882 research outputs found

    Deep Neural Architectures for End-to-End Relation Extraction

    Get PDF
    The rapid pace of scientific and technological advancements has led to a meteoric growth in knowledge, as evidenced by a sharp increase in the number of scholarly publications in recent years. PubMed, for example, archives more than 30 million biomedical articles across various domains and covers a wide range of topics including medicine, pharmacy, biology, and healthcare. Social media and digital journalism have similarly experienced their own accelerated growth in the age of big data. Hence, there is a compelling need for ways to organize and distill the vast, fragmented body of information (often unstructured in the form of natural human language) so that it can be assimilated, reasoned about, and ultimately harnessed. Relation extraction is an important natural language task toward that end. In relation extraction, semantic relationships are extracted from natural human language in the form of (subject, object, predicate) triples such that subject and object are mentions of discrete concepts and predicate indicates the type of relation between them. The difficulty of relation extraction becomes clear when we consider the myriad of ways the same relation can be expressed in natural language. Much of the current works in relation extraction assume that entities are known at extraction time, thus treating entity recognition as an entirely separate and independent task. However, recent studies have shown that entity recognition and relation extraction, when modeled together as interdependent tasks, can lead to overall improvements in extraction accuracy. When modeled in such a manner, the task is referred to as end-to-end relation extraction. In this work, we present four studies that introduce incrementally sophisticated architectures designed to tackle the task of end-to-end relation extraction. In the first study, we present a pipeline approach for extracting protein-protein interactions as affected by particular mutations. The pipeline system makes use of recurrent neural networks for protein detection, lexicons for gene normalization, and convolutional neural networks for relation extraction. In the second study, we show that a multi-task learning framework, with parameter sharing, can achieve state-of-the-art results for drug-drug interaction extraction. At its core, the model uses graph convolutions, with a novel attention-gating mechanism, over dependency parse trees. In the third study, we present a more efficient and general-purpose end-to-end neural architecture designed around the idea of the table-filling paradigm; for an input sentence of length n, all entities and relations are extracted in a single pass of the network in an indirect fashion by populating the cells of a corresponding n by n table using metric-based features. We show that this approach excels in both the general English and biomedical domains with extraction times that are up to an order of magnitude faster compared to the prior best. In the fourth and last study, we present an architecture for relation extraction that, in addition to being end-to-end, is able to handle cross-sentence and N-ary relations. Overall, our work contributes to the advancement of modern information extraction by exploring end-to-end solutions that are fast, accurate, and generalizable to many high-value domains

    Challenges and opportunities for mining adverse drug reactions: perspectives from pharma, regulatory agencies, healthcare providers and consumers

    Get PDF
    Monitoring drug safety is a central concern throughout the drug life cycle. Information about toxicity and adverse events is generated at every stage of this life cycle, and stakeholders have a strong interest in applying text mining and artificial intelligence (AI) methods to manage the ever-increasing volume of this information. Recognizing the importance of these applications and the role of challenge evaluations to drive progress in text mining, the organizers of BioCreative VII (Critical Assessment of Information Extraction in Biology) convened a panel of experts to explore โ€˜Challenges in Mining Drug Adverse Reactionsโ€™. This article is an outgrowth of the panel; each panelist has highlighted specific text mining application(s), based on their research and their experiences in organizing text mining challenge evaluations. While these highlighted applications only sample the complexity of this problem space, they reveal both opportunities and challenges for text mining to aid in the complex process of drug discovery, testing, marketing and post-market surveillance. Stakeholders are eager to embrace natural language processing and AI tools to help in this process, provided that these tools can be demonstrated to add value to stakeholder workflows. This creates an opportunity for the BioCreative community to work in partnership with regulatory agencies, pharma and the text mining community to identify next steps for future challenge evaluations.M.K.: This work was supported in part through the collaboration between the Spanish Plan for the Advancement of Language Technology (Plan TL) and the Barcelona Supercomputing Center; we also acknowledge the 2020 Proyectos de I+D+i - RTI Tipo A (PID2020-119266RA-I00) for support. ร–.U.: This study was supported in part by the National Library of Medicine under Award Number R15LM013209 and R13LM013127.Peer ReviewedPostprint (published version

    A two-stage deep learning approach for extracting entities and relationships from medical texts

    Get PDF
    This Work Presents A Two-Stage Deep Learning System For Named Entity Recognition (Ner) And Relation Extraction (Re) From Medical Texts. These Tasks Are A Crucial Step To Many Natural Language Understanding Applications In The Biomedical Domain. Automatic Medical Coding Of Electronic Medical Records, Automated Summarizing Of Patient Records, Automatic Cohort Identification For Clinical Studies, Text Simplification Of Health Documents For Patients, Early Detection Of Adverse Drug Reactions Or Automatic Identification Of Risk Factors Are Only A Few Examples Of The Many Possible Opportunities That The Text Analysis Can Offer In The Clinical Domain. In This Work, Our Efforts Are Primarily Directed Towards The Improvement Of The Pharmacovigilance Process By The Automatic Detection Of Drug-Drug Interactions (Ddi) From Texts. Moreover, We Deal With The Semantic Analysis Of Texts Containing Health Information For Patients. Our Two-Stage Approach Is Based On Deep Learning Architectures. Concretely, Ner Is Performed Combining A Bidirectional Long Short-Term Memory (Bi-Lstm) And A Conditional Random Field (Crf), While Re Applies A Convolutional Neural Network (Cnn). Since Our Approach Uses Very Few Language Resources, Only The Pre-Trained Word Embeddings, And Does Not Exploit Any Domain Resources (Such As Dictionaries Or Ontologies), This Can Be Easily Expandable To Support Other Languages And Clinical Applications That Require The Exploitation Of Semantic Information (Concepts And Relationships) From Texts...This work was supported by the Research Program of the Ministry of Economy and Competitiveness - Government of Spain, (DeepEMR project TIN2017-87548-C2-1-R)

    GNTeam at 2018 n2c2:Feature-augmented BiLSTM-CRF for drug-related entity recognition in hospital discharge summaries

    Get PDF
    Monitoring the administration of drugs and adverse drug reactions are key parts of pharmacovigilance. In this paper, we explore the extraction of drug mentions and drug-related information (reason for taking a drug, route, frequency, dosage, strength, form, duration, and adverse events) from hospital discharge summaries through deep learning that relies on various representations for clinical named entity recognition. This work was officially part of the 2018 n2c2 shared task, and we use the data supplied as part of the task. We developed two deep learning architecture based on recurrent neural networks and pre-trained language models. We also explore the effect of augmenting word representations with semantic features for clinical named entity recognition. Our feature-augmented BiLSTM-CRF model performed with F1-score of 92.67% and ranked 4th for entity extraction sub-task among submitted systems to n2c2 challenge. The recurrent neural networks that use the pre-trained domain-specific word embeddings and a CRF layer for label optimization perform drug, adverse event and related entities extraction with micro-averaged F1-score of over 91%. The augmentation of word vectors with semantic features extracted using available clinical NLP toolkits can further improve the performance. Word embeddings that are pre-trained on a large unannotated corpus of relevant documents and further fine-tuned to the task perform rather well. However, the augmentation of word embeddings with semantic features can help improve the performance (primarily by boosting precision) of drug-related named entity recognition from electronic health records

    DDI-MuG: Multi-aspect graphs for drug-drug interaction extraction

    Get PDF
    IntroductionDrug-drug interaction (DDI) may lead to adverse reactions in patients, thus it is important to extract such knowledge from biomedical texts. However, previously proposed approaches typically focus on capturing sentence-aspect information while ignoring valuable knowledge concerning the whole corpus. In this paper, we propose a Multi-aspect Graph-based DDI extraction model, named DDI-MuG.MethodsWe first employ a bio-specific pre-trained language model to obtain the token contextualized representations. Then we use two graphs to get syntactic information from input instance and word co-occurrence information within the entire corpus, respectively. Finally, we combine the representations of drug entities and verb tokens for the final classificationResultsTo validate the effectiveness of the proposed model, we perform extensive experiments on two widely used DDI extraction dataset, DDIExtraction-2013 and TAC 2018. It is encouraging to see that our model outperforms all twelve state-of-the-art models.DiscussionIn contrast to the majority of earlier models that rely on the black-box approach, our model enables visualization of crucial words and their interrelationships by utilizing edge information from two graphs. To the best of our knowledge, this is the first model that explores multi-aspect graphs to the DDI extraction task, and we hope it can establish a foundation for more robust multi-aspect works in the future

    BioDEX: Large-Scale Biomedical Adverse Drug Event Extraction for Real-World Pharmacovigilance

    Full text link
    Timely and accurate extraction of Adverse Drug Events (ADE) from biomedical literature is paramount for public safety, but involves slow and costly manual labor. We set out to improve drug safety monitoring (pharmacovigilance, PV) through the use of Natural Language Processing (NLP). We introduce BioDEX, a large-scale resource for Biomedical adverse Drug Event Extraction, rooted in the historical output of drug safety reporting in the U.S. BioDEX consists of 65k abstracts and 19k full-text biomedical papers with 256k associated document-level safety reports created by medical experts. The core features of these reports include the reported weight, age, and biological sex of a patient, a set of drugs taken by the patient, the drug dosages, the reactions experienced, and whether the reaction was life threatening. In this work, we consider the task of predicting the core information of the report given its originating paper. We estimate human performance to be 72.0% F1, whereas our best model achieves 62.3% F1, indicating significant headroom on this task. We also begin to explore ways in which these models could help professional PV reviewers. Our code and data are available: https://github.com/KarelDO/BioDEX.Comment: 28 page

    ์•ฝ๋ฌผ ๊ฐ์‹œ๋ฅผ ์œ„ํ•œ ๋น„์ •ํ˜• ํ…์ŠคํŠธ ๋‚ด ์ž„์ƒ ์ •๋ณด ์ถ”์ถœ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ์œตํ•ฉ๊ณผํ•™๊ธฐ์ˆ ๋Œ€ํ•™์› ์‘์šฉ๋ฐ”์ด์˜ค๊ณตํ•™๊ณผ, 2023. 2. ์ดํ˜•๊ธฐ.Pharmacovigilance is a scientific activity to detect, evaluate and understand the occurrence of adverse drug events or other problems related to drug safety. However, concerns have been raised over the quality of drug safety information for pharmacovigilance, and there is also a need to secure a new data source to acquire drug safety information. On the other hand, the rise of pre-trained language models based on a transformer architecture has accelerated the application of natural language processing (NLP) techniques in diverse domains. In this context, I tried to define two problems in pharmacovigilance as an NLP task and provide baseline models for the defined tasks: 1) extracting comprehensive drug safety information from adverse drug events narratives reported through a spontaneous reporting system (SRS) and 2) extracting drug-food interaction information from abstracts of biomedical articles. I developed annotation guidelines and performed manual annotation, demonstrating that strong NLP models can be trained to extracted clinical information from unstructrued free-texts by fine-tuning transformer-based language models on a high-quality annotated corpus. Finally, I discuss issues to consider when when developing annotation guidelines for extracting clinical information related to pharmacovigilance. The annotated corpora and the NLP models in this dissertation can streamline pharmacovigilance activities by enhancing the data quality of reported drug safety information and expanding the data sources.์•ฝ๋ฌผ ๊ฐ์‹œ๋Š” ์•ฝ๋ฌผ ๋ถ€์ž‘์šฉ ๋˜๋Š” ์•ฝ๋ฌผ ์•ˆ์ „์„ฑ๊ณผ ๊ด€๋ จ๋œ ๋ฌธ์ œ์˜ ๋ฐœ์ƒ์„ ๊ฐ์ง€, ํ‰๊ฐ€ ๋ฐ ์ดํ•ดํ•˜๊ธฐ ์œ„ํ•œ ๊ณผํ•™์  ํ™œ๋™์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์•ฝ๋ฌผ ๊ฐ์‹œ์— ์‚ฌ์šฉ๋˜๋Š” ์˜์•ฝํ’ˆ ์•ˆ์ „์„ฑ ์ •๋ณด์˜ ๋ณด๊ณ  ํ’ˆ์งˆ์— ๋Œ€ํ•œ ์šฐ๋ ค๊ฐ€ ๊พธ์ค€ํžˆ ์ œ๊ธฐ๋˜์—ˆ์œผ๋ฉฐ, ํ•ด๋‹น ๋ณด๊ณ  ํ’ˆ์งˆ์„ ๋†’์ด๊ธฐ ์œ„ํ•ด์„œ๋Š” ์•ˆ์ „์„ฑ ์ •๋ณด๋ฅผ ํ™•๋ณดํ•  ์ƒˆ๋กœ์šด ์ž๋ฃŒ์›์ด ํ•„์š”ํ•˜๋‹ค. ํ•œํŽธ ํŠธ๋žœ์Šคํฌ๋จธ ์•„ํ‚คํ…์ฒ˜๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์‚ฌ์ „ํ›ˆ๋ จ ์–ธ์–ด๋ชจ๋ธ์ด ๋“ฑ์žฅํ•˜๋ฉด์„œ ๋‹ค์–‘ํ•œ ๋„๋ฉ”์ธ์—์„œ ์ž์—ฐ์–ด์ฒ˜๋ฆฌ ๊ธฐ์ˆ  ์ ์šฉ์ด ๊ฐ€์†ํ™”๋˜์—ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋งฅ๋ฝ์—์„œ ๋ณธ ํ•™์œ„ ๋…ผ๋ฌธ์—์„œ๋Š” ์•ฝ๋ฌผ ๊ฐ์‹œ๋ฅผ ์œ„ํ•œ ๋‹ค์Œ 2๊ฐ€์ง€ ์ •๋ณด ์ถ”์ถœ ๋ฌธ์ œ๋ฅผ ์ž์—ฐ์–ด์ฒ˜๋ฆฌ ๋ฌธ์ œ ํ˜•ํƒœ๋กœ ์ •์˜ํ•˜๊ณ  ๊ด€๋ จ ๊ธฐ์ค€ ๋ชจ๋ธ์„ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค: 1) ์ˆ˜๋™์  ์•ฝ๋ฌผ ๊ฐ์‹œ ์ฒด๊ณ„์— ๋ณด๊ณ ๋œ ์ด์ƒ์‚ฌ๋ก€ ์„œ์ˆ ์ž๋ฃŒ์—์„œ ํฌ๊ด„์ ์ธ ์•ฝ๋ฌผ ์•ˆ์ „์„ฑ ์ •๋ณด๋ฅผ ์ถ”์ถœํ•œ๋‹ค. 2) ์˜๋ฌธ ์˜์•ฝํ•™ ๋…ผ๋ฌธ ์ดˆ๋ก์—์„œ ์•ฝ๋ฌผ-์‹ํ’ˆ ์ƒํ˜ธ์ž‘์šฉ ์ •๋ณด๋ฅผ ์ถ”์ถœํ•œ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ์•ˆ์ „์„ฑ ์ •๋ณด ์ถ”์ถœ์„ ์œ„ํ•œ ์–ด๋…ธํ…Œ์ด์…˜ ๊ฐ€์ด๋“œ๋ผ์ธ์„ ๊ฐœ๋ฐœํ•˜๊ณ  ์ˆ˜์ž‘์—…์œผ๋กœ ์–ด๋…ธํ…Œ์ด์…˜์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ ๊ณ ํ’ˆ์งˆ์˜ ์ž์—ฐ์–ด ํ•™์Šต๋ฐ์ดํ„ฐ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์‚ฌ์ „ํ•™์Šต ์–ธ์–ด๋ชจ๋ธ์„ ๋ฏธ์„ธ ์กฐ์ •ํ•จ์œผ๋กœ์จ ๋น„์ •ํ˜• ํ…์ŠคํŠธ์—์„œ ์ž„์ƒ ์ •๋ณด๋ฅผ ์ถ”์ถœํ•˜๋Š” ๊ฐ•๋ ฅํ•œ ์ž์—ฐ์–ด์ฒ˜๋ฆฌ ๋ชจ๋ธ ๊ฐœ๋ฐœ์ด ๊ฐ€๋Šฅํ•จ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ ๋ณธ ํ•™์œ„ ๋…ผ๋ฌธ์—์„œ๋Š” ์•ฝ๋ฌผ๊ฐ์‹œ์™€ ๊ด€๋ จ๋œ์ž„์ƒ ์ •๋ณด ์ถ”์ถœ์„ ์œ„ํ•œ ์–ด๋…ธํ…Œ์ด์…˜ ๊ฐ€์ด๋“œ๋ผ์ธ์„ ๊ฐœ๋ฐœํ•  ๋•Œ ๊ณ ๋ คํ•ด์•ผ ํ•  ์ฃผ์˜ ์‚ฌํ•ญ์— ๋Œ€ํ•ด ๋…ผ์˜ํ•˜์˜€๋‹ค. ๋ณธ ํ•™์œ„ ๋…ผ๋ฌธ์—์„œ ์†Œ๊ฐœํ•œ ์ž์—ฐ์–ด ํ•™์Šต๋ฐ์ดํ„ฐ์™€ ์ž์—ฐ์–ด์ฒ˜๋ฆฌ ๋ชจ๋ธ์€ ์•ฝ๋ฌผ ์•ˆ์ „์„ฑ ์ •๋ณด์˜ ๋ณด๊ณ  ํ’ˆ์งˆ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ณ  ์ž๋ฃŒ์›์„ ํ™•์žฅํ•˜์—ฌ ์•ฝ๋ฌผ ๊ฐ์‹œ ํ™œ๋™์„ ๋ณด์กฐํ•  ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค.Chapter 1 1 1.1 Contributions of this dissertation 2 1.2 Overview of this dissertation 2 1.3 Other works 3 Chapter 2 4 2.1 Pharmacovigilance 4 2.2 Biomedical NLP for pharmacovigilance 6 2.2.1 Pre-trained language models 6 2.2.2 Corpora to extract clinical information for pharmacovigilance 9 Chapter 3 11 3.1 Motivation 12 3.2 Proposed Methods 14 3.2.1 Data source and text corpus 15 3.2.2 Annotation of ADE narratives 16 3.2.3 Quality control of annotation 17 3.2.4 Pretraining KAERS-BERT 18 3.2.6 Named entity recognition 20 3.2.7 Entity label classification and sentence extraction 21 3.2.8 Relation extraction 21 3.2.9 Model evaluation 22 3.2.10 Ablation experiment 23 3.3 Results 24 3.3.1 Annotated ICSRs 24 3.3.2 Corpus statistics 26 3.3.3 Performance of NLP models to extract drug safety information 28 3.3.4 Ablation experiment 31 3.4 Discussion 33 3.5 Conclusion 38 Chapter 4 39 4.1 Motivation 39 4.2 Proposed Methods 43 4.2.1 Data source 44 4.2.2 Annotation 45 4.2.3 Quality control of annotation 49 4.2.4 Baseline model development 49 4.3 Results 50 4.3.1 Corpus statistics 50 4.3.2 Annotation Quality 54 4.3.3 Performance of baseline models 55 4.3.4 Qualitative error analysis 56 4.4 Discussion 59 4.5 Conclusion 63 Chapter 5 64 5.1 Issues around defining a word entity 64 5.2 Issues around defining a relation between word entities 66 5.3 Issues around defining entity labels 68 5.4 Issues around selecting and preprocessing annotated documents 68 Chapter 6 71 6.1 Dissertation summary 71 6.2 Limitation and future works 72 6.2.1 Development of end-to-end information extraction models from free-texts to database based on existing structured information 72 6.2.2 Application of in-context learning framework in clinical information extraction 74 Chapter 7 76 7.1 Annotation Guideline for "Extraction of Comprehensive Drug Safety Information from Adverse Event Narratives Reported through Spontaneous Reporting System" 76 7.2 Annotation Guideline for "Extraction of Drug-Food Interactions from the Abtracts of Biomedical Articles" 100๋ฐ•
    • โ€ฆ
    corecore