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DDI-MuG: Multi-aspect graphs for
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Introduction: Drug-drug interaction (DDI) may lead to adverse reactions in
patients, thus it is important to extract such knowledge from biomedical texts.
However, previously proposed approaches typically focus on capturing
sentence-aspect information while ignoring valuable knowledge concerning the
whole corpus. In this paper, we propose a Multi-aspect Graph-based DDI
extraction model, named DDI-MuG.
Methods: We first employ a bio-specific pre-trained language model to obtain the
token contextualized representations. Then we use two graphs to get syntactic
information from input instance and word co-occurrence information within the
entire corpus, respectively. Finally, we combine the representations of drug
entities and verb tokens for the final classification
Results: To validate the effectiveness of the proposed model, we perform
extensive experiments on two widely used DDI extraction dataset,
DDIExtraction-2013 and TAC 2018. It is encouraging to see that our model
outperforms all twelve state-of-the-art models.
Discussion: In contrast to the majority of earlier models that rely on the black-box
approach, our model enables visualization of crucial words and their
interrelationships by utilizing edge information from two graphs. To the best of
our knowledge, this is the first model that explores multi-aspect graphs to the
DDI extraction task, and we hope it can establish a foundation for more robust
multi-aspect works in the future.

KEYWORDS

drug-drug interactions, relation extraction, deep learning, multi-aspect graphs,

graph neural network

1. Introduction

According to statistics from the U.S. Centers of Disease Control and Prevention, from

2015 to 2018, 48.6% of Americans used at least one prescription drug in 30 days.1 More

seriously, 20% of the elderly took more than 10 drugs simultaneously (1). However, drug-

drug interaction (DDI) may occur when patients take multiple drugs, resulting in reduced

drug effectiveness or even, possibly, adverse drug reactions (ADRs) (2). Therefore, the

study of DDI extraction can be considerably important to patients’ healthcare, as well as

clinical research. Currently, a number of drug databases, such as DailyMed (3),

TWOSIDES (4) and DrugBank (5) can be used for retrieving DDI knowledge directly.

However, with the exponential growth in biomedical literature, huge amounts of the most
1https://www.cdc.gov/nchs/data/hus/2019/039-508.pdf

01 frontiersin.org

http://crossmark.crossref.org/dialog/?doi=10.3389/fdgth.2023.1154133&domain=pdf&date_stamp=2020-03-12
https://doi.org/10.3389/fdgth.2023.1154133
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fdgth.2023.1154133/full
https://www.frontiersin.org/articles/10.3389/fdgth.2023.1154133/full
https://www.cdc.gov/nchs/data/hus/2019/039-508.pdf
https://www.frontiersin.org/journals/digital-health
https://doi.org/10.3389/fdgth.2023.1154133
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


Yang et al. 10.3389/fdgth.2023.1154133
current and valuable knowledge remain hidden in biomedical

literature (1). Thus, the development of an automatic tool to

extract DDI is an urgent need.

During the past few years, various deep learning-based

approaches, such as (6–14) have been proposed to extract DDI

knowledge. Recently, (15) proposed an Long Short-Term Memory

(LSTM)-based RNN model with two distinct additional layers, i.e.,

bottom RNN and top RNN, for the DDI extraction. It is worth

noting that compared with LSTM, Graph Neural Networks

(GNNs) can better deal with complex structural knowledge. Based

on this, Li and Ji (8) combined a Bio-specific BERT (16) and

Graph Convolutional Network (GCN) (17) to capture

contextualized representation together with syntactic knowledge.

Shi et al. (13) adopted the Graph Attention Network (GAT) (18)

on an enhanced dependency graph to obtain higher-level drug

representations for DDI extraction. However, as examples in

Table 1, all the previous models only pay attention to the

sentence-aspect features and do not even exploit the corpus

knowledge, which could cause essential clues to be overlooked.

To alleviate the issues mentioned above, in this work, we

propose a multi-aspect graphs-based DDI extraction model,

DDI-MuG, which can make use of the information in both

sentence and corpus aspects. First, we use PubMedBERT to

obtain sentence semantic representation. We then apply a GCN

with an average pooling layer to capture syntactic features from

the input instance, and another GCN with average pooling is

employed to model the word co-occurrence in the corpus level

simultaneously. After that, attentive pooling is used to integrate

and obtain the optimal feature from the output of PubMedBERT

and both sentence-aspect and corpus-aspect graphs. Finally, we

employ a fully connected neural network in the output layer for

the classification. Our proposed model is evaluated on two

benchmark datasets: DDIExtraction-2013 (29) and TAC 2018

corpora (30). Experimental results show that our proposed model

improves the performance of DDI extraction effectively.

To recap, the main contributions of our work can be

summarized as follows:

† We propose a novel neural model, named DDI-MuG, to exploit

information from sentence-aspect and corpus-aspect graphs. As

far as we know, this is the first model that utilizes multi-aspect

graphs for the DDI extraction task.

† We explore the effectiveness of different components in DDI-

MuG. Experimental results indicate that knowledge from
TABLE 1 Summary of previous neural network-based models and our
proposed model.

Model Sentence
(semantic)

Sentence
(syntactic)

Corpus

AB-LSTM (19) GloVe (20) No No

DCNN (6) Order embedding (21) No No

ASDP-LSTM (7) Word2Vec (22) Dependency parse No

RHCNN (23) Bio-word emb. (24) Dependency parse No

GCNN-DDI (25) Bio-word emb. (24) Dependency parse No

BERTChem-DDI (10) BioBERT (26) No No

BERTDesc-DDI (11) SciBERT (27) No No

DDI-MuG (Ours) PubMedBERT(28) Dependency parse PMI
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multi-aspect graphs is complementary, and their effective

combination can largely improve performance.

† We evaluate the proposed model on two benchmark datasets

and achieve new state-of-the-art performance on both of them.

The rest of the paper is organized as follows. First, we introduce

the background in Section 1. Then, several related works are

introduced in Section 2. Next, in Section 3, we explain the

framework in the proposed model in detail. We then describe

the two benchmark datasets, evaluation metrics, and parameter

setting in Section 4. Section 5 presents the experimental results

and discussion, and finally, we conclude this work in Section 6.
2. Related works

Knowledge in many applications is exceedingly complex for a

single-aspect network to learn robust representations. Multi-

aspect networks have thus emerged naturally in different fields.

Khan and Blumenstock (31) developed a multi-aspect GCNs

model to consider different aspects of phone networks for

poverty research. They employed subspace analysis and a

manifold ranking procedure in order to merge multiple views

and prune the graph, respectively. Liu et al. (32) first constructed

semantic-based, syntactic-based, and sequential-based text

graphs, and then utilized an inter-graph propagation to

coordinate heterogeneous information among graphs. In order to

exploit richer sources of graph edge information, Gong and

Cheng (33) resorted to multi-dimensional edge weights to encode

edge directions. Similarly, Huang et al. (34) used multi-

dimensional edge weights to exploit multiple attributes, adapting

the edge weights before entering into the next layer. In order to

improve the prediction accuracy of social trust evaluation, Jiang

et al. (35) assigned different attention coefficients to multi-aspect

graphs in online social networks. Recently, Zhang et al. (36)

constructed MA-GNNs, which utilize multiple aspect-aware

graphs to improve recommendation performance. This model

disentangles user preferences into different aspects and constructs

multiple aspect-aware graphs to learn aspect-based user

preferences.
3. Methods

The architecture of the proposed model is illustrated in

Figure 1. First, we obtain the contextual semantic representation

of the input instances by PubMedBERT. Then, a sentence-aspect

graph is constructed to encode the syntactic feature from the

dependency path, while a corpus-aspect graph is used to explore

word co-occurrence within the entire corpus. Based on the

vocabulary and instances analysis, we find that the part-of-speech

(POS) tag of words, especially words corresponding to verbs,

might be helpful for the final representation. Therefore, we

subsequently feed the representations of verbs and drug entities

from PubMedBERT, together with the two graphs, into an

attentive pooling layer to distinguish important features from all
frontiersin.org
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FIGURE 1

The proposed model architecture. This example is selected from DDIExtraction-2013 dataset. Two drugs are labelled in bold. As the space is limited, only
part of the edges is shown in the word co-occurrence-based graph.
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representations. Finally, a fully connected layer with softmax is

employed to perform the classification. The process is described

in the following subsections in detail.
3.1. Encoding sentences with PubMedBERT

PubMedBERT was pre-trained on 14 million biomedical

abstracts with 3.2 billion words from scratch. Given an input

sentence S ¼ [w1, w2, . . . , wn, . . . , wt] with drug entities d1 and

d2, we convert each word wi into word pieces and then feed

them into PubMedBERT. After the PubMedBERT calculation, we

employ average pooling to aggregate vectorial representations of

word pieces as the word representations. We denote the two

drugs and verbs representations by drug1 pub, drug2 pub, and

verbs pub respectively.
3.2. Graph construction

Considering a graph with n nodes, the node i at the lth layer is

updated based on the representation of all neighbourhood nodes in
FIGURE 2

An example of dependency relation. Two drugs are labelled in bold.
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the (l � 1)th layer as follows:

Hl ¼ s(ÂHl�1Wl) (1)

Here, Â ¼ eD�1=2eAeD1=2 represents the normalized adjacency

matrix, and eA ¼ Aþ I is the adjacency matrix with added self-

connections. eD is the diagonal node degree matrix witheD(i, i) ¼ P
j
eA(i, j). Hl [ Rn�dl is the node embedding matrix at

the lth layer, n is the number of nodes, dl indicates the

dimension of the node features. Finally, Wl [ Rdl�dlþ1 denotes a

layer-specific trainable weight matrix, and s is a nonlinear

function.

For each input instance, we encode a dependency graph from

the current instance and a word co-occurrence over the entire

corpus.
3.2.1. Sentence-aspect dependency graph
Dependency parser is widely used in relation classification

tasks with the aim of exploring the syntactic information of

sentences. We apply the Stanford dependency parser (37) to

extract dependency syntactic information. Figure 2 shows the
frontiersin.org
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dependency relation of the input text in Figure 1. The connection

from coadministered to colestipol means that coadministered is the

head word of colestipol, and “nsubjpass” denotes the “passive

nominal subject” dependency relation between the two words.

We use the word embedding from PubMedBERT as the initial

node representations, and set edge weights as 0 or 1 to indicate if

two nodes are connected in the dependency path.

Let the node representations in lth layer of the dependency

graph be Ml . We apply two graph convolutional layers to update

each node, thus the updated M2 is expressed as follows:

M2 ¼ s(ÂM1W2) (2)

Then, an average pooling layer is applied to get the syntactic-

based sentence embedding. Let d1, d2, . . . , dn, . . . , dt be the

updated node representations obtained from graph convolutional

layers, the output of dependency graph, GDep, is shown as:

GDep ¼ avg
1�i�t

[di] (3)
We denote the outputs of drug and verbs representations as

drug1dep, drug2dep, and verbsdep, respectively.
3.2.2. Corpus-aspect word co-occurrence graph
Information on the co-occurrence of words indicates the

connection between them, such as whether they form as a

common phrase or provide clues for classification tasks. Firstly,

we first lemmatize each word with Natural Language Toolkit

(NLTK).2 Then we connect all word pairs in the graph, and

employ point-wise mutual information (PMI) (38), a word

associations measure, to store the word correlation information

as an edge weight as follows:

Aij ¼
1, i ¼ j

PMI(i, j), i = j, PMI(i, j) . 0
0, i = j, PMI(i, j) � 0

8<
: (4)

The PMI between any two words is calculated as:

PMI(i, j) ¼ log
p(i, j)
p(i)p(j)

, (5)

p(i, j) ¼ #W(i, j)
#W

, p(i) ¼ #W(i)
#W

: (6)

where i, j are words, #W(i, j) is the number of examples in a fixed

sliding window that contains both words, #W(i) is the number of

instances in the sliding window that contain word i, and #W is the

total number of sliding windows. It is worth noting that the entire
2https://www.nltk.org/
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input sentence is set as the sliding window. Suppose there are

31,738 instances in the corpus, and the word of “decrease” and

“coadminister” appear 1,821 and 953 times, respectively, and that

they occur 27 times together in the whole corpus. Based on

Formula 5 to 6, the PMI between these two words is -4.8. A

positive PMI value corresponds to a high correlation between

two words, while a negative value means that the two words

have a small probability or no probability of occurrence. When

two words have a negative PMI value, we view them as

non-co-occurring and set their edge weight as 0.

Suppose the node representations in lth layer is Nl . Similar to

the dependency graph, the updated N2 is shown as:

N2 ¼ s(ÂN1W2) (7)

After an average pooling layer was utilized to get the word

co-occurrence-based embedding, the GWord graph is expressed as:

GWord ¼ avg
1�i�t

[wi] (8)

where wi is the updated lth node representation from graph

convolutional layers.

Drug and verbs representations, denotes by drug1word,

drug2word , and verbsword , are extracted from GWord and used as

input for the next layer.
3.3. Attentive pooling layer

So far, given two drug entities and verbs, we have obtained rich

feature representations from PubMedBERT and two graphs. As

each instance has a different number of verbs, we apply an

attentive pooling to get a fixed-length representation for verbs. In

detail, this pooling mechanism computes the weights of feature

vectors by using an attention mechanism, allowing it to learn the

most significant feature effectively. Let Adrug1 and Adrug2 be the

combined representation of drug entities from PubMedBERT and

the two graphs, and Averbs be the corresponding verbs

representation:

Adrug1 ¼ [drug1 pub; drug1dep; drug1word] (9)

Adrug2 ¼ [drug2 pub; drug2dep; drug2word] (10)

Averbs ¼ [verbs pub; verbsdep; verbsword] (11)

where [;] denotes concatenation. These three representations are

fed into the attentive pooling layer separately as follows:

Hdrug1 ¼ tanh(Adrug1) (12)

a ¼ Softmax(waHdrug1) (13)

zdrug1 ¼ aAdrug1 (14)
frontiersin.org
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where wa is the learning parameter, a is the attention weights.

zdrug1, zdrug2 and zverbs are the representation of the two drugs

and verbs as the output of the attentive pooling layer.
3.4. Fully connected and softmax layer

In this layer, the updated representation of two drugs and verbs

are concatenated as ztotal , and a nonlinear activation function tanh

is then applied over ztotal into a fully connected layer. Finally, we

deploy a softmax with a dropout layer to get the probability

score for each class. The process is expressed as follows:

ztotal0 ¼ tanh(ztotal) (15)

p(y j x) ¼ Softmax(Wsztotal0 þ bs) (16)

where ztotal0 is the output of the fully connected layer,Ws and bs are

the softmax matrix and the bias parameter, respectively.
4. Experiments

In our experiments, two public DDI extraction corpora, i.e.,

DDIExtraction-2013 and TAC 2018, were used to evaluate the

proposed model. This section introduces the two corpora in

detail and then presents the evaluation metrics and parameters

setting.
4.1. DDIExtraction-2013 dataset

We obtained the corpus from the challenge SemEval-2013 Task

9 (39). This corpus is the major dataset that can be used to evaluate

and compare the performance of DDI extraction models. It

contains manually annotated sentences from 175 abstracts in

MedLine,,3 and 730 abstracts in DrugBank.4 There are four kinds

of positive interaction types: Advice, Effect, Mechanism, Int. If the

two drugs are unrelated, their relations are labelled as Negative.

The definitions of the five types are as follows:

† Advice: a recommendation or advice regarding the

simultaneous use of two drugs is described between two drugs.

† Effect: an effect or a pharmacodynamic mechanism is described

between two drugs.

† Mechanism: a pharmacokinetic mechanism is described

between two drugs.

† Int: a DDI occurs between two drugs, but no additional

information is provided.

† Negative: there is no interaction between two drugs.
3https://www.nlm.nih.gov/bsd/medline.html
4https://go.drugbank.com/
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The original corpus suffers from a serious data imbalance

problem. For example, the ratio of Int to Negative instances in

the training set is 1:123.7, which heightens the difficulty of

classifying drug pairs that hold Int relations, and continually

affects the overall performance. To alleviate this data

imbalance issue, many negative examples are filtered out in

earlier studies, e.g., (2, 6, 19, 40–42). To ensure that the

experimental results can be compared fairly with other

baseline models, we adopted three rules in (6) to remove

negative instances:

† If both drugs have the same name, remove the corresponding

instances. The assumption is that drug will not interact with

itself.

† If one drug is a particular case or an abbreviation of the other,

filter out the corresponding instances. Several patterns, such as

“DRUG-A (DRUG-B)” and “DRUG-A such as DRUG-B”, are

used to identify such cases.

† If both drugs appear in the same coordinate structure, filter out

the corresponding instances. Also, we use some pre-defined

patterns, like “DRUG-A, (DRUG� N)þ, DRUG-B”, to filter

out such instances.

Table 2 summarizes the statistics and divisions of this corpora.

4.2. TAC 2018 corpus

One of the tasks in “Drug-Drug Interaction Extraction from

Drug Labels” track of the Text Analysis Conference (TAC) 20185

was to detect and extract DDIs from structured product

labellings (SPLs). The organizers provided a set of 22 SPLs for

training (Training-22). Two other datasets containing 57 and 66

SPLs were provided as test sets. The organizers also provided an

additional 180 SPLs (NLM-180) to supplement the training set.

Interactions in this corpus are classified into one of the following

three types:

† Pharmacokinetic: This type includes phrases that demonstrate

changes in physiological functions (30), such as decrease

exposure, increased bioavailability.

† Pharmacodynamic: This type includes phrases

that describe the effects of the drugs, e.g., blood pressure

lowering.

† Unspecified: This type corresponds to caution phrases, e.g.,

avoid use.

As the original corpus is in XML format, we use the dataset

in the KLncLSTMsentClf model (43) to train and evaluate

our proposed model. In total, we obtain 6,436

training sentences by merging the training-22 and NLM-180

corpora. The two test sets contain 8,205 and 4,256 sentences,

respectively.
5https://tac.nist.gov/2018/
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TABLE 2 The statistics of DDIExtraction-2013 corpus.

Training Test

Original Filtered Original Filtered
Positive Advice 826 824 221 221

Effect 1,687 1,676 360 358

Mechanism 1,319 1,309 302 301

Int 188 187 96 96

Negative 23,772 19,342 4,737 3,896

Overall 27,792 23,338 5,716 4,872

Yang et al. 10.3389/fdgth.2023.1154133
4.3. Evaluation metrics

precision(P), recall(R) and F-score(F) are the major

evaluation metrics in the DDI extraction task. In this paper,

we adopt the standard micro-average precision, recall and

F-score to evaluate the performance, and the formulas are

listed as follows:

Precision ¼ TP
(TP þ FP)

, (17)
Recall ¼ TP
(TP þ FN)

, (18)
F � score ¼ 2�P�R
(P þ R)

: (19)

TP (true positive) represents the number of correctly classified

positive instances, FP (false positive) denotes the number of

negative instances that are misclassified as positive instances, and

FN (false negative) is the number of positive instances that are

misclassified as negative ones.
4.4. Parameters setting

In our experiment, PyTorch library (44) is used as the

computational framework. As there is no development or

validation set in the original corpus, we randomly select 20% of

the training dataset as the validation set to adjust the model

parameters and the remaining 80% as the training set. The

parameters used are shown as follows:

† Maximal length n ¼ 128.

† Embedding size of PubMedBERT m1 ¼ 768.

† Hidden layer dimension of dependency and co-occurrence

graph m2 & m3 ¼ 200.

† Mini-batch size ¼ 32.

† Dropout rate p ¼ 0:1.

† Learning rage lr ¼ 0:0001.

† Number of epoch ¼ 10.
Frontiers in Digital Health 06
5. Results and discussion

5.1. Results on DDIExtraction-2013

5.1.1. Comparison with baseline methods
We compare the performance of our DDI-MuG with 11

baseline methods. The comparison results of different models are

shown in Table 3. The highest value is labelled in bold, and the

second highest value is marked underline. In general, deep neural

network-based approaches achieve better performance than

statistical ML-based methods. It demonstrates the capability and

potential of utilizing neural network in DDI extraction tasks. A

notable exception is that the F1-score of SVM-DDI (40) is

slightly higher than the AB-LSTM model (19). This might be

due to SVM-DDI (40) benefiting from rich and complex lexical

and syntactic handcraft features. It can be seen that our DDI-

MuG obtains the best overall performances in view of precision

and F1 score. In terms of the performances for all four types,

DDI-MuG performs best on Advice, Mechanism and Int, and

obtain the second best performance on Effect. It is worth noting

that all methods achieve relatively low performance on Int. This

discrepancy might be caused by the insufficient training samples

of Int, which leads to these models to be underfitting.

Then, we find the contributions of multi-aspect graphs to the

proposed model. By removing in turn the sentence-aspect

dependency graph and corpus-aspect word co-occurrence graph,

our method reduces to DDI-MuG(with word. graph) and DDI-

MuG(with dep. graph), respectively. From Table 3, we can see

that the F1-score of DDI-MuG(with dep. graph) is higher than

the F1-score of DDI-MuG(with word. graph), which proves that

the syntactic features are indeed valuable for identifying the

interaction relation between two drugs. Overall, it can be seen

that the F1-score of DDI-MuG surpass the DDI-MuG(with word.

graph) and DDI-MuG(with dep. graph) by 0.012 and 0.008,

separately. This indicates that multi-aspect graphs are

complementary to each other and together can serve as an

appropriate supplement to contextual information.
5.1.2. Impact of pre-trained embedding
To evaluate the efficiency of the pre-trained language model,

we conduct experiments of replacing PubMedBERT with other

similar models. As shown in Table 4, the four bio-specific

models, i.e., BioBERT, SciBERT, ouBioBERT (48), and
frontiersin.org
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TABLE 4 The effect of pre-trained embedding. The highest value is
labelled in bold.

Pre-trained embedding P R f F1
DDI-MuG(by BERT) 0.801 0.790 0.795

DDI-MuG(by BioBERT) 0.843 0.816 0.829

DDI-MuG(by SciBERT) 0.839 0.825 0.832

DDI-MuG(by ouBioBERT) 0.850 0.826 0.838

DDI-MuG(by PubMedBERT) 0.870 0.824 0.847

TABLE 3 Performance comparisons on DDIExtraction-2013 Corpus. The highest value is labelled in bold, and the second highest value is marked
underline.

Methods Breakdown F1 Overall performance

Advice Effect Mechanism Int Precision Recall F1

Statistical ML-based methods
UTurKu (45) 0.630 0.600 0.582 0.507 0.732 0.499 0.594

WBI (46) 0.632 0.610 0.618 0.510 0.642 0.579 0.609

FBK-irst (47) 0.692 0.628 0.679 0.547 0.646 0.656 0.651

SVM-DDI (40) 0.725 0.662 0.693 0.483 – – 0.670

Deep neural network-based methods
AB-LSTM (19) 0.697 0.683 0.681 0.542 0.678 0.659 0.669

DCNN (6) 0.777 0.693 0.702 0.464 0.757 0.647 0.698

Joint AB-LSTM (19) 0.794 0.676 0.763 0.431 0.734 0.697 0.715

ASDP-LSTM (7) 0.803 0.718 0.740 0.543 0.741 0.718 0.729

RHCNN (23) 0.805 0.734 0.782 0.589 0.773 0.737 0.754

GCNN-DDI (25) 0.835 0.758 0.794 0.514 0.801 0.740 0.770

DREAM (13) 0.848 0.761 0.816 0.551 0.823 0.747 0.783

Our methods
DDI-MuG(with word. graph) 0.893 0.812 0.871 0.599 0.868 0.805 0.835

DDI-MuG(with dep. graph) 0.900 0.826 0.865 0.583 0.842 0.835 0.839

DDI-MuG 0.907 0.823 0.893 0.606 0.870 0.824 0.847

Yang et al. 10.3389/fdgth.2023.1154133
PubMedBERT, led to improvement over standard BERT. DDI-

MuG by PubMedBERT achieves the best result for the reason

that it was pre-trained on biomedical texts from scratch.
TABLE 5 The comparison of with or without verbs information. The
highest value is labelled in bold.

Precision Recall F-score
DDI-MuG(drug-only) 0.863 0.823 0.843

DDI-MuG(all) 0.870 0.824 0.847

TABLE 6 Comparison with baseline models on the TAC 2018 corpus. The
highest value is labelled in bold.

Dataset Model P R F1
Test1 KLncLSTMsentClf 0.470 0.620 0.530

Test1 DDI-MuG(with word. graph) 0.717 0.712 0.715

Test1 DDI-MuG(with dep. graph) 0.688 0.718 0.703

Test1 DDI-MuG(all) 0.721 0.728 0.723

Test2 KLncLSTMsentClf 0.490 0.670 0.567

Test2 DDI-MuG(with word. graph) 0.710 0.726 0.718

Test2 DDI-MuG(with dep. graph) 0.713 0.730 0.721

Test2 DDI-MuG(all) 0.717 0.743 0.729
5.1.3. Error analysis
In addition, to present the above achievements, it is necessary

to discuss the limitations of our approach. One common type of

error is that the four kinds of positive instances are often

misclassified as negative instances. This is due to the imbalanced

data that small instance categories are misclassified as large

instance categories. There is another notable error that 34.4% of

Int type instances are misclassified as Effect type. This is because

some Int instances have similar semantics to Effect instances. For

example, in the following two instances:

† “arbiturates may decrease the effectiveness of oral contraceptives,

certain antibiotics, quinidine, theophylline, corticosteroids,

anticoagulants, and beta blockers.”

† “sulfoxone may increase the effects of barbiturates, tolbutamide,

and uricosurics.”

The words decrease and increase are the clues for identifying

interactions in the two semantically close sentences. However,

the first instance belongs to the Int type, while the second

belongs to Effect. The number of Int instances is far smaller than
Frontiers in Digital Health 07
the number of Effect instances, which also leads to the

occurrence of this kind of mistake.
5.1.4. Are verb representations really helpful?
In our previous vocabulary and instances analysis, we found

that in the DDIExtraction-2013 corpus, when instances contain

the words inhibit, increased, decreased, there is a great possibility

that the drug pair has the Mechanism relation. On the other

hand, when instances contain avoided, recommended or

administered, the drug pair is likely to have the Advice relation.

Thus, to further investigate how the verbs are important for thefinal

classification, we studied the effect of extractingDDI only from the drug

information without using the verbs knowledge. Table 5 shows the

comparison of the performance with and without the verb
frontiersin.org
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information. This result indicates verb representation can serve as a

supplement to improve the model performance.
5.2. Results on TAC 2018

5.2.1. Comparison with baseline model
Since we use the same dataset as KLncLSTMsentClf (43), we

view it as the baseline model. From Table 6, we can see that our

proposed model achieves better results in both two test sets,

which indicates the transferability of our proposed model.
6. Conclusions

In this paper, we propose DDI-MuG, a novel multi-aspect

graphs framework for DDI extraction tasks. Concretely, a bio-

specific pre-trained language model, PubMedBERT, is first

employed to encode the context information of each word from

the aspect of sentence semantic information. Then, two graphs

are utilized to explore sentence syntactic and corpus word co-

occurrence information, respectively. After that, an attentive

pooling mechanism is employed to update the representations of

drug entities and verbs. Finally, by feeding the concatenated

representation of the two drugs and verbs into a fully connected

and softmax classifier, the interaction between the two drugs is

obtained. Extensive comparison experiments with baseline

models on two public datasets verify the effectiveness of multi-

aspect graphs in the DDI extraction task.

In addition, Most previous models are based on the black-box

concept that makes the prediction without showing how the model

did so. However, with our proposed model, we can visualise the

important words and its word-word relationship of the final

classification by using the edge information in both dependency

and co-occurrence graphs.

For future work, there are at least two directions that could be

considered. Firstly, the performance on categories with small

training samples, like Int in the DDIExtraction-2013 corpora, is

unsatisfactory. The solution of contrastive learning can be

explored. Secondly, drug knowledge from external databases

could be integrated with the architecture for richer drug

representations.
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