
This work is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License. 

This is a preprint version of the following published document:

Suárez-Paniagua, V., Rivera, R.M., Segura-Bedmar, I., 
Martínez, P. (2019). A two-stage deep learning 
approach for extracting entities and relationships from 
medical texts. Journal of Biomedical Informatics, 99, 
103285

DOI: 10.1016/j.jbi.2019.103285

© Elsevier, 2019

https://doi.org/10.1016/j.jbi.2019.103285
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/


A two-stage deep learning approach for extracting

entities and relationships from medical texts
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Abstract

This work presents a two-stage deep learning system for Named Entity Recog-
nition (NER) and Relation Extraction (RE) from medical texts. These tasks
are a crucial step to many natural language understanding applications in the
biomedical domain. Automatic medical coding of electronic medical records,
automated summarizing of patient records, automatic cohort identification
for clinical studies, text simplification of health documents for patients, early
detection of adverse drug reactions or automatic identification of risk factors
are only a few examples of the many possible opportunities that the text anal-
ysis can offer in the clinical domain. In this work, our efforts are primarily
directed towards the improvement of the pharmacovigilance process by the
automatic detection of drug-drug interactions (DDI) from texts. Moreover,
we deal with the semantic analysis of texts containing health information for
patients. Our two-stage approach is based on Deep Learning architectures.
Concretely, NER is performed combining a bidirectional Long Short-Term
Memory (Bi-LSTM) and a Conditional Random Field (CRF), while RE ap-
plies a Convolutional Neural Network (CNN). Since our approach uses very
few language resources, only the pre-trained word embeddings, and does not
exploit any domain resources (such as dictionaries or ontologies), this can be
easily expandable to support other languages and clinical applications that
require the exploitation of semantic information (concepts and relationships)
from texts.
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During the last years, the task of DDI extraction has received great atten-
tion by the BioNLP community. However, the problem has been traditionally
evaluated as two separate subtasks: drug name recognition and extraction of
DDIs. To the best of our knowledge, this is the first work that provides an
evaluation of the whole pipeline. Moreover, our system obtains state-of-the-
art results on the eHealth-KD challenge, which was part of the Workshop on
Semantic Analysis at SEPLN (TASS-2018).

Keywords:
Name Entity Recognition, Relation Extraction, Deep Learning, health
documents

1. Introduction

Natural Language Processing (NLP) and Information Extraction (IE)
can bring tremendous benefits in the biomedical and clinical domains. The
automated semantic analysis of information offers an effective way to acquire
knowledge from unstructured texts. Coding of electronic medical records,
summarization of patient records, text simplification of health documents
for patients, cohort identification for clinical studies, early identification of
adverse drug reactions or risk factors are only a few examples of the many
possible applications in the clinical domain that can benefit from applying
the NLP technology [1].

During the last decade, the NLP community have made tremendous ad-
vances in IE. Probably, biomedical and clinical domains have been ones of
the most explored fields due to the numerous shared tasks organized in the
last ten years. Starting from the pioneer BioCreative [2] until the most recent
NLP clinical Challenges (n2c2)1, all these tasks have contributed significantly
to advance the knowledge of NLP and IE methods for analysing medical
texts. The DDIExtraction shared tasks [3, 4, 5] were one of the first efforts
to provide a framework for the reliable and fair evaluation and comparison
of systems for the detection and classification of drug names and extraction
of drug-drug interactions (DDI), a particular type of adverse drug reaction,
from medical texts. Detecting this type of information is crucial to improve
the pharmacovigilance systems, whose primary mission is the prevention of
secondary effects, adverse effects or other problem related to drugs.

1https://n2c2.dbmi.hms.harvard.edu/
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The Pharmacovigilance field has also gained increasing attention within
the BioNLP community. The special issue titled Mining the Pharmacovig-
ilance Literature [6] collects some of the main works about using NLP for
pharmacovigilance. In the last years, several shared tasks have been orga-
nized to foster research on the automatic detection of information related to
adverse drug reactions (ADR). TAC 2017 ADR [7] proposed the evaluation
of systems for adverse drug reactions extraction from drug labels, while the
second Social Media Mining for Health Research and Applications Workshop
dealt with the detection of adverse drug reactions from tweets [8]. The inter-
est in this kind of shared tasks grows every year in the BioNLP community.
At the moment that we write this paper, August 2018, a track about ADR
and Medication Extraction in clinical narratives 2, organized by the Harvard
Medical School Department of Biomedical Informatics (DBMI) and the Vol-
genau School of Engineering of George Mason University, and a new edition
of TAC dedicated to DDI extraction are being conducted 3.

All these competitions have focused on English, while very few efforts
have been made to support the research activity for extracting relevant in-
formation from medical texts written in other languages than English. To
the best of our knowledge, eHealth-KD challenge [9], which is part of the
Workshop on Semantic Analysis at SEPLN (TASS-2018) 4, has been the
first initiative to promote the development of information extraction tech-
niques to automatically extract knowledge from eHealth documents written
in the Spanish language. The documents were taken from MedLinePlus 5,
an informative website directed to patients, which offers information about
health topics such as medicines and diseases. The shared task proposed the
identification and classification of keyphrases, as well as the detection of all
relevant semantic relationships between the entities recognized.

In this paper, we present a two-stage system for Named Entity Recogni-
tion (NER) and Relation Extraction (RE) from medical texts. These tasks
are a crucial step to many natural language understanding applications in the
clinical domain. Our efforts are primarily directed towards the improvement
of the pharmacovigilance process by the automatic detection of DDI from
texts. Moreover, we also deal with the semantic analysis of texts containing

2https://n2c2.dbmi.hms.harvard.edu/
3https://bionlp.nlm.nih.gov/tac2018druginteractions/
4http://www.sepln.org/workshops/tass/2018/
5https://medlineplus.gov/spanish/
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health information for patients. The proposed two-stage system involves the
entire process of classifying relations from raw data using Deep Learning ar-
chitectures. Concretely, NER is performed combining a bidirectional Long
Short-Term Memory (Bi-LSTM) and a Conditional Random Field (CRF)
and RE applies a Convolutional Neural Network (CNN). We provide exten-
sive experimentation of our approach on different datasets, the DDI corpus
[10] and the dataset used in the eHealth-KD challenge.

During the last decade, many NLP research groups have dedicated nu-
merous efforts to address the problem of DDI extraction, which is evaluated
as two separate subtasks: drug name recognition and relation extraction
task (extraction of DDIs). Unlike the previous works in DDI extraction, we
provide the results obtained by a full IE pipeline involving the two subtasks.
Moreover, our system obtains state-of-the-art results on the eHealth-KD chal-
lenge. Furthermore, this approach exploits very few language resources such
as pre-trained word embeddings and does not use any domain resources.
Therefore, our approach is easily expandable to support other languages and
clinical applications that require the exploitation of semantic information
from texts.

The organization of this paper is as follows. In the next section, we discuss
previous works for the NER and RE tasks, and a review of the IE systems.
Section 3 describes our two-stage pipeline. In Section 4, we present and
discuss the experimental results. Finally, conclusions and potential future
work items are identified in Section 5.

2. Related work

Automatic knowledge and information extraction are critical issues in
biomedical literature. Biomedical knowledge could be useful to improve
biomedical research, clinical medicine, biomedical applications and so forth.
Named Entity Recognition (NER) and Relation Extraction (RE) are the
most important subtasks in information extraction.

2.1. Biomedical Named Entity Recognition

Biomedical Named Entity Recognition (Bio-NER) is the task of detecting
biomedical entities mentions in medical texts and classifying them in prede-
fined categories. First approaches in Bio-NER used dictionary and rule-based
methods, but they suffer from significant limitations such as low recall, re-
quiring expert domain knowledge, continuous maintenance and low portabil-
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ity to other entity types, the inability of dealing with spelling errors, among
others. Machine learning (ML) based methods overcome these limitations
using mathematical methods and statistical techniques to learn from data
and generate predictions or decisions based on data. Conditional Random
Field (CRF) is one of the most successful algorithms for NER task. Some
of the most representative Bio-NER works based on CRF are ABNER [11],
BANNER [12], Chemspot [13], Gimli [14]. However, most works based on
machine learning methods focus their efforts in the manual design of hand-
crafted features, which are obtained from knowledge resources or by using
NLP tools.

It is important to emphasize that the performance of machine learning
algorithms highly depends on the selection and representation of the most
informative features for the task. Basic features used in NER are linguistic,
orthographic, morphological, context and lexical characteristics. Semantic
features from terminological resources or existing Bio-NER tools are also
widely included. Syntactic features always depend on the performance of
NLP tools such as tokenizers, chunkers, PoS taggers or syntactic parsers. The
proper selection of the most suitable features for NER always requires experts
with strong domain knowledge and are expensive to acquire. Moreover, the
feature set for a given NER task cannot be directly applied to other entity
types, domain or language.

Deep Learning methods for NER can automatically learn patterns captur-
ing relevant syntactic and semantic information from corpora. Later, these
patterns are used as features for the the identification and classification of
Named Entities (NE). This fact allows the independence of a specific lan-
guage or domain. Moreover, these methods do not require a high degree of
maintenance. Other advantages of deep learning methods for NER are:

i) they can make predictions about new terms not seen before,
ii) they have a higher tolerance to misspellings,
iii) they can deal with problems of ambiguity.
Recently, Recurrent Neural Networks (RNN) and Convolutional Neural

Networks (CNN) are commonly used in NER tasks achieving state-of-art
performance. Now, we describe some state-of-the-art systems for BioNER
based on Deep Learning methods.

One of the most used RNN model for NER is Long Short-Term Mem-
ory (LSTM) due to its property for storing (”remembering”) patterns over
arbitrary time intervals, and therefore suitable for process and predict time
series given sequences of labels and relate parts of a sequence. A hybrid bidi-
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rectional LSTM and CNN architecture was applied in [15, 16]. The model
proposed by [15] was evaluated on the CoNLL-2003 and on the OntoNotes
corpus obtaining an F1 of 91.62 % and 86.28 %, respectively. The system
described in by [16] was evaluated on the BioCreative II Gene Mention task
corpus (BC2) with an F1 of 80.58%. In addition, it was also evaluated on the
BioNLP 2009 event extraction (BioNLP09) task (87.06%) and on the NCBI
disease corpus (NCBI) (84.26 %.).

Lample et al. [17] compared a hybrid Bi-LSTM with a CRF layer and
a pure stack LSTM (S-LSTM) model. Both architectures relied on char-
acter and pre-trained word embeddings. The models were evaluated on
the CoNLL-2013 English corpus, CoNLL-2012 German corpus, CoNLL-2012
Dutch corpus, and CoNLL-2012 Spanish corpus. The Bi-LSTM model yielded
an F1 of 90.94%, 78.76%, 81.74% and 85.75% for each of the previous
datasets. The S-LSTM model provided an F1 of 90.33%, 75.66%, 79.88%
and 83.93% for each of the previous datasets.

Other more recent works [18, 19] used a hybrid model combining pre-
trained word embedding models, a bidirectional LSTM network with a CRF
network (Bi-LSTM-CRF). Unlike LSTM-CNN architecture, a Bi-LSTM net-
work is used to calculate character embeddings. The model proposed by [18]
was evaluated on the DDI corpus obtaining an F1 of 79.26%. The model
proposes by [19] was evaluated on the JNLPBA and BioCreative II Gene
Mention (GM) corpus providing an F1 of 75.87% and 89.46%, respectively.

Ma et al.[20] introduce a novel architecture combining the after men-
tioned architectures (LSTM-CNN-CRF) using a first CNN layer for extract-
ing character-level representations of words with character embeddings as
inputs. Character-level representation vector is concatenated with the word
embedding representation vector as the input for a second Bi-LSTM layer.
The output vectors of the second Bi-LSTM are the input for the CRF layer
for decode the best sequence of labels. The model was evaluated for two
different tasks: NER (CoNLL 2003 corpus) and PoS tagging (Penn Tree-
bank WSJ corpus), obtaining a f-score of 91.21% for NER task and a 97.55%
accuracy for POS tagging task.

The inputs of deep learning neural networks are numerical vectors that
represent the embeddings of the words, their character or their PoS, among
other lexical information. Several works [21, 22, 23] have shown that character-
level word embeddings can significantly improve learning for specific domains.
Moreover, they are useful for morphologically rich languages and can con-
tribute to the recognition of unknown terms.
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2.2. Biomedical Relation Extraction
We describe the most recent works for relation extraction in the biomed-

ical and clinical domain, with a particular focus on those based on Deep
Learning methods.

Most essential works on Relation Extraction in the last decade were based
on machine learning algorithms using a large number of hand-crafted fea-
tures. Mainly, the top system of the DDIExtraction shared task [24] was a
linear SVM classifier using a hybrid kernel with features based on syntactic
tags, dependency graph, negation cue, bag-of-words of the entities and sur-
rounding words around the target entities in order to generate a relation class
prediction. Building these systems requires high domain knowledge and lin-
guistic analysis in order to choose the most suitable feature set for the task.
This method obtains a 65.1% in F1 for the classification of relationships be-
tween drugs. Deep learning techniques solve this requirement because they
learn the relevant features for each instance according to its classification.

The system described in [25] was the first work using a CNN for the
classification of DDI sentences. This system uses a model of word embed-
dings trained from a collection from MEDLINE documents. It created a
vector representation for each sentence by extracting the relevant informa-
tion with different filters in order to classify them into predefined categories
outperforming the previous works. It consists of four layers: look-up table
layer, convolutional layer, max-pooling layer, and a Softmax layer. They
obtained 69.75% in F1 using position embedding and negative instance fil-
tering to discard some sentences with non-relationship target entities.Also
for the DDIExtraction task, [26] proposed adding multiple word embeddings
from different sources like PubMed, PMC, MedLine and Wikipedia as word
embeddings of a CNN (MCNN) to improve the results until 70.21% of F1.
[27] built parallel CNNs that take the input from the dependency parse tree
and the sequential order of the sentences (CNN+DCNN) achieving an F1 of
70.81%. In [28], a CNN model represents the syntactic information, called
SCNN. Concretely, the word embeddings are extended by including the po-
sition and the PoS of each word. The last layer combines the convolutional
features and traditional features (such as the drug names, their surrounding
words, the dependency types, and the biomedical semantic types) forming
the input for the Softmax function, which is the classifier. The work reaches
an F1 of 68.6% using two sequential models, for detection and classification
of drug relationships for the DDIExtraction task. The work described in [29]
applied a recurrent network with Bidirectional Long Short Term Memory
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Network and obtains and F1 of 71.48% for the DDI classification combining
the max-pooling and the attentive pooling (joint AB-LSTM). The authors of
obtained the state-of-the-art for this task using 10 convolutional layers ap-
plied sub-sequentially [30] taking multiple channels of the word embeddings.
The system reaches 86,27% in F1, which is highly superior to the previous
systems.

Recently, the International Workshop on Semantic Evaluation (SemEval)
organized some evaluations of computational semantic analysis systems for
Relation Extraction. Concretely, the goal of SemEval 2017 Task 10: Scien-
ceIE is the automatic extraction of keyphrases and their relationships from
scientific publications [31]. The top system for the relation extraction sub-
task was a CNN with max-pooling that used the word, position, type of
entity and POS tags embeddings of the words between the target entities
in the sentence in order to generate the class prediction [32] and obtaining
63.8% in F1. Additionally, SemEval-2018 task 7 [? ] is focused on the
extraction of semantic relationships in scientific papers and defined two sub-
tasks for detection and classification. The architecture of [33] ranked first in
the classification subtasks using an ensemble of CNN and LSTM with the
word, POS and relative position embeddings of the words in the sentence
which achieves 49.3% in F1. For the eHealth-KD challenge, the top system
[34] implemented a CNN using the embeddings of the words, their POS tags
and relative distances to the target entities resulting in 44.8% in F1 for the
relation extraction task. The system, which ranked second [35], used a CNN
with the word embedding and position embedding of each word obtaining
44.44% in F1 for the relation classification task of the eHealth-KD challenge.

2.3. A two-stage Information Extraction systems from medical texts

Concerning the research that proposes pipelines that combine NER and
RE processes, most works are focused on protein-protein interaction (PPI)
extraction. The work reported in [36] describes a three steps method for PPI
extraction. The first step uses a multilabel CNN to recognize protein entities,
then, a Syntax CNN to extract relational protein pairs and finally, the PPI
triples (protein, interaction word, protein) are obtained using a dictionary
method complemented by a syntactic pattern method to cope with the missed
interaction words. This approach achieves an F1 of 40.18% on an extension
of the Aimed corpus [37] annotated with proteins, binary interaction labels
and interaction words. This system is not as a complete pipeline because the
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annotations from the corpus are used to filter the results for the following
phase.

Bunescu et al. [37] presents an evaluation of different information ex-
traction methods for identifying human protein names in Medline abstracts
and then recognize PPI using a set of 1000 manually-annotated Medline ab-
stracts. The authors test Dictionary-based, SVM, k-NN, among others, are
for the NER task reporting a 70% precision and about 90% recall in the best
case using a MaxEnt (Maximum Entropy learning) method that exploits a
generalized protein-name dictionary. Thus, different relation extractors are
evaluated with this method. The ELCS (longest common subsequences)
method taking as input the result of the MaxEnt NER method achieves near
75% recall and approximately 25% precision. In general, machine learning
methods outperform methods based on hand-written rules.

The Turku Event Extraction System (TEES) [38] is a pipeline system
based on a graph-generation approach that detects events via a set of features
built via dependency parsing. It reports an F1 of 60% for the complete
pipeline detecting entities and relations on GENIA corpus used in BioNLP
Shared Task 2013. This system also participated at DDIExtraction 2013 task
in the SemEval conference, but the results are presented on the two steps
indepently.

More recently, another approach working on domains other than PPI
is the end-to-end LSTM recurrent neural model that captures both word
sequence and dependency tree structures [39]. The novelty of this system
concerning the previous ones is that entities and relations are jointly mod-
eled in neural architectures by richer linguistic structures. This system has
been used in SemEval-2017 ScienceIE task obtaining an F1 of 38% with a
pipeline including entity segmentation+entity classification+relation classi-
fication. Nevertheless, the winner in the ScienceIE 2017 task with an F1
of 43% is a system based on [40] that incorporates character-level encod-
ing and gazetteers obtaining from external knowledge-based sources (such as
Freebase) among other extensions [39].

Finally, a hybrid approach based on Bi-LSTM and CRF [41] was proposed
for the TASS-2018 Task 3. eHealth Knowledge Discovery task for NER and
RE on Spanish eHealth documents inspired in the SemEval-2017 task. The
system obtained an F1 of 46.4% in the complete pipeline including entity
detection+entity classification+relation classification. However, the system
only addresses entity detection and classification subtasks.

Although deep learning based methods for NER and RE achieve satisfac-
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tory results, there is still much room for improvement. On the other hand,
full IE systems are scarce, and their results are quite low. That is why in
this work we propose a two-stage system based on deep learning methods us-
ing different semantic, syntactic, morphological and orthographic embedding
features.

3. Methods

This section presents the two modules that compose our two-stage IE
system (see Figure 1). Our system deals with three different subtasks: A)
named entity recognition, B) entity classification and C) relation extraction.
Therefore, there are three possible evaluation scenarios:

• Scenario 1: Only plain text is given (subtasks A, B, C).

• Scenario 2: Plain text with manually annotated entity boundaries are
given (subtasks B, C).

• Scenario 3: Plain text with manually annotated entities and their types
are given (subtask C).

Our approaches for NER and RE, which are described below, are purely
based on deep learning.

3.1. Named Entity Recognition

In this section, we describe the module for NER. Our approach is based
on a deep network with two Bi-LSTM layers and a last layer for CRF (see
Figure 2). The input for the first Bi-LSTM layer are character embeddings.
In the second layer, the output of the first layer is concatenated with word
embeddings and sense-disambiguate embeddings. Finally, the last layer uses
a CRF to obtain the most suitable labels for each token.

Firstly, the system preprocesses the texts in order to create the input for
training the neural network. Figure 3 summarizes all preprocessing steps.
First, sentences are split and tokenized by using Spacy [42], an open source
library for advanced natural language processing with support for 26 lan-
guages. BRAT format has become a de facto standard for corpora annota-
tion. Currently, most NER corpora are released using it. BRAT format is a
standoff format where each line represents an annotation, such as an entity,
a relation or an event. For example, an entity annotation is represented by
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Figure 1: Pipeline of the proposed two-stage system.

a unique ID and defined by its type (for example, Concept, Action, Drug,
Brand, Group or Drug-n). This annotation format includes the start and
end offsets of the entity mentionand the text of its mention. Additionally,
a single TAB character separates the information in each line. We annotate
each token in a sententence according the information from the BRAT for-
mat using the BMEWO-V extended tag encoding, which allows us to capture
information about the sequence of tokens in the sentence.

The BMEWO-V encoding distinguishes the B tag to indicate the start
of an entity, the M tag to indicate the continuity of an entity, the E tag to
indicate the end of an entity, the W tag for indicate a single entity, and the O
tag to represent other tokens that do not belong to any entity. The special tag
V represents the overlapping entities. BMEWO-V is similar to other previous
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Figure 2: Overview of NER architecture.

Figure 3: Preprocessing steps required for our NER model.

encodings [43], but it also allows the representation of discontinuous entities,
overlapping or nested entities. As a result, we obtain our sentences annotated
in CoNLL-2003 format.

Now, we describe the architecture of our deep network for NER task.
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3.1.1. Architecture of our deep neural network for NER

Recurrent neural networks (RNN) are powerful algorithms and useful for
sequential data processing, achieving ground-breaking results in many NLP
tasks (e.g., machine translation, NER). Long-Short Term Memory (LSTM)
[44] are RNNs variant aimed to deal with gradient vanishing problem. Bidi-
rectional LSTMs (BiLSTM) [45, 46] are capable of learning long-term depen-
dencies and maintaining contextual features from both past and future states
while avoiding the vanishing/exploding gradients problem [47, 48]. They con-
sist of two separate bidirectional hidden layers that feed forward to the same
output layer.

First Bi-LSTM layer using character embeddings

Although word embedding models capture syntactic and semantic infor-
mation, they do not exploit other linguistic information such as morpholog-
ical information, orthographic transcription or part-of-speech (POS) tags.
According to [23], the use of character embeddings improves learning for
specific domains and is useful for morphologically rich languages. For this
reason, we decided to consider the character embedding representation in our
system to obtain morphological and orthographic information from tokens.
We used a 25 features vector to represent each character. In this way, tokens
in sentences are represented by their corresponding character embeddings,
which are the input for our Bi-LSTM network.

Second Bi-LSTM layer using word and Sense embeddings

The output of the first layer is concatenated with the word embeddings
and with the sense-disambiguation embeddings of the tokens in a given input
sentence. This concatenation of features is the input for the second Bi-LSTM
layer.

Currently, there are many pre-trained word embedding models freely
available for the NLP community to use. These models are trained on ex-
tensive collections of texts such as Google News, MedLine or Wikipedia. In
this work, we exploit two different word embeddings models (see Table 1):
i) Spanish Billion Words [49], which was trained on different text corpora
written in Spanish (such as Ancora Corpus [50] and Wikipedia) , and ii) a
pre-trained word embedding GloVe model [51] trained on 2014 Wikipedia
and Gigaword 5 edition corpus written in English.

One of the most critical limitations of word embeddings models is that a
single word vector represents all possible meanings for a word. In other words,
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word embedding models can not distinguish polysemous words correctly. For
this reason, in addition to the two word embeddings models, we also exploit a
sense embedding model trained with the Sense2Vec tool [52], which provides
multiple word vectors for each word based on the meaning of the word. The
meaning of the word in this model is defined by the lexical class or Part-
of-Speech (PoS) of a word, its context and its relation to the adjacent and
related words within a phrase, sentence or paragraph. Sense2Vec analyses
the context of a word and then assigns its more adequate vector. The sense
embedding model used in this work [52] (see Table 1) was trained using a
collection of comments published on Reddit (corresponding to the year 2015),
which mostly consists of texts written in English. Unfortunately, there is no
a model of pre-trained sense embeddings for Spanish.

Model Language Vocabulary Algorithm
Spanish Billion Words [49] Spanish 1 million Word2Vec
Glove.6B [51] English 2 million Glove
Reddit [52] English 1 million Sense2Vec

Table 1: Pre-trained models used in our work.

The goal of the second layer is to obtain a sequence of probabilities cor-
responding to each label of the BMEWO-V encoding format. In this way,
for each input token, this layer returns six probabilities (one for each tag in
BMEWO-V). The final tag should be with the highest probability.

Last layer based on Conditional Random Fields (CRF)

To improve the accuracy of predictions, we also used a Conditional Ran-
dom Field (CRF) [53] model, which takes as input the label probability
for each independent token from the previous layer and obtains the most
probable sequence of predicted labels based in the correlations between la-
bels and their context. Handling independent labels for each word shows
sequence restrictions. For example, the ”I-DRUG” tag cannot appear be-
fore a ”B-DRUG” tag or after a ”B-DRUG” tag. CRF is used jointly with
Bi-LSTMs to avoid the label independence assumptions of LSTMs and to
impose sequence labeling constraints as show in [17]. For a sequence CRF
model interactions between two successive labels are considered, training and
decoding can be solved efficiently by adopting the Viterbi algorithm.

Finally, once tokens have been annotated with their corresponding labels
in the BMEWO-V encoding format, the entity mentions are transformed into
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the BRAT format. V tags, which identify nested or overlapping entities, are
generated as new annotations within the scope of other mentions.

3.2. Relation Extraction

This subsection describes the approach for the relation extraction task.
Figure 4 shows the system overview used for this subtask.
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Figure 4: CNN model for relation extraction. English translation: ’An asthma attack
occurs when symptoms get worse.’.

As the first step in the process, we must generate all possible relation
instances. An instance for a relationship consists on a pair of annotated enti-
ties that happen in the same sentence. If the relationship is symmetrical, we
must consider pairs as unordered pairs, while if the relationship is asymmet-
rical, we must consider ordered pairs. Figure 5 shows a sentence taken from
the eHealth-KD dataset (described in Section 4), annotated with several en-
tities and their relationships. In this example, the relationships Target and
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Subject are asymmetrical. Table 2 shows all possible relation instances and
their relation type generated from this sentence. We also consider a None
type for representing the non-relationship between the entities.

Figure 5: Example of sentence taken from the eHealth-KD dataset. English translation:
’An asthma attack occurs when symptoms get worse.’.

Relation instances Relation type

(ataque de asma → produce) None
(ataque de asma ← produce) target
(ataque de asma → śıntomas) None
(ataque de asma ← śıntomas) None
(ataque de asma → empeoran) None
(ataque de asma ← empeoran) None
(asma → produce) None
(asma ← produce) None
(asma → śıntomas) None
(asma ← śıntomas) None
(asma → empeoran) None
(asma ← empeoran) None
(produce → śıntomas) None
(produce ← śıntomas) None
(produce → empeoran) subject
(produce ← empeoran) None
(śıntomas → empeoran) None
(śıntomas ← empeoran) target

Table 2: Possible relation instances for the sentence shown in Figure5.

After that, the systems tokenizes and cleans the generated instances fol-
lowing a similar approach as described in [54], converting the numbers to a
common name (NUMBER), words to lower-case, replacing Spanish accents
to Unicode, for example ñ to n, and separating special characters with white
spaces by regular expressions.
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Furthermore, the two target entities of each instance are replaced by the
labels ”entity1 ” and ”entity2 ”, while the remaining entities by ”entity0 ”.
This method is known as entity blinding, and supports the generalization of
the model. For instance, the sentence for the first relation instance (ataque
de asma → produce) should be transformed to ’un entity1 se entity2
cuando los entity0 entity0 .’

Medical texts contain some nested entities, which are entities that overlap
other entities. For this reason, we create relation instances for each entity
mention contained in a nested entity. Moreover, we remove all possible rela-
tion instances that involve a relationship between entities in the same nested
entity. To do this, we consider each sentence as a graph where the vertices
are the entities and the edges are the non-overlapped entities with itself.
This graph allows us to obtain all the possible paths without overlapping
recursively.

Some entities can contain gaps in their mentions. For example, the
noun phrase ”ganglionic or peripheral adrenergic blocking drugs” contains
two different drug entities: ganglionic adrenergic blocking drugs and periph-
eral adrenergic blocking drugs. The first one is a discontinuous entity because
it contains a gap in its mention. In these cases, we remove the overlapping
part of the entities. In the previous example, we discard the words adrener-
gic blocking drugs and keep the ganglionic and peripheral as the interacting
drugs.

3.2.1. Architecture of our deep network for RE

Below, we describe each of the layers in our CNN model relation extrac-
tion task. Firstly, a lookup operation transforms each word in the input
sentence into a real value vector according to its embeddings. Then a Con-
volutional layer followed by a max-pooling operation represents into a vector
the relationship of the instance. Finally, a classification layer creates a pre-
diction for a predefined class.

Word table layer

After the pre-processing phase, we create an input matrix suitable for
the CNN architecture, which represents all the training instances. We need
that all sentences have the same length. We determined the length n as the
longest sentence, and the sentences are extended with an auxiliary token ”0 ”
if their lengths are shorter than this threshold .
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Moreover, each word has to be represented by a vector. To do this, we
randomly initialized a vector for each different word. Thus, each word is
replaced by its word embedding vector: We ∈ R|V |×me where V is the vocab-
ulary size and me is the word embedding dimension. Finally, we obtained
a vector x = [x1;x2; ...;xn] for each relation instance where each word of
the sentence is represented by its corresponding word vector from the word
embedding matrix. Furthermore, we extract the types of the two interacting
entities from the Name Entity Classification task and converting them to a
real value vector with a type embedding matrix WType ∈ R|T |×mt .

We denote p1 and p2 as the positions in the sentence of the two tar-
get entities that make up the relation instance. The following step involves
calculating the relative position of each word to the two target entities as
i− p1 and i− p2, where i is the word position in the sentence (padded word
included), in the same way as [55]. In order to avoid negative values, we
transformed the range (−n + 1, n − 1) to the range (1, 2n − 1). Then, we
mapped these distances into a real value vector using two position embed-
dings Wd1 ∈ R(2n−1)×md and Wd2 ∈ R(2n−1)×md . Finally, we created an input
matrix X ∈ Rn×(me+2md) which is represented by the concatenation of the
word embeddings, the type embedding and the two position embeddings for
each word in the instance.

Convolutional layer

Once we obtain the input matrix, we applied a filter matrix f = [f1; f2; ...; fw] ∈
Rw×(me+2md) to a context window of size w in the convolutional layer to
create higher level features. For each filter, we obtained a score sequence
s = [s1; s2; ...; sn−w+1] ∈ R(n−w+1)×1 for the whole sentence as

si = g(
w∑

j=1

fjx
T
i+j−1 + b)

where b is a bias term and g is a non-linear function (such as tangent or
sigmoid). Note that in Figure 4, we represent the total number of filters,
denoted by m, with the same size w in a matrix S ∈ R(n−w+1)×m. However,
the same process can be applied to filters with different sizes by creating
additional matrices that would be concatenated in the following layer.

Pooling layer

In this layer, the goal is to extract the most relevant features of each filter
using an aggregating function. We use the max function, which produces a
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single value in each filter as zf = max{s} = max{s1; s2; ...; sn−w+1}. Thus,
we created a vector z = [z1, z2, ..., zm], whose dimension is the total number of
filters m representing the relation instance. If there are filters with different
sizes, their output values should be concatenated in this layer.

Softmax layer

Before performing the classification, we perform a dropout to prevent
overfitting. We obtain a reduced vector zd, randomly setting the elements
of z to zero with a probability p following a Bernoulli distribution. After
that, we feed this vector into a fully connected Softmax layer with weights
Ws ∈ Rm×k to compute the output prediction values for the classification as
o = zdWs + d where d is a bias term and k is the number of classes in the
dataset. At test time, the vector z of a new instance is directly classified by
the Softmax layer without a dropout.

Learning

For the training phase, we need to learn the CNN parameter set θ =
(We, Wd1, Wd2, Ws, d, Fm, b), where Fm are all of the m filters f. For this
purpose, we used the conditional probability of a relation r obtained by the
Softmax operation as

p(r|x, θ) =
exp(or)∑k
l=1 exp(ol)

to minimize the cross entropy function for all instances (xi,yi) in the training
set T as follows

J(θ) =
T∑
i=1

log p(yi|xi, θ)

In addition, we minimize the objective function by using stochastic gra-
dient descent over shuffled mini-batches and the Adam update rule [56] to
learn the parameters.

3.3. Datasets

In this section, we describe the two biomedical datasets with different
languages, English and Spanish, used for the experiments.
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3.3.1. The DDI corpus

The DDI corpus [57] is a valuable annotated corpus which provides gold
standard data for training and evaluating machine-learning algorithms to
extract pharmacological substances and DDIs from texts. This corpus mea-
sured the performance of the systems in the two editions of DDIExtraction
[3, 4]. The DDI corpus contains 233 selected abstracts about DDIs from Med-
Line as well as 792 documents describing DDIs from the DrugBank database
[58]. The corpus contains four types of pharmacological substances (drug,
group, brand, and non-human drug) and four different types of drug inter-
actions (mechanism, effect, advice and int). [57] describes these types with
more detail. The corpus was annotated manually with a total of 18,502 phar-
macological substances and 5028 DDIs. Tables 3 and 4 show some statistics
of the DDI corpus.

Entity type Training Test

Drug 11,646 351
Brand 1,866 59
Group 4,225 155
Non-human drug (Drug-n) 765 121
Total 18,502 686

Table 3: Entity types in the DDI corpus.

DDI types Training Test

Mechanism 1,319 302
Effect 1,687 360
Advice 826 221
Int 188 96
Total 4,020 979

Table 4: Relation (DDI) types in the DDI corpus.

3.3.2. The eHealth-KD challenge dataset

The eHealth-KD challenge [9], which is part of the Workshop on Seman-
tic Analysis at SEPLN (TASS-2018), provided to participating teams an

20



annotated collection of MedlinePlus documents. MedlinePlus 6 is an infor-
mative website directed to patients, which offers information about health
topics such as medicines and diseases. The documents were annotated with
keyphrases (entities) and semantic relations. Two different entity types are
proposed to classify the keyphrases: Concept and Action. Likewise, six types
of relationships are defined: is-a, part-of, property-of and same-as, which are
relationships between concepts, and subject and target, which can represent
relationships between actions and concepts or between actions themselves.
Tables 5 and 6 show the statistics for the entity and relation types in the
eHealth-KD dataset, respectively.

The dataset was split into three subsets: training set (559 sentences),
validation set (285 sentences) and test set (300 sentences). At the same
time, the test set has three different subsets for measuring the performance
in each scenario. A detailed description of this dataset can be found in [59].

Scenario 1 Scenario 2 Scenario 3
Entity type Train Validation Test Test Test

Concept 2,427 849 432 439 434
Action 1,525 434 163 154 183
Total 3,952 1,283 595 593 617

Table 5: Entity types in the eHealth-KD challenge datasets.

Scenario 1 Scenario 2 Scenario 3
Relation type Train Validation Test Test Test

is-a 434 370 74 92 69
part-of 149 145 31 33 32
property-of 399 244 58 58 62
same-as 30 13 2 1 5
subject 693 339 147 117 137
target 991 504 180 195 212
Total 2,696 1,615 492 496 517

Table 6: Relation types in the eHealth-KD challenge datasets.

6https://medlineplus.gov/spanish/
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4. Results and Discussion

In this section, we present the experiment results provided by each module
of our information extraction system independently. Finally, we discuss the
results provided by the full pipeline, which takes each module takes as input
the output of the previous subsystems. We use the standard evaluation
metrics of entity and relation extraction: precision (P), recall (R) and F1.

4.1. NER results

We evaluate our NER model in two different tasks:
i) the detection and classification of pharmacological substances in the

DDI corpus,
ii) the detection and classification of keyphrases in the eHealth-KD chal-

lenge dataset.
The parameters of the sets and the hyper parameters for our Bi-LSTM

CRF model are summarized in Table 7.

Parameter DDI eHealth-KD

Sense-disambiguation embedding dimension 100 128
Word embeddings dimension 100 300
Character embedding dimension 50 50
Hidden layers dimension (for each LSTM) 100 100
Learning method SGD SGD
Dropout rate 0.5 0.5
Learning rate 0.005 0.005
Epochs 100 100

Table 7: Parameters for Bi-LSTM CRF model.

Table 9 shows the results of our model for the entity detection task. The
results for the classification task are shown in Tables 11 and 10.

Dataset P R F1

DDI 87.24% 87.15% 87.19%
eHealth-KD 86.2% 88.2% 87.2%

Table 8: Results for the entity detection task.

Comparing to previous works in drug name detection [4] on the DDI
corpus, our system also achieves, only 0.6% worse than the top system [65],
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Dataset P R F1

Our system 78.80% 81.80% 80.30%
Zeng [18] 83.60% 77.80% 79.20%
LIU [60] 84.70% 72.8% 78.3%
WBI [61] 73.40% 69.80% 71.50%
LASIGE [62] 69.60% 62.10% 65.60%
UTurku [63] 73.70% 57.90% 64.80%
UC3M [64] 51.70% 54.20% 52.90%

Table 9: Comparison of our NER system with other systems for DrugNER task.

which describes a rich linguistic and semantic feature set to train a CRF
classifier. An essential advantage of our approach over this previous work is
that our system does not exploit any domain-specific features, and thereby,
it could be easily adapted to any named entity category.

Besides, our approach achieves an F1 of 87.2% for the entity detection
task on the eHealth-KD dataset, which was the best result for entity detection
in the eHealth-KD challenge.

Moreover, the NER module provides better results on the eHealth-KD
dataset than on the DDI corpus. A possible reason may be that the DDI
corpus contains several discontinuous named entities which are hard to dis-
ambiguate with the V tag, while entities in the eHealth-KD dataset do not
contain any gap in their mentions.

Regarding the results for the entity classification task on the DDI cor-
pus, the Group type obtains the best performance, followed by the Drug and
Brand types. Our F1 for the group type (86.06%) is almost 9% higher than
that of the top system in DDIExtraction 2013 [4, 65]. Groups of drugs are
usually named by multi-word expressions, such as ”Nondepolarizing Neu-
romuscular Blocker” or ”HMG CoA Reductase Inhibitor”. Therefore, our
deep neural network based on character, word and sense embeddings seems
to obtain better results in the classification of multi-word expressions than
the rich linguistic and semantic feature set used by the CRF model in [65].

Our results are similar to those obtained for the Drug type. However, a
previous work [63], which exploits information from terminological resources
such as DrugBank or MetaMap obtains better results for the Brand type
(representing trademarked drugs) than our approach. As in previous works,
our approach obtains a deficient performance for non-human drug entities.
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This is caused by the small number of instances in the training dataset.
Our system obtained the best performance for the entity classification

task in the eHealth-KD challenge, with an accuracy of 95.9%. Table 11
shows the results for each entity type. We can observe that the Concept
class is easier to classify than the Action class because there is an unbalance
of annotations between them. Concretely, the instances of the Action type
being almost half of the Concept type. On the other hand, there is ambiguity
in Action-type entities that can sometimes represent concepts. For example
in the sentence ’Los empleados dedicados al cuidado de la salud están ex-
puestos a muchos riesgos laborales.’ (’Employees dedicated to health care
are exposed to many occupational hazards.’) the entity ’cuidado’ is of the
Action type but in the sentence ’Practicar deportes puede ser divertido, pero
si no se tiene cuidado también puede ser peligroso.’ (’Playing sports can be
fun, but if you’re not careful, it can also be dangerous.’) the entity ’cuidado’
is of the Concept type. Tables 12 and 13 compares our results with the rest
of participating systems for subtasks A and B for the eHealth-KD challenge.

Drug type P R F1

Drug 80.73% 89.22% 84.76%
Brand 75.00% 90.00% 81.82%
Group 84.06% 94.31% 88.89%
Non-human drug 58.59% 35.21% 43.99%
Overall 76.11% 78.10% 76.21%

Table 10: Entity classification results on the DDI corpus.

Entity Type P R F1

Concept 85.24% 86.77% 86.00%
Action 80.00% 83.22% 81.58%
Overall 84% 86% 85%

Table 11: Results for the entity classification on the eHealth-KD dataset.

4.2. RE results

Table 14 summarizes the parameters for our CNN model where the hy-
perparameter of the network Me, Md, Mt, w and m were fine-tuning with a
grid search on each dataset.
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Entity Type P R F1
Our system 86.20% 88.20% 87.20%
SINAI [66] 77.00% 81.00% 79.00%
UPF UPC [67] 86.00% 75.00% 80.00%
LABDA [35] 31.00% 32.00% 32.00%

Table 12: Results of the participaiting systems in the eHealth-KD challenge subtask A
(Entity detection).

System Accuracy Correct Incorrect
Our system 95.90% 496 21
SINAI [66] 92.10% 546 47
UPF UPC [67] 95.40% 418 20
TALP [34] 93.10% 552 41
LABDA [35] 59.40% 218 149

Table 13: Results of the participaiting systems in the eHealth-KD challenge subtask B
(Entity classification).

Parameter DDI eHealth-KD

Maximal length in the dataset, n 128 40
Word embeddings dimension, Me 300 300
Position embeddings dimension, Md 5 10
Type embeddings dimension, Mt 10 10
Filter window sizes, w 2, 4, 6 3, 4, 5
Filters for each window size, m 200 200
Dropout rate, p 0.5 0.5
Non-linear function, g ReLU ReLU
l2 -regularization 3 0.1
Mini-batch size 50 50
Learning rate 0.001 0.001

Table 14: Parameters for CNN model.

In the eHealth-KD dataset, some sentences describe relationships between
nested entities, that is, between an entity and its overlapped entity. We are
not able to blind all possible entity mentions forming a nested entity. For
this reason, we do not consider these relation instances. Moreover, there are
relationships with more than one type. In this case, we only consider the
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first type because our system can not cope with a multi-class problem.
As can be seen in Tables 15 and 16, the relation extraction task seems

to be a more complex task than the previous tasks. These tables show the
results on the Scenario 3 or RE subtask, that is when the input for our system
are the annotated entities and their corresponding types.

DDI type P R F1

mechanism 74.23% 63.91% 68.68%
effect 65.57% 66.67% 66.12%
advise 75.12% 68.33% 71.56%
int 86.11% 32.29% 46.97%
Overall 71.26% 62.82% 66.78%

Table 15: Relation classification results on the DDI corpus.

Relation type P R F1

is-a 44% 15.94% 23.4%
part-of 37.5% 9.38% 15%
property-of 57.45% 43.55% 49.54%
same-as 50% 20% 28.57%
subject 57.69% 43.8% 49.79%
target 67.58% 69.81% 68.68%
Overall 61.73% 48.36% 54.23%

Table 16: Results for the relation classification on the eHealth-KD dataset.

Tables 17 and 18 compare the results of our approach with other pre-
vious systems evaluated on the DDI corpus and the eHealth-KD dataset,
respectively. As is shown in Table 17, our approach provides modest results
compared with other previous systems for DDI extraction. This may be due
to our architecture is simpler than those used in those works. On the other
hand, our method ranks first in the eHealth-KD Challenge overcoming the
winner system in the relation Extraction task.

Focusing on the DDI corpus, our RE module obtains the best performance
for the advice type. The entities in this category are typically described by
very similar patterns such as ”DRUG should not be used in combination
with DRUG” or ”Caution should be observed when DRUG is administered
with DRUG”, which can be quickly learned by the model because they are
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Systems P R F1
Our 71.26% 62.82% 66.78%
Multichannel + 10 CNN layers [30] 86.18% 87.2% 86.27%
Joint AB-LSTM [29] 73.41% 69.66% 71.48%
CNN+DCNN [27] 78.24% 64.66% 70.81%
MCCNN [26] 75.99% 65.25% 70.21%
CNN with MEDLINE word embedding [25] 75.72% 64.66% 69.75%
SCNN [28] 72.5% 65.1% 68.6%
FBK-irst [24] 64.6% 65.6% 65.1%

Table 17: Results of the relation classification systems on the DDI corpus.

Systems P R F1
Our system 61.73% 48.36% 54.23%
TALP [34] - - 44.8%
LaBDA [35] 58.12% 35.98% 44.44%

Table 18: Results of the relation classification systems on the eHealth-KD dataset.

prevalent in the DDI corpus. The mechanism type is the second one with the
best performance (68.68%), even though its number of instances is lower than
the effect type (see Table 4). Finally, the int type is the most challenging
type to classify because the training instances for this type are much more
scarce (5.6%) than those of the remainder of the types (41.1% for effect,
32.3% for mechanism and 20.9% for advice).

Regarding the results on the eHealth-KD dataset, the system overcomes
the top system in the RE subtask improving the results from 44.8% to
54.23%. Besides, these results are directly related to the number of training
instances for each relation types. In this way, the system obtains the best
F1 for the target relation, followed by the subject type which is the most
representative class in this dataset.

4.3. Two-stage pipeline results

We follow the same evaluation metrics defined in eHealth-KD Task in
order to obtain a comparative and measure each scenario independently for
the two-stage performance. The results for the Scenario 1 are calculated with
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the aggregated metrics of the subtask A, B and C as follows:

P =
correct(A) + 1

2
partial(A) + correct(B) + correct(C)

correct(A) + partial(A) + spurious(A) + correct(B) + incorrect(B) + correct(C) + spurious(C)

(1)

R =
correct(A) + 1

2
partial(A) + correct(B) + correct(C)

correct(A) + partial(A) +missing(A) + correct(B) + incorrect(B) + correct(C) +missing(C)

(2)
where correct are the labels that matched to the test set and the predic-

tion (true positives), missing are the labels that are in the test set but not
in the prediction (false negatives), spurious are the labels that are in the
prediction but not in the test set (false positives), partial are the detected
entities whose boundaries do not exactly match and incorrect are the entities
wrongly classified. In order to calculate the same metrics for the Scenarios
2 and 3, the instances for the previous tasks are canceled in the equations.
The F-measure or F1 is calculated from the precision and recall of each cor-
responding scenario. Furthermore, the average of all three scenarios gives the
final score. Differently to eHealth-KD which has a test set for each scenario,
in DDI corpus we consider the same test for all the scenarios.

Table 19 shows the results for each scenario using the eHealth-KD dataset.
The final score for all the scenarios is 67.62%, which is 21.2 points in a
percentage higher than the top system in this task. The main reason for this
improvement is that the winner system did not use a RE system and has lower
statistics for Task C in the scenarios. We obtain a state-of-the-art technique
which shows a high precision in the different scenarios. Furthermore, we
outperform all the previous F1 measure in the eHealth-KD challenge.

Table 20 presents all scenarios taking the DDI corpus test set given an
average of 61.92% F1. Despite the Scenario 3 in DDI corpus obtains better
results than on the eHealth-KD dataset, the final score is lower because it
is directly affected by the performance of the NER module which affects the
remaining scenarios. We can see that the number of spurious and incorrect
are very high for task A and B which caused a low Precision in Scenarios 1
and 2 and we will take into consideration for future work.

5. Conclusions

This paper presents a two-stage IE system from medical texts. Our sys-
tem deals with three different tasks: A) entity detection, B) entity classifi-
cation and C) relation extraction. The system is composed of two different
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Scenario 1 Scenario 2 Scenario 3
Correct A 505 - -
Partial A 40 - -
Missing A 50 - -
Spurious A 64 - -
Correct B 511 553 -
Incorrect B 34 40 -
Correct C 168 205 250
Missing C 324 291 267
Spurious C 240 183 155

Recall 73.78% 69.61% 48.36%
Precision 77.08% 77.27% 61.73%
F-measure 75.39% 73.24% 54.23%

Table 19: eHealth-KD dataset results for the different scenarios.

Scenario 1 Scenario 2 Scenario 3
Correct A 2236 - -
Partial A 67 - -
Missing A 149 - -
Spurious A 1488 - -
Correct B 2149 2149 -
Incorrect B 1503 1503 -
Correct C 559 559 615
Missing C 253 253 364
Spurious C 951 951 248

Recall 71.97% 60.66% 62.82%
Precision 55.6% 52.46% 71.26%
F-measure 62.73% 56.26% 66.78%

Table 20: DDI corpus results for the different scenarios.

modules: one for detecting and classifying entities, and a second one for
extracting relationships between them. Both modules are based on Deep
Learning architectures. The NER module is based on a Bi-LSTM network,
exploiting character, word and sense embeddings models as input, and a final
CRF-layer. The RE module is a CNN model using the word, entity type and
position embeddings as input, and a Softmax classifier in its last layer. We
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perform a detailed experimentation on two different datasets:
i) the DDI corpus composed of scientific texts in English and annotated

with pharmacological substances as well as their possible drug interactions,
ii) the eHealth-KD dataset, a collection of articles about health for Span-

ish speaking patients, annotated with concepts, actions and general semantic
relations such as part-of, property-of, among others (see Table 6).

Firstly, we evaluate the performance of the system for each module sep-
arately. Thus, the NER module does not require any annotation, while the
RE module takes as input the texts annotated with entities. Finally, the
whole system is tested taking as input only plain text to assess the two-stage
system in a real scenario.

Our final goal is to exploit this two-stage IE system in different clinical
applications such as the automatic cohort identification for epidemiological
and clinical studies and the summarization of clinical records, which are
the main objectives defined in the research project DeepEMR, supported
by Government of Spain. We have already applied successfully deep learning
methods for the classification of clinical records, like a CNN model that iden-
tifies anaphylaxis cases (severe allergic reactions) described in clinical records
[68]. This identification can significantly facilitate the conduct of epidemi-
ological and clinical studies in the allergy field, as well as the reduction of
their costs. As next steps, the extraction of concepts and their semantic
relations will also provide valuable information for the performance of these
clinical studies. Moreover, knowing the fundamental concepts as well as their
relationships in a text is a crucial step in order to create a comprehensive
summary of the clinical records for a given patient.

The performance of the presented system achieves the state-of-the-art
results on the eHealth-KD dataset for all subtasks (NER and RE). Besides,
our two-stage pipeline is the state-of-art system for the eHealth-KD challenge.
Focusing on the DDI corpus, the NER module outperforms previous state-
of-art results for drug name recognition [65]. However, our RE module is far
from the state-of-art system for DDI extraction because it is a basic CNN
compared to the ten-layer CNN system of [30].

Our work achieves the state-of-art results for the eHealth-KD challenge
and, to the best of our knowledge, is the first attempt to evaluate a two-stage
IE system for extracting DDI from texts. Another significant contribution of
our work is that our approach is a task-independent method because it can
deal with different entity and relation types. Moreover, the same approach
can be applied to different languages (such as Spanish and English), only
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needing different pre-trained word embeddings for each language.
Our results of the full IE system shows that there is much room for

improvement. As future work, we plan to study different combinations of
deep learning architectures for NER and RE modules. In addition, we want to
explore deeper layers systems that seem to improve the results for both tasks
in DDI corpus. We propose to try different word embeddings pre-trained
in the clinical domain that takes the semantic knowledge of the sentences
in order to improve the results in these subtasks. Furthermore, we plan
to add more syntactic information of the sentence, such as Part-of-Speech
tags, Chunk labels, dependency types, through the embeddings. Particularly
for the RE task, we propose to augment the class instances with distant
supervision techniques or Generative Adversarial Neural Networks to deal
with the imbalanced datasets in IE tasks.
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