways for the edge-front node to dis-

cover the available edge nodes nearby. For example, every edge node intending to serve

as a collaborator may open a designated port, so that the edge-front node can periodically

scan the network and discover the available edge nodes. This is called the “pull-based”

method. In contrast, there is also a “push-based” method, in which the edge-front node

opens a designated port, and every edge node intending to serve as a collaborator will

register to the edge-front node. When the network is in a large scale, the pull-based

method usually performs poorly because the edge-front node may not be able to discover

an available edge node in a short time. For this reason, the edge node discovery should

be implemented in a push-based method, which guarantees good performance regard-

less of the network scale.

4.9 Chapter Summary

In this chapter, we have investigated how to provide video analytic services to latency-

sensitive applications in edge computing environment. As a result, we have built LAVEA,

a low-latency video edge analytic system, which collaborates nearby client, edge and re-

mote cloud nodes, and transfers video feeds into semantic information at places closer to

the users in early stages. We have utilized an edge-front design and formulated an opti-

mization problem for offloading task selection and prioritized task queue to minimize the

response time. Our result indicates that by offloading tasks to the closest edge node, the

client-edge configuration has a 1.3x to 4x (1.2x to 1.7x) speedup against running locally

(client-cloud) under various network conditions and workloads. In case of a saturating

workload on the front edge node, we have proposed and compared various task place-

ment schemes that are tailed for inter-edge collaboration. The proposed prediction-based

shortest scheduling latency first task placement scheme considers both the transmission

time of the tasks and the waiting time in the queue, and outputs better overall performance

104

than the other schemes.

105

Chapter 5

Conclusion and Future Work

In this dissertation, we outline the latest trends of mobile computing and highlight three

challenges. We address these challenges in three mobile systems.

The first one is GlassGesture, an head-gesture user interface for smart glasses. We

examine the interface of smart glasses and identify flawed designs. Then we design

and implement a head gesture user interface which not only recognizes the gestures

for control and input, but also authenticates the user by biometric signatures extracted

from user head movements. We design efficient similarity search for weighted dynamic

time warping to accelerate the gesture recognition. We propose peak features which are

effective at characterizing head gestures and apply ensemble learning scheme to improve

the one-class SVM classifiers. Evaluation results show that the gesture recognition is

accurate and efficient, and the gesture-based authentication rejects attackers in most

trials.

The second system isWearLock, which assists smartphone unlocking via token-based

authentication through a paired smartwatch. We secure the acoustic channel by adapt-

ing the transmission power and modulation configurations, and sends OTP tokens for

validation via acoustics to unlock the smartphone. We offload the heavy computation

from the smartwatch to the smartphone, and leverage multi-source information including

motion similarities to reduce unnecessary audio transmissions. Compared to entering

106

PINs, WearLock not only automatically unlocks the smartphone but also accelerates the

process.

The last system is LAVEA, a low-latency video edge analytic system, which collabo-

rates nearby mobile client, edge and remote cloud nodes, and transfers video feeds into

semantic information at places closer to the users in early stages. We consider the re-

sponse time minimization problem in three sub-problems. We formulate an optimization

problem for offloading task selection and take queue prioritizing problem to minimize the

response time. We also propose and compare various task placement schemes to allow

one edge node to collaborate with nearby edge nodes. We show that a client application

leverages LAVEA achieves up to 4x speedup against running locally.

In summary, our work explores new opportunities in latest mobile computing trends

and addresses the associated challenges through novel system designs and technical

contributions. It is challenging to thoroughly address all exposed problems of usability,

security, and performance of mobile computing systems, which are changing rapidly from

time to time. We believe that the projects presented in this dissertation can serve as

early explorers along the line of enhancing usability, security, and performance of modern

mobile computing systems in the era of wearables and IoTs. We envision that the following

research directions can be pursued:

• Advanced User Interface for Wearables

The future of wearable user interface will be multi-modal. Graphical User Interface

(GUI) will co-exist with other types of user interfaces. The gesture-based user inter-

face in GlassGesture can be easily extended to general sensor-based user interface

in which the interactions are done via various sensor data collection and processing.

We are integrating the Google Glass with electroencephalogram (EEG) sensor that

to allow the wearer to trigger gesture recognition using attention detection based on

the EEG signals.

• Privacy-preserving Sensor Data Evaluations for Mobile Devices

107

Smart devices are constantly adding new types of sensors. The data collected by

sensors (time-series) can be used to infer various sensitive information of the user.

The data will be implicitly or explicitly uploaded to remote servers, for in-depth anal-

ysis or advanced functionality. Currently, users are at the risks of privacy leakage

while using these sensors. Secure computation is able to support function evalua-

tion and preserves the data privacy. Existing solutions based solely on garbled cir-

cuits or homomorphic encryption are not computationally efficient. We are planning

to combine homomorphic encryption and oblivious transfer to form a more secure

and efficient scheme that optimized for mobile devices.

• Long-term Direction: Hyper-converging at Mobile, Edge, and Cloud

In this dissertation, we started to converge mobile computing and edge computing

through low-latency video analytics. The edge computing platform we have de-

signed and implemented can support offloading of computation tasks from clients

to edge or cloud nodes. One direction is to extend the LAVEA offloading framework

to manage not only computation resource but also storage and network resources.

How to offload tasks according to different resource requests with the considera-

tion of maintaining quality of experience (QoE) is a big challenge. Another direction

is to expand the offloading framework from client-edge two-layer design to client-

edge-cloud three-layer design. Thus the serverless architecture will support flexible

task offloading among client, edge, and cloud nodes. Furthermore, as a long-term

direction, it would be beneficial if we can build a realistic worldwide edge comput-

ing testbed, which can be used by us or other researchers to deploy and evaluate

new edge computing services and applications. We are planning to build incentive

mechanism via blockchain and cryptocurrency techniques to recruit edge computing

nodes in a “bring-your-own-edge-node” style. The challenges include how to build

trusted edge computing services via blockchain and smart-contract technologies,

how to manage large-scale geographically distributed edge nodes, how to incen-

108

tivize the edge nodes to join the network, and how to incentivize the edge clients

and edge nodes to follow the rules. We believe the future of hyper-converging of

mobile, edge, and cloud is very promising while significant challenges ahead are

waiting for us to address.

109

Bibliography

[1] Anne Adams and Martina Angela Sasse. Users are not the enemy. Communica-
tions of the ACM, 42(12):40–46, 1999.

[2] Ahmad Akl, Chen Feng, and Shahrokh Valaee. A novel accelerometer-based ges-
ture recognition system. IEEE Transactions on Signal Processing, 2011.

[3] Ahmad Akl and Shahrokh Valaee. Accelerometer-based gesture recognition via
dynamic-time warping, affinity propagation, & compressive sensing. In ICASSP
’10, 2010.

[4] Amazon Web Service. Aws lambda@edge. http://docs.aws.amazon.com/
lambda/latest/dg/lambda-edge.html, 2017.

[5] Christos-Nikolaos E Anagnostopoulos, Ioannis E Anagnostopoulos, Ioannis D
Psoroulas, Vassili Loumos, and Eleftherios Kayafas. License plate recognition from
still images and video sequences: A survey. IEEE Transactions on intelligent trans-
portation systems, 9(3):377–391, 2008.

[6] KR Baker. Scheduling groups of jobs in the two-machine flow shop. Mathematical
and Computer Modelling, 13(3):29–36, 1990.

[7] Cheng Bo, Lan Zhang, Xiang-Yang Li, et al. Silentsense: silent user identification
via touch and movement behavioral biometrics. In MobiCom ’13, 2013.

[8] Hristo Bojinov and Dan Boneh. Mobile token-based authentication on a budget. In
Proceedings of the 12thWorkshop onMobile Computing Systems and Applications,
pages 14–19. ACM, 2011.

[9] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog computing
and its role in the internet of things. In Proceedings of the first edition of the MCC
workshop on Mobile cloud computing, pages 13–16. ACM, 2012.

[10] Russell Brandom. The Verge: Your phone’s biggest vulnerability is your fingerprint
- can we still use fingerprint logins in the age of mass biometric databases? https:
//goo.gl/VmNKsP, May 2016.

[11] Stefan Brands and David Chaum. Distance-bounding protocols. In Workshop
on the Theory and Application of of Cryptographic Techniques, pages 344–359.
Springer, 1993.

110

http://docs.aws.amazon.com/lambda/latest/dg/lambda-edge.html
http://docs.aws.amazon.com/lambda/latest/dg/lambda-edge.html
https://goo.gl/VmNKsP
https://goo.gl/VmNKsP

[12] Peter Brucker, Bernd Jurisch, and Bernd Sievers. A branch and bound algorithm for
the job-shop scheduling problem. Discrete applied mathematics, 49(1):107–127,
1994.

[13] Yu Cao, Songqing Chen, Peng Hou, and Donald Brown. Fast: A fog computing
assisted distributed analytics system to monitor fall for stroke mitigation. In Net-
working, Architecture and Storage (NAS), 2015 IEEE International Conference on,
pages 2–11. IEEE, 2015.

[14] Chih-Chung Chang and Chih-Jen Lin. Libsvm: a library for support vector ma-
chines. TIST ’11, 2011.

[15] Jagmohan Chauhan et al. Gesture-based continuous authentication for wearable
devices: the google glass case. arXiv preprint, 2014.

[16] Yimin Chen, Jingchao Sun, Rui Zhang, and Yanchao Zhang. Your song your way:
Rhythm-based two-factor authentication for multi-touch mobile devices. In INFO-
COM’15, pages 2686–2694, Hong Kong, China, Apr. 2015.

[17] Andrea Colaço et al. Mime: Compact, low power 3d gesture sensing for interaction
with head mounted displays. In UIST ’13, 2013.

[18] Mark D Corner and Brian D Noble. Zero-interaction authentication. In Proceedings
of the 8th annual international conference on Mobile computing and networking,
pages 1–11. ACM, 2002.

[19] Malcolm J. Crocker. Handbook of acoustics. John Wiley & Sons, 1998.

[20] Eduardo Cuervo, Aruna Balasubramanian, Dae-ki Cho, Alec Wolman, Stefan
Saroiu, Ranveer Chandra, and Paramvir Bahl. Maui: Making smartphones last
longer with code offload. In Proceedings of the 8th International Conference on
Mobile Systems, Applications, and Services, MobiSys ’10, pages 49–62, New York,
NY, USA, 2010. ACM.

[21] Eyal de Lara, Carolina S Gomes, Steve Langridge, S Hossein Mortazavi, and
Meysam Roodi. Hierarchical serverless computing for the mobile edge. In Edge
Computing (SEC), IEEE/ACM Symposium on, pages 109–110. IEEE, 2016.

[22] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on
large clusters. Communications of the ACM, 51(1):107–113, 2008.

[23] Shan Du, Mahmoud Ibrahim, Mohamed Shehata, and Wael Badawy. Automatic
license plate recognition (alpr): A state-of-the-art review. IEEE Transactions on
circuits and systems for video technology, 23(2):311–325, 2013.

[24] Sadjad Fouladi, Riad S. Wahby, Brennan Shacklett, Karthikeyan Vasuki Balasub-
ramaniam, William Zeng, Rahul Bhalerao, Anirudh Sivaraman, George Porter, and
Keith Winstein. Encoding, fast and slow: Low-latency video processing using thou-
sands of tiny threads. In 14th USENIX Symposium on Networked Systems Design

111

and Implementation (NSDI 17), pages 363–376, Boston, MA, 2017. USENIX Asso-
ciation.

[25] Michael Frank, Ralf Biedert, En-Di Ma, Ivan Martinovic, and Dong Song. Toucha-
lytics: On the applicability of touchscreen input as a behavioral biometric for con-
tinuous authentication. TIFS ’13, 8, 2013.

[26] Wei Gao, Yong Li, Haoyang Lu, Ting Wang, and Cong Liu. On exploiting dynamic
execution patterns for workload offloading in mobile cloud applications. In Network
Protocols (ICNP), 2014 IEEE 22nd International Conference on, pages 1–12. IEEE,
2014.

[27] Google. Head wake up/nudge. https://goo.gl/6lfFWg.

[28] Google. Locations and sensors. https://goo.gl/Oj6Mqg.

[29] Google. Nearby API. https://developers.google.com/nearby/.

[30] Google. Screen lock. https://goo.gl/Knf7pl.

[31] Google. Trusted bluetooth devices. https://goo.gl/xEZSCw.

[32] Mark SGordon, Davoud Anoushe Jamshidi, Scott AMahlke, ZhuoqingMorley Mao,
and Xu Chen. Comet: Code offload by migrating execution transparently. In OSDI,
volume 12, pages 93–106, 2012.

[33] Isabelle Guyon et al. Gene selection for cancer classification using support vector
machines. Machine learning, 46(1-3):389–422, 2002.

[34] Hao Han, Shanhe Yi, Qun Li, Shen Guobin, Yunxin Liu, and Edmund Novak. AMIL:
localizing neighboring mobile devices through a simple gesture. In The 35th Annual
IEEE International Conference on Computer Communications (INFOCOM 2016).
IEEE, 2016.

[35] Zijiang Hao and Qun Li. Towards user re-authentication on mobile devices via on-
screen keyboard. In Hot Topics in Web Systems and Technologies (HotWeb), 2016
Fourth IEEE Workshop on, pages 78–83. IEEE, 2016.

[36] Zijiang Hao, Ed Novak, Shanhe Yi, and Qun Li. Challenges and software architec-
ture for fog computing. Internet Computing, 2017.

[37] Marian Harbach, Emanuel von Zezschwitz, Andreas Fichtner, Alexander De Luca,
and Matthew Smith. It’sa hard lock life: A field study of smartphone (un) locking be-
havior and risk perception. In SymposiumOn Usable Privacy and Security (SOUPS
2014), pages 213–230, 2014.

[38] Mohammed A Hassan, Kshitiz Bhattarai, Qi Wei, and Songqing Chen. Pomac:
Properly offloading mobile applications to clouds. In 6th USENIX Workshop on Hot
Topics in Cloud Computing (HotCloud 14), 2014.

112

https://goo.gl/6lfFWg
https://goo.gl/Oj6Mqg
https://developers.google.com/nearby/
https://goo.gl/Knf7pl
https://goo.gl/xEZSCw

[39] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D Joseph,
Randy H Katz, Scott Shenker, and Ion Stoica. Mesos: A platform for fine-grained
resource sharing in the data center. In NSDI, volume 11, pages 22–22, 2011.

[40] Takahiro Horikawa. Head gesture detector. https://goo.gl/uRgVnu.

[41] Wenlu Hu, Ying Gao, Kiryong Ha, Junjue Wang, Brandon Amos, Zhuo Chen, Pad-
manabhan Pillai, and Mahadev Satyanarayanan. Quantifying the impact of edge
computing on mobile applications. In Proceedings of the 7th ACM SIGOPS Asia-
Pacific Workshop on Systems, page 5. ACM, 2016.

[42] IBM. Apache openwhisk. http://openwhisk.org/, April 2017.

[43] Rong Jin, Liu Shi, Kai Zeng, Amit Pande, and Prasant Mohapatra. Magpairing:
Pairing smartphones in close proximity using magnetometers. IEEE Transactions
on Information Forensics and Security, 11(6):1306–1320, 2016.

[44] Selmer Martin Johnson. Optimal two-and three-stage production schedules with
setup times included. Naval research logistics quarterly, 1(1):61–68, 1954.

[45] Eric Jonas, Shivaram Venkataraman, Ion Stoica, and Benjamin Recht. Occupy the
cloud: Distributed computing for the 99%. arXiv preprint arXiv:1702.04024, 2017.

[46] Kantar. Wearable technology report. https://goo.gl/N6DEV4, 2016.

[47] Nikolaos Karapanos, Claudio Marforio, Claudio Soriente, and Srdjan Capkun.
Sound-proof: usable two-factor authentication based on ambient sound. InUSENIX
Security 15, pages 483–498, 2015.

[48] Zoe Kleinman. BBC News: Politician’s fingerprint ’cloned from photos’ by hacker.
http://www.bbc.com/news/technology-30623611, 2014.

[49] Manuel Koschuch, Matthias Hudler, Hubert Eigner, and Zsolt Saffer. Token-based
authentication for smartphones. In Data Communication Networking (DCNET),
2013 International Conference on, pages 1–6. IEEE, 2013.

[50] Hyewon Lee, Tae Hyun Kim, Jun Won Choi, and Sunghyun Choi. Chirp signal-
based aerial acoustic communication for smart devices. In Proc. of IEEE Conf. on
Computer Communications (INFOCOM), Hong Kong SAR, PRC, 2015.

[51] Lingjun Li, Guoliang Xue, and Xinxin Zhao. The power of whispering: Near field
assertions via acoustic communications. In ASIA CCS’15, pages 627–632. ACM,
2015.

[52] Lingjun Li, Xinxin Zhao, and Guoliang Xue. Unobservable re-authentication for
smartphones. In NDSS ’13, 2013.

[53] Tao Li, Yimin Chen, Jingchao Sun, Xiaocong Jin, and Yanchao Zhang. ilock: Imme-
diate and automatic locking of mobile devices against data theft. In CCS’16, pages
933–944, Vienna� Austria, Oct. 2016.

113

https://goo.gl/uRgVnu
http://openwhisk.org/
https://goo.gl/N6DEV4
http://www.bbc.com/news/technology-30623611

[54] Robert LiKamWa, Zhen Wang, Aaron Carroll, et al. Draining our glass: An energy
and heat characterization of google glass. In APSys ’14, 2015.

[55] Jiayang Liu, Lin Zhong, Jehan Wickramasuriya, and Venu Vasudevan. uwave:
Accelerometer-based personalized gesture recognition and its applications. Per-
vasive and Mobile Computing, 5, 2009.

[56] Kaikai Liu, Xinxin Liu, and Xiaolin Li. Guoguo: Enabling fine-grained indoor local-
ization via smartphone. In Mobisys, pages 235–248. ACM, 2013.

[57] Hong Lu, Jun Yang, et al. The jigsaw continuous sensing engine for mobile phone
applications. In Sensys ’10, 2010.

[58] Louis-Philippe Morency and Trevor Darrell. Head gesture recognition in intelligent
interfaces: the role of context in improving recognition. In IUI ’06, 2006.

[59] Morgan Stanley. Wearable devices the ‘internet of things’ becomes personal.
https://goo.gl/6MCO2M, 2014.

[60] D M’Raihi, M Bellare, F Hoornaert, D Naccache, and O Ranen. Hotp: An HMAC-
based one-time password algorithm. The Internet Society, NetworkWorking Group.
RFC4226, 2005.

[61] Rajalakshmi Nandakumar, Krishna Kant Chintalapudi, Venkat Padmanabhan, and
Ramarathnam Venkatesan. Dhwani: Secure peer-to-peer acoustic nfc. In Pro-
ceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM, SIGCOMM ’13,
pages 63–74, New York, NY, USA, 2013. ACM.

[62] Ryan Newton, Sivan Toledo, Lewis Girod, Hari Balakrishnan, and Samuel Madden.
Wishbone: Profile-based partitioning for sensornet applications. InNSDI, volume 9,
pages 395–408, 2009.

[63] Lawrence O’Gorman. Comparing passwords, tokens, and biometrics for user au-
thentication. Proceedings of the IEEE, 91(12):2021–2040, 2003.

[64] OpenALPR. OpenALPR – Automatic License Plate Recognition. http://www.
openalpr.com/, April 2017.

[65] Kay Ousterhout, Patrick Wendell, Matei Zaharia, and Ion Stoica. Sparrow: dis-
tributed, low latency scheduling. In Proceedings of the Twenty-Fourth ACM Sym-
posium on Operating Systems Principles, pages 69–84. ACM, 2013.

[66] M Patel, B Naughton, C Chan, N Sprecher, S Abeta, A Neal, et al. Mobile-edge
computing introductory technical white paper. White Paper, Mobile-edge Comput-
ing (MEC) industry initiative, 2014.

[67] Ge Peng, Gang Zhou, David T Nguyen, Xin Qi, Qing Yang, and ShuangquanWang.
Continuous authentication with touch behavioral biometrics and voice on wearable
glasses. IEEE Transactions on Human-Machine Systems, 47(3):404–416, 2017.

114

https://goo.gl/6MCO2M
http://www. openalpr.com/
http://www. openalpr.com/

[68] Roberto Perdisci, Guofei Gu, et al. Using an ensemble of one-class svm classifiers
to harden payload-based anomaly detection systems. In ICDM ’06, pages 488–498.
IEEE, 2006.

[69] Brad Philip and Paul Updike. Caltech vision group 2001 testing database. http:
//www.vision.caltech.edu/html-files/archive.html, 2001.

[70] Qifan Pu, Sidhant Gupta, Shyamnath Gollakota, and Shwetak Patel. Whole-home
gesture recognition using wireless signals. In MobiCom ’13, 2013.

[71] Kari Pulli, Anatoly Baksheev, Kirill Kornyakov, and Victor Eruhimov. Real-time com-
puter vision with opencv. Communications of the ACM, 55(6):61–69, 2012.

[72] Swati Rallapalli, Aishwarya Ganesan, Krishna Chintalapudi, et al. Enabling physical
analytics in retail stores using smart glasses. In MobiCom ’14, 2014.

[73] Jeff Rasley, Konstantinos Karanasos, Srikanth Kandula, Rodrigo Fonseca, Mi-
lan Vojnovic, and Sriram Rao. Efficient queue management for cluster schedul-
ing. In Proceedings of the Eleventh European Conference on Computer Systems,
page 36. ACM, 2016.

[74] Nishkam Ravi, Nikhil Dandekar, Preetham Mysore, and Michael L Littman. Activity
recognition from accelerometer data. In AAAI ’05, volume 5, 2005.

[75] Oriana Riva, Chuan Qin, Karin Strauss, and Dimitrios Lymberopoulos. Progressive
authentication: deciding when to authenticate on mobile phones. In Presented as
part of the 21st USENIX Security Symposium (USENIX Security 12), pages 301–
316, 2012.

[76] Stan Salvador and Philip Chan. Fastdtw: Toward accurate dynamic time warping
in linear time and space. In KDD ’04. Citeseer, 2004.

[77] G Enrico Santagati and Tommaso Melodia. U-wear: Software-defined ultrasonic
networking for wearable devices. In Mobisys, pages 241–256. ACM, 2015.

[78] Mahadev Satyanarayanan. Pervasive computing: Vision and challenges. IEEE
Personal communications, 8(4):10–17, 2001.

[79] Mahadev Satyanarayanan. The emergence of edge computing. Computer,
50(1):30–39, 2017.

[80] Mahadev Satyanarayanan, Pieter Simoens, Yu Xiao, Padmanabhan Pillai, Zhuo
Chen, Kiryong Ha, Wenlu Hu, and Brandon Amos. Edge analytics in the internet of
things. IEEE Pervasive Computing, 14(2):24–31, 2015.

[81] Muhammad Shahzad, Alex X Liu, and Arjmand Samuel. Secure unlocking of mobile
touch screen devices by simple gestures: you can see it but you can not do it. In
MobiCom ’13, 2013.

115

http://www.vision.caltech.edu/html-files/archive.html
http://www.vision.caltech.edu/html-files/archive.html

[82] Cong Shi, Karim Habak, Pranesh Pandurangan, Mostafa Ammar, Mayur Naik, and
Ellen Zegura. Cosmos: computation offloading as a service for mobile devices. In
Proceedings of the 15th ACM international symposium onMobile ad hoc networking
and computing, pages 287–296. ACM, 2014.

[83] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. Edge computing:
Vision and challenges. IEEE Internet of Things Journal, 3(5):637–646, Oct 2016.

[84] Weisong Shi and Schahram Dustdar. The promise of edge computing. Computer,
49(5):78–81, 2016.

[85] Bernard Sklar. Digital communications, volume 2. Prentice Hall NJ, 2001.

[86] Tolga Soyata, Rajani Muraleedharan, Colin Funai, Minseok Kwon, and Wendi
Heinzelman. Cloud-vision: Real-time face recognition using a mobile-cloudlet-
cloud acceleration architecture. In Computers and Communications (ISCC), 2012
IEEE Symposium on, pages 000059–000066. IEEE, 2012.

[87] Jingchao Sun, Rui Zhang, Jinxue Zhang, and Yanchao Zhang. Touchin: Sightless
two-factor authentication on multi-touch mobile devices. In CNS’16, pages 436–
444, San Francisco, CA, Oct. 2014.

[88] Wai-Tian Tan, Mary Baker, Bowon Lee, and Ramin Samadani. The sound of si-
lence. In Proceedings of the 11th ACM Conference on Embedded Networked Sen-
sor Systems, page 19. ACM, 2013.

[89] Dirk Van Bruggen, Shu Liu, Mitch Kajzer, Aaron Striegel, Charles R Crowell, and
John D’Arcy. Modifying smartphone user locking behavior. In Proceedings of the
Ninth Symposium on Usable Privacy and Security, page 10. ACM, 2013.

[90] Wei Wang, Lin Yang, and Qian Zhang. Touch-and-guard: secure pairing through
hand resonance. In Proceedings of the 2016 ACM International Joint Conference
on Pervasive and Ubiquitous Computing, pages 670–681. ACM, 2016.

[91] Xiaoli Wang, Aakanksha Chowdhery, and Mung Chiang. Skyeyes: adaptive video
streaming from uavs. InProceedings of the 3rdWorkshop onHot Topics inWireless,
pages 2–6. ACM, 2016.

[92] PUID WG. Bluetooth proximity profile spec doc v1.0.1, July 2015.

[93] Wikipedia. User interface. https://en.wikipedia.org/wiki/User_interface.

[94] Jacob O Wobbrock et al. Gestures without libraries, toolkits or training: a $1 rec-
ognizer for user interface prototypes. In UIST ’07, 2007.

[95] Hai Yan, Lei Wan, Shengli Zhou, Zhijie Shi, Jun-Hong Cui, Jie Huang, and Hao
Zhou. Dsp based receiver implementation for ofdm acoustic modems. Physical
Communication, 5(1):22–32, 2012.

116

https://en.wikipedia.org/wiki/User_interface

[96] Byoung-Kee Yi, HV Jagadish, and Christos Faloutsos. Efficient retrieval of similar
time sequences under time warping. In ICDE ’98, pages 201–208. IEEE, 1998.

[97] Shanhe Yi, Zijiang Hao, Zhengrui Qin, and Qun Li. Fog computing: Platform and
applications. In Hot Topics in Web Systems and Technologies (HotWeb), 2015
Third IEEE Workshop on, pages 73–78. IEEE, 2015.

[98] Shanhe Yi, Zijiang Hao, Qingyang Zhang, Quan Zhang, Weisong Shi, and Qun Li.
Lavea: Latency-aware video analytics on edge computing platform. In Proceedings
of the Second ACM/IEEE Symposium on Edge Computing, SEC ’17, pages 15:1–
15:13, New York, NY, USA, 2017. ACM.

[99] Shanhe Yi, Cheng Li, and Qun Li. A survey of fog computing: Concepts, appli-
cations and issues. In Proceedings of the 2015 Workshop on Mobile Big Data,
Mobidata ’15, pages 37–42. ACM, 2015.

[100] Shanhe Yi, Zhengrui Qin, Nancy Carter, and Qun Li. Wearlock: Unlocking your
phone via acoustics using smartwatch. In 2017 IEEE 37th International Conference
on Distributed Computing Systems (ICDCS), pages 469–479, June 2017.

[101] Shanhe Yi, Zhengrui Qin, and Qun Li. Security and privacy issues of fog comput-
ing: A survey. InWireless Algorithms, Systems, and Applications, pages 685–695.
Springer, 2015.

[102] Shanhe Yi, Zhengrui Qin, Ed Novak, Yafeng Yin, and Qun Li. Glassgesture: Explor-
ing head gesture interface of smart glasses. In Computer Communications, IEEE
INFOCOM 2016-The 35th Annual IEEE International Conference on, pages 1–9.
IEEE, 2016.

[103] Thomas Zachariah, Noah Klugman, Bradford Campbell, Joshua Adkins, Neal Jack-
son, and Prabal Dutta. The internet of things has a gateway problem. In Pro-
ceedings of the 16th International Workshop on Mobile Computing Systems and
Applications, pages 27–32. ACM, 2015.

[104] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion
Stoica. Spark: cluster computing with working sets. HotCloud, 10:10–10, 2010.

[105] Bingsheng Zhang, Qin Zhan, Si Chen, Muyuan Li, Kui Ren, CongWang, and Di Ma.
PriWhisper : Enabling keyless secure acoustic communication for smartphones.
IEEE Internet of Things Journal, 1(1):33–45, Feb 2014.

[106] Haoyu Zhang, Ganesh Ananthanarayanan, Peter Bodik, Matthai Philipose,
Paramvir Bahl, and Michael J. Freedman. Live video analytics at scale with ap-
proximation and delay-tolerance. In 14th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 17), pages 377–392, Boston, MA, 2017.
USENIX Association.

117

[107] Huanle Zhang, Wan Du, Pengfei Zhou, Mo Li, and Prasant Mohapatra. Dopenc:
acoustic-based encounter profiling using smartphones. In Proceedings of the 22nd
Annual International Conference on Mobile Computing and Networking, pages
294–307. ACM, 2016.

[108] Quan Zhang, Qingyang Zhang, Weisong Shi, and Hong Zhong. Firework: Data pro-
cessing and sharing for hybrid cloud-edge analytics. IEEE Transactions on Parallel
and Distributed Systems, 2018.

[109] Tan Zhang, Aakanksha Chowdhery, Paramvir Victor Bahl, Kyle Jamieson, and
Suman Banerjee. The design and implementation of a wireless video surveillance
system. In Proceedings of the 21st Annual International Conference on Mobile
Computing and Networking, pages 426–438. ACM, 2015.

[110] Yulong Zhang, Zhaofeng Chen, Hui Xue, and Tao Wei. Fingerprints on mobile
devices: Abusing and leaking. In Black Hat Conference, 2015.

118

	Enhancing Usability, Security, and Performance in Mobile Computing
	Recommended Citation

	Acknowledgments
	Dedication
	List of Tables
	List of Figures
	Introduction
	Challenges
	Head Gesture Interface of Smart Glasses
	Problem Statements
	Contributions

	Smartwatch-assisted Smartphone Authentication
	Problem Statements
	Contributions

	Edge Computing based Mobile Backend
	Problem Statements
	Contributions

	Dissertation Organization

	GlassGesture: Exploring Head Gesture Interface of Smart Glasses
	Introduction
	Related Work
	GlassGesture System Design
	System Overview
	Head Gesture Recognition
	Head Gesture Library
	Activity Detector
	Gesture Detector
	Gesture Recognizer
	Efficient Similarity Search

	Head-Gesture-based Authentication
	Two-factor Authentication using Head Gesture
	Threat Model
	Authentication Setup
	Feature Set and Data Collection
	Training and Classification
	Feature Selection

	Evaluation
	Gesture Recognition
	Gesture Recognition with command gestures
	Number and Alphabet Input
	Gesture Recognition Performance

	Authentication Evaluation
	Impact of Number of Training Samples
	Authentication against Type-II attacker
	Impact of Peak Features
	Impact of Feature Selection
	Imitator Attack

	System Performance
	Other considerations

	Chapter Summary

	WearLock: Unlocking Your Phone via Acoustics using Smartwatch
	Introduction
	System Overview
	System Architecture
	Smartwatch-assisted Unlocking Protocol

	Acoustic Modem Design
	The Acoustic Channel
	Ambient Noise
	Sound propagation and attenuation
	Multipath Effect
	Microphone and Speaker Characteristics

	OFDM Design
	Modulation and Demodulation
	Sub-carrier Frequency Range
	Preamble Design
	Silence Detection and Signal Detection
	Synchronization
	Channel Estimation and Equalization
	Adaptive Modulation

	Secure Unlocking
	Threat Model
	One Time Password
	Security Discussion.
	Brutal Force Attack
	Co-located Attack
	Record and Replay Attack
	Relay Attack

	Performance Optimizations
	Computation Offloading
	Computation Reduction
	Leveraging Motion Sensor-based Filtering

	Evaluation
	Implementation Details
	Communication Range
	Adaptive Modulation
	Sensor-based Filtering
	System Delay
	Field Test

	Discussion and Limitations
	Non-omnidirectional Microphone/Speaker
	Acoustic Frequency Range
	Bluetooth Proximity

	Related Work
	Acoustic Communication on Mobile Devices
	Reduced-Effort Authentication

	Chapter Summary

	LAVEA: Latency-aware Video Analytics on Edge Computing Platform
	Introduction
	Background and Motivation
	Edge Computing Network
	Serverless Architecture
	Video Edge Analytics for Public Safety

	LAVEA System Design
	Design Goals
	System Overview
	Edge Computing Node
	Edge Client

	Edge Computing Services
	Profiler Service
	Monitoring Service
	Offloading Service

	Edge-front Offloading
	Task Offloading System Model and Problem Formulation
	Prioritizing Edge Task Queue

	Inter-edge Collaboration
	Motivation and Challenges
	Inter-Edge Task Placement Schemes

	System Implementation and Performance Evaluation
	Implementation Details
	Evaluation Setup
	Testbed
	Datasets

	Task Profiler
	Offloading Task Selection
	Edge-front Task Queue Prioritizing
	Inter-Edge Collaboration

	Related Work
	Distributed Data Processing
	Computation Offloading

	Discussions and Limitations
	Chapter Summary

	Conclusion and Future Work
	Bibliography

