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ABSTRACT 

Objective 

Monitoring the administration of drugs and adverse drug reactions are key parts of 

pharmacovigilance. In this paper, we explore the extraction of drug mentions and drug-related 

information (reason for taking a drug, route, frequency, dosage, strength, form, duration, and 

adverse events) from hospital discharge summaries through deep learning that relies on various 

representations for clinical named entity recognition.  

Materials and Methods 

This work was officially part of the 2018 n2c2 shared task, and we use the data supplied as part 

of the task. We developed two deep learning architecture based on recurrent neural networks and 

pre-trained language models. We also explore the effect of augmenting word representations with 

semantic features for clinical named entity recognition. Our feature-augmented BiLSTM-CRF 

model performed with F1-score of 92.67% and ranked 4th for entity extraction sub-task among 

submitted systems to n2c2 challenge.  

Results 

The recurrent neural networks that use the pre-trained domain-specific word embeddings and a 

CRF layer for label optimization perform drug, adverse event and related entities extraction with 

micro-averaged F1-score of over 91%. The augmentation of word vectors with semantic features 

extracted using available clinical NLP toolkits can further improve the performance.  

Conclusion 

Word embeddings that are pre-trained on a large unannotated corpus of relevant documents and 

further fine-tuned to the task perform rather well. However, the augmentation of word 

embeddings with semantic features can help improve the performance (primarily by boosting 

precision) of drug-related named entity recognition from electronic health records. 
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INTRODUCTION 

Almost half of the British population take prescribed medications, and many people take multiple 

drugs simultaneously. Over 20% of adults are administered with five or more drugs [1]. Drug-

drug interactions and potential adverse drug events (ADEs) are not uncommon: ADEs caused by 

drug-drug interactions account for more than 30% of reported adverse drug reactions [2]. The 

quality of life and response to treatments are often affected by adverse drug reactions [3] and 

around 7% of hospital admissions are attributed to adverse drug events [2].  

Many adverse drug events, especially those that occur infrequently, cannot be predicted by 

toxicological testing on animals and controlled clinical trials on humans [4]. This monitoring has 

to be extended beyond the period of drug testing and clinical trials. Hospital discharge summaries 

present a potentially valuable source of information for monitoring drug and treatment 

administration and associated adverse drug events. Discharge summaries typically outline the 

patient's complaint at admission, diagnostic findings, therapy administered, the patient's response 

to the therapy, and recommendations on discharge. However, they are formatted as unstructured 

textual documents, requiring clinical natural language processing (NLP) to extract information of 

interest from free-text summaries. Recognition of clinical entities from unstructured documents is 

still an active research area [5-9], with recent advances in neural network architectures for NLP, 

such as language models and recurrent neural networks demonstrating improved performances 

form many tasks. 

To assess the current state of the art, the 2018 National NLP Clinical Challenge (n2c2) track 2 

aimed to evaluate the entity recognition subtask focused on identifying drugs and related entities 

(reason, route, frequency, dosage, strength, form, duration, and ADE) from discharge summaries. 

In this paper, we examine the efficiency of a framework we developed for the task, including the 

effect of augmenting pre-trained domain word embeddings with semantic features in order to 

improve the performance of clinical named entities recognition. The effects of semantic feature 

augmentation were evaluated on randomly initialised embeddings as well as on embeddings pre-

trained on MIMIC-III data. The proposed architecture has been officially evaluated as part of the 

n2c2 challenge. 

 

RELATED WORK 

There have been several approaches proposed to extract drug names and drug attributes from 

free-text data. Several rule-based methods have been developed using semantic lexicons to 

extract drugs and related information from biomedical publications [10], social media [11, 12] 

and electronic health records [13-19]. Earlier machine-learning studies employed traditional 

approaches [10, 20-22] such as conditional random fields (CRFs) for extracting entities and 

support vector machine (SVM) for relation extraction between them. More recently, deep 

learning models, particularly the recurrent neural network (RNN) models, attracted much 

attention in the NLP community. The majority of methods use word embeddings, generated by 

training a language model on a large corpus of unannotated domain-specific documents [23, 24]. 

They could be utilised as initial word representations and then fine-tuned for a specific clinical 
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entity recognition task [25-28], so that the final target model could benefit from large amounts of 

unannotated data, making task-specific learning more efficient. Feature augmentation is a method 

that aims to improve word representations learnt by a neural network by combining them with 

human-engineered features. Lee et al. [29] demonstrated that performance of their text de-

identification method (i.e. recognition of personal identifiable entities in discharge summaries) is 

improved when word embeddings are concatenated with the features representations learnt with 

the feedforward neural network. 

Several shared tasks for extraction of drug-related information have been organised. For example, 

the 3rd i2b2 shared task in 2009 focused on the identification of medication mentions in 

discharge summaries, along with associated attributes - dosages, modes of administration, 

frequency, duration, and reasons for prescriptions [14]. More recently, the Medication and 

Adverse Drug Events from Electronic Health Records (MADE) shared-task has been organised to 

detect medications and adverse drug events in electronic health records (EHRs) [30]. The target 

entities comprise drug name, dosage, route, duration, frequency, indication, ADE, and other signs 

and symptoms. In addition to training data, participants were provided with pre-trained word 

embedding trained using Wikipedia, de-identified Pittsburgh EHR and PubMed articles [31]. The 

top-performing systems used bidirectional long short-term memory (BiLSTM) with pre-trained 

word embeddings and a CRF layer for prediction. For example, Wunnava et al. [32] developed a 

three-layer neural network architecture, consisting of character-based BiLSTM, word-based 

BiLSTM and a CRF layer. They demonstrated that the integration of BiLSTM-CRF along with 

the character and word embeddings achieved excellent accuracy. Dandala et al. [33] developed a 

similar BiLSTM-CRF architecture but augmented concatenated character and word embeddings 

with part-of-speech embeddings. They observed the importance of features as well as pre-trained 

embeddings. 

There are several open source clinical NLP toolkits that can be used to extract information from 

electronic health record and clinical narratives. Such information could also be used as features 

for augmentation of word embeddings. cTAKES [34], for example, offers several analysis 

engines for various NLP and specific clinical tasks, such as event identification, terminology 

mapping, uncertainty detection, temporal expressions identification and extraction drug 

attributes. Similarly, CLAMP [35] contains several components to facilitate building customised 

pipelines for diverse clinical applications. 

MATERIALS AND METHODS 

Task 

The 2018 n2c2 task (track 2) focused on the extraction of several entity types: drugs, reason for 

taking a drug, route, frequency, dosage, strength, form, duration, and adverse events. Table 1 

provides detailed descriptions and examples for the entity types. We note that both ADE and 

Reason denote conditions, signs and symptoms observed in the patient. The Reason class denote 

conditions, signs and symptoms for which the drug was administered, while ADE denotes 

unwanted signs and symptoms that happened as a consequence of an administered drug. 
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Table 1: Descriptions of entity types in the shared task 

Entity type Description Examples 

Drug 
The product name of the drug or its chemical 

substance name.  

coumadin, vancomycin, 

aspirin, lasix, prednisone, o2, 

vitamin k, packed red blood 

cells 

Strength 
The amount of chemical substance of a drug 

in a given dosage. 

8.6 mg, 2.5 mg/3 ml 

(0.083%), 400 unit, 100 

unit/ml, 5% (700 mg/patch) 

Form The form in which a drug should be taken. 
Tablet, capsule, cream, tablet 

sustained release 24 hr 

Frequency 
The rate at which drug should be taken over a 

particular period of time. 

daily, prn, q4h (every 4 

hours) as needed, qid 

Route 
The way by which a drug should be taken or 

the location of absorbing a drug into the 

body. 

po, iv, by mouth, inhalation, 

p.o., topical, nasal, injection 

Dosage 
The amount of a drug that a patient should 

take. 

one (1), sliding scale, taper, 2 

units, 30 ml, 100 unit/ml,  

Reason 
The indication or reason for drug 

administration. 

pain, constipation, anxiety, 

nausea, wheezing, atrial 

fibrillation, pneumonia, 

hypotension 

ADE 
The development of unfavourable event due 

to a drug intake.  

rash, thrombocytopenia, 

toxicity, diarrhea, altered 

mental status 

Duration 
The length of a period of time during which a 

drug should be taken, 

for 7 days, for one week, 5 

days, few days, prn, 

chronically, until his ciwa 

was less than 10 

 

Dataset 

The dataset that was used for training and evaluation was provided as a part of the n2c2 shared-

task (track 2). The train set contained 303 labelled discharge letters with nine drug-related entities 

described in Table 1, and the test set included 202 documents. The documents were sampled as 

clinical care health records from MIMIC-III clinical care database [36]. MIMIC-III is a publicly-

available database comprising de-identified health-related data associated with approximately 

sixty thousand admissions of patients who stayed in critical care units of the Beth Israel 

Deaconess Medical Center between 2001 and 2012. The frequency of mentions for each entity 

type, as well as the average number of mentions per document and the average number of tokens 

per mention can be seen in Table 2. While the majority of classes in the train set had over 4,000 

mentions, we note that Duration and ADE had less than 1,000 instances each.  
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Table 2: Number of mentions, average mention per document and average number of tokens per 

mention for each of the entity types in the train and test sets 

Entity type 
Mentions Avg. mention/document Avg. token/mention 

train test train test train test 

Drug 16,225 10,583 53.55 52.39 1.22 1.21 

Strength 6,691 4,231 22.08 20.95 1.87 1.85 

Form 6,651 4,358 21.95 21.57 1.67 1.66 

Frequency 6,281 4,015 20.73 19.88 3.03 2.99 

Route 5,467 3,513 18.07 17.39 1.07 1.07 

Dosage 4,221 2,681 13.93 13.27 2.98 3.04 

Reason 3,855 2,559 12.72 12.67 1.80 1.81 

ADE 959 625 3.17 3.09 1.80 1.76 

Duration 592 380 1.95 1.88 2.66 2.58 

 

Neural network architectures for clinical entity recognition 

We propose two deep learning architectures for recognising drug-related named entities in 

clinical texts. Initially, text segments were separated into word (token) sequences and all class 

mentions were converted into label sequences using the IOB (inside-outside-beginning) tagging 

format. 

The word embedding layer transforms input raw words into vectors. The word representations 

were passed into the bidirectional recurrent neural network with long short-term memory units to 

learn important word-level features and transform them into the sequence label scores. The 

number of units for each RNN chain (i.e. backward and forward) was set to 70% of the input 

token representation size. The CRF layer is employed to optimize predictions across the whole 

sequence (i.e. text segment). Finally, the labels were combined into named entities by merging 

consecutively labelled B- or I- tags of the same class.  

In order to explore the effect of adding semantic features, we have created a variation of the 

word-only architecture described above. We augment the word representations with semantic 

feature representations extracted using the CLAMP and cTAKES clinical pipelines. After 

processing discharge summaries through the pipelines, we extracted all token-level semantic tags 

(i.e. problem, treatment, test, temporal, negation, severity degree, body location, change, 

uncertainty) with associated assertion tag attributes (i.e. present or absent) from CLAMP and all 

semantic tags (i.e. Medication, DiseaseDisorder, SignSymptom, AnatomicalSite, Procedure) from 

cTAKES. We have merged cTAKES and CLAMP semantic tags to create a comprehensive set of 

features. For each pipeline, words are tagged with the corresponding semantic tag and attribute (if 

available) or using outside (i.e. O) tag otherwise. A direct mapping of semantic tags extracted 

using clinical pipelines to target entities is not feasible, because certain entities (such as 

Frequency or Route) are not presented among semantic tags, while other semantic tags (such as 

SignSymptom or DiseaseDisorder) are too broad. Thereby, the representations of the semantic 
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tags could be learned simultaneously with word representations and concatenated together to 

form the final augmented token representations. The dimensionality of semantic representations 

has been set to 50. The architecture of the feature-augmented BiLSTM-CRF is presented in 

Figure 1. 

 

Figure 1: The architecture of the feature-augmented bidirectional LSTM with the CRF (BiLSTM-

CRF) label optimisation layer. Augmented embeddings consist of word embeddings and 

embeddings of semantic tags (extracted from CLAMP and cTAKES). 

Experiments 

We have utilised the unstructured corpus of ~2 million discharge summaries from MIMIC-III 

dataset to learn 100-dimensional word embeddings using word2vec skip-gram model. The 

word2vec is a widely used method to generate word embeddings, supporting two different 

architecture types that determine how the context of the word is modelled [23]. The skip-gram 

architecture performs better for infrequent words, compared to the continuous bag-of-words 

(CBOW) model [37]. In order to investigate the effect of pre-trained embeddings for both word-

only and feature-augmented BiLSTM-CRF architectures, we initialise the embedding layer 

weights with vectors from pre-trained word2vec embeddings and compared it with random 

vectors drawn from the uniform distribution [38]. To explore the efficiency of semantic features 

we performed feature-augmentation of both pre-trained and randomly initialised word vectors.  

All four models were trained using the RMSProp [39] optimisation algorithm. We have reserved 

10% of the data for validation and the number of epochs was determined by early stopping 

criteria (i.e. after 3 epochs with no improvement on the validation set). 

 

Evaluation methodology 

The primary evaluation metric for ranking systems in n2c2 challenge is the lenient micro-

averaged F1-score. The strict metric counts only exact entity matches as correct, whereas the 

lenient metric does not take into account entity boundaries, considering all partial matches 
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(overlapping entities) as correct. To evaluate our models, we performed hold-out cross-validation 

(using training and testing sets). We reported lenient precision, recall and F1-score.  

 

RESULT 

The results of the lenient evaluation of word-only and feature-augmented (with semantic features 

obtained from CLAMP and cTAKES) BiLSTM-CRF models with randomly initialised 

embeddings are presented in Table 3.  

 

Table 3: The evaluation results of word-only and feature-augmented BiLSTM-CRF models with 

randomly initialised embeddings on the test set (202 documents) 

 
Word-only BiLSTM-CRF 

(random) 

Feature-augmented BiLSTM-CRF 

(random) 

Entity type Precision Recall F1-score Recall Precision F1-score 

Strength 97.25 96.10 96.67 97.12 96.41 96.76 

Frequency 96.83 95.07 95.94 96.81 94.60 95.69 

Form 96.95 93.44 95.16 97.38 92.89 95.08 

Route 97.19 92.63 94.85 96.60 93.14 94.84 

Drug 95.81 90.16 92.90 96.12 90.61 93.28 

Dosage 94.99 89.78 92.31 94.75 89.59 92.10 

Duration 80.99 72.89 76.73 84.08 73.68 78.54 

Reason 70.10 51.86 59.61 76.13 53.34 62.73 

ADE 52.86 19.20 28.17 50.24 33.92 40.50 

Overall (micro) 94.31 87.67 90.87 94.53 88.16 91.23 

Overall (macro) 94.01 86.03 89.62 93.74 86.28 89.65 
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Overall, the performance of the feature augmented model was better for five classes (Strength, 

Drug, Duration, Reason and ADE) compared to the word-only model, and the decrease for the 

remaining four classes (Frequency, Form, Route and Dosage) was between 0.01-0.25. However, 

the overall micro-averaged and macro-averaged F1-scores increased by 0.35 and 0.03 

respectively. Major increase was noticed for Reason and ADE classes (by 3.12 and 12.33 

respectively), potentially due to adding relevant semantic tags (e.g. DiseaseDisorder, 

SignSymptom, problem) from clinical pipelines. 

We presented two confusion matrices calculated on the token level for word-only and feature-

augmented BiLSTM-CRF models with randomly initialised embeddings in Figure 2. Each row of 

the confusion matrix is presenting the token instances of an actual class, whereas each column is 

presenting the token instances of a predicted class.  

 

Figure 2: Token-level confusion matrix of word-only and feature-augmented BiLSTM-CRF with 

randomly initialised embeddings. 

It can be seen that both word-only and feature-augmented models were confused between 

specific entity pairs. Namely, Dosage was incorrectly labelled as Strength and vice-versa; Form 

class has been often misclassified as Route, Drug or Dosage; ADE was confused with Reason, 

while Reason was mislabelled as Drug. An example of confusion between Strength and Dosage 

can be seen in the phrase “she received one litre of normal saline”, where it is hard (even for a 

human) to distinguish if “one litre” is a strength or dosage. A potential approach to resolve this 

would be adding rules specific for some entity types or to use more semantic features. 
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 Both Reason and ADE tokens were often not tagged as any entity class. In particular, over 60% 

of Reason tokens and over 80% of ADE tokens has been tagged as Outside class. Moreover, both 

entities usually describe diseases and symptoms, therefore there is a high confusion between 

them. The significant number of tokens (leading to about 6% of token-level recall loss) that were 

supposed to be tagged as ADE were misclassified as Reason. While the most confusing entity 

class for Reason was Drug. This potentially could happen because in some cases the indication 

(i.e. reason to take a drug) is included in the Drug entity (e.g. “pain medications”, “anti-seizure 

medication”). By adding feature-augmentation, we observed an increase in the number of true 

positives for both ADE and Reason classes, in particular for ADE the increase was 80%. 

However, it had a negative impact on the number of true positive matches for Frequency class.  

The results of the lenient evaluation of word-only and feature-augmented BiLSTM-CRF models 

with pre-trained word embeddings on MIMIC-III are presented in Table 4.  

 

Table 4: The evaluation results of word-only and feature-augmented BiLSTM-CRF models with 

pre-trained MIMIC-III embeddings on the test set (202 documents) 

Entity type 

Word-only BiLSTM-CRF  

(MIMIC-III) 

Feature-augmented BiLSTM-CRF 

(MIMIC-III) 

Precision Recall F1-score Precision Recall F1-score 

Strength 96.96 98.06 97.51 97.87 97.75 97.81 

Frequency 96.97 95.86 96.42 96.66 96.06 96.36 

Form 96.94 93.65 95.26 97.02 93.99 95.48 

Route 95.66 94.22 94.94 96.47 94.22 95.33 

Drug 95.06 94.96 95.01 96.26 94.28 95.26 

Dosage 93.63 93.17 93.40 93.22 93.36 93.29 

Duration 82.23 85.71 83.94 86.03 81.48 83.70 

Reason 63.90 63.58 63.74 73.88 59.02 65.62 

ADE 45.97 45.60 45.78 69.30 36.48 47.80 

Overall (micro) 92.23 91.60 91.91 94.56 90.85 92.67 

Overall (macro) 91.70 90.62 91.03 94.36 89.89 91.96 

 

 

The performance increased for all entity types when embedding layer weights were initialised 

with vectors from MIMIC-III pre-trained word2vec embeddings. For the word-only model, the 

overall micro-averaged F1-score was 91.91 (compared to 90.87) and the feature-augmented 

model yielded 92.67 (compared to 91.23). 

 

As noted in Table 4, the performance of the feature-augmented model was better for most of the 

classes compared to the word-only model, increasing both micro- and macro-averaged F1-scores 

by 0.76 and 0.93 respectively. Similarly, to randomly initialised models, for context-sensitive 

classes, such as Reason and ADE the F1-score increased by 1.88 and 2.02 respectively. However, 

for Frequency, Dosage and Duration, the performance dropped by less than 0.25.  
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In Figure 3 we presented two token-level confusion matrices for word-only and feature-

augmented models with pre-trained word embeddings.  We noticed that patterns in confusion 

between classes are similar to what we observed with randomly initialised models (Figure 2). 

 

 
Figure 3: Token-level confusion matrix for word-only and feature-augmented (using CLAMP and 

cTAKES semantic tags) BiLSTM-CRF with pre-trained word embeddings on MIMIC-III. 

As seen in Table 3 and 4, both word-only and feature-augmented architectures perform well 

achieving high precision, recall and F1-score (over 90%) for most of the classes except Duration, 

Reason and ADE.  As noted in Table 2, Duration was the least frequent class in the dataset with 

only 592 instances. This potentially could have a negative impact on the performance, therefore, 

given more data, the performance would likely increase. We also observed from Table 3 and 4 – 

similarly to previous studies (e.g. [32]) – that Reason and ADE underperform due to their 

similarity (both denote conditions, signs and symptoms) – see confusion matrices (Figure 2 and 

3). The difference is in the context in which they are mentioned, which can be challenging for a 

neural network to learn in particular as ADE was relatively infrequent. 

 

The augmentation of word embeddings with semantic features demonstrated a slight increase in 

overall micro-averaged F1-score for clinical entity extraction. However, there were small 

differences between scores achieved by top-performing systems submitted to the n2c2 entity 

extraction task. The feature-augmented BiLSTM-CRF model with pre-trained word embeddings 

was ranked 4th among 30 teams. The system ranked 1st achieved micro-averaged overall F1-score 

of 94.18% (1.51% more than described system), while the system ranked as 10th yielded 91.4% 

(1.27% less than our system).  

CONCLUSION 

In this paper, we have described a recurrent neural network architecture that can be used for 

monitoring drug administration and potential adverse drug events in discharge summaries. In 

order to capture semantic regularities in the clinical language, word embeddings were pre-trained 

on a large unstructured corpus of clinical texts from the MIMIC-III database. Such embeddings 

have a comprehensive vocabulary which includes various synonyms and spelling variations of 

words. Therefore, the entity recognition model that utilise them is much less prone to overfitting 

and would require less labelled data to reach state-of-the-art performance. We have also 
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examined the effects of augmenting word vectors with semantic features extracted using the 

CLAMP and cTAKES clinical pipelines. The evaluation results show that such augmentation 

generally improves the performance regardless of embedding initialisation method, especially for 

specific entity types such as ADE and Reason (for both lenient and strict scores was observed the 

same pattern of changes). 

We also have noticed a few inconsistencies in the annotated dataset that might have contributed 

to the errors. One of the common errors appears when our model is annotating entities that are 

missing in the gold standard dataset. For example, the "three days" in the phrase "adding DRUG 

cover for the first three days of treatment" is not annotated as Duration in the gold standard while 

it seems to be an appropriate duration. There are also a few examples where the entities are 

annotated in various ways in the gold standard. For example, the word “injection” has been 

annotated as a Form in some cases and as a Route in others. Inconsistencies may also appear in 

annotation spans (e.g., annotating a Dosage or Strength and Form separately in some case and 

jointly in others). 

Future work could involve the investigation of other types of features commonly used in clinical 

entity recognition, such as part-of-speech tags, regular expressions and external gazetteers. To 

address the issue related to confusion between ADE and Reason entities, ontologies containing 

information about common indications of drugs and their known adverse events could be utilised. 

Also, available historical patient-specific EHR metadata (i.e. data extracted from EHRs for a 

particular patient), such as medical conditions, previously prescribed drugs and experienced 

ADRs could add an extra layer of details that could boost the performance of entity recognition. 

Since 2018, a number of novel contextualised word representation models were published, such 

as ELMo [40], GPT-2 [41], BERT [42], ERNIE [43]. These models utilize deeper architectures to 

represent both context and knowledge about entities more efficiently. Fine-tuning these language 

models for a given domain (i.e. discharge summaries) and task (i.e. clinical entity extraction) has 

a potential to further improve the entity extraction performance. However, pre-training or fine-

tuning these models may be both resource and time intensive.  

Moving further from entity recognition, relationships between such entities can be extracted to 

associate drugs with the correct context. Relationship extraction can be reduced to a classification 

task and similar architectures based on feature-augmented recurrent neural network can be 

applied (i.e. representing a context of relation as a sequence of words between participating 

entities and then instead of labelling each word in a sequence, the output will be aggregated to 

predict a relation type for the whole sequence). The combination of entity recognition and 

relation extraction can enable a full-scale end-to-end drug monitoring system and further 

statistical analysis of extracted information, potentially leading to reducing the cost and 

improving the quality of monitoring drug administration and adverse drug events. 

ACKNOWLEDGEMENT 

We would like to thank the organisers of n2c2 for providing annotated corpus, guidelines and 

evaluation script. 

FUNDING STATEMENT 



 12 

This research received no specific grant from any funding agency in the public, commercial or 

not-for-profit sectors. 

COMPETING INTERESTS STATEMENT 

Maksim Belousov, Nikola Milosevic, Ghada Alfattni, Haifa Alrdahi, and Goran Nenadic have no 

conflicts of interest that are directly relevant to the content of this study 

CONTRIBUTION STATEMENT 

M.B., N.M., G.A. and H.A. contributed to the design and implementation of the research, to the 

analysis of the results and to the writing of the manuscript.  G.N. supervised the project.  

 

REFRENCES 

[1] Guthrie B, Makubate B, Hernandez-Santiago V, Dreischulte T. The rising tide of 

polypharmacy and drug-drug interactions: population database analysis 1995–2010. BMC 

medicine. 2015;13(1):74. 

[2] Iyer SV, Harpaz R, LePendu P, Bauer-Mehren A, Shah NH. Mining clinical text for 

signals of adverse drug-drug interactions. Journal of the American Medical Informatics 

Association. 2013;21(2):353-62. 

[3] Pirmohamed M, James S, Meakin S, Green C, Scott AK, Walley TJ, Farrar K, Park BK, 

Breckenridge AM. Adverse drug reactions as cause of admission to hospital: prospective analysis 

of 18 820 patients. Bmj. 2004;329(7456):15-9. 

[4] Organization WH. International drug monitoring: the role of the hospital, report of a 

WHO meeting [held in Geneva from 18 to 23 November 1968]. 1969. 

[5] Roberts K, Demner-Fushman D, Tonning JM, editors. Overview of the TAC 2017 

Adverse Reaction Extraction from Drug Labels Track. TAC; 2017. 

[6] Belousov M, Milosevic N, Dixon WG, Nenadic G, editors. Extracting adverse drug 

reactions and their context using sequence labelling ensembles in TAC2017. TAC; 2017. 

[7] Björne J, Kaewphan S, Salakoski T, editors. UTurku: drug named entity recognition and 

drug-drug interaction extraction using SVM classification and domain knowledge. Second Joint 

Conference on Lexical and Computational Semantics (* SEM), Volume 2: Proceedings of the 

Seventh International Workshop on Semantic Evaluation (SemEval 2013); 2013. 

[8] Korkontzelos I, Piliouras D, Dowsey AW, Ananiadou S. Boosting drug named entity 

recognition using an aggregate classifier. Artificial intelligence in medicine. 2015;65(2):145-53. 

[9] Gurulingappa H, Mateen‐Rajpu A, Toldo L. Extraction of potential adverse drug events 

from medical case reports. Journal of biomedical semantics. 2012;3(1):15. 

[10] Gurulingappa H, Rajput AM, Roberts A, Fluck J, Hofmann-Apitius M, Toldo L. 

Development of a benchmark corpus to support the automatic extraction of drug-related adverse 

effects from medical case reports. Journal of biomedical informatics. 2012;45(5):885-92. 

[11] Lardon J, Abdellaoui R, Bellet F, Asfari H, Souvignet J, Texier N, Jaulent M-C, Beyens 

M-N, Burgun A, Bousquet C. Adverse drug reaction identification and extraction in social media: 

a scoping review. Journal of medical Internet research. 2015;17(7). 

[12] Abdellaoui R, Schück S, Texier N, Burgun A. Filtering entities to optimize identification 

of adverse drug reaction from social media: how can the number of words between entities in the 

messages help? JMIR public health and surveillance. 2017;3(2). 



 13 

[13] Evans DA, Brownlow ND, Hersh WR, Campbell EM, editors. Automating concept 

identification in the electronic medical record: an experiment in extracting dosage information. 

Proceedings of the AMIA Annual Fall Symposium; 1996: American Medical Informatics 

Association. 

[14] Uzuner Ö, Solti I, Cadag E. Extracting medication information from clinical text. Journal 

of the American Medical Informatics Association. 2010;17(5):514-8. 

[15] Deléger L, Grouin C, Zweigenbaum P. Extracting medical information from narrative 

patient records: the case of medication-related information. Journal of the American Medical 

Informatics Association. 2010;17(5):555-8. 

[16] Xu H, Stenner SP, Doan S, Johnson KB, Waitman LR, Denny JC. MedEx: a medication 

information extraction system for clinical narratives. Journal of the American Medical 

Informatics Association. 2010;17(1):19-24. 

[17] Sohn S, Clark C, Halgrim SR, Murphy SP, Chute CG, Liu H. MedXN: an open source 

medication extraction and normalization tool for clinical text. Journal of the American Medical 

Informatics Association. 2014;21(5):858-65. 

[18] MacKinlay A, Verspoor K, editors. Information extraction from medication prescriptions 

within drug administration data. The 4th international workshop on health document text mining 

and information analysis with the focus of cross-language evaluation (LOUHI), 

Canberra/Sydney, Australia; 2013. 

[19] Karystianis G, Sheppard T, Dixon WG, Nenadic G. Modelling and extraction of 

variability in free-text medication prescriptions from an anonymised primary care electronic 

medical record research database. BMC medical informatics and decision making. 2015;16(1):18. 

[20] Wei C-H, Peng Y, Leaman R, Davis AP, Mattingly CJ, Li J, Wiegers TC, Lu Z. 

Assessing the state of the art in biomedical relation extraction: overview of the BioCreative V 

chemical-disease relation (CDR) task. Database. 2016;2016. 

[21] Xu J, Wu Y, Zhang Y, Wang J, Lee H-J, Xu H. CD-REST: a system for extracting 

chemical-induced disease relation in literature. Database. 2016;2016. 

[22] Finkel J, Dingare S, Manning CD, Nissim M, Alex B, Grover C. Exploring the 

boundaries: gene and protein identification in biomedical text. BMC bioinformatics. 

2005;6(1):S5. 

[23] Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word representations in 

vector space. arXiv preprint arXiv:13013781. 2013. 

[24] Pennington J, Socher R, Manning C, editors. Glove: Global vectors for word 

representation. Proceedings of the 2014 conference on empirical methods in natural language 

processing (EMNLP); 2014. 

[25] Habibi M, Weber L, Neves M, Wiegandt DL, Leser U. Deep learning with word 

embeddings improves biomedical named entity recognition. Bioinformatics. 2017;33(14):i37-i48. 

[26] Jagannatha AN, Yu H, editors. Structured prediction models for RNN based sequence 

labeling in clinical text. Proceedings of the Conference on Empirical Methods in Natural 

Language Processing Conference on Empirical Methods in Natural Language Processing; 2016: 

NIH Public Access. 

[27] Sahu SK, Anand A, Oruganty K, Gattu M. Relation extraction from clinical texts using 

domain invariant convolutional neural network. arXiv preprint arXiv:160609370. 2016. 

[28] Li F, Zhang M, Fu G, Ji D. A neural joint model for entity and relation extraction from 

biomedical text. BMC bioinformatics. 2017;18(1):198. 

[29] Lee JY, Dernoncourt F, Uzuner O, Szolovits P. Feature-augmented neural networks for 

patient note de-identification. arXiv preprint arXiv:161009704. 2016. 



 14 

[30] Jagannatha A, Liu F, Liu W, Yu H. Overview of the First Natural Language Processing 

Challenge for Extracting Medication, Indication, and Adverse Drug Events from Electronic 

Health Record Notes (MADE 1.0). Drug safety. 2018:1-13. 

[31] Jagannatha AN, Yu H, editors. Bidirectional RNN for medical event detection in 

electronic health records. Proceedings of the conference Association for Computational 

Linguistics North American Chapter Meeting; 2016: NIH Public Access. 

[32] Wunnava S, Qin X, Kakar T, Sen C, Rundensteiner EA, Kong X. Adverse drug event 

detection from electronic health records using hierarchical recurrent neural networks with dual-

level embedding. Drug safety. 2019:1-10. 

[33] Dandala B, Joopudi V, Devarakonda M. Adverse drug events detection in clinical notes 

by jointly modeling entities and relations using neural networks. Drug safety. 2019:1-12. 

[34] Savova GK, Masanz JJ, Ogren PV, Zheng J, Sohn S, Kipper-Schuler KC, Chute CG. 

Mayo clinical Text Analysis and Knowledge Extraction System (cTAKES): architecture, 

component evaluation and applications. Journal of the American Medical Informatics 

Association. 2010;17(5):507-13. 

[35] Soysal E, Wang J, Jiang M, Wu Y, Pakhomov S, Liu H, Xu H. CLAMP–a toolkit for 

efficiently building customized clinical natural language processing pipelines. Journal of the 

American Medical Informatics Association. 2017;25(3):331-6. 

[36] Johnson AE, Pollard TJ, Shen L, Li-wei HL, Feng M, Ghassemi M, Moody B, Szolovits 

P, Celi LA, Mark RG. MIMIC-III, a freely accessible critical care database. Scientific data. 

2016;3:160035. 

[37] Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J, editors. Distributed representations 

of words and phrases and their compositionality. Advances in neural information processing 

systems; 2013. 

[38] Glorot X, Bengio Y, editors. Understanding the difficulty of training deep feedforward 

neural networks. Proceedings of the thirteenth international conference on artificial intelligence 

and statistics; 2010. 

[39] Tieleman T, Hinton G. Lecture 6.5-rmsprop: Divide the gradient by a running average of 

its recent magnitude. COURSERA: Neural networks for machine learning. 2012;4(2):26-31. 

[40] Peters ME, Neumann M, Iyyer M, Gardner M, Clark C, Lee K, Zettlemoyer L. Deep 

contextualized word representations. arXiv preprint arXiv:180205365. 2018. 

[41] Radford A, Wu J, Child R, Luan D, Amodei D, Sutskever I. Language models are 

unsupervised multitask learners. OpenAI Blog. 2019;1:8. 

[42] Devlin J, Chang M-W, Lee K, Toutanova K. Bert: Pre-training of deep bidirectional 

transformers for language understanding. arXiv preprint arXiv:181004805. 2018. 

[43] Zhang Z, Han X, Liu Z, Jiang X, Sun M, Liu Q. ERNIE: Enhanced Language 

Representation with Informative Entities. arXiv preprint arXiv:190507129. 2019. 

 

 


	Abstract
	Objective
	Materials and Methods
	Results
	Conclusion

	Introduction
	Related work
	There have been several approaches proposed to extract drug names and drug attributes from free-text data. Several rule-based methods have been developed using semantic lexicons to extract drugs and related information from biomedical publications [10...

	Materials and Methods
	Task
	Dataset
	The dataset that was used for training and evaluation was provided as a part of the n2c2 shared-task (track 2). The train set contained 303 labelled discharge letters with nine drug-related entities described in Table 1, and the test set included 202 ...


	Neural network architectures for clinical entity recognition
	We propose two deep learning architectures for recognising drug-related named entities in clinical texts. Initially, text segments were separated into word (token) sequences and all class mentions were converted into label sequences using the IOB (ins...
	The word embedding layer transforms input raw words into vectors. The word representations were passed into the bidirectional recurrent neural network with long short-term memory units to learn important word-level features and transform them into the...
	In order to explore the effect of adding semantic features, we have created a variation of the word-only architecture described above. We augment the word representations with semantic feature representations extracted using the CLAMP and cTAKES clini...

	Experiments
	Evaluation methodology
	Result
	The results of the lenient evaluation of word-only and feature-augmented (with semantic features obtained from CLAMP and cTAKES) BiLSTM-CRF models with randomly initialised embeddings are presented in Table 3.
	The results of the lenient evaluation of word-only and feature-augmented BiLSTM-CRF models with pre-trained word embeddings on MIMIC-III are presented in Table 4.



