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Abstract 

 

Pharmacovigilance is a scientific activity to detect, evaluate and understand the occurrence of adverse 

drug events or other problems related to drug safety. However, concerns have been raised over the 

quality of drug safety information for pharmacovigilance, and there is also a need to secure a new data 

source to acquire drug safety information. On the other hand, the rise of pre-trained language models 

based on a transformer architecture has accelerated the application of natural language processing (NLP) 

techniques in diverse domains. In this context, I tried to define two problems in pharmacovigilance as 

an NLP task and provide baseline models for the defined tasks: 1) extracting comprehensive drug safety 

information from adverse drug events narratives reported through a spontaneous reporting system (SRS) 

and 2) extracting drug-food interaction information from abstracts of biomedical articles. I developed 

annotation guidelines and performed manual annotation, demonstrating that strong NLP models can be 

trained to extracted clinical information from unstructrued free-texts by fine-tuning transformer-based 

language models on a high-quality annotated corpus. Finally, I discuss issues to consider when when 

developing annotation guidelines for extracting clinical information related to pharmacovigilance. The 

annotated corpora and the NLP models in this dissertation can streamline pharmacovigilance activities 

by enhancing the data quality of reported drug safety information and expanding the data sources. 

 

Keywords: Pharmacovigilance, Drug safety information, Natural language processing, Information 

extraction 

Student number: 2018-20603  
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Chapter 1  

 

Introduction 

 

Pharmacovigilance is a scientific activity to detect, evaluate and understand the occurrence of 

adverse drug events (ADEs) or any other problems related to drug usage [1]. The current 

pharmacovigilance system is based on related regulations and standards that impose an obligation 

to monitor drug safety on countries and pharmaceutical companies through systemic efforts of 

regulatory agencies and WHO. One of the most important parts of routine pharmacovigilance is 

reporting ADEs occurred in clinical practice through a spontaneous reporting system (SRS) and 

analyzing safety reports to generate a safety signal. Moreover, post-marketing drug surveillance 

is essential to identify rare ADEs because all possible ADEs cannot be observed during clinical 

studies performed before drug approval. However, the data source for detecting safety signals is 

not limited to the post-marketing surveillance system and SRS, but also includes clinical trials 

and scientific literature. 

In this context, natural language process (NLP) technology can modernize 

pharmacovigilance by enabling the extraction of clinical information from various types of 

unstructured free-texts. Indeed, many studies have tried to extract the ADE occurrence from social 

media data [2, 3] and to extract drug-drug interaction (DDI) information from biomedical 

literature [4-6] based on NLP techniques. Furthermore, the rise of transformer-based large 

language models (LLMs) [7-9] made NLP techniques easier to use, even for non-ML researchers, 
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because LLMs are an example of a foundation model adaptable to a wide range of downstream 

tasks through simple fine-tuning and relatively small datasets [10]. In this situation data-centric 

approach that emphasizes the fundamental importance of datasets rather than advanced model 

development has been proposed [11]. 

Therefore, in this dissertation, I defined the clinical information extraction for 

pharmacovigilance as an NLP task and showed that it is possible to develop strong NLP models 

extracting clinical information from unstructured free-texts through simple fine-tuning of LLMs 

using a quality annotated corpus. In addition, I identified issues around annotation elements for 

clinical information extraction based on our experience gained while performing task formulation 

and annotating free-text data. 

 

1.1 Contributions of this dissertation 

Contributions of this dissertation are as follows: 

• I defined the extraction of clinical information from unstructured free-texts for 

pharmacovigilance as an NLP task and developed manually annotated corpora [12].  

• I provided strong baseline models extracting drug safety information and drug-food 

interaction from free-texts through simple fine-tuning of transformer-based language 

models using quality annotated corpora [13]. 

• I identified issues around defining annotation elements for extracting clinical 

information related to pharmacovigilance. 

 

1.2 Overview of this dissertation 

I organized the remainder of this dissertation as follows. Chapter 2 describes the background and 

related work on the development of an NLP model to extract clinical information from free-texts 
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for pharmacovigilance. Chapter 3 describes the task configuration to extract drug safety 

information from unstructured adverse event (ADE) narratives as an NLP task. Defining the 

extraction of drug-food interaction information from biomedical articles is presented in Chapter 

4. Chapter 5 provides experience in developing annotation guidelines for a biomedical or clinical 

corpus and details the challenges of defining annotation elements. Finally, this dissertation 

concludes in Chapter 6. 

 

1.3 Other works 

In addition to the research discussed in this dissertation, my Ph.D. coursework has also included 

works on biosimilar development [14] and pharmacokinetic-pharmacodynamic modeling [15]. 
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Chapter 2  

 

Background 

 

2.1 Pharmacovigilance 

Pharmacovigilance is a scientific activity essential to ensure the safe use of approved drugs. [1] 

Capturing rare and very rare ADEs is generally considered not feasible in randomized clinical 

trials where the study population consists of hundreds to thousands of relatively homogeneous 

patients. [16, 17] Moreover, safety issues resulting from manufacturing control failures are 

difficult to identify without continuous monitoring of ADE occurrence. [18] Therefore, I have 

tried to obtain clinical evidence for drug safety by monitoring the occurrence of ADEs in the post-

marketing patient population. 

After the thalidomide disaster in the 1950s and 1960s, an international effort was made 

to establish an ADE reporting and monitoring system. [19] WHO launched Program for 

International Drug Monitoring (PIDM) in 1968, and Uppsala Monitoring Centre (UMC), 

collaborating centre for PIDM, was established in 1978. In March 2022, 151 member countries 

participating in PIDM have a national ADE reporting system that collects individual case safety 

reports (ICSRs) and transmit the ICSRs to the WHO global database. [20] Additionally, regulatory 

agencies including the US Food and Drug Administration (FDA) and the European Medicines 

Agency (EMA) have required pharmaceutical companies to conduct pharmacovigilance activities 

and pharmacoepidemiologic assessment during the post-approval period to investigate residual 

safety issues. [21, 22] 
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However, drug safety information collected in the post-marketing process inherently has 

data quality problems such as under-reporting [23] and completeness, i.e., missing data [24]. For 

example, only 10.6% of ICSRs reported to VigiBase, a global database operated by the WHO 

UMC, contained all necessary information like reaction onset and medicine treatment dates in 

2000. [25] The quality issues of drug safety information databases are mainly because the drug 

safety information collected during the post-approval period is generated in a real-world setting 

rather than a preplanned clinical study. Although health authorities have tried to increase report 

quality by educating reporters or by developing guidelines providing good practices on drug 

monitoring, the report quality declined in many regions during late 2000s and early 2010s [24]. 

The cause of the decline in reporting quality is not clear, but it is suspected that the introduction 

of a comprehensive reporting format or the regulatory emphasis on timeliness, e.g., within 15 

days rules, may have had an impact. Moreover, because documenting ADEs is an extra task that 

physicians and nurses perform outside of their routine patient care, ADEs reporting can further 

increase the burden of documentation in hospitals. [26]. 

In this context, NLP techniques can help streamline ADE reporting and collection of 

drug safety information and improve the data quality in relevant databases. First, I can obtain 

other data sources of drug safety information like social media [27] and clinical notes [28], 

developing NLP models that automatically extract drug safety information from unstructured 

free-texts. In addition, NLP techniques can be used to systematically extract novel scientific 

knowledge helpful to assess drug safety, e.g., drug interaction [29, 30] and pharmacokinetics data 

[31], from biomedical articles. Second, NLP can improve the data quality of SRS databases and 

reduce the burden of reporting ADEs. NLP models that perform named entity recognition (NER) 

or entity linking can help reporters to structure drug safety information referenced in clinical free-

texts and improve the reporting quality, alleviating the time and work burden required to report 

ADEs. 
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2.2 Biomedical NLP for pharmacovigilance 

2.2.1 Pre-trained language models  

The rise of transformer-based pre-trained language model (PLM) using self-supervised learning 

like BERT [9], GPT-2 [32] , RoBERTa [33], T5 [34] has significantly impacted the the field of 

NLP. As these models have achieved performances close to the state-of-the-art (SOTA) level in a 

wide range of downstream tasks, PLMs have become a foundation model [10]. PLMs as 

foundation models have brought a strong homogenization in the NLP fields, and almost all SOTA 

models in information extraction benchmarks also adopt transformer model architecture. Now, 

non-NLP researchers also can develop an NLP model of a near SOTA performance by fine-tuning 

PLMs on a small amount of labled data for downstream tasks of interest. 

Berfore the emergence of transformer-based PLMs, static word embeddings such as 

Word2vec [35, 36], and recurrent neural networks (RNNs) [37] were commonly used as baseline 

models for various NLP tasks, including sentiment analysis, document classification and machine 

translation. Static word embeddings and RNNs have their own benefits. 

Static word embeddings are a type of distributional representation that expresses the 

similarity and difference between words based on their distributional properties.These 

embeddings represent words as fixed-size vectors, instead of one-hot encodings, which can reduce 

the dimensoinality of word vectors. Addtionally, static word embeddings are trained using self-

supervised learning frameworks, such as bag-of-words and skip-grams [36, 38], which allows for 

the creation of large amounts of training data by masking random words in text. Predicting the 

masked word based on surronding words can help a word embedding model learn the semantic 

and syntatic properties of words. Using static word embeddings as a starting point for training an 

NLP model can improve a model performance by leveraging the knolewdge captured in the 
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embeddings. In this sense, using word embeddings for NLP model development can also be seen 

as a form of transfer learning method, in which knowledge obtained from solving a specific 

problem is applied to other tasks. 

Otherwise, RNNs are well-suited for dealing with key characteristics of text data as input 

for machine learning models: 1) text data is sequential and 2) the input length is not fixed. RNNs 

also introduce a strong inductive bias to NLP models [39], meaning that the current state of a 

system can be determined by incorporating information from previous time steps (i.e., a hidden 

state) and the current input, and this process is recurrent. This plausible inductive bias allows 

RNNs to efficiently reduce the number of model parameters to estimate and make good 

predictions based on sequential patterns in the data, particularly when the data is limited [40]. 

However, RNNs has a problem of vanishing gradient, making it difficult to update the weights of 

the network as the gradients of weights are multiplied repeatedly during backpropagation through 

the RNNs [41]. A long-short term memory (LSTM) network, which introduces a cell state in 

addition to the hidden state of RNNs, was introduced as an alternative model structure to address 

the vanishing gradient problem [42]. 

 Combining static word embeddings with RNNs has been successful in the filed of NLP 

[42-44], these frameworks transfer linguistic knowledge from a large amount of unlabeled texts 

to a target domain only through static word embeddings. Additionally, context-sensitive features 

are not properly represented by static word embddings. As a result, subsequent studies have 

focused on obtaining contextual word embeddings [45-47]. 

In this context, the transformer-based language model BERT [9] has emerged as a game 

changer. BERT is a transformer-based PLM that uses the attention mechanism [48] and is 

pretrained on masked language modeling (MLM) and next sentence prediction (NSP) tasks, 

which are similar to those used for training Word2vec. However, BERT differs from word2vec in 
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that it obtains contextual embedding through self-attention between input tokens. Since its 

introudction, various transformer-based PLMs such as GPT-2 [32], GPT-3 [49], XLNet [50], 

ELECTRA [8] have been developed by varying the text input method, model structure, model 

size, and self-supervised learning method, 

Trasnformer-based PLMs have gained significant attention due to their state-of-the-art 

performance on various downstream tasks and the simplicity of the fine-tuning process [51]. They 

have also been successful in producing good results with relatively small amounts of training data, 

somtimes requring as little as hundreds of examples [52]. Furthermore, classification models can 

be trained by using the word embeddings provided by PLMs as input to even a simple linear 

model, resulting in satisfactory performance. The open-source organization HuggingFace also 

provides the model configuration of various transformer-based PLMs online, making it easier to 

utilize their capabilities for a wide range of NLP tasks [53]. 

 In addition, PLMs specialized in the biomedical and clinical domains have been 

developed, as studies reported that domain-adaptive pretraining leads to performance gains [54-

58]. For example, clinical BERT outperformed previous text mining models on NLP tasks in the 

clinical domain where drug, disease, and other medical jargon are frequently denoted in their 

abbreviated forms. Recently, researchers introduced a comprehensive benchmark dataset for 

biomedical NLP to facilitate evaluations of biomedical PLMs and accelerate progress in 

biomedical NLP. [55] Moreover, Korean medical BERT (KM-BERT) pre-trained on medical 

textbooks and health information news was developed and showed its applicability to biomedical 

NLP tasks in Korean clinical texts [59]. However, to the best of our knowledge, no pre-trained 

language model has ever been developed in both Korean and the clinical domain because large-

scale Korean clinical narratives were scarce. 
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2.2.2 Corpora to extract clinical information for pharmacovigilance 

Several human-annotated corpora of clinical narratives from diverse sources have been 

introduced to define NLP tasks related to pharmacovigilance such as detection of ADEs and 

extraction of medication information from free texts. The sources of those clinical narratives 

included clinical or physicians notes from electronic health records (EHRs) [28, 60], consumer 

reviews on medications [61], drug labels [62], social media [63-67], safety repots in the Vaccine 

Adverse Event Reportint System (VAERS) [68] and serious ADE reports collected during clinical 

trials [69]. These corpora principally focused on detecting ADEs and medication entities and 

normalizing dectected entities to medical ontology standards. For example, CADEC (CSIRO 

Adverse Drug Event Corpus), sourced from posts on AskaPatient, an online medical fourm 

dedicated to consumer reviews on medications, was created with two purposes: (1) entity 

identification for drugs, ADEs, symptoms, and diseases, and (2) entity normalization to the 

Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT), AMT (The Australian 

Medicines Terminology), and MedDRA (The Medical Dictionary for Regulatory Activities)[61] 

In 2018, the National NLP Clinical Changes (n2c2) shared a task and data on the extraction of 

ADEs and medication information from clincial narratives and tackled the NLP task in 3 steps: 

(1) concept extraction, (2) relation classification, and (3) construction of an end-to-end system 

integrating the two previous steps [60]. Also, medical text classifiers and ADE identifiers have 

been developed to extract ADEs from vaccine safety reports in VAERS [68, 70]. 

However, to the best of our knowledge, no human-annotated corpus of safety reports 

from SRS has ever been built except for those from VAERS. Furthermore, existing human 

annotated corpora for dectecting ADEs have rarely tried to extract other drug safety information 

hepful, and sometimes crucial, for assessing causality between a drug and an ADE. This 

information includes, but is not limited to, temproal relationship between drug administration and 

ADE occurrence and response to the withdrawal of the drug [71]. For example, the 2018 n2c2 
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shared task provided the annotated corpus for 9 areas including drug, reason (i.e., reason for 

medication or indication), and ADE in discharge summaries, but it did not contain the temporal 

relationship between drug administration and ADE occurrence [60]. To overcome those shortfalls, 

I annotated word entities and relations between entities according to the data elements defined in 

the ICH E2B(R3) guideline, which provides the formats and data requirements for electronic 

transmission of different types of ICSRs [72]. 

 While numerous NLP models have been developed to extract ADEs from clincial 

narratives and some showed acceptable performances in detecting ADEs and related word entities 

[28, 60-62, 65, 66], the robustness of the extraction performances is still questionable due to the 

narrow clinical context of the annotated corpora. For example, while the best systems achieved 

F1-scores of 0.82-0.86 for the NER and relation extraction in MADE 1.0 challenges, the annotated 

corpus consisted of longitudinal EHR notes of only 21 randomly selected cancer patients at a 

single hospital [28]. Likewise, CADEC only included cosumer reviews on 12 drugs such as 

diclofenac or atorvastatin as their active ingredient [61], and human-annotated narratives in the 

VAERS only consisted of safety reports from patients with Guillain-Barre syndrome [68]. 

Therefore, extraction performance of an NLP system developed and evaluated only in limited 

clinical contexts could be lower in a wider clinical context. Furthermore, the risk of ADE 

occurrence and its description would be different according to a clinical setting for a patient who 

experiences an ADE (e.g., age, commorbidity and existence of an ADE reporting system in the 

hospital) [73, 74].  
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Chapter 3  

 

Extraction of Comprehensive Drug Safety 

Information from Adverse Event (ADE) 

Narratives Reported through Spontaneous 

Reporting System 

 

SRS is one of the most important sources of drug safety information for drug monitoring. 

However, ADE narratives reported through SRS has not been used to evaluate the drug safety, 

because they are reported as an unstructured form. Thus, I defined the extraction of 

comprehensive drug safety information from ADE narratives in SRS as an NLP task in this section. 

In addition, I developed manually annotated corpus based on the annotation guideline I developed 

and provide baseline models for NLP task related to the extraction of drug safety information. I 

expect that the annotated corpus and baseline models could be used to improve the data quality 

of SRS by further extracting drug safety information from ADE narratives and integrating them 

into structured database. 
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3.1 Motivation 

Post-marketing surveillance is essential for monitoring and assessing ADEs, harms caused after 

appropriate or inappropriate use of a drug [75]. In many countries, ADE are voluntarily reported 

through a SRS as an ICSRs using a pre-structured format that investigates ADE(s) experienced 

by an individual patient [76, 77]. The regulatory agencies use the information on drug safety 

collected through an SRS to identify a potential safety concern and adjust strategies accordingly 

for efficient pharmacovigilance[77]. For example, the US FDA developed the FDA Adverse Event 

Reporting System (FAERS) to gather the drug safety information of marketed drugs and support 

their post-marketing surveillance program. Similarly, the Korea Adverse Event Reporting System 

(KAERS) was established in 2012 by the Korea Institute of Drug Safety and Risk Management 

(KIDS) to facilitate reporting ADEs and their management.  

The number of ADE reports through SRS is substantial partly thanks to electronic 

submission of ICSRs. For example, more than two hundred thousand cases have been reported 

through KAERS every year since 2016 [78]. Truly, a large number of ADE reports is crucial to 

early detect a safety issue and to discover rare ADEs in the post-marketing phase [77] 

However, concerns have been raised over the quality of drug safety information collected 

through SRS such as data incompleteness and under-reporting [23, 79]. Substandard data 

completeness has impeded the regulatory agency from appropriately assessing the relationship 

between an ADE and a drug based on ICSRs uploaded to an SRS. While KIDS has run an 

education program to improve the reporting quality of ICSRs, the completeness of several key 

data elements including drug indication and patient medical history was lower than 75% [80]. 

Moreover, data missingness has become more frequent as more comprehensive and lengthier 

forms were introduced [24].  

Based on this understanding, I aimed to develop NLP models that automatically extract 

comprehensive drug safety information from ADE narratives, i.e., free texts detailing one or more 
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ADEs experienced by a patient and his/her clinical setting. Those NLP models are expected to 

greatly improve and complement the completeness of ICSRs collected through SRS. To this end, 

I constructed a manually annotated corpus and defined NLP tasks including NER, sentence 

extraction, relation extraction, label classification and entity normalization to formulate the 

extraction of comprehensive drug safety information from ADE narratives (Figure 3.1). In this 

study, I provided baseline models for NER, sentence extraction, relation extraction and label 

classification. Also, I pre-trained domain-specific BERT (Bidirectional Encoder Representations 

from Transformers) models specialized in clinical texts, where code-switching between English 

and Korean is frequent. Furthermore, I investigated how the performance of extracting drug safety 

information improves when a training dataset consists of more diverse ADE narratives as an 

ablation study. 

Our contribution can be summarized as follows: 

⚫ From the KAERS system, I built datasets consisting of ADE narratives annotated with 

fine-grained drug safety information. 

⚫ I newly designed NLP tasks including named entity recognition, sentence extraction, 

relation extraction, text classification and entity normalization to extract drug safety 

information from unstructured ADE narratives. 

⚫ I proposed strong baseline models for our designed tasks using domain-specific BERT 

models, which incorporated code-switching language knowledge as well as medical 

knowledge. 
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3.2 Proposed Methods 

 

Figure 3.1: Overview of extracting comprehensive drug safety 

information from annotated ADE narratives reported through 

KAERS 

Figure 3.2: Overview of proposed methods for developing annotated corpus 

and NLP models extracting comprehensive drug safety information 



15 

 

3.2.1 Data source and text corpus 

ADE narratives and structured drug safety information were obtained from 1.2 million ICSRs 

reported through KAERS between January 1, 2015 and December 31, 2019. I created documents 

for the extraction of drug safety information by concatenating five types of ADE narrative in an 

individual ICSR: disease history in detail, adverse event in detail, laboratory test in detail, 

reporter's opinion, and original reporter's opinion. Then, I removed documents originated from 

ADE narratives either too short, i.e., <100 characters, or too long, i.e., >740 characters to control 

the reporting quality of ADE narratives and lighten the annotation burden. The 25th and 95th 

percentiles for the length of the documents were 100 and 740 characters, respectively. 

Additionally, I excluded a document where an ADE occurred during pregnancy because the data 

elements for ADEs experienced by pregnant women, infants and children were not defined in our 

annotation system. Furthermore, I anonymized all the ADE narratives by replacing patient 

identification information including patient names, address, and hospital name with special tokens 

such as <NE-PERSON-NAME> or <NE-HOSP-NAME> using a rule-based de-identification 

algorithm I developed. 

I selected ADE narratives for annotation in two ways. First, I randomly selected ADE 

narratives for annotation. Second, to diversify the type of the documents, I selected additional 

ADE narratives from ICSRs that contained the least reported items related to drug safety 

information, i.e., adverse events, indications, drug compounds and drug products. The least 

reported items were determined based on the KIDS-KAERS Database (KIDS-KD), a structured 

drug safety information database by KIDS. To compare the clinical context between total and 

annotated ICSRs, I performed an exploratory data analysis on the report types and structured drug 

safety information of ICSRs using KIDS-KD. 
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3.2.2 Annotation of ADE narratives 

I defined data elements for the extraction of drug safety information from ADE narratives based 

on the ICH E2B(R3) guideline [72]. Furthermore, the data elements that were rarely described in 

ADE narratives (e.g., reporter's name, whether autopsy was done) and related to pregnancy (e.g., 

parent information, gestation period at the time of exposure) were excluded from the annotation. 

Then, I developed an annotation guideline that defined word entities, relations between entities, 

entity labels to formulate the extraction of drug safety information as an NLP task. The annotation 

guideline was reviewed by three pharmacoepidemiology experts to ensure that entities and 

relations were correctly defined. The annotation guideline was converted into a web-based 

annotation system using tagtog service1. 

In this study, I defined 21 types of word entities to capture comprehensive drug safety 

information in the ICH E2B(R3) guideline. These word entities were divided into six categories: 

clinical finding, drug, dosing information, date, patient information, and others. ‘ADE’ and 

‘Disease’ (i.e., patient's prior or present disease) entities belong to clinical finding along with 

‘ADE Seriousness’ and ‘ADE at last observation’. A clear distinction between ‘ADE’ and 

‘Disease’ is the key component for extracting drug safety information, because mistaking ‘Disease’ 

for ‘ADE’ could undermine the safety of medical products. Thus, I recognized signs, symptoms 

and diseases diagnosed after the administration of the concerned drug as ‘ADE’, while those 

diagnosed before the administration of the concerned drug as ‘Disease’. In the drug and dosing 

information categories, I defined word entities for capturing drug names (i.e., ‘Drug compound’, 

‘Drug product’ and ‘Drug group’) and word describing dosing information (e.g., ‘Dose’ and 

‘Dosing Interval’). ‘Date’ and ‘Date Period’ entities, collectively classified as the date category, 

                                                      
1 https://www.tagtog.net/ 
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were defined to capture the temporal information of disease diagnosis, ADE occurrence, drug 

administration and more. Word entities that help assess the causality between drug and ADE 

including ‘Test name’, ‘Test result’, ‘Non-drug treatment’ and ‘Action taken with drug’ were put 

into the others category. ‘WHO-UMC assessment’ entity is the only sentence entity in our 

annotation guideline. 

Additionally, I defined 59 types of relations between word entities. For example, a 

relation between ‘Disease’ and ‘Drug Compound’ indicated that the drug compound was 

prescribed for the disease. In the annotation guideline, I provided clear instructions how to 

annotate a relation between two entities. Furthermore, 6 entity labels were created to give detailed 

information on annotated entities. For example, I put an ‘occurred’ label to ‘ADE’, ‘Disease’ and 

three drug entities, i.e., ‘Drug Compound’, ‘Drug product’ and ‘Drug group, to denote whether a 

mentioned entity actually occurred in a patient or was administered to. Likewise, a ‘concerned’ 

label was added to three drug entities to indicate whether a mentioned drug entity was a suspected 

drug. Then, I performed an entity normalization for ‘ADE’, ‘Disease’ and three drug entities using 

MedDRA 24.0 (English and Korean) and the national drug code directory provided by the 

Ministry of Food and Drug Safety.  

Detailed explanations of word entities, relations and entity labels in the annotation guideline can 

be found in Chapter 7 Appendix, section 7.1. 

 

3.2.3 Quality control of annotation 

Five pharmacists who had experience in monitoring and reporting of ADEs in a pharmaceutical 

company or a pharmacy were recruited as annotators. They underwent a one-week education 

program, through which they became familiar with the annotation guideline and performed 
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preliminary annotations to understand how the annotation system works. Furthermore, confusing 

annotation examples were presented and explained to the annotators to help them understand 

annotation principles in the guideline. Then, 80 to 120 documents a week were annotated by each 

annotator for 7 weeks. Ten percent of the documents were assigned to two different annotators at 

the same time in order to calculate the inter-annotator agreement. ~4,000 documents were 

annotated by five annotators for the entire period given dual annotations. In contrast, annotators 

performed an entity normalization for ADE and drug entities only in 20 documents a week to lift 

their annotation burden. 

To examine annotation quality, an independent reviewer (Siun Kim) separately reviewed 

15% of documents annotated by the five annotators. When annotation agreement between the 

independent reviewer and an individual annotator was <80% of documents, the annotator was 

asked to re-do all of the document assigned to him or her for that week. In addition, I investigated 

all the annotated documents in the form of JSON file to check whether the annotators accurately 

followed the annotation guideline. When an annotator was found to obviously violate the 

annotation guideline for a document (e.g., missing entity labels), I manually re-annotated the 

document. Annotation quality for NER was assessed using Cohen’s kappa [81] defined as follows: 

 
𝜅 =

𝑃𝑜 − 𝑃𝑐

1 − 𝑃𝑐
 

(3.1) 

 

where Po represents the proportion of annotations that two annotators agreed with each 

other, Pc represents the proportions of annotations agreed between two annotators by chance. 

 

3.2.4 Pretraining KAERS-BERT 

Since ADE narratives collected through KAERS were written in Korean and contained large 

medical jargons and abbreviations, I newly developed a domain-specific Korean BERT (KAERS-
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BERT) model2 to incorporate the semantic knowledge from ADE narratives in KAERS. I trained 

KAERS-BERT by pretraining KoBERT using masked language modeling on 1.2 million ADE 

narratives reported through KAERS. I only used ADE narratives in the ‘disease history in detail’ 

and ‘adverse event in detail’ to pretrain KAERS-BERT as narratives in the ‘laboratory test in 

detail’, ‘reporter's opinion’, and ‘original reporter's opinion’ sections tended to contain similar 

information redundantly such as causality assessment of ADEs. I tokenized ADE narratives using 

the KoBERT WordPiece tokenizer, which was developed based on the Korean Wikipedia, 

randomly masked 15% of tokens with a ‘[MASK]’ token. I used a maximum sequence length of 

200, a learning rate scheduling was 5 × 10−5, and Adam as the optimizer. I used a warm-up 

scheduler with a warmup ratio of 0.1 and trained the model for up to 5 epochs. I set the weight 

decay to 0.1, with the exception of the weights of normalization layers and all the bias parameters 

in the model. 

 

3.2.5 Training baseline models 

I developed and trained four deep-learning baseline models for four defined extraction tasks such 

as NER, sentence extraction, relation extraction, and label classification (i.e., ‘occurred’ and 

‘concerned’): 1) long short-term memory (LSTM), 2) bi-LSTM (bidirectional LSTM), 3) 

KoBERT, and 4) KAERS-BERT. In all of the settings, I used the KoBERT Word-Piece tokenizer. 

The KoBERT model configurations were from Huggingface3. The LSTM and bi-LSTM models 

consisted of 300-hidden layers. I used the Adam optimizer [82] with a learning rate of 5 × 10−5 

to train all the baseline models, while a drop-out probability and a batch size set to 0.4 and 8, 

                                                      
2 https://github.com/SKTBrain/KoBERT (There have been no academic papers published on 

KoBERT pretraining yet) 

3 https://huggingface.co/monologg/kobert 

https://github.com/SKTBrain/KoBERT
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respectively. I applied gradient clipping [83] to ensure stable learning and predicted the token 

label by inputting the logits of each token into conditional random field (CRF). The loss function 

used for training was the negative log-likelihood calculated from the CRF. Additionally, since the 

proportion of ‘none’ type tokens was overwhelming, I excluded them from the calculation of 

performance metrics when they were correctly predicted as ‘none’ type tokens. The warmup 

schedule was set to linear, and the warmup step was set to 100. 

 

3.2.6 Named entity recognition 

I formalized an NER task as a token-level sequence classification based on the BIO scheme [84]. 

Annotated tokens were tagged using the BIO scheme, where a token at the beginning of, inside, 

and outside the entity was labeled as “B”, “I”, and “O”, respectively. I gave an NER tag based on 

word-level tokenization instead of the WordPiece tokenization. Thus, I tagged and used the first 

WordPiece token in each word in training NER models (Figure 3.3). Thus, WordPiece tokens 

tagged as ‘X’ were excluded in calculating a loss function and performance metrics. I combined 

“Date end” and “Date start” entities into a “Date” entity. Likewise, “Event admission” and “Event 

discharge” entities were combined into an “Event hospitalization” entity, resulting in a total of 19 

entity types for the NER task. 

I developed baseline models for the NER task by training BERT and RNN with CRF 

(conditional random fields) to capture the semantic dependency within a sentence [85]. I used a 

negative log-likelihood as a loss function of CRF for training. I predicted the tags of word entities 

to inference entity types of tokens by generating the tag sequence that maximizes a log-likelihood 

via the Viterbi algorithm [86]. 
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3.2.7 Entity label classification and sentence extraction 

Label classification for ‘occurred’ and ‘concerned’ labels was formalized as a token-level 

sequence classification with three label types: 1) ‘positive’, 2) ‘negative’ and 3) ‘unrelated’. I 

gave a token a ‘positive’ label when the token was annotated as ‘occurred’ or ‘concerned’, while 

I considered a token ‘negative’ when the token was annotated as ‘not occurred’ or ‘not concerned’. 

Word entities, for which neither ‘occurred’ nor ‘concerned’ label classification was applicable to 

the entity, were labeled as ‘unrelated’. Sentence extraction for the ‘WHO-UMC assessment’ entity 

was formalized as a token-level sequence classification with a binary IO scheme, where a token 

at the inside and outside the entity was labeled as ‘I’ and ‘O’, respectively. Thus, sentence 

extraction models were trained to predict whether a token is positioned inside a ‘WHO-UMC 

assessment’ sentence. I used CRF to train baseline models for both label classification and 

sentence extraction. 

 

3.2.8 Relation extraction 

I formalized relation extraction as a pair-wise binary classification for token pairs, for which entity 

types were defined as possibly related to each other in the annotation guideline. I originally 

defined a total of 59 types of relations to capture comprehensive drug safety information in the 

ADE narratives. However, I used only 15 types of relations to improve the quality of an annotation 

dataset and balance the ratio between the annotated and negative relations in a dataset. Negative 

Figure 3.3: Examples of token tagging for NER 
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relation was an entity pair that was not annotated as related. Also, I limited the maximum number 

of negative relations in a single ADE narrative up to 40 to balance positive (i.e., annotated) and 

negative relations in the training dataset. 

I obtained average pooling of tokens in related entities and concatenated token 

embeddings of [CLS] and two mention pools [87] to develop relation extraction models as follows: 

 

 

𝐓𝐨𝐤𝐞𝐧 𝐞𝐦𝐛𝐞𝐝𝐝𝐢𝐧𝐠𝐬: [
[CLS], 𝑡0, … , [𝐸1,𝑠𝑡𝑎𝑟𝑡], 𝑡𝑖, … , 𝑡𝑗, [𝐸1,𝑒𝑛𝑑], … ,

[𝐸2,𝑠𝑡𝑎𝑟𝑡], 𝑡𝑘 , … , 𝑡𝑙 , [𝐸2,𝑒𝑛𝑑], … 𝑡𝑛

] (3.2) 

 𝐌𝐞𝐧𝐭𝐢𝐨𝐧 𝐩𝐨𝐨𝐥𝐬: 𝐸1,𝑝𝑜𝑜𝑙 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑜𝑜𝑙([𝑡𝑖, … , 𝑡𝑗]), 𝐸2,𝑝𝑜𝑜𝑙

= 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑜𝑜𝑙([𝑡𝑘 , … , 𝑡𝑙]) 
(3.3) 

 
𝐓𝐨𝐭𝐚𝐥 𝐑𝐞𝐩𝐫𝐞𝐬𝐞𝐧𝐭𝐚𝐭𝐢𝐨𝐧: [[CLS], 𝐸1,𝑝𝑜𝑜𝑙 , 𝐸2,𝑝𝑜𝑜𝑙] (3.4) 

 

where [CLS] is an embedding of special classification token representing a whole 

sentence; 𝑡𝑖  denotes an individual token embedding; 𝐸𝑖,𝑠𝑡𝑎𝑟𝑡  and 𝐸𝑖,𝑒𝑛𝑑  are the start and end 

tokens embeddings of two-word entities, respectively, related to each other; AveragePool is a 

pooling operation based on the element-wise average on tokens of same size. I used a multi-layer 

perceptron to train baseline models on the relation extraction. 

 

3.2.9 Model evaluation 

I split the annotated ADE narratives into training and test datasets with a proportion of 9:1 (Table 

3). I calculated precision, recall and F1-score to evaluate the information extraction performances 

of baseline models as follows: 

 

𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 𝑎𝑏𝑜𝑢𝑡 𝑎𝑙𝑙 𝑢𝑛𝑖𝑡 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑙𝑙 𝑢𝑛𝑖𝑡 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑡𝑒𝑠𝑡 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠
 (3.5) 
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𝐑𝐞𝐜𝐚𝐥𝐥 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 𝑎𝑏𝑜𝑢𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑢𝑛𝑖𝑡 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑢𝑛𝑖𝑡 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑡𝑒𝑠𝑡 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠
 

 

(3.6) 

𝐅𝟏 𝐬𝐜𝐨𝐫𝐞 =  
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (3.7) 

 

where a unit sample means a valid input-output pair for a given NLP task. A unit sample 

for the NER task was a token that was assigned a NER tag except ‘X’ and the token’s NER tag, 

while a unit sample for the label classification was a token, for which the label annotation and the 

token’s label (i.e., ‘concerned’ or ‘occurred’ label) was applicable to the entity. In the sentence 

extraction, all of the tokens in the dataset were used as an input token and it was predicted whether 

tokens positioned inside a ‘WHO-UMC assessment’ sentence. In the relation extraction, I used 

positive and negative relations and their binary modality as unit samples. 

The proportions of predicted entity types were reported to investigate how well the 

KAERS-BERT model performed in classifying word entities. I observed that entities labeled as 

‘not occurred’ were more likely to appear as a list of the most common ADEs of a concerned drug 

in ADE narratives, e.g.,“Tramadol can cause nausea, vomiting, constipation, or drowsiness.”, 

while entities labeled as ‘occurred’ were not. For this reason, I were concerned that the difference 

in the way entities were written in an ADE narrative between those labeled as ‘occurred’ and ‘not 

occurred’ might have an effect on the NER performances. Thus, I assessed the NER performances 

of the KAERS-BERT model separately for ‘occurred’ and ‘not occurred’ entities. 

 

3.2.10  Ablation experiment 

I performed an ablation experiment to investigate whether a baseline NER model was improved 

when a training dataset contained more diverse ADE narratives. To this end, I created five training 

datasets consisting of 1) 340 ADE narratives randomly selected from the total ICSRs and 340 

ADE narratives from ICSRs that contained the least reported items, i.e., 2) ADE, 3) indication, 4) 
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drug compound and 5) drug product. First, I trained KAERS-BERT using the five training datasets 

of 340 ADE narratives (M = 0). Then, I added more randomly selected ADE narratives to each of 

the five training datasets at a number (M) of 340, 1020, and 1700. Thus, training dataset 1 

consisted of only randomly selected 340 + M ADE narratives of (random only), while the other 

four datasets consisted of 340 ADE narratives randomly selected and M ADE narratives with the 

least reported items (ADE + random, indication + random, drug compound + random, and drug 

product + random, respectively). The performance of baseline NER models was calculated as M 

was increased. 

  

3.3 Results 

3.3.1 Annotated ICSRs 

I annotated 3,723 ADE narratives out of the 1,199,498 total ICSRs reported through KAERS 

between January 1, 2015 and December 31, 2019 (  

 

Table 3.1). The overall characteristics of ADE narratives were similar between the total and 

annotated ICSRs. A total of 235 (6.3%) ADE narratives were doubly annotated by two different 

annotators, and 580 (15.6%) by the independent reviewer and an annotator. The agreement was 

high not only between the annotators and the main reviewer, but between any two annotators 

(Cohen’s kappa 96.5% and 85.9%, respectively, Table 3.2).  

 

Table 3.1: Summary characteristics of the total and annotated ICSRs 
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Table 3.2: Inter-annotator agreement on entity annotation 

Annotators IAA 
Number of documents 

annotated by two annotator 

IAA between the main reviewer and an 

annotator 
  

 Annotator 1 97.55% 134 
 Annotator 2 94.98% 108 
 Annotator 3 94.91% 102 
 Annotator 4 97.68% 148 
 Annotator 5* 95.87% 16 

 Weighted average,  

without annotator 5 
96.48% 492 

ICSRs categories† 
Total ICSRs 

(N = 1,199,498) 

Annotated ICSRs 

(N = 3,723) 

Patient Age, years 54.1 ± 19.0 52.3 ± 20.3 

Female patient, N (%) 720,882 (60.1) 2,127 (57.1) 

No. of reported drugs 2.3 ± 4.4 3.4 ± 6.0 

No. of reported ADEs 1.5 ± 1.3 1.7 ± 1.3 

No. of reported medical histories 1.3 ± 1.2 1.5 ± 1.7 

Reports with serious ADE, N (%) 120,258 (10.0) 555 (14.9) 

Report type, N (%)   

  Spontaneous reports 984,332 (82.1) 2,998 (80.5) 

  Reports from survey research 180,224 (15.0) 586 (15.7) 

  Reports from literature 13,225 (1.1) 71 (1.9) 

  Other reports 21,669 (1.8) 68 (1.8) 

Initial or follow-up, N (%)   

  Initial report 1,132,176 (94.4) 3,500 (94.0) 

  Follow-up 67,322 (5.6) 223 (6.0) 

Reporter type, N (%)   

  Regional pharmacovigilance center 844,773 (70.4) 2,518 (67.6) 

  Manufacturer 306,678 (25.6) 1,098 (29.5) 

  Medical institution 36,594 (3.1) 69 (1.9) 

  Consumer 5,945 (0.5) 26 (0.7) 

Other 5,508 (0.5) 12 (0.3) 

Abbreviations: ICSR, individual case safety report; N, number; KAERS, Korean Adverse Event Reporting System; 

ADE, adverse drug event; ATC, Anatomical Therapeutic Chemical classification system; ICD-10, the 10th revision of 

the International Statistical Classification of Diseases and Related Health Problems; WHO-ART, World Health 

Organization-Adverse Reaction Terminology; SOC, system-organ classes 

† Except where indicated otherwise, values are the mean ± standard deviation. 
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 Weighted average 96.46% 508 
Abbreviation: IAA, inter-annotator agreement. 

* Annotator 5 discontinued annotation program after the first week 

 

3.3.2 Corpus statistics 

The annotated corpus contained a total of 86,750 entities extracted from 2,378 randomly selected 

ADE narratives and 336, 336, 337, 336 ADE narratives with least reported ADEs, disease, drug 

compounds, and drug products, respectively (Table 3.3). All the entities defined in this study were 

annotated more than 300 times. The most frequent entity was ‘ADE’ (39.8%), while drug entities 

including ‘Drug compound’, ‘Drug product’ and ‘Drug group’ comprised 19.8% of the total 

annotated entities. The overall distributions of system organ class (SOC) were similar between 

the normalized ADE entities in annotated ADR narratives and the ADEs normalized by reporters 

in KIDS-KD (Figure 3.4). 

Table 3.3: Statistics of annotated entities in ADE narratives 

Entity types,  

no. per narrative (%) 

Total Narratives 

(N = 3,723) 

Selection methods of ADE narratives for 

annotation 

randomly selected 

(N = 2,378) 

with least reported 

items 

(N = 1,345) 

Pathological finding    

 ADE 9.27 (39.8) 9.55 (41.6) 11,787 (36.7%) 

 Disease 0.97 (4.2) 0.87 (3.8) 1,529 (4.8%) 

 ADE seriousness 0.15 (0.7) 0.11 (0.5) 293 (0.9%) 

 ADE at the last 

observation 
0.53 (2.3) 0.51 (2.2) 756 (2.4%) 

Drug    

 Drug compound 1.45 (6.2) 1.37 (6.0) 2,120 (6.6%) 

 Drug product 2.61 (11.2) 2.56 (11.2) 3,635 (11.3%) 

 Drug group 0.56 (2.4) 0.63 (2.8) 584 (1.8%) 

Dosing information    

 Dose 0.93 (4.0) 0.97 (4.2) 1,136 (3.5%) 

 Dosing interval 0.2 (0.9) 0.18 (0.8) 317 (1%) 

 RoA or formulation 0.6 (2.6) 0.64 (2.8) 736 (2.3%) 
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Date    

 Date 2.21 (9.5) 2.06 (9.0) 3,324 (10.3%) 

 Period 0.25 (1.1) 0.22 (1.0) 415 (1.3%) 

Patient information    

 Patient sex 0.13 (0.5) 0.11 (0.5) 210 (0.7%) 

 Patient age 0.08 (0.4) 0.07 (0.3) 139 (0.4%) 

Others drug safety 

information 
   

 Hospitalization event 0.26 (1.1) 0.22 (1.0) 426 (1.3%) 

 Test name 0.58 (2.5) 0.53 (2.3) 904 (2.8%) 

 Test result 0.51 (2.2) 0.45 (2.0) 822 (2.6%) 

 Non-drug treatment 0.27 (1.1) 0.25 (1.1) 408 (1.3%) 

 Action taken with 

drug 
0.58 (2.5) 0.56 (2.4) 823 (2.6%) 

  
WHO-UMC 

assessment result 
1.18 (5.1) 1.10 (4.8) 1,775 (5.5%) 

Average numbers in a 

narrative 
23.3 (100.0) 22.97 (100.0) 32,139 (100%) 

Total numbers 86,750 54,611 7,468 

 

 

 Furthermore, the annotated corpus contained a total 81,828 entity labels and 45,107 

relations related to the extraction of drug safety information (Table 3.4). In total, 40.0% of ‘ADE’, 

‘Disease’ and drug entities were labeled as ‘not occurred’, while 17.1% of drug entities were 

labeled as ‘not concerned’. Among 59 relation types, 24 relations were used more than 500 times 

Figure 3.4: MedDRA system organ classes (SOCs) distribution of normalized ADE entities in 

annotated ADE narratives and ADEs normalized by reporters in KIDS-KD 
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for annotation. 

 

Table 3.4: Entity labels and relations in annotated ADE narratives 

Entity label and relation types 

Annotated ADE narratives 

Total 

(N = 3,723) 

Train 

(N = 3,408) 

Test 

(N = 315) 

Entity labels ("occurred" and 

"concerned") 
   

 "occurred" label    

  ‘occurred’ 33,291 (60.0) 30,386 (60.1) 2,905 (58.5) 

  ‘not occurred’ 22,229 (40.0) 20,168 (39.9) 2,061 (41.5) 

`  Total 55,520 (100.0) 50,554 (100.0) 4,966 (100.0) 

 "concerned" label    

  ‘concerned’ 14,309 (82.9) 13,088 (83.5) 1,221 (77) 
  Not Concerned 2,945 (17.1) 2,580 (16.5) 365 (23) 

    Total 17,254 (100.0) 15,668 (100.0) 1,586 (100.0) 

Relations (most frequent 10)    

  ADE and WHO-UMC assessment 7,711 (17.1) 7,030 (17.1) 681 (16.6) 

  

Drug product and WHO-UMC 

assessment 
3,947 (8.8) 3,604 (8.8) 343 (8.4) 

  ADE and Date 3,134 (7.0) 2,809 (6.9) 325 (7.9) 

  ADE and ADE 3,043 (6.7) 2,746 (6.7) 297 (7.2) 

  

ADE and ADE at the last 

observation 
2,330 (5.2) 2,150 (5.2) 180 (4.4) 

  Drug product and Dose 2,366 (5.2) 2,135 (5.2) 231 (5.6) 

  Drug product and Date 2,040 (4.5) 1,838 (4.5) 202 (4.9) 

  Test name and Test result 1,877 (4.2) 1,712 (4.2) 165 (4) 

  

Drug product and RoA or 

Formulation 
1,544 (3.4) 1,432 (3.5) 112 (2.7) 

  

Drug product and Action taken 

with drug 
1,473 (3.3) 1,361 (3.3) 112 (2.7) 

    Total 45,107 (100.0) 4,1001 (100.0) 4,106 (100.0) 

The total number (column %) is displayed.  

Abbreviations: ADE, adverse drug event; N, number; WHO-UMC, WHO-UMC, World Health Organization-Uppsala 

Monitoring Centre 

 

3.3.3 Performance of NLP models to extract drug safety information 
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The KAERS-BERT model outperformed all the other models including the KoBERT model in 

four NLP tasks to extract comprehensive drug safety information (Table 3.5). The F1-scores of 

the KAERS-BERT model were >80% for the tasks of NER, sentence extraction, and label 

classification for the ‘occurred’ entity label, which were 2.35-4.85 percentage points higher than 

the second-best performing KoBERT model. 

 

Table 3.5: Performance metrics (%) of baseline models by task 

Task* 

Baseline models 

KAERS-BERT  

+ CRF 

KoBERT 

+ CRF 
BILSTM LSTM 

NER     
 Precision 83.90 80.48 77.47 72.38 
 Recall 83.72 78.95 68.63 57.28 
 F1-score 83.81 79.71 72.78 63.95 

Sentence 

extraction 
    

 Precision 76.62 65.73 85.51 74.80 
 Recall 73.00 53.47 72.08 69.28 
 F1-score 80.63 78.28 78.23 71.94 

Relation 

extraction 
    

 Precision 69.48 58.09 59.15 68.32 
 Recall 59.95 59.61 46.87 48.46 
 F1-score 64.37 58.84 52.30 56.71 

Label 

classification 
    

 ‘occurred’ label    
 Precision 79.85 79.13 75.11 72.01 
 Recall 82.87 74.01 72.14 61.48 
 F1-score 81.33 76.48 73.60 66.33 
 ‘concerned’ label    
 Precision 78.84 74.89 74.75 67.41 
 Recall 76.43 65.91 62.74 38.58 
 F1-score 77.62 70.12 68.22 49.08 

Abbreviations: KAERS, the Korea Adverse Event Reporting System; BERT, bidirectional encoder representations from 

transformers; CRF, conditional random fields; LSTM, long short-term memory; BILSTM, bidirectional LSTM; NER, 

named entity recognition 

* The best and second-best performance scores are highlighted in bold and underline, respectively. 

 

 Even in cases that the KAERS-BERT model failed to correctly recognize entities, most 
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of them were reasonably predictable (Figure 3.5). For examples, about half of misclassified ‘Drug 

compound’ entities (20.21%) were recognized as ‘Drug group’ (10.24%), which was still related 

to ‘Drug compound’. (Table 5). 

 

 

Furthermore, the NER performances on entities labeled as ‘occurred’ were generally not 

lower than those on entities labeled as ‘not occurred’ except ‘Drug compound’ entity (Table 3.6). 

In ‘Drug compound’, an F1-score on ‘occurred’ entities was 5.08% lower than that on ‘not 

occurred’ entities. 

 

Table 3.6: NER performance metrics of the KAERS-BERT model for entities labeled as 

‘occurred’ and ‘not occurred’ 

Performance 

metrics 
ADE Disease 

Drug 

compound 

Drug 

product 
Drug group 

Figure 3.5: Entity recognition for 12 key word entities by the KAERS-BERT model. ADE and 

RoA denotes adverse drug event and route of administration, respectively. Total sum of prediction 

proportions in a single row could be less than 100% because other 7 word entities are omitted in 

this table 
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Precision      

 ‘occurred’ 97.38 82.02 90.46 91.75 92.41 

 ‘not occurred’ 93.69 86.31 87.75 92.48 90.40 

 Difference† 3.69 -4.29 2.70 -0.73 2.02 

Recall      

 ‘occurred’ 90.69 79.46 69.90 89.48 88.06 

 ‘not occurred’ 88.31 75.90 80.18 86.00 80.73 

 Difference† 2.38 3.56 -10.28 3.48 7.33 

F1-score      

 ‘occurred’ 93.80 80.43 78.60 90.19 89.98 

  ‘not occurred’ 90.92 80.77 83.67 88.83 85.27 

  Difference† 2.88 -0.34 -5.08 1.36 4.71 

Abbreviations: NER, named entity recognition; KAERS-BERT, Korea Adverse Event Reporting System-bidirectional 

encoder representations from transformers; ADE, adverse event 

†The difference is performance score on entities labeled as ‘occurred’ minus that on entities labeled as ‘not occurred’. 
 

3.3.4 Ablation experiment 

NER performances were better when using both randomly selected ADE narratives and 

those with least reported items than when using only randomly selected ADE narratives, 

i.e., random only, particularly when the sample size of the training dataset was sufficiently 

large (Figure 3.6). When the KAERS-BERT model was trained using only 340 ADE 

narratives (M = 0), the NER performance on total entities was better when using the 

random only dataset (F1-score of 68.08%). However, when M became greater than or 

equal to 340, the NER performances on total entities were consistently better when using 

drug product + random datasets than when using the random only dataset (Figure 3.6a). 

Also, the NER performance on ADE entities was better when using datasets contained 

ADE narratives with least reported items than when using the random only dataset (F1-

score of 65.70%) at M = 1700. The NER performance on ADE entities at M = 1700 was 
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the highest when using the drug product + random dataset (F1-score of 68.13%). 

 

 

Figure 3.6: NER performances of the KAERS-BERT model on total entities (a) and ADE entities 

(b) by the composition of training dataset. A random only dataset denotes a training dataset 

consisting of only (340 + M) randomly selected ADE narratives, while ADE + random, indication 

+ random, drug compound + random and drug product + random datasets represent training 

datasets consisted of 340 ADE narratives reported with least reported ADE, indication, drug 

compound, drug product items plus M randomly selected ADE narratives, respectively. 
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3.4 Discussion 

I successfully created an annotated corpus to extract comprehensive drug safety information from 

ADE narratives reported through SRS, and proposed well-performing baseline models for various 

NLP tasks. Furthermore, I pre-trained the KAERS-BERT model specialized in clinical texts with 

frequent code-switching between English and Korea using 1.2 million ADE narratives. The 

KAERS-BERT model outperformed the KoBERT model on all NLP tasks (Table 3.5). All of those 

were possible because a thorough and consistent annotation guideline was adopted to extract drug 

safety information according to the standardized definitions of the data elements used in actual 

drug safety monitoring as seen in the ICH E2B(R3) standard. As a result, annotation quality was 

appropriately maintained (Table 3.2).  

While previous NLP corpora to extract drug safety information have rarely attempted to 

capture information other than ADE occurrence and drug dosing information [28, 60, 61, 63, 64], 

our annotated corpus additionally covered other drug safety information helpful for 

pharmacovigilance, including the WHO-UMC assessment results and temporal information. In 

addition, the NER performance of the KAERS-BERT model is comparable to or even higher than 

those of previous NLP models even though the numbers of used entity types were much larger in 

this study than in previous studies [28, 60, 62, 68]. The model extracting drug safety information 

from ADE reports in the VAERS [68] and the best performing model of the MADE 2018 challenge 

[28] detecting adverse drug events from EHRs achieved F1-scores of 67.35% and 82.9% on the 

NER, respectively. On the other hand, the KAERS-BERT model I developed resulted in an F1-

score of 83.91%. However, the number of used entity types was 19 in this study, which more than 

doubled and tripled 9 and 6, respectively, in the MADE 2018 challenge and the VAERS study. 

Given that an NER task becomes difficult as the number of entity types increases, the KAERS-

BERT model showed a considerable performance improvement in recognizing word entities 

related to drug safety information. 



34 

 

The high performance of the KAERS-BERT model on the NER task might be due to 

three reasons. First, the annotation guideline satisfactorily distinguished each word entity used to 

express drug safety information from others (see Chapter 7 Appendix, section 7.1). Second, pre-

training BERT model using the large volume of ADE narratives might help the model to be 

tailored to the target domain of drug safety information extraction [88]. Last, ADE narratives 

mentioned drug safety information more explicitly than other clinical texts of ADEs because the 

main purpose of an ADE narrative was to describe an adverse event and the clinical settings of a 

patient experiencing the adverse event. 

For example, drug safety information helpful to determine the causality between drug 

usage and ADE occurrence, such as whether a sign or symptom occurs before or after drug 

administration, is more explicitly described in ADE narratives than in other clinical texts. Indeed, 

the proportion of ‘ADE’ entities correctly predicted was much greater in this study (91.99%) than 

in the 2018 n2c2 shared task (58.7%) where ADE and medication information was extracted from 

clinical notes [60]. This larger difference in ADE recognition performance was partly because 

ADE narratives point out ADEs more explicitly than other clinical texts. 

While the KAERS-BERT model achieved decent performances on the NER task, some 

confusion arose particularly in identifying individual entities (Figure 3.5). Even in this case, if 

confusion cases can be fixed through rule-based post-processing, they are not fatal to end-to-end 

systems that can extract drug safety information and save it into the SRS database. In addition, I 

initially had a concern that the NER performance could be lower on entities labeled as ‘occurred’ 

than on entities labeled as ‘not occurred’ because ‘not occurred’ entities tended to be written as a 

list of the most common ADEs of a concerned drug. Unlike our concern, however, the NER 

performances on ‘occurred’ entities were comparable to those on ‘not occurred’ entities (Table 

3.6). 
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Furthermore, I showed that the NER performance was improved when adding ADE 

narratives with the least reported items to training datasets (Figure 3.6). I postulate that more 

diverse clinical settings and ADEs in the training dataset with the least reported items added could 

improve the model performance. The model performances were improved as the sample size of 

the training dataset increased, and the performance improvement was larger when using training 

datasets containing ADE narratives with the least reported items than when using the random only 

dataset. As I hypothesized, this finding indicates that diverse clinical settings in ADE narratives 

with the least reported items could improve the model performance when the model became 

familiar with the dominant clinical settings represented in randomly selected ADE narratives. The 

NER performance was better when using the smallest training datasets than when using the 

random only dataset (Figure 3.6). This finding was not totally unexpected in that the validation 

dataset was also composed of randomly selected ADE narratives. 

I expect that the baseline models I developed can improve the data quality of SRS by 

capturing the drug safety information left out when transmitting ICSRs to the SRS database. For 

example, I observed that the proportion of entities labeled as ‘Caused hospitalization’ among 

‘ADE at the last observation’ was greater in the total ICSRs than in the annotated ADE narratives 

(Table 3.4). Also, ‘ADE’ entities normalized to psychiatric and immune system disorders were 

more frequent in the annotated ADE narratives than in KIDS-KD (Figure 3.4). These differences 

may indicate that certain ADEs and clinical settings, e.g., psychiatric or immunologic ADEs and 

hospitalization caused by ADEs, tend to be left out when transmitting ICSRs to the SRS database. 

Because the annotated corpus appropriately captured this information, the NLP models I 

developed will be capable of extracting the drug safety information left out untapped. 

In this study, I defined and annotated the 'ADE Seriousness' entity , but not define a word 

entity for the severity of ADEs. This decision was mainly due to the fact that the severity of ADEs 

is not a mandatory reporting information field in the ICH E2B(R3) guideline. In general, the 
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severity of an ADE refers to the intensity of the ADE or its symptoms. Therefore, severe ADEs, 

such as severe headaches, may be unrelated to the medical significance of an ADE. On the other 

hands, the seriousness of an ADE is determined by whether it threatens the patient’s life or body, 

such as causing death, being life-threatening, requiring hospitalization, or resulting in disability 

[89]. The severity of an ADE is typically assessed using terminologies such as the CTCAE criteria 

[90]. Since the goal of this study was to increase the reporting fidelity of essential items, I decided 

to exclude severity in order to increase annotation efficiency and reduce confusion with 

seriousness. However, in many cases, modifier expressions representing the severity of an ADE 

are captured as ADE entities, so if the entity normalization step is improved, it is expected that a 

significant portion of severity information will also be recognized. 

I also tested the feasibility of the baseline models developed in this study for extracting 

drug safety information from free-texts of social networks and web portals, such as Twitter and 

Naver, using a demo model. The performance of these models was found to be satisfactory. 

Extracting safety information from new sources, such as social media networks, has the potential 

to significantly improve the issue of under-reporting [91]. However, it is important to establish 

appropriate search terms to identify relevant posts containing drug safety information on social 

media and pre-process irregular spacing and misspellings in the posts. Additionally, caution 

should be exercised to avoid mistaking previous indications or symptoms as ADEs when 

extracting drug safety information from social media, as the distinction between ADEs caused by 

drugs and preexisting symptoms may not be clearly described in the these sources compared to 

ADE narratives reported through traditional reporting systems. 

Our study had several limitations. First, I did not annotate parent-child drug safety 

information, which is critical to evaluate drug safety during pregnancy. Second, I did not provide 

baseline models for the entity normalization task and the classification tasks for entity labels 

except ‘occurred’ and ‘concerned’ although I finished annotation for the tasks. Third, the high 



37 

 

performances of the KAERS-BERT model do not guarantee that the model improve the data 

quality of drug safety information collected through SRS. The usefulness of the NLP model 

extracting drug safety information depends on the post-processing module that inputs drug safety 

information into SRS database based on the inference results of the NLP model. To address those 

limitations, an end-to-end system that could extract drug safety information from ADE narratives 

and incorporate it into the SRS database may demonstrate the utility of the NLP models in the 

real-world pharmacovigilance setting [24].Lastly, one potential issue with using NLP models to 

extract drug safety information is the risk of over-reporting, where existing indications or 

symptoms are mistaken for ADEs. This can lead to false positive safety signals, which can cause 

fatigue in pharmacovigilance efforts. In this study, ADEs were defined as any signs or symptoms 

that occurred after drug administration. This means that drug safety information extracted by NLP 

models may include a wider range of symptoms than those reported by humans, who may separate 

ADEs from preexisting indications. To reduce false positive safety signals, I can develop an 

algorithm that excludes ADEs that are clinically similar to preexisting indications by normalizing 

medical entities and measuring clinical similarity. Alternatively, I can use a classification model 

to select only those ADEs that reporters would typically report, based on structured drug safety 

information from KIDS-KD. 

I anticipated that the annotated corpus and NLP models developed in this study would 

improve pharmacovigilance by reducing under-reporting through the extraction of drug safety 

information from free-texts. Under-reporting is a significant limitation of SRS and one of the 

main causes of poor-quality reporting. In the US, only 6% of adverse events are reported to 

FEARS [23]. However, under-reporting is not only problematic because it leads to a lack of 

reporting, but also because it can create a reporting bias. For instance, it is known that the reported 

rate of serious ADEs or ADEs that are expectable for a given drug is higher than that of ADEs 

that are not [92, 93]. While under-reporting is somewhat inevitable given the nature of SRS, I 
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believe that by extracting additional drug safety information from free-texts, I can improve under-

reporting and related reporting bias. In this study, I also expect to see an effect on improving the 

reporting bias on the therapeutic area of the ADE, as the distribution of ADEs in terms of system 

organ class differs between the KIDS-KD and free-texts (Figure 3.4). In addition, while under-

reporting has been investigated using expected reports counts estimated using literature review 

[94, 95], obtaining drug safety information contained in free-texts can help estimate the reporting 

rate through the final information entry stage of the SRS. 

 

3.5 Conclusion 

In summary, I defined the extraction of comprehensive drug safety information from 

ADE narratives reported through SRS as a series of NLP tasks and successfully developed well-

performing baseline NLP models for the tasks. Specifically, I developed the KAERS-BERT model 

suited for clinical texts written in Korean and English using 1.2 million ADE narratives collected 

through KAERS. The KAERS-BERT model also outperformed other baseline models including 

the KoBERT on all the NLP tasks. The annotated corpus and the KAERS-BERT model can 

streamline pharmacovigilance activities and eventually increase their efficiency by improving the 

data quality of SRS database.  
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Chapter 4  

 

Extraction of Drug-Food Interactions from 

the Abstracts of Biomedical Articles 

 

Although drug-food interaction (DFI) is a drug interaction that has posed a threat to the safe usage 

of medicine next to drug-drug interaction (DDI), there is no database that systematically collects 

DFI information. Thus, in this study, I tried to define the extraction of DFI information from 

abstracts of biomedical articles for building DFI database as an NLP task. In addition, I developed 

manually annotated corpus for the DFI extraction, i.e., ‘the DFI corpus’ and provided baseline 

models for the defined tasks through simple fine-tuning of diverse BERT models. 

 

4.1 Motivation 

Drug interaction occurs when the exposure to a drug (or victim) or its efficacy and/or safety is 

affected by another substance (or perpetrator) consumed together with the drug. Perpetrators 

include, but are not limited to, another drug, food, beverage, or a chemical. Drug interaction may 

increase or decrease the activity of the victim drug. For example, grapefruit can increase the 

blood pressure-lowering effect of some anti-hypertensive when ingested together [96]. In 

contrast, atorvastatin can reduce the efficacy of co-administered clopidogrel, which is used to 
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manage unstable angina [97]. 

Of various types of drug interactions, those with another drug (drug-drug interaction, 

DDI) or food (drug-food interaction, DFI) are clinically important because DDIs and DFIs can be 

avoided if they were recognized beforehand. Drug interactions can be identified at various stages 

of drug development, post-marketing pharmacovigilance, and routine clinical use through 

prospective systematic investigations or by accident. No matter how drug interactions are 

identified, a drug interaction database can assist clinicians to choose a set of medications, which 

can be safely co-administered to avoid harmful drug interactions. 

An NLP system that automatically extracts drug interaction information from biomedical 

texts can facilitate the construction of a drug interaction database. For example, several DDI 

extraction NLP models developed on the DDIExtraction 2013 corpus have shown good 

performance in extracting and classifying DDIs [4, 98, 99]. A similar NLP model to extract DFIs 

from scientific literature was trained on the DDIExtraction 2013 corpus on the assumption that 

the structure of DDI-describing sentences is close to that of DFI-describing ones [100]. This 

assumption, however, may not be substantiated given the differences between DFIs and DDIs in 

the objectives, designs, and evidence levels of studies investigating drug interactions [101]. To 

support this notion, many DFIs are identified incidentally and communicated typically via case 

reports, whereas most DDIs are affirmed or nullified in well-designed, prospective in-vitro or in-

vivo studies. Therefore, ‘extraction task’ should be separately approached between DFIs and DDIs. 

In other words, the sources of corpora for extraction task should vary by the type of drug 

interactions.  

At the time of writing this article, the POMELO corpus was the only publicly available 

corpus for DFI extraction [102] (Table 1). The POMELO corpus consists of abstracts of 

biomedical articles indexed by the Medical Subject Heading (MeSH) term ‘Drug-Food 
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Interaction’ (MeSH Unique ID: D018565). However, many DFIs have been also reported in a 

study on the biological effects of a food or its components, which were not necessarily indexed 

by the MeSH term ‘Drug-Food Interaction’. Thus, it is not a good idea to limit the DFI corpus to 

texts explicitly referring to a DFI, such as texts from the ‘Drug interaction’ section in DrugBank 

or biomedical articles with the ‘Drug-Food Interaction’ MeSH Term. 

 

Table 4.1: Biomedical corpora developed for the extraction of drug interaction 

Drug 

interaction 

type 

Corpus Data source 
Numbers of 

annotated 

sentences and 

documents 

Annotated 

information 

DDI 

DDI corpus [99] 
DrugBank 4701/792 types of entities, 

relations between 

entities, types of 

DDI statements 
MEDLINE 327/233 

PK-DDI [103] 
Drug 

package 

inserts 
592/68 

modality of DDI, 

types and roles of 

drug entities 
PK [104] MEDLINE 1333/428 types of entities 

DFI 

POMELO [102] MEDLINE 1084/639 
types of entities, 

relations between 

entities 

DFI corpus (this 

study) [13] PubMed 2498/2270 

types of entities, 

sentences containing 

DDI or DFI, 

modality of DFI 

statements, relations 

between entities, 

evidence level of 

abstracts 
 

Based on that understanding, I newly created an annotated corpus for DFI extraction from 

the abstracts of biomedical articles, i.e., the DFI corpus. To this end, I have broadened the 

definition of DFI such that it is not only the change in the safety and efficacy profile of a drug, 
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but indirect interactions between a food and a drug via biological components or pathways. 

Additionally, I have expanded the concept of DFI to include the interaction between a food and 

molecules closely related to the pharmacological action and pharmacokinetic properties of the 

drug. This expansion has enabled us for identifying more DFIs, many of which were not 

prospectively studied, and, therefore, should be suspected based on a small number of case reports 

and our understanding on the molecular mechanisms.  

The annotated DFI corpus can be useful to construct a DFI database for healthcare 

professionals such as clinicians and pharmacists.4 This is why the DFI corpus contains not only 

a DFI key-sentence and an extractive summarization of DFI, but also the word entities related to 

the extracted DFI, the relations between the annotated entities, and the evidence levels of the 

extracted DFI. Eventually, the DFI corpus is also suited for the multi-task learning approach 

because the classification tasks defined in the DFI corpus are related [105]. 

To assess the appropriateness of the DFI corpus, I established a baseline performance for 

DFI extraction using a BERT (Bidirectional Encoder Representations from Transformers) model. 

BERT is one of the most successful and widely-used language models in language understanding 

tasks [9]. However, BERT models pre-trained on general domains are not adequate for text mining 

tasks in the biomedical area because the word distributions and semantics in biomedical texts are 

quite different from those in general texts. For this reason, various BERT models, including 

BioBERT [56], ClinicalBERT [57], and PubMedBERT [106], have been introduced to facilitate 

language understanding tasks in the biomedical domain. In this study, I used those BERT models 

pre-trained on biomedical texts to report the performance benchmarks. 

In brief, our main contributions are as follows:  

1. I constructed ‘the DFI corpus’, a manually annotated corpus for extracting DFI 

                                                      
4 Available here: https://github.com/ccadd-snu/corpus-for-DFI-extraction 

https://github.com/ccadd-snu/corpus-for-DFI-extraction
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information from the abstracts of biomedical articles. I identified a ‘DFI key-

sentence’ as a target entity for DFI extraction. 

2. The DFI corpus I created is the largest in its kind, i.e., manually annotated corpora 

for extracting drug interactions. 

3. Simple fine tuning of the pre-trained BERT models using the DFI corpus performed 

remarkably well in the classification tasks for DFI extraction. 

  

4.2 Proposed Methods 

In this section, I explained how I selected biomedical articles annotated in the DFI corpus and 

described an outline of annotation guideline I developed. In addition, I elaborated the methods 

for the quality control of annotation and baseline model development. 
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4.2.1 Data source 

I collected the abstracts of biomedical articles from the journals that have published one or more 

papers between January 1, 1970 and October 2, 2019, indexed by the MeSH term of ‘Drug-Food 

Figure 4.1: Overview of proposed method for developing DFI corpus 
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Interaction' (MeSH Unique ID: D018565) or ‘Herb-Drug Interaction’ (MeSH Unique ID: 

D041743) (Supplementary data 1). MeSH terms, a hierarchical subject vocabulary for biomedical 

documents, are annually updated by the National Library of Medicine in the US [107]. I used the 

Entrez Programming Utilities (E-utilities, last updated on June 24, 2015; the National Center for 

Biotechnology Information, Bethesda, MD, USA) to collect the abstract texts from biomedical 

articles and their metadata [108]. All the annotated abstracts were accessible through PubMed. 

To increase the number of the abstracts containing DFI information in the DFI corpus, I 

selected abstracts that simultaneously included both a food word and a drug/drug-related molecule 

word (i.e., well-known targets, drug metabolizers, and drug transporters). A word was regarded 

as a food, drug, or drug-related molecule word when the word is listed in the manually-curated 

vocabularies of foods, drugs, and drug-related molecules, each of which was based on the FooDB 

[109], the 2019 ATC index and the DrugBank, respectively (Supplementary data 2). Some words 

were used to denote both food and drug/drug-related molecule depending on the context, e.g., 

ascorbic acid (vitamin C) and Zn (zinc). This manual annotation enabled for deciding the category 

for a word in a certain context. 

 

4.2.2 Annotation 

Annotation for the DFI corpus was conducted in the following five steps: (1) labeling the type of 

a word entity, (2) labeling the type of a sentence entity, (3) tagging a relation between word entities 

or between a word and sentence entities, (4) tagging a sentence modality for key-sentence entities, 

and (5) assigning an evidence-level to an abstract document. Each step is described below in more 

detail.  

(1) I classified words into one of the following eight entities: ‘drug’, ‘food’, ‘food 

component’, ‘ambiguous’, ‘well-known target’, ‘drug metabolizer’, ‘drug transporter’, 
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and ‘none’. Word lists are constructed for each entity category using the DrugBank, the 

2019 ATC index, and FooDB. A word could be labeled as >1 entity depending on the 

context. For example, insulin injected into the body was labeled as a ‘drug’, which is a 

medicine or substance used to treat or prevent a disease or alleviate its symptoms. At the 

same time, insulin was labeled as a ‘well-known target’ when its level was determined to 

evaluate the physiological effect of a chemical compound. Detailed guidance and 

examples for labeling word entities can be found in the annotation guideline (See Chapter 

7 Appendix, section 7.2). 

(2) I labeled a sentence as one of the following five sentence entities: ‘DFI key-sentence’, 

‘DDI key-sentence’, ‘food-effect key-sentence’, ‘supporting sentence’, and ‘none 

sentence’. A ‘DFI key-sentence’ refers to a sentence that contains DFI information, while 

a ‘DDI key-sentence’ is a sentence that represents DDI information. A ‘food-effect key-

sentence’ denotes a sentence that provides information as to how food intake affects the 

bioavailability of a drug [110]. Lastly, a ‘supporting sentence’ does not provide 

information about the occurrence of DFI or DDI by itself, but must be read in advance 

to understand the DFI or DDI key-sentence that follows. 

(3) I tagged a relation between the word entities. For example, apple and citric acid are a 

food and its food component, respectively. Synonyms or abbreviations are identified such 

as ‘green tea extract’ and ‘GTE’. Furthermore, I tagged a relation between a word and 

sentence entities that were associated with a labeled DFI key-sentence. Thus, a ‘DFI key-

sentence’ should have at least two tagged relations, one with a drug-related entity and the 

other with a food-related entity. 

(4) I determined a DFI key-sentence was ‘positive’ if the study described in the abstract 

showed an interaction between a food and drug entities, and ‘negative’ if not. 
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(5) I assigned one of the following seven evidence-levels of DFI information to each 

document: ‘clinical trial’, ‘observational study’, ‘case study’, ‘in-vivo study’, ‘in-vitro 

study’, ‘bioanalysis’, or ‘others.’ 

More detailed instructions and examples can be found in the annotation guideline for the DFI 

corpus (see Appendix, section 7.2). The annotation was performed using tagtog (tagtog.net), an 

web-based annotation tool [111]. 
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Figure 4.2: Example of a manually annotated abstract for DFI extraction. Before 

annotating DFI, I selected abstracts that contained ≥1 drug word AND ≥1 food word 

simultaneously in the same abstract. The entity types of annotated words are denoted by 

superscripts and highlighted in colors. In this example, two DFI key-sentences marked as 

light blue are annotated. Also, the relations between word entities or between a word and 

sentence entities were enumerated at “Relations” at the bottom, while the modalities of 

key-sentence entities at “Key-sentence Modality.” The evidence-level of the abstract, ‘in-

vivo study’, was described at “Evidence-level.” 
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4.2.3 Quality control of annotation 

The DFI corpus was manually annotated by five annotators, and their annotations were reviewed 

by an independent reviewer, who had expertise in both clinical pharmacology and NLP. The 

annotators had at least ≥2 years of study in medicine or pharmacy, and had a good command of 

English. I trained the annotators for two weeks to help them become familiar with the annotation 

guideline, to teach them how to use tagtog, and to fix any mistake in preliminary annotation 

exercises. 

After two weeks of training, each annotator labeled a hundred abstracts per week. To control and 

improve the annotation quality, the independent reviewer gave real-time feedbacks to the 

annotators one-on-one. The independent reviewer also thoroughly examined and scored the 

annotation results by each annotator on a weekly basis. If the proportion of correct answers was 

<80% in randomly selected 20% sentences/abstracts, the annotator was asked to re-do the entire 

annotation task for the week. 

The inter-annotator agreement (IAA) was measured by comparing the annotation results between 

each of the five annotators and the independent reviewer through the Cohen’s kappa coefficient 

(κ) defined by [81]. IAA was assessed for three classification tasks defined in the DFI corpus: (1) 

named entity recognition, (2) key-sentence classification and (3) evidence-level classification. 

 

4.2.4 Baseline model development 

I built baseline models for DFI extraction using the BERT-Base model and publicly available 

BERT models pre-trained on biomedical texts such as BioBERT, ClinicalBERT, PubMedBERT 

[9, 106, 112, 113]. All of the tokenizers and model configurations of those BERT models were 
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directly downloaded from the Huggingface’s repository.5 The fine-tuning of the BERT models 

was performed using simple fully connected networks of two layers. I performed hyperparameter 

tuning on the learning rate, drop-out probability, batch size and epoch number. I evaluated the 

baseline models by measuring F1 scores and performed the qualitative error analysis. 

 

4.3 Results 

4.3.1 Corpus statistics 

A total of 2,270 abstracts were collected, from which 2,498 sentences were extracted to create the 

DFI corpus (Table 4.1). Most (94.6%) of the abstracts containing DFI key sentences were not 

indexed by a DFI MeSH term (Table 4.2). The DFI corpus contained 33,386 (6.0%) word entities 

out of 552,371 words, and the most common word entity was food (13,353, 40.0%) followed by 

well-known target (8,467, 25.3%) and drug (8,088, 24.2%). (Figure 4.2a and Table 4.3). Of 20,550 

sentences in the DFI corpus, 2,488 sentences (12.1%) included information about DDI or DFI, of 

which 2,145 (85.9 %) and 211 (8.4%) sentences were DFI and DDI key-sentences, respectively. 

(Figure 4.3b) 

 

Table 4.2: Frequency table for annotated abstracts 

Included DFI  

key-sentence 

Indexed by DFI MeSH term 

Yes No 

Yes (N=1001) 54 (5.4%) 947 (94.6%) 

No (N=1269) 8 (0.6%) 1261 (99.4%) 

                                                      
5 https://huggingface.co/models 

https://huggingface.co/models
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Total (N=2270) 62 (2.7%) 2208 (97.3%) 

* MeSH, medical subject headings; DFI, drug-food interaction. 

 

 

Table 4.3: Distribution of the annotated entity types in the DFI corpus 

Entity type Percent of abstracts, n (%) 

Figure 4.3: Distribution of (a) annotated word and (b) sentence 

entities in the DFI corpus. 
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Training Development Test 

'drug' 5,632 (1.46) 1,669 (1.48) 787 (1.43) 

'food' 9,384 (2.44) 2,621 (2.33) 1,348 (2.45) 

'food component' 902 (0.23) 377 (0.34) 63 (0.11) 

'ambiguous' 452 (0.12) 118 (0.10) 153 (0.28) 

'well-known target' 6,065 (1.58) 1,723 (1.53) 679 (1.24) 

'drug metabolizer' 697 (0.18) 176 (0.16) 125 (0.23) 

'drug transporter' 288 (0.07) 113 (0.10) 14 (0.03) 

'none' 361,545 (93.92) 105,688 (93.96) 51,752 (94.23) 

total 384,965 (100.0) 112,485 (100.0) 54,921 (100.0) 

 

In terms of evidence levels, the majority of the abstracts were from in-vitro or in-vivo 

studies regardless of the inclusion of a DFI key-sentence (75.6% and 56.2%, respectively, Figure 

4.4). On the contrary, only 7.9% of abstracts including a DFI key-sentence were associated with 

clinical studies (i.e., case report, clinical trial and observational study) with only 3.1% being from 

clinical trials. 
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Many words were labelled as >1 entity, particularly for food, drug, and well-known 

target (Figure 4.5). For examples, while coffee and cisplatin were consistently labeled as a food 

and a drug entity, respectively, cannabidiol and iron were annotated as a food or a drug depending 

on the context. 

Figure 4.4: Distribution of evidence levels of abstracts in the annotated corpus by the 

inclusion of DFI key-sentence. The size of the circles is proportional to the number of 

abstracts and the exact numbers and percentages are also reported. 
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4.3.2 Annotation Quality 

The total IAA was >0.845 for key-sentence classification and evidence-level classification tasks 

between the annotators with the independent reviewer, while the average of total IAAs was 0.797 

(Table 4.4). For name entity annotation, only three annotators finished annotation schedule and 

the total IAA of the three annotators was 0.638. 

 

Figure 4.5: Ternary plot showing the ratios of annotated entity types of given 

words in the DFI corpus. In this plot, ‘food’ denotes both ‘food’ and ‘food 

component’ entities, while ‘drug’ implies both ‘drug’ and ‘ambiguous’ entities. 

Also, ‘target’ includes ‘well-known target’, ‘drug metabolizer’, and ‘drug 

transporter’ entities. 
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Table 4.4: Cohen’s kappa by classification task between the annotators and the independent 

reviewer 

Classification 

task 

Annotator 
total 

1 2 3 4 5 

Named entity 

annotation 
0.797 NA NA 0.545 0.585 0.638 

Key-sentence 

classification 
0.910 0.878 0.591  0.887 0.920 0.865 

Evidence level 

classification 
0.913 0.869 0.669 0.935 0.935 0.888 

Average 0.873 0.798 0.619 0.789 0.813 0.797 

* NA, not available; 

* #2 and #3 annotators did not finish the pre-defined annotation schedule for named entity recognition. 

 

4.3.3 Performance of baseline models 

All of the BERT models fine-tuned on the DFI corpus performed well in the classification tasks, 

particularly for named entity recognition and key-sentence classification (F1 scores > 83%, Table 

4.5). In all three tasks, the PubMedBERT and BioBERT models showed the best and second-best 

performances [56, 106]. 

 

Table 4.5: Performance of BERT models by DFI extraction task. The bolded and underlined 

performance scores indicate the best and second-best performances on a classification task, 

respectively. 

Classification task (%) Base-BERT BioBERT PubMedBERT ClinicalBERT 

Named entity recognition  

 weighted F1 score 83.1 85.2 86.1 82.3 

 macro F1 score 80.0 83.1 83.8 79.3 
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Key-sentence classification 82.0 82.6 85.1 81.4 

Evidence level classification  

 weighted F1 score 70.6 72.8 70.4 67.3 

 macro F1 score 61.9 65.6 63.1 53.6 

 

4.3.4 Qualitative error analysis 

As a result of qualitative error analysis, the most likely true positive sentences in the validation 

dataset which were classified as a key-sentence by both annotators and the key-sentence classifier 

are syntactically typical to express DFI (Table 4.6). The typical syntax of sentence describing DFI 

is “<food, food compound or related abbreviations)> significantly <change, increase, decrease 

etc.> <the exposure of drug, drug-induced toxicity or the expression of gene in the mode of action 

of interested drug>.” The most unlikely true false sentences seem to be irrelevant to a study 

investigating DFI (Table 4.7).  

 

Table 4.6: Examples of most likely true positive sentences in the validation dataset which were 

labeled as a key-sentence and also predicted as a key-sentence by the key-sentence classifier 

Examples of most likely true positive sentences 

- Pretreatment with 23-HTA (10 mg/kg/d, per os (p.o.)) significantly reduced 

cisplatin-induced elevations in blood urea nitrogen (BUN) and serum creatinine 

level, whereas NIF₁ (10 mg/kg, p.o.) slightly reduced these levels. [114] 

- Co-administration of berberine increased the initial plasma concentration and AUC 

of metformin and decreased systemic clearance and volume of distribution of 

metformin in rats, suggesting that berberine inhibited disposition of metformin, 

which is governed by OCT1 and OCT2. [115] 

- Moreover, green tea significantly inhibited OATP1A2-mediated nadolol uptake 

(half-maximal inhibitory concentration, IC50 = 1.36%). [116] 
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- Furthermore, BA ameliorated mRNA and protein expression of NF-κB, iNOS, TNF-

α, Nrf2, HO-1 and NQO1 in the kidney. [117] 

- Ginger significantly decreased the area under the concentration-time curve of 

isoniazid, whereas Vz and Cl were increased. [118] 

 

Table 4.7: Examples of most likely true positive sentences in the validation dataset which were 

labeled as a non key-sentence and also predicted as a non key-sentence by the key-sentence 

classifier 

Examples of most likely true negative sentences 

- The morphologies of Laminaria were studied by scanning electron microscopy and 

transmission electron microscopy. [119] 

- Whole flour samples were analyzed by ICP-AES/MS, HPLC and Elemental CHNS 

Analyzer. [120] 

- Technological advances in the past 30 years have enabled the production of pure, 

stable proteins in vast amounts. [121] 

- Here, a randomized plot field experiment was performed to study the GHG emissions 

for various farming systems during the rice growing season. [122] 

- Allogeneic stem cell transplantation (alloSCT) is a curative procedure for 

myelofibrosis. [123] 

 

On the other hand, the most unlikely false negative sentences which were labeled as a key-

sentence but predicted as a non key-sentence by the sentence classifier were frequently wrongly 

parsed by the sentence tokenizer. Thus, the most unlikely false negative sentence actually 

contained more than one sentence or was an incomplete sentence. In the most unlikely false 

positive sentences, syntactic features were similar to those of DFI key-sentences. However, these 

false positive sentences were related to only drug entities or it is unlikely to describe DFI in an 

given experiment setting of a source document, i.e., abstract of biomedical article. Also, 

abbreviated drug or gene names seemed to be often mistaken for a food entity. 
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Table 4.8: Examples of most unlikely false negative sentences in the validation dataset which 

were labeled as a key-sentence but predicted as a non key-sentence by the sentence classifier were 

Examples of most unlikely false negative sentences 

- TRB was also effective against oral toxicity of BoNT/A, B and E. Thus, TRB may 

be of potential benefit in protecting the paralytic actions of botulinum neurotoxins 

(BoNTs), but its use is limited by mixing with the toxin. [124] 

- Such an inhibitory effect could be due to reduced levels of S. 

- The leaf extract had moderate anti-elastase activity (54%) but was inactive agains 

collagenase. [125] 

- Limited data suggest that thiamine supplementation is capable of increasing left 

ventricular ejection fraction and improving functional capacity in patients with heart 

failure and a reduced left ventricular ejection fraction who were treated with 

diuretics (predominantly furosemide). [126] 

- CYP3A4, raising the question which effect prevails in vivo. 

 

Table 4.9: Examples of most unlikely false positive sentences in the validation dataset which 

were labeled as a non key-sentence but predicted as a key-sentence by the sentence classifier 

Examples of most unlikely false positive sentences 

- However, a combination of ICI182780 and MK886 significantly inhibited 

resveratrol-induced eNOS mRNA expression. [127] 

- In addition, it significantly up-regulated the level of t-PA and down-regulated the 

level of PAI-1 (p<0.05). [128] 

- HG enhanced expression of fibrosis biomarkers such as collagen IV and connective 

tissue growth factor (CTGF), which was markedly attenuated by Oryeongsan. [129] 

- In addition, ROS levels in bladder tissues and serum lipid peroxidation (TBARS 

assay) were markedly higher in obese compared with lean mice, all of which were 

reduced by resveratrol treatment. [130] 
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- Gelatin caused a decrease in thrombin-antithrombin complexes (-45% vs. -4%, 

p<0.05) and F1+2 (-40% vs. +1%, p<0.05). [131] 

 

4.4 Discussion 

I successfully created a new, manually-annotated, domain-specific corpus to extract DFI 

information from biomedical texts, which I named ‘the DFI corpus’. To the best of our knowledge, 

the DFI corpus is largest and most comprehensive in its kind. For example, the numbers of 

sentences and documents are two and 3.5 times, respectively, as many as those in POMELO 

(Table 4.1). Furthermore, the number of documents annotated in the DFI corpus is much bigger 

than that in any other corpora on DDI (2,270 vs. 792 in the DDI corpus, Table 4.1). 

Besides, the DFI corpus is well-suited for various NLP tasks in DFI extraction. This 

versatility has been made possible by including not only word and sentence entities, but the 

evidence-level of the extracted DFIs and the relations between annotated entities, such as 

synonym relation between a food and its abbreviation form, and inclusion relation between a food 

and its component. Furthermore, what is learned from each classification task defined in the DFI 

corpus is helpful to learn other types of NLP tasks. For example, the ability to recognize food and 

drug word entities acquired from the named entity recognition task in the DFI corpus could 

improve the performance of identifying DFI key-sentences. Thus, I expect that the multi-task 

learning framework incorporated into the DFI corpus will improve the performance of any 

classification model trained or fine-tuned on the DFI corpus [105]. This expectation appears to be 

realized if I look at the remarkable performance in the classification tasks achieved by the BERT 

models, particularly the PubMedBERT and BioBERT models (Table 4.5). 

The inclusion of both DDI and DFI key-sentences in the DFI corpus can improve the 

performance of any models trained on the DFI corpus. In the DFI corpus, I annotated not only 

DFI but DDI key-sentences because they will help differentiate the syntax of DFI key-sentences 
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from that of sentences not containing any drug interaction information (i.e., none key-sentences). 

As the definitions of ‘interaction’ were identical when describing DFI and DDI (Supplementary 

data 3), the syntactic features of DFI and DDI key-sentences are very similar. Therefore, if DDI 

key-sentences are separately annotated and labeled, a model could have more chance to learn how 

to distinguish DFI key-sentences from none key-sentences by utilizing the syntactic information 

of DDI key-sentences as well. This flexibility was realized by including both DFI and DDI key-

sentences in the DFI corpus, which eventually allows for identifying the structural difference 

between sentences describing DFI and DDI. 

Unlike the previous drug interaction corpora that exclusively relied on MeSH terms in 

selecting abstracts, the DFI corpus was constructed by selecting biomedical abstracts that 

included both a food word and a drug/drug-related molecule word. This resulted in a huge increase 

in the number of the abstracts containing DFI information in the DFI corpus. For example, 44.1% 

of annotated abstracts (1,001 out of 2,270 abstracts, Table 4.2) contain one or more DFI key-

sentences. In fact, I found out that the vast majority of abstracts containing DFI key-sentences 

could not be tagged when searched only by the DFI MeSH term, i.e., only  5.4% or 54 out of 

1,001 abstracts (Table 4.2). This is why DFI extraction models trained on the POMELO corpus, 

which consists of abstracts of biomedical articles tagged only by the DFI MeSH term, might not 

be practical to capture DFI from abstracts of biomedical articles. Indeed, the DFI corpus has many 

more ‘negative’ sentences (18,062 sentences, Figure 4.3b), which appeared around DFI key-

sentences but did not contain evidence for DFI, while the total number of ‘positive’ sentences 

describing drug interactions are comparable to or even larger than those of previous corpora [99, 

102]. 

In addition, the concept of ‘ambiguous’ word entity was introduced in this corpus to 

address the difficulty in determining whether a word refers to a food or drug entity. Distinguishing 

between these two entities is also important for differentiating DFI from DDI. However, despite 
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drug and food entities making up 40.0% and 24.2% of annotated word entities, respectively, 

ambiguous entity made up only 2.2% of all word entities (Figure 4.3). This clear distinction 

between food and drug entities may be due to the fact the only documents containing one or more 

drug and food words on manually curated, mutually exclusive lists were used as annotation targets 

in this corpus. For instance, I selected one document for annotation [114] with the title “The 

ameliorative effect of 23-hydroxytormentic acid isolated from Rubus coreanus on cisplatin-

induced nephrotoxicity in rats” because it contained a drug word ‘cisplatin’ and a food word 

‘rubus’. These pre-recognized words were served as cues for the annotators to distinguish drug 

and food entities, making it easy for them to identify clear examples of drug and food entities.  

 Another strength of the DFI corpus is that it was annotated based on the scientific 

understanding of the design of the study investigating DFI and the context where a food or entity 

was used. Those annotation rules are particularly useful for distinguishing a drug entity from a 

food entity while not confusing DDIs with DFIs. For example, ‘cholesterol’, which usually 

represents a target entity, was labeled as a food entity if used to denote a food component. To 

support this notion, the overall distribution of labeled entity types was plausible (Figure 4.5).  

The DFI key-sentences in the DFI corpus are not just statements as a sentence level, but 

complex entities that provide a context each document denotes. I labeled a DFI key-sentence only 

when the factual evidence of the DFI information is presented in a given abstract (see Appendix, 

section 7.2). For example, a sentence like “According to previous studies, green tea may interact 

with cardiovascular drugs such as warfarin, simvastatin and nadolol.” was not tagged as a DFI 

key-sentence because an annotated abstract did not provide any factual evidence to support the 

acclaimed DFIs. This is why the sentence entities in the DFI corpus can provide more information 

than other corpora as I also labeled the evidence level of the documents that contained each key-

sentence.  
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The whole steps of annotation to create the DFI corpus was well planned and performed 

adequately. The detailed annotation guideline was prepared in full advance of actual annotation 

(see Appendix, section 7.2). Additionally, I carefully chose qualified annotations, trained them, 

gave feedbacks, and fixed any error on a real-time basis, which dramatically improved the quality 

of the DFI corpus. Evidence is that the average of total IAAs on the three classification tasks was 

79.6%, which is higher than or comparable to IAAs reported previously in other well-annotated 

medical corpora [61, 132]. The total IAAs for classifying key-sentences and evidence-levels (86.5% 

and 88.8%, respectively, Supplementary table 1) were even 15% higher than the highest IAAs for 

annotating relational information from MedLine corpus in the DDI corpus (72.5%) [99]. This 

study had a major limitation. The total IAA for named entity recognition in the DFI corpus was 

lower than that in the DDI corpus (63.4% and 79.6%, respectively, Table 4.4) [99]. This might be 

because the named entities in the DFI corpus were more diverse and heterogeneous than those in 

the DDI corpus [99]. Unlike the DDI corpus, where only a ‘drug’ and its subtype entities (e.g., 

brand name and group of drugs) were included as named entities, more diverse and heterogeneous 

entities were contained in the DFI corpus (i.e., ‘drug’, ‘food’, ‘food component’, ‘ambiguous’, 

‘well-known target’, ‘drug metabolizer’, ‘drug transporter’, and ‘none’). In spite of this limitation, 

however, the overall quality of annotation in our study cannot be overestimated because the 

average IAA for all of the classification tasks using the DFI corpus was sufficiently high (79.6%, 

Supplementary table 4), and all the BERT models fine-tuned on the DFI corpus performed well 

in the classification task for named entity recognition (F1 scores >83%, Table 3). 

In addition, I found that the sentence tokenizer for baseBERT did not successfully parse 

the sentences in the abstracts of biomedical article and wrongly parsed sentences had a bad impact 

on the key-sentence classification. Moreover, drug and gene names arbitrarily abbreviated in a 

given abstract seemed to be often mistaken for a food entity. I expect that these problem could be 

solved by using sentence tokenizers specialized in the biomedical domain and replacing 
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abbreviated words by their definitions in preprocessing. 

In this study, I discuss the development of the DFI corpus which focuses on systemically 

collecting scientific evidence on DFIs. Unlike other annotated corpora for drug interaction 

extraction that focused on detecting sentences describing drug interactions, the DFI corpus defines 

and selects DFI key-sentences that experimentally support the existence (or non-existence) of 

DFIs. The dataset and model developed in this study have the potential to enable the systemic 

collection of DFI information as well as its reference papers. The relatively low performance on 

extracting key-sentences may be due to the fact that DFI key-sentences are determined based on 

the experimental design in the abstract rather than the content of the sentence itself. This suggests 

that NLP models may need to have some understanding or reasoning ability about biomedical 

experiment design in order to properly extract DFI key-sentences. Therefore, future work could 

explore the use of the broader contextual information from the experimental settings of the 

abstracts to improve the performances of DFI key-sentence extraction beyond the baseline model 

in this study, which only used individual sentence representation as input. 

 

4.5 Conclusion 

I constructed the DFI corpus, the largest and the most comprehensive corpus in its kind to extract 

drug interaction, based on the proper pharmacological understanding about DFI and domain-

specific knowledge as to how scientific evidence of DFI is documented. The DFI corpus was well 

annotated, and baseline BERT models based on the DFI corpus achieved remarkable 

performances on the classification tasks related to DFI extraction. Because the annotation 

guideline for the DFI corpus resolved diverse problems to extract DFI from abstracts of 

biomedical articles, any NLP model developed, revised, and fine-tuned on the DFI corpus would 

be useful to build an up-to-date DFI database.  
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Chapter 5  

 

Experiences in Developing Annotation 

Guideline for Extracting Clinical 

Information from Unstructured Free-texts 

 

In this section, I elaborate on our experiences in developing annotation guidelines to extract 

clinical information for pharmacovigilance and identify issues around defining annotation 

elements like a word entity and a relation between word entities. Although the issues I identified 

are only based on our experience gained from two studies explained in Chapters 3 and 4, I decided 

to write this section in the dissertation because the issues to be considered when defining 

annotation elements for clinical information extraction have not been systemically reviewed 

before. 

 

5.1 Issues around defining a word entity  

The consistency of annotations between different annotators is one of the major indicators of 

annotation quality. An annotation guideline is a document that provides the purpose of the 

annotated corpus, clear definitions of entity types, and annotation instructions. Instructions 
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contained in an annotation guideline should be enough clear enough for a different annotator to 

perform annotation consistently.  

In clinical information extraction, annotation guidelines should provide instruction about 

a mention span of clinical word entities to ensure consistency in setting mention spans. A mention 

span means a range of strings annotated as word entities for a given entity type. Two different 

annotators may recognize the same word entity in a given but set mention spans differently for 

the recognized word entity. For example, one annotator labels the string ‘orally tablet’ as the 

DrugFormulation word entity, while a different annotator labels only the string ‘tablet’ except 

‘orally’ as the DrugFormulation word entity in the given text. 

Especially, compositional concepts in clinical texts which do not map to a single medical 

concept are problematic to setting a mention span. [133] For example, one annotator labels ‘chest 

and back pain’ as an AdverseEvent entity while a different annotator labels ‘chest’, ‘back’, and 

‘pain’ separately. The rationale of different mention spans might be based on which medical 

concepts the annotators think about when finding clinical word entities to annotate. If an annotator 

thinks ‘chest and back pain’ is an individual symptom, then the annotator will label the three 

words as one word entity. However, when an annotator thinks that ‘pain’ is the main concept of a 

symptom and considers ‘chest’ and ‘pain’ as medical modifiers, the annotator can label the three 

words separately. Therefore, I recommend specifying a medical vocabulary corresponding to a 

word entity regardless of whether the word entity is included in the entity linking tasks or not. 

Indeed, I provided lists of drug products and drug compounds used by the MFDS to annotators 

when annotating ADE narratives and the drug lists helped the annotators to consistently set 

mention spans of drug entities. 

Also, the overlapping of mention spans of different word entities is more likely to happen 

when defining multiple word entities in the annotation guideline. Mention span overlapping also 
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raises a problem when training NER models because I usually defined a NER task as a token-

level classification. I should give a word entity type (or label) to a token based on annotation 

information to construct a NER dataset. However, when a token is annotated as more than one 

word entity type, I need to decide which of the annotated word entity types the token will have as 

a label. Thus, I suggested two ways to solve the problem caused by the overlapping of mention 

spans: 1) develop separate NER models for word entities that frequently overlap with each other, 

2) set priorities between word entity types so that a word entity label of higher ranking is assigned 

to each token. 

Training separate NER models for frequently overlapped word entities has the advantage 

of using all the annotation information for model training but has the disadvantage of connecting 

multiple NER models properly to develop a final end-to-end pipeline that extracts clinical 

information of interest from free-texts. On the other hand, when setting priorities between word 

entity types to give a single label to a token, I lose some annotation information during assigning 

token labels, but I can keep the NER model as one. 

 

5.2 Issues around defining a relation between word entities 

Extracting relations between word entities is a crucial task to extract semantic relations between 

entities from unstructured free-texts. Especially, in clinical information extraction, relations 

between word entities are useful to annotate temporal information, e.g., administration time or 

occurrence time of adverse events, and scientific reasoning, e.g., causality assessment results 

between an ADE and a drug, in clinical information extraction. However, there are several factors 

that make it difficult to obtain high-quality annotation data of relation between word entities. 

Firstly, it is frequent in clinical texts that word entities referring to the same object appear 

repeatedly. Taking the case of extracting DFI from a biomedical abstract as an example, a food of 
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interest appears multiple times in the biomedical abstract, whether expressed as the same word, a 

pronoun or other abbreviation. However, the annotation burden would greatly increase when I 

annotate all relations between all food words mentioned in the abstract and a DFI key-sentence. 

In addition, a relation unrelated to the semantic relation could be annotated when labeling a 

relation between the DFI key-sentence and food entities at a distance only because the food words 

denote the same object. 

Alternatively, I can instruct to annotate a relation only with the closest word among 

words indicating the same object. However, if I annotate a relation only between the closest words, 

relations between word entities at a distance were considered as negatively related in a training 

dataset for relation extraction. Thus, ideally, I should identify word entities indicating the same 

object in a text and then predict a relation only between the closest word entities among words 

indicating the same object. This is also an implausible story. 

Thus, I recommend to determined how to obtain a negative relation sample, a pair of 

word entities labeled as negatively related in training datasets for the relation extraction, before 

annotating relations between word entities. In general, relations not manually annotated by an 

annotator among all the possible combinations of word entities are used as negative samples in 

the relation extraction. However, a dataset for relation extraction becomes highly imbalanced if 

the number of actual annotated relations is much less than the number of all the possible 

combinations of word entities. To address severe label imbalance in a training dataset for the 

relations extraction, I limited the maximum number of negative relations in a single document to 

balance positive, i.e., annotated, and negative relations (see Chapter 3, section 3.2.8). 
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5.3 Issues around defining entity labels 

The entity label is used to provide additional information about an entity, such as the identifier of 

a drug or whether a patient has been given the drug. When the number of entity types becomes 

large and difficult to manage, the use of entity labels can help reduce the burden of selecting the 

correct entity type during annotation. As discussed in section 5.1, clinical texts often have a high 

number of entity types, which can make the annotation process time-consuming. In these cases, 

introducing an entity label instead of increasing the number of entity types can improve the 

efficiency of the annotation process. 

For instance, when annotating a ‘Date’ entity, if you want to indicate whether the date 

represents the start or end of a medical action, you can add a ‘start_or_end’ label instead of 

creating two separate entity types for ‘Date start’ and ‘Date end’. Additionally, if the majority of 

dates in the text indicate the start of an action, setting the default value of the ‘start_or_end’ label 

to ‘start’ can further streamline the annotation process, only requiring the use of the ‘end’ value 

for dates that indicate the end of an action. Thus, it is important to understand the distribution of 

information through pilot annotation in order to set an effective default value for an entity label. 

Furthermore, it is recommended to extract the annotation data after the annotation 

process is complete and check if all required entity labels have been specified. This is because in 

most annotation tools, the entity label information is not immediately visible on the screen, 

making it difficult for researchers to quickly notice if some annotators are not consistently labeling 

entities or are using labels incorrectly. To avoid this problem, researchers should double-check 

the annotation data to ensure that all required labels have been applied correctly. 

 

5.4 Issues around selecting and preprocessing annotated documents 
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Selecting the appropriate target documents for annotation is crucial step in designing the 

annotation guideline and managing the annotation process efficiently. Annotations are a labor-

intensive and costly task, so the chosen document should be of high quality and contain a 

sufficient amount of information to be annotated. If selected documents have little information to 

extract, the cost of obtaining the same amount of annotated information will increase, as the price 

of annotation is typically set per document. Furthermore, documents with little information to 

extract may decrease the concentration of the annotators and overall annotation quality. On the 

other hand, if target documents are too long or contain too much information, annotators may 

become overwhelmed, leading to a decrease in annotation quality, such as potentially resorting to 

cheating. 

In the studies discussed in Chapter 3 and 4, the length of the target document was used 

as a proxy for description quality, and documents that were too long or short were excluded from 

annotation. However, using this method for selecting target documents may result in a difference 

in the information extraction performance of the NLP model when measured on the annotated 

corpus compared to the whole document pool. To minimized this difference and accurately 

measure performance, it is important to ensure that the overall descriptive characteristics and 

clinical situations of the selected documents are similar to those of the entire document pool. 

Additionally, the clinical context in which a clinical text is written also could be a great proxy for 

the document’s meta-information (e.g., who wrote the document and the writing purpose). 

Also, I showed that using structured clinical information to select diverse target 

documents can improve the performance of drug safety information extraction (see section 3.4.4). 

I hypothesized that the expression of drug safety information may differ depending on the clinical 

situation of the patient. Although I did not directly test this hypothesis, I believe that incorporating 

ADE narrative reported with diverse data items into training data may diversify the patterns of 

description of ADEs, leading to improved information extraction performance. Furthermore, 
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because structured clinical information and clinical texts documented appear together, such as 

EHRs and clinical notes, I believe this approach can be applied to a range of clinical information 

extraction scenarios. 

In addition, I suggest expanding any medical abbreviation in the target document before 

performing annotation. While a clinical language model may have some knowledge of medical 

abbreviations, providing the full phrase will improve the input for NLP models. Furthermore, it 

can be difficult to change text string after annotation, so it is important to expand abbreviations 

beforehand. For example, chemotherapy regimen names often consist of the initial letters of 

multiple drugs. In these cases, it would be beneficial to replace the abbreviated chemotherapy 

name with a detailed drug list before annotation.  
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Chapter 6  

 

CONCLUSION 

 

6.1 Dissertation summary 

In this dissertation, I investigated the extraction of clinical information from unstructured free-

texts for pharmacovigilance purpose. 

 In Chapter 3, I defined the extraction of comprehensive drug safety information from 

ADE narratives reported through SRS as an NLP task and developed a manually annotated corpus 

for this purpose. I also developed the KAERS-BERT model, which is pretrained on 1.2 million 

ADE narratives reported in KAERS and used it to provide strong baseline performance on the 

defined NLP tasks. Furthermore, I showed that the NER performance could be improved by 

adding ADE narratives with the least reported items to training datasets. I also discussed the 

differences between structured drug safety information in KIDS-KS and the annotated 

information in our corpus. 

 In Chapter 4, I introduced the DFI corpus, a manually annotated corpus for extracting 

DFI information from the abstracts of biomedical articles. The DFI corpus aims to systematically 

extract scientific evidence of DFIs from biomedical abstracts, defining DFI key-sentence as the 

prediction target. In contrast to a previous dataset for extracting DFI [134], which exclusively 

relied on MeSH terms to select abstracts, the DFI corpus was constructed by selecting biomedical 
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abstracts that included both a food word and a drug/drug-related molecule word. In fact, I found 

that the vast majority of abstracts containing DFI key-sentences could not be tagged when 

searched only by the DFI MeSH term 

 In Chapter 5, I investigated the issues surrounding the definition of annotation elements 

for extracting clinical information related to pharmacovigilance. I discussed the problem caused 

by overlapping mention span and suggested two possible solutions. I also emphasized the 

importance of obtaining negative relations before annotating relations between word entities. 

 

6.2 Limitation and future works 

6.2.1 Development of end-to-end information extraction models from 

free-texts to database based on existing structured information 

In this dissertation, I demonstrated that I can develop effective NLP models for extracting clinical 

information of interest from unstructured free-texts by fine-tuning BERT models and creating a 

clear annotation guideline for obtaining a high-quality annotated corpus. However, achieving 

strong performance on individual NLP tasks does not guarantee the success of an end-to-end NLP 

pipeline for extracting information of interest from the target documents and storing it in a 

structured form in an existing database. Furthermore, in order to develop a complete end-to-end 

pipeline for extracting clinical information, it is necessary to identify and improve the 

performance characteristics of NLP models trained on individual tasks, such as NER, relation 

extraction, and sentence classification, or supplement them with appropriate human supervision 

or post-processing modules. 

However, developing a post-processing module that combines the results of individual 

NLP models to extract clinical information can be a time-consuming and resource-intensive task 
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that requires expert guidance and access to relevant data. Additionally, using these models 

sequentially can lead to compounding errors and decreased performance in the final information 

extraction. To improve the accuracy of the extracted information, it is necessary to identify and 

address the specific error patterns of individual models, such as by using rule-based post-

processing to correct errors in NER. Moreover, evaluating the performance of the end-to-end 

information extraction model requires access to a gold standard dataset. Researchers have 

explored methods such as simultaneous NER and relation extraction [116-119] and multi-task 

learning [120] to reduce error propagation through NLP models and improve final information 

extraction performance. In recent research, task formulation has been performed in the form of 

text-to-table [135] to directly derive the database structure from natural language data, or NER 

and relation extraction tasks have been solved simultaneously by filling an enhanced table [136]. 

In this situation, developing an NLP model for clinical information extraction using 

weak supervision with structured clinical data in a database can reduce hugely annotation burden 

and enable immediate evaluation of the model performance by comparing extracted information 

from free-texts to the structured data. However, there is a risk of discrepancy between information 

in the free-text and structured data when using structured clinical information for supervision. 

This means that the free-text may contain information not present in the database, or vice versa. 

Additionally, relying on structured data as weak supervision may lead to an NLP model that 

simply reaffirms already reported clinical information, rather than extracting missing information 

from the free-text. 

On the other hand, using structured data as a gold standard for developing an information 

extraction allows for easier evaluation of the model 's usefulness in streamlining the actual 

reporting processes. Furthermore, manually annotating differences between structured data can 

help identify which clinical information is frequently omitted in the reporting process, allowing 

for the development of more targeted NLP models 
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6.2.2 Application of in-context learning framework in clinical 

information extraction 

In this dissertation, I developed NLP models for extracting clinical information related to 

pharmacovigilance. I chose to create human-annotated corpora to train these models because 

previous information extraction models suffered from issues with existing annotated corpora, and 

the target domain of the document significantly different from those used in existing models. 

Additionally, I was able to provide a concrete guide for extracting clinical information of interest 

for both annotators and NLP models. However, as is typical, a large amount of time and resources 

were required to develop the annotated corpora for two research projects in this dissertation. I 

recruited five pharmacists with experience in reporting ADEs, as well as five undergraduate 

students majoring in medicine or pharmacy, to serve as annotators for studies described in 

chapters 3 and 4, respectively. The annotation program took more than three months and cost 

$400 per annotator and month. Furthermore, two or three graduate students were needed to 

manage the annotation schedule and ensure the quality of the annotations. 

Moreover, despite the availability of many datasets in the biomedical NLP field for 

clinical information, more than half of the documents sources were clinical notes or biomedical 

scientific literature, and less than 30% of the datasets were publicly accessible and had restrictive 

license [137]. This might be due to the sensitive nature of clinical text. 

 One potential approach for addressing the issue of limited availability and high cost of 

annotated corpora in the biomedical domain is to use LLMs such as GPT-3 [49, 138]. Zero-shot 

and few-shot learning framework has been shown to be as effective as, or even outperform, 

traditional pretraining-finetuning frameworks on a variety of general-domain tasks [139-141]. In 

addition, LLMs can be adapted to various tasks through the use of prompt-based learning, also 
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known an in-context learning, which allows the model to be trained on a small number of 

examples texts, or “prompts”, without the need for large amounts of training data. 

 However, conflict results have been reported to the applicability of zero-shot and few-

shot learning framework in the biomedical domain at the time of December 2022. One study 

showed that LLMs could be great zero-shot clinical information extractors through converting 

output of GPT-3 using a simple rule-based resolver [142]. However, other studies pointed out that 

few-shot or zero-shot learning framework did not achieve great performances on benchmark tasks 

in the biomedical NLP field [143, 144], while the same framework was comparable to or even 

outperformed to pretraining and fine-tuning framework in the general domain information 

extraction problems. 

 Researchers having the opinion that a current GPT-3 model is poor zero-shot or few-shot 

learner in the biomedical domain have pointed out that in-context learning is not feasible in the 

biomedical field due to long and complicated schema of annotation for information extraction 

[143, 144]. Also, previous studies have utilized GPT-3 pretrained on the general domain, not one 

pretrained on the biomedical domain like BioGPT3 [145]. Furthermore, it is also noteworthy that 

advancements in optimizing a zero-shot learning framework such as answer engineering [146, 

147], prompt ensembling [148] and continuous prompts [149, 150] have not been applied to 

studies testing applicability of GPT-3 on clinical information extraction. 
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Appendix 

 

7.1 Annotation Guideline for “Extraction of Comprehensive Drug 

Safety Information from Adverse Event Narratives Reported 

through Spontaneous Reporting System” 

These annotation guidelines aim to define annotation task and offer guidance for annotation to 

consistently structure the natural language descriptions on the adverse event reports in the Korea 

Adverse Event Reporting System (KAERS) operated by the Korea Institute of Drug Safety & 

Risk Management (KIDS). This annotation guideline was updated last on August 30th, 2022. 

The structured natural language data developed according to these annotation guidelines will 

be used to build the natural language processing (NLP) model that extracts key clinical 

information for drug safety evaluation from the natural language descriptions on the reports in the 

KAERS. 

 

1 Word entities 

In this part, the entities that comprise the KAERS natural language narrative are defined, and 

guidelines and notes are provided for consistently annotating those entities. 

 

1.1 Pathological finding 
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1.1.1  Adverse Event (ADE) 

ADE is referred to the distinct adverse events that are described in the narratives of the reports, 

which are defined as all symptoms or diagnosed diseases that occurred after the administration 

of suspected drugs. The ADE is a word-level entity and should be annotated together with any 

accompanying modifiers (e.g., chronic, acute). Any adverse event stated in the descriptions should 

be labeled as ADE, regardless of whether it actually occurred to the patient or was diagnosed as 

such.  

⚫ Caution: Examples like the ones below should also be annotated as ADE and labelled with 

the appropriate MedDRA code.  

– ‘Lack of efficacy’ (MedDRA 10014291): if a case indicates that the medication has not 

shown the anticipated efficacy or effectiveness after it was taken 

– ‘Product quality issue’ (MedDRA 10069327): if a description mentions “product 

quality issue”, “product physical issue”, “product/quality related defects”, or etc.  

 

1.1.2  Disease or Indication (Disease) 

Disease is referred to the distinct historical disease mentioned in the in the narratives of the reports. 

Technically, the term "Disease" in Disease refers to all symptoms or diagnosed diseases that 

occurred before the administration of suspected drugs, and the term “Indication” is a disease that 

a medicine is intended to treat or prevent. However, at the annotation task using these annotation 

guidelines, diseases and indications should be annotated as Disease instead of separating these 

two. When an indication is annotated as Disease, a relation with the relevant Drug should be 

assigned.  

Disease is a word-level entity, should be annotated together with any accompanying 
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modifiers (e.g., Type 2 diabetes). Any disease or indication stated in the descriptions should be 

labeled as Disease, regardless of whether it actually occurred to the patient or was diagnosed as 

such. If it is not possible to judge whether a disease and indication occurred before or after the 

administration of suspected drugs, it should be consistently annotated as ADE, rather than Disease.  

  

1.1.3  Seriousness of Adverse Event (ADESeriousness) 

ADESeriousness is referred to the seriousness of the adverse event that the patient who was the 

subject of the narratives experienced. ADESeriousness is annotated as one of the following for 

each event, based on the seriousness criteria of the adverse event provided in the ICH E2B R3 

implementation guide: 1) Results in death, 2) Life threatening, 3) Caused or prolonged 

hospitalization, 4) Disabling or incapacitating, 5) Congenital anomaly or birth defect, 6) Other 

medically important condition, 7) not serious. ADESeriousness should be tagged at a sentence-

level. A noun phrase or word can be used as ADESeriousness entity only when the seriousness is 

not stated as a sentence. For example, when it is certain that an adverse event led to hospitalization, 

as in the statement like ‘he/she was hospitalized due to gastroenteritis.’, ‘hospitalized’ should be 

annotated as both an ADESeriousness entity and an EventAdmission entity.  

 

1.1.1  Adverse Event at the Time of Last Observation 

(ADEatLastObs) 

ADEatLastObs is referred to whether the adverse event described in the narratives was maintained 

or resolved at the time of last observation. ADEatLastObs is annotated as one of the following for 

each event, based on the definition of outcome of adverse event at the time of last observation: 1) 

recovered, 2) recovering, 3) not recovered, 4) recovered with sequelae. ADEatLastObs should be 

tagged as a noun phrase or word which denotes the outcome of an adverse event at the time of 
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last observation. However, when the outcome of an event is ‘improvement (or recovery)’ followed 

by ‘recurrence’, each noun phrase or word indicating ‘improvement (or recovery)’ and ‘recurrence’ 

should be annotated as ADEatLastObs, even though ‘improvement (or recovery)’ is not the final 

outcome.  

 

1.2 Drug 

 

Drug is referred to the distinct drug names that are described in the narratives of the reports. When 

a drug name is mentioned as a generic name, it is annotated as DrugCompound; when it is 

mentioned as a product name (brand name), it is annotated as DrugProduct; and when it is 

mentioned as a drug group that shares the therapeutic target or that is categorized for other reasons 

without specifying a generic name or brand name, it is annotated as DrugGroup.  

 

1.2.1  Drug Compound (DrugCompound) 

DrugCompound is referred to the distinct generic names that are described in the narratives of the 

reports. A DrugCompound entity should be annotated at a word-level only. Phrases or words 

indicating dose, dosing interval, route of administration, or drug formulation should not be 

marked as DrugCompound because, according to these annotation guidelines, they are 

independent entities. When the description doesn’t provide the particular drug information, e.g. 

‘suspected drug’ or ‘administered drug’, it shouldn’t be annotated as DrugCompound. As a 

general rule, a drug can only be annotated as DrugCompound if both the generic code list and the 

product code list include the drug name.  

 

1.2.2  Drug Product (DrugProduct) 
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DrugProduct is referred to the distinct product names (brand names) that are described in the 

narratives of the reports. A DrugProduct entity should be annotated at a word-level only. Phrases 

or words indicating dose, dosing interval, route of administration, or drug formulation should not 

be marked as DrugProduct because, according to these annotation guidelines, they are 

independent entities. In case of ‘GastidineTab 6  150mg’ or ‘GranatecEyeDrops6 0.4%’, 

‘GastidineTab’ and ‘GranatecEyeDrops’ should be tagged as DrugProduct, while ‘150mg’ and 

‘0.4%’ should be annotated as Dose. When the description doesn’t provide the particular drug 

information, e.g. ‘suspected drug’ or ‘administered drug’, it shouldn’t be annotated as 

DrugProduct. If a drug name contains a number as part of it and does not include a dose unit, the 

drug name including the number should be annotated as an entity, and Dose shouldn’t be marked.  

Korean oriental medicines prepared by individual hospitals or clinics of Korean 

medicine should be also annotated as DrugProduct, even if they are not registered on the generic 

code list or the product code list. 

 

1.2.3  Drug Group (DrugGroup) 

DrugGroup is referred to the distinct drug groups that shares the therapeutic target or that is 

categorized for other reasons (e.g. antidiabetic drugs, antihypertensive drugs, antihistamines). A 

DrugGroup entity should be annotated at a word-level only. Phrases or words indicating dose, 

dosing interval, route of administration, or drug formulation should not be marked as DrugGroup 

because, according to these annotation guidelines, they are independent entities. When the 

description doesn’t provide the particular drug information, e.g. ‘suspected drug’ or ‘administered 

                                                      
6 This word is intended to be "Gastidine Tab" in English, but it was intentionally written 

without a space between the two words because different annotation rules were used depending 

on the spacing between a drug name and a word indicating the formulation, considering the 

nature of Korean language. 
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drug’, it shouldn’t be annotated as DrugGroup. 

 

1.2.4  Others: combination therapies for cancer treatment 

When a regimen name of combination therapy for cancer treatment (usually acronym formed 

from the drugs composing the combination) is used in the narratives of the reports, each initial 

letter denoting an individual generic name should be annotated separately as DrugCompound. 

(e.g. COPADM: C/O/P/AD/M - Cyclophosphamide, Oncovin (Vincristine), Prednisone, 

ADriamycin (Doxorubicin), Methotrexate) 

 

 

1.3 Dosing Information 

To assess a drug's safety, administration details as well as drug identification information are 

required. The KAERS natural language annotation task therefore comprises structuring the dose, 

dosing interval, and route of administration or drug formulation.  

 

1.3.1  Dose (Dose) 

Dose is referred to distinct dose of a drug administered that are described in the narratives of the 

reports. Dose contains the amount of the drug’s active ingredient (e.g., ‘10mg’, ‘1g’), the 

concentration of the injection or eye drop (e.g., ‘5%’, ‘50g/L’), the frequency or cycle of dosage 

(e.g., ‘1 time’, ‘2 cycles’), and the dosing duration (e.g., ‘for a week’, ‘1 year’). A Dose entity 

should be annotated at a word-level only, along with the numeric component (dose) and the dose 

unit. A word or noun phrase describing the drug amount should also be a Dose entity, even though 

it was not actually administered, in accordance with the annotation rules for the drug entities (e.g., 

in case of ‘480cc abandoned among 500cc’, ‘480cc’ and ‘500cc’).  
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A number should not be tagged as Dose if it was solely described without a unit (e.g., a 

number without a unit as part of drug brand name, blending ratio of Korean oriental medicines).  

 

1.3.2  Dosing Interval (DosingInterval) 

DosingInterval is referred to distinct dosing intervals that are described in the narratives of the 

reports. DosingInterval categories include the frequency of dosage at a specific time (e.g., 

once/twice a day) and dosing intervals (e.g., every 6 hours).  

A DosingInterval entity should be annotated at a word-level, along with the numeric 

component and the time unit (e.g., ‘hour(s)’, ‘day(s)’, ‘week(s)’).  

 

 

1.3.3  Route of Administration or Drug Formulation 

(RoAorFormulation) 

RoAorFormulation is referred to distinct route of administration or drug formulation that are 

described in the narratives of the reports. The routes of administration include oral administration, 

types of injection (e.g. ‘iv’, ‘intramuscular’), other forms of administration (e.g., ‘inhale’, ‘topical 

administration’). The drug formulations include specific types of formulation for oral use (e.g., 

‘sustained release tablet’, ‘SR’, ‘capsule’), specific types of formulation for topical use (e.g., 

‘ointment’, ‘cream’, ‘lotion’, ‘gel’), etc. 

RoAorFormulation should be annotated only if the route of administration or drug 

formulation was described as a separate word. A drug formulation should not be annotated as an 

entity if it is expressed as a part of a product name (brand name) without spaces. Instead, the 

product name (brand name) along with the word describing the formulation should be tagged as 

DrugProduct. (e.g., ‘Meropen inj’ → ‘Meropen’: DrugProduct and ‘inj’: RoAorFormulation, 
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‘MeropenInj’ → ‘MeropenInj’: DrugProduct) 

A word that requires analogical inference to determine the route of administration or 

drug formulation (e.g., ‘inoculation’) shouldn’t be annotated as RoAorFormulation. 

RoAorFormulation tags shouldn't be applied to drug formulations that are only utilized for 

particular products, such as ‘turbuhaler’ or ‘OROS (or OROS tab)’. (In this case, too, if the word 

defining the formulation is expressed as a part of a product name (brand name) without spaces, it 

should be categorized as DrugProduct.)  

 

1.4 Date 

Date is referred to all kinds of distinct date and time information that are described in the 

narratives of the reports. Date and time information means date information with the year, month, 

and day, and time information with the hour and minute. The date entities should be annotated at 

a word-level or noun phrase-level, along with the punctuation marks and the words describing the 

date, such as ‘6/25’ or ‘12th month7, year of 2016’. However, if a phrase contains both date and 

time information such as ‘10 am on June 26th’, ‘10 am’ and ‘June 26th’ should be annotated as two 

entities separately. The date entities also include expressions such as ‘the next day’, ‘the same 

day’, and ‘unknown date’. The date entities are categorized into DateStartorContinue, DateEnd, 

and DatePeriod, depending on the medical events occurred at the respective date and time.  

 

1.4.1  Date Start or Continue (DateStartorContinue), DateEnd 

(DateEnd) 

                                                      
7 This term is intended to be "December" in English, but it was intentionally written as “12th 

month” to express the word meaning “month” in Korean.  
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DateStartorContinue, DateEnd are referred to the dates and times when a medication or an 

adverse event starts/continues or ends, respectively. For example, in a sentence like ‘Smoflipid 

20% infusion was started at 10 on May 25th to supply nutrition’, ‘at 10’ and ‘May 25th’ should be 

tagged as DateStartorContinue. On the contrary, in a sentence like ‘Clopidogrel administration 

was stopped at 18:00 evening on the same day’, ‘at 18:00 evening’ and ‘on the same day’ should 

be tagged as DateEnd. A word or noun phrase containing the related dates or times should also be 

annotated as DateStartorContinue if they don’t exactly mean the dates and times when a 

medication or an adverse event starts/continues or ends.  

 

1.4.2  Date Period (DatePeriod) 

DatePeriod is referred to the length of an adverse event, the duration of a historical disease or 

medication, or the passage of time since a particular date or time point (e.g., ‘after 2 hours’, ‘since 

the second day’). However, a duration containing date information such as ‘from January 2nd to 

3rd’, should be annotated as DateStartorContinue instead of DatePeriod, with the dates ‘January 

2nd’ and ‘3rd’ tagged separately.  

 

1.5 Patient Information 

PatientInfo is referred to distinct demographic information that are described in the narratives of 

the reports. Under these guidelines, patients’ sexes and ages are to be structured.  

 

1.5.1  Patient Sex (PatientSex) 

PatientSex is referred to the patient’s sex that is described in the narratives of the reports and is 

annotated as a noun phrase or word that denotes sex (e.g., ‘female’, ‘male’, ‘M’, ‘F’). PatientSex 

should only be annotated if the sex is explicitly mentioned and not implied by the medical 
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terminology (e.g., ‘ovarian cancer’). 

 

1.5.2  Patient Age (PatientAge) 

PatientAge is referred to a distinct age, birth year, or birth date that are described in the narratives 

of the reports and is annotated as a noun phrase or word that denotes an age (e.g., ‘postnatal 8 

months’, ’25 years old’, ‘born in 1968’, ‘born in July 2nd, 1988’). A word that indicates an age 

range (e.g., ‘in thirties’) should also be annotated as PatientAge, but a word that implies an age 

(e.g. ‘adolescent’, ‘elderly’) or a term for a disease (e.g., ‘neonatal diabetes’) shouldn’t.   

 

1.6 Others 

The other distinct entities related to drug safety information that were not previously addressed 

are defined in this section.  

 

1.6.1  Test Name (TestName), Test Result (TestResult) 

TestName and TestResult are referred to a distinct test name (e.g., ‘electrocardiogram’) and a test 

result (e.g., ‘normal’, ‘positive’, ‘126mmHg’, ‘lesion not identified’) that are described in the 

narratives of the reports. If a test name can be inferred from an expression though it was not 

explicitly stated, it should be annotated as TestName. For example, ‘BP was between 90 and 120’, 

‘the body temperature was 36.8’, ‘BP’ and ‘the body temperature’ should be tagged as TestName 

and ‘between 90 and 120’ and ’36.8’ as TestResult, respectively. If a numeric value of a vital sign 

was mentioned along with a term indicating a pathological finding from the vital sign such as 

‘fever’ (e.g., high fever with 39 degrees), the term should be tagged as TestName, and the numeric 

value as TestResult, and at the same time, the term should be tagged as ADE.  

However, a test result itself should be annotated as TestName and/or TestResult, but not 
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ADE. If a changing trend such as a decrease or increase was addressed, it can be tagged as ADE 

depending on the context (e.g., ‘neutrophil counts 28.2%’: not annotated as ADE, ‘neutrophil 

counts decreased’: annotated as ADE) 

A TestName entity should be tagged at a word level and TestResult at a noun phrase or 

word level, which comprises the test result’s numerical value and unit. If a test result was 

discussed in a descriptive manner (e.g., ‘(in gastroscopy) no active bleeding was noted’), it should 

be annotated at a clause or sentence level. 

The reference value (normal range) of a test should be tagged as TestResult, but the 

relation with TestName shouldn’t be annotated.  

 

1.6.2  Event Admission (EventAdmission), Event Discharge 

(EventDischarge) 

EventAdmission and EventDischarge are reffered to a hospitalization event of a patient 

experiencing an adverse event that are described in the narratives of the reports. EventAdmission 

and EventDischarge entities should be annotated at word level. 

 

1.6.3  Non-Drug Treatment (NonDrugTreatment) 

NonDrugTreatment is referred to a distinct treatment other than medication (e.g., ‘oral hydration’) 

that is described in the narratives of the reports. A NonDrugTreatment entity should be annotated 

at word level. A procedure performed to diagnose a pathological condition should be tagged as 

TestName, rather than NonDrugTreatment (e.g., Computed Tomography or CT).  

 

1.6.4  Action Taken with Drug (ActionTakenwDrug) 



87 

 

ActionTakenwDrug is referred to a distinct action taken with the drug that is described in the 

narratives of the reports. ActionTakenwDrug is annotated as one of the followings for each event, 

based on the ICH E2B R3 implementation guide: 1) Drug withdrawn, 2) Dose reduced (single 

dose reduced or dosing interval lengthened), 3) Dose increased (single dose increased or dosing 

interval shortened), 4) Dose not changed, 5) Unknown. An ActionTakenwDrug entity should be 

annotated at a noun phrase or word level.  

 

1.6.5  WHO-UMC Results of Assessment  

(WHO-UMCAssessment) 

WHO-UMCAssessment is referred to a distinct result of assessment on the causality of a drug with 

an adverse event based on World Health Organization-Uppsala Monitoring Centre (WHO-UMC) 

that is described in the narratives of the reports. WHO-UMCAssessment is annotated as one of the 

followings for each event, based on WHO-UMC’s definition: 1) certain, 2) probable, 3) possible, 

4) unlikely, 5) conditional/unclassified, 6) unaccessible/unclassified. (Please refer to 4. Entity 

Labels – C. Others – iii. action taken with drug (E2BR3) for the definition and explanation).  

WHO-UMCAssessment should be annotated at a sentence level which addressed the causality 

assessment, but if the sentence includes two different assessments, each assessment should be 

annotated separately at the clause or noun phrase level.  

 

 

2 Relations 

This part defines the relations between the entities established above and provides the rules 

and additional notes to annotate the relations in a consistent manner.  
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2.1 ADE ↔ ADE, Disease ↔ Disease 

The relations ADE ↔ ADE and Disease ↔ Disease should be annotated between the modifiers 

and the modified ADE or Disease separately. For example, in ‘hand and foot pain’, ‘hand pain’ 

and ‘foot pain’ should be annotated as ADE and the relations ‘hand’ ↔ ‘pain’ and ‘foot’ ↔ ‘pain’ 

should be created separately.  

If a synonym is followed by an adverse event or disease enclosed in parenthesis, the 

terms before and after parentheses should be annotated as different entities, and the relations 

between the two words should be linked. (e.g., ‘non-steroidal anti-inflammatory drugs (NSAIDs)’: 

‘non-steroidal anti-inflammatory drugs’ ↔ ‘NSAIDs’, ‘[Ecchymosis in Korean] (Ecchymosis)’: 

‘[Ecchymosis in Korean]’ ↔ ‘Ecchymosis’ 

Additives should be annotated as DrugCompound, but shouldn’t be linked a relation 

with the drug entity.  

 

2.2 ADE ↔ (ADESeriousness or ADEatLastObs) 

The relations ADE ↔ ADESeriousness or ADEatLastObs should be annotated between an adverse 

event and the seriousness of the adverse event or the adverse event at the time of last observation.  

 

2.3 Disease ↔ (DrugCompound, DrugProduct, or DrugGroup) 

The relations Disease ↔ DrugCompound, DrugProduct, or DrugGroup should be annotated 

between a drug entity and the drug’s indication.  

 

2.4 (ADE, Disease, ADESeriousness, ADEatLastObs, 

DrugCompound, DrugProduct, DrugGroup, EventAdmission, 
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EventDischarge, TestName, NonDrugTreatment, or 

ActionTakenwDrug) ↔ (DateStartorContinue, DateEnd, or 

DatePeriod) 

The relations above should be annotated for the beginning, ending, or maintenance of an adverse 

event or disease, the beginning, ending, or maintenance of drug administration, the date on which 

an event met the seriousness criteria, the time of the most recent AE observation, the dates on 

which hospitalization and discharge occurred, and the dates on which a test was performed. If a 

sentence or a clause tagged as ADEatLastObs, ADESeriousness ActionTakenwDrug, or 

ADEatLastObs includes a date, the date should be annotated as a separate entity and the relation 

between the date and the entity indicating the related event should be created. (e.g., ‘Since the 

condition was improved, the patient was discharged on Aug 30th’ → ‘the condition was improved’: 

ADEatLastObs, ‘Aug 30th’: DateStartorContinue, ‘discharged’: EventDischarge, ‘Aug 30th’ ↔ 

‘discharged’ (relation))  

A report date shouldn’t be linked the relation with a date.  

 

2.5 DrugProduct ↔ DrugCompound 

The relation should be annotated between a product name (brand name) and its generic name. For 

example, for a description such as ‘LoxefinTab (loxoprofen sodium) was orally taken 3 times a 

day from Dec 27th’, a relation between ‘LoxefinTab’ (DrugProduct) and ‘loxoprofen sodium’ 

(DrugCompound) should be created, since ‘loxoprofen sodium’ is the active ingredient of 

‘LoxefinTab’. Besides, the other medication information such as ‘3 times a day’ (DosingInterval) 

and ‘orally taken’ (RoAorFormulation) should be annotated the relation with ‘LoxefinTab’ 

(DrugProduct), separately.  
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2.6 (DrugCompound, DrugProduct, or DrugGroup) ↔ (Dose, 

DosingInterval, or RoAorFormulation) 

The relations above should be annotated between a generic name, a product name, or a drug group 

and any information regarding drug administration. 

 

2.7 TestName ↔ TestResult 

The relations TestName ↔ TestResult should be annotated between a test name and its result.  

 

2.8 ActionTakenwDrug ↔ (DrugCompound, DrugProduct, or 

DrugGroup) 

The relations ActionTakenwDrug ↔ (DrugCompound, DrugProduct, or DrugGroup) should be 

annotated between a drug and the action taken with that drug.  

 

2.9 WHO-UMCAssessment ↔ (ADE, Disease, DrugCompound, or 

DrugProduct) 

The relations WHO-UMCAssessment ↔ (ADE, Disease, DrugCompound, or DrugProduct) 

should be annotated between a result of assessment on the causality of a drug with an adverse 

event based on WHO-UMC, the related drug, and the adverse event. If it is uncertain to which 

entity WHO-UMCAssessment is related, the relation shouldn’t be linked. 

 

3 Entity labels 

This part describes the entity labels for the previously defined entities, which provide detailed 
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information and a medical code, and gives the rules and additional notes to annotate the entity 

labels in a consistent manner. 

 

3.1 Pathological Finding 

3.1.1  [pathological finding identifier] (MedDRA) 

A pathological finding identifier using a MedDRA code should be labeled on ADE and Disease 

entities to identify pathological findings. Any entities that have been annotated as ADE or Disease 

must be labeled. depending on the annotator's medical knowledge and judgment, an appropriate 

8- digit MedDRA code should be entered (e.g., ‘Nausea’: ‘10028813’).  It is required to utilize 

MedDRA Version 24.0 English & Korean, and MedDRA Desktop Browser Version 4.1 can be 

used for the code search. 

Generally, it is recommended to use the Lowest Level Term (LLT) to code the identifier. 

However, it is acceptable to utilize a Preferred Term (PT) if it is considered that an ADE or Disease 

entity may apply to more than two LLTs under that PT or if the description is insufficient to 

identify the LLT. The usage of higher class codes (i.e., System Organ Class (SOC), High Level 

Group Term, and High Level Term) is not allowed.  

The annotators shouldn't assign labels to the entities based on the diagnoses made by their own 

medical judgment or interpretation of the statement. For example, ‘irregular menstruation’ should 

not be diagnosed and labeled based on the description ‘She sometimes menstruates during her 

menstrual cycle and sometimes she doesn't.’  

⚫ Disease to be cautious: If a medication was given for a preventive purpose, such as the 

prophylaxis of vomiting, the identifier should be ‘vomiting prophylaxis (MedDRA 

10068079)’, not ‘vomiting’.   
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3.1.2  [not_occurred] 

The entity label [not_occured] should be labeled on the ADE and Disease entities to indicate 

whether they actually occurred or not. For a detailed explanation of cases not marked as 

[not_occured], please see ‘D. other considerations: the cases that are not labeled with 

[not_occured]/[not_concerned]’.  

 

3.1.3  [seriousness] 

The entity label [seriousness] should be labeled on the ADESeriousness entities to identify the 

seriousness categories of the adverse event. The entity label [seriousness] should be selected 

among the values listed in the table below.  

If the adverse event is definitely a serious adverse event but the seriousness category 

was not specified (e.g., ‘Serious adverse event: generalized skin eruption’, ‘This initial report for 

SAE is~’), ‘6_ Medically Important_Unclassified’ should be marked.  

 

Table 7.1: Entity labels for [seriousness] 

The seriousness criteria of the adverse event provided in the ICH E2B R3 

implementation guide 

1 = Death 

2 = Life Threatening 

3 = Caused/Prolonged Hospitalization 

4 = Disabling/Incapacitating 

5 = Congenital Anomaly/Birth Defect 

6 = Medically Important_Unclassified 

7 = Not Serious 
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⚫ Caution 

1) The annotators should be aware that the severity of an adverse event (e.g., CTCAE Grade 

1-4, mild/moderate/severe) and the seriousness are different concepts. Therefore, a word 

or noun phrase expressing the severity should not be mistakenly labeled with [seriousness]. 

(For ‘CTCAE8 Grade 5’,  

2) please see 2) following).  

3) The description of ‘death’ cases (including ‘CTCAE Grade 5’) should be annotated as 

AESeriouness and labeled with [seriousness] – ‘1_Death’. ‘Unknown cause of death’ 

requires to have both an AESeriouness and ADE annotation.  

 

3.1.4  [event_at_last_observation] 

The entity label [event_at_last_observation] should be labeled on the ADEatLastObs entities to 

identify the category of the events at last observation provided in the ICH E2B R3 implementation 

guide. The entity label [event_at_last_observation] should be selected among the values listed in 

the table below. ‘The time of last observation’ refers to the latest observation in the chronological 

order of the narratives. Therefore, ‘not recovered’, rather than ‘recovered’, should be marked if 

an adverse event was recovered and then recurred.  

 

 

Table 7.2: Definitions and examples for [seriousness] entity labels 

                                                      
8 CTCAE: Common Terminology Criteria for Adverse Events 

The categories of the events 

at last observation 
Cases and Examples 
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3.1.5  [startcontinue_or_and] 

The entity label [startcontinue_or_end] should be labeled on the ADE entity which has the relation 

annotation with the DateStartorContinue entity, but the adverse event was stopped/discontinued 

on the date. In this case, ‘end’ should be marked for the entity label [startcontinue_or_end].  

 

3.2 Drug 

3.2.1  [compountd identifier] & [product identifier] 

The entity label [compound identifier] and [product identifier] should be labeled on the 

DrugCompound and DrugProduct entities to indicate the compound identifier for 

DrugCompound and the product identifier for DrugProduct. It is mandatory to label [compound 

identifier] or [product identifier] for the drug entities. The codes for [compound identifier] and 

[product identifier] are referred to the drug compound code list and the drug product code list 

prepared by the study team based on the Ministry of Food and Drug Safety’s ‘The active 

ingredient code list for the 2nd half of 2020’ and ‘The drug product code list for the 2nd half of 

2020’, respectively.  

1 = Recovered 

The adverse reaction was not present at the time of the last 

observation, and the patient's health had returned to normal. 

e.g., ‘the patient was recovered from peritonitis’ 

2 = Recovering 

The patient had not fully recovered at the time of the last 

observation, but it was determined that he/she was in the 

process of recovering. 

3 = Not recovered 

At the time of the last observation, the adverse event is still 

observed and is not considered to be recovered or in the 

process of recovery. 

e.g., ‘rash was recurred in Dec 2017’ 

4 = Recovered with sequelae 

The adverse event is no longer observed at the time of the 

last observation, but the damage to the body due to the 

adverse event is not recovered and is observed. 
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The 8-digit identifier starting with C (e.g., the integrated active ingredient code 

‘CM050288’ for diclofenac, diclofenac sodium, diclofenac potassium) should be entered for 

[compound identifier] and the 10-digit identifier (e.g., the integrated product code ‘C195600001’ 

for PanpyrinTab) should be entered for [product identifier]. If a DrugProduct entity has a number, 

the code of the product name with the closest matching product name and number should be 

labeled.  

For Korean oriental medicines prepared by individual hospitals or clinics of Korean 

medicine which are not registered on the code lists, C000000000 should be labeled.  

 

3.2.2  [not_occurred] (or [not_administered]) 

The entity label [not_occured] should be labeled on the drug entities to indicate whether they were 

actually administered or not. For a detailed explanation of cases not marked as [not_occured], 

please see ‘D. other considerations: the cases that are not labeled with [not_occured]/ 

[not_concerned]’.  

 

3.2.3  [not_concerned] 

The entity label [not_concerned] should be labeled on the drug entities to indicate whether they 

are the suspected drug or not. Based on these guidelines, historical diseases and adverse events 

are classified according to whether they occurred before or after the administration of suspected 

drugs. In order to distinguish between adverse events and historical diseases, the suspected drug 

should be identified when more than two distinct drugs are mentioned in the narratives of the 

report. Therefore, the drug(s) that the annotator used as a borderline between adverse events and 

historical diseases should be specified. For a detailed explanation of cases not marked as 
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[not_concerned], please see ‘D. other considerations: the cases that are not labeled with 

[not_occured]/[not_concerned]’.  

 

3.2.4  [startcontinue_or_end] 

The entity label [startcontinue_or_end] should be labeled on the drug entities which have the 

relation annotation with the DateStartorContinue entity, but the drug was stopped/discontinued 

on the date. In this case, ‘end’ should be marked for the entity label [startcontinue_or_end]. 

 

3.3 Others 

3.3.1  [test name identifier] (based on MedDRA) 

A test name identifier using a MedDRA code should be labeled on the TestName entities to 

identify test names. Any entities that have been annotated as TestName must be labeled with the 

8-digit MedDRA code (e.g., ‘Creatine’: ‘10011328’). The annotation rules for [test name 

identifier] are basically the same as those for [pathological finding identifier]. However, the labels 

for [test name identifier] should be the LLTs or PTs under the SOC ‘Investigations’.  

 

3.3.2  [non-drug treatment] (based on MedDRA) 

A treatment identifier using a MedDRA code should be labeled on the NonDrugTreatment entities 

to identify the treatment. Any entities that have been annotated as NonDrugTreatment must be 

labeled with the 8-digit MedDRA code (e.g., ‘Percutaneous coronary intervention’: ‘10065608’). 

The annotation rules for [non-drug treatment] are basically the same as those for [pathological 

finding identifier].  
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3.3.3  [action taken with drug] 

The entity label [action taken with drug] should be labeled on the ActionTakenwDrug entities to 

identify the category of the action taken with drug provided in the ICH E2B R3 implementation 

guide. Any entities that have been annotated as ActionTakenwDrug must be labeled with the 

values listed in the table below. 

 

Table 7.3: Entity labels for [action taken with drug] 

Categories of the action taken with drug provided in the ICH E2B R3 

implementation guide 

1 = Drug withdrawn 

2 = Dose reduced 

3 = Dose increased 

4 = Dose not changed 

5 = Unknown 

 

3.3.4  [WHO-UMC results of assessment]  

The entity label [WHO-UMC results of assessment] should be labeled on the WHO-

UMCAssessment entities to identify the category of the causality assessment based on WHO-

UMC. Any entities that have been annotated as WHO-UMCAssessment must be labeled. The 

labels should be chosen from the values listed the table below, based on the expression of the 

reporter or the primary source(s) of information on the narratives.  

 

Table 7.4: Definitions and examples for [WHO-UMC results of assessment] entity labels 
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Causality assessments based 

on WHO-UMC 
Case and Examples 

1 = Certain 

Based on the chronological order and clinical 

information at the time of drug administration and the 

time of the adverse event, it is certain that the adverse 

event is an adverse drug reaction (ADR) due to that drug, 

and it is not considered to be the condition caused by 

other factors. 

2 = Probable 

Based on the chronological order and clinical 

information at the time of drug administration and the 

time of the adverse event, it is probable that the adverse 

event is an ADR due to that drug, and is less likely to be 

the condition caused by other factors. 

3 = Possible 

Based on the chronological order and clinical 

information at the time of drug administration and the 

time of the adverse event, it is possible that the adverse 

event is an ADR due to that drug, but the possibility that 

the condition was caused by other factors cannot be 

ruled out. 

4 = Unlikely 

The possibility that the adverse event was caused by the 

drug cannot be completely ruled out, but it is more likely 

that other factors (such as concomitant medications or 

comorbidities) caused the adverse event. 

5 = Conditional/Unclassified 
The causality cannot be determined due to a lack of 

clinical information for safety assessment. 

6 = Unassessable/Unclassifiable 
When it is stated that the reporter and the primary 

source(s) of information didn’t assess the causality. 

 

3.3.5  Other considerations: the cases that are not labeled with 

[not_occurred] or [not_concerned] 

3.3.5.1 When no entities in a document have the 
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[not_occured] or [not_concerned] labels 

⚫ When no drug entities in a document have the [not_occured]: The administration of each 

drug is regarded as having occurred. 

⚫ When no drug entities in a document have the [not_concerned]: Each drug is regarded 

as a suspected(concerned) drug. 

⚫ When no pathological finding entities in a document have the [not_occured]: Each 

adverse event/disease is regarded as having occurred. 

 

3.3.5.2 When no entities in a document have the 

[not_occured] or [not_concerned] labels 

⚫ Each entity that doesn’t have the [not_occured] or [not_concerned] label is regarded 

as having occurred or being concerned. 

– When 2 out of 10 ADE entities have the [not_occured] labels, the rest 8 ADE 

entities are regarded as having occurred.  

– When 1 out of 3 drug entities have the [concerned] labels, the rest 2 drug entities 

are regarded as not concerned. 

– When all 4 ADE entities don’t have the [not_occured] labels and 1 out of 2 drug 

entities have the [occurred] labels, the 4 ADE entities are regarded as occurred and 

the drug entities without the [occurred] labels are regarded as [not_occured].  
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7.2 Annotation Guideline for “Extraction of Drug-Food Interactions 

from the Abtracts of Biomedical Articles” 

‘The DFI corpus’ aims to develop an natural language processing model that detects a source 

document of scientific evidence on drug-food interaction (DFI) and extracts key-sentences 

describing DFI and related drug and food words. This annotation guideline was updated last on 

August 9, 2021. 

In this annotation guideline, I defines annotation tasks and word and sentence entities 

annotated in the DFI corpus. Also, I provides a set of rule for annotating drug and food entities 

and key-sentences describing DFI or drug-drug interaction (DDI). This guideline was used for 

educating annotators when I created the DFI corpus. I hope that this annotation guideline helps 

you to understand the structure of the DFI corpus and the meaning of annotated entities for DFI 

extraction. 

In the DFI corpus, I annotated 2270 abstracts published between January 1, 1970 and October 

2, 2019 from a pre-specified medical/pharmacy journals. A detailed selection criteria for an 

annotated document was elaborated in Kim et al., 2021. 

 

4 Word Entities 
I annotated seven types of word entities in the DFI corpus: ‘drug’, ‘well known target’, ‘drug 

metabolizer’, ‘drug transporter’, ‘food’, ‘food component’, and ‘ambiguous’. To prevent that 

some words were simultaneously recognized as both a food and a drug/drug-related molecule, I 

clearly defined ‘food’, ‘drug’ and ‘well-known target’ etc., and manually curated the word lists 

to make them mutually exclusive. The word lists for each entity were created based on drug 

information resources such as DrugBank and food database, FooDB. Annotators referred to the 

word lists and recognized a word as a proper entity type based on scientific reasoning about a 
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study design. 

 

1.1 Drug/Drug Related Entities 

‘Drug’, ‘well known target’, ‘drug metabolizer’, and ‘drug transporter’ belong to the drug/drug 

related entities. Annotators should refer to drug information resources such as ATC/DDD and 

DrugBank to determine a given word as drug/drug related entities. 

ATC/DDD list contains information on new chemical entities or biologics which is ready 

for submission in at least one country, approved chemical entities, and approved herbal medicinal 

products. DrugBank is a free-to-access online database that contains information on experimental 

drugs as well as on FDA-approved drugs. Each entry contains several data fields including 

identification, properties, targets, enzymes, transporters, etc. 

In this section, I provide a definition for each drug/drug related entity, which will help 

annotators to decide which word entity annotators should label. 

 

1.1.1  ‘Drug’ 

Basically, ‘drug’ refers to any drug or its synonym included in the ‘drug list’ created based on 

ATC/DDD list and DrugBank. I defined ‘drug’ as a medicine or substance used for treating or 

preventing a disease or alleviating its symptoms in a given study design (Figure 7.1). Therefore, 

if insulin was administered to control blood glucose level, the word insulin should be annotated 

as ‘drug’, not ‘well known target’. 
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1.1.2  ‘Well Known Target’ 

‘Well known target’ list was created based on DrugBank (https://go.drugbank.com/targets). The 

list of ‘well known target’ consists of target entities that are known to be related to more than 5 

drugs in DrugBank database (Figure 7.2). Furthermore, although a given word is not included in 

the ‘well known target’ list, I included all housekeeping genes or housekeeping gene-coded 

proteins expressed in the body. 

 

Figure 7.1: Example of annotated drug entities in an abstract 

https://go.drugbank.com/targets
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1.1.3  ‘Drug Metabolizer’ 

‘Drug metabolizer’ list was created based on DrugBank. I defined ‘drug metabolizer’ as any 

metabolic enzyme well known for its involvement in drug metabolism in a human body. 

Cytochrome P450 2A13 and superoxide dismutase are examples of ‘drug metabolizer’. 

 

Figure 7.2: Example of annotated well known target entities in an abstract 
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1.1.4  ‘Drug Transporter’ 

‘Drug transporter’ list was created was based on DrugBank. I defined ‘drug transporter’ as any 

transport molecule involved in the transport and distribution of drugs in a human body. OATP1B1 

and P-glycoprotein (Multidrug resistance protein 1) are examples of ‘drug transporter’. 

 

1.2 Food/Food Related Entities 

In this section, I provide definition for ‘food’ and ‘food component’ entity. Annotators should 

refer to the food database, FooDB (https://foodb.ca/) to consider given word as food/food related 

entities.  

 

1.2.1  ‘Food’ 

‘Food’ list was created based on FooDB. ‘Food’ refers to any word, its synonym or acronym 

included in the list. Thiamine, salvia, fermented milk, etc. are examples of ‘food’.  

Figure 7.3: Example of annotated drug metabolizer entities in an abstract 

https://foodb.ca/
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1.2.2  ‘Food Component’ 

‘Food component’ list was created based on FooDB. I defined ‘food component’ as any food 

substance such as minerals, carbohydrate and fatty acid. I additionally included a plant from 

which a food substance originates, or an active ingredient of a plant as ‘food component’. Oleic 

acid, stearic acid, Fe, etc. are examples of ‘food component’. 

 

1.3 ‘Ambiguous’ 

‘Ambiguous’ refers to words that are listed both on drug/food lists or words that are unclear to 

judge in which list (drug or food) they belong to. 

 

5 Sentence Entities 
This section provides a clear guidance and examples clarifying each sentence entity. I proposed 

Figure 7.4: Example of annotated food and food component entities in an abstract 
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four types of sentence entities: ‘DFI key-sentence’, ‘Food-effect key-sentence’, ‘DDI key-

sentence’, and ‘supporting sentence’. 

 

5.1 Key-sentence 

Key sentence consists of ‘DFI key-sentence’, ‘food-effect key-sentence’ and ‘DDI key-sentence’. 

 

5.1.1  ‘DFI key-sentence’ 

‘DFI key-sentence’ refers to a sentence that contains any DFI about at least one entity pair, which 

is a combination of any drug/drug related entity and any food/food related entity. I defined DFI 

as below: 

(1) The change of major pharmacological properties such as a total exposure to a drug, 

the efficacy and safety of a drug with the intake or ingestion of foods or food 

components 

(2) When the intake or ingestion of food or food components affected an activity of drug 

metabolizer, drug transporter, or drug target molecules. 

 

On the other hand, following cases are not included in ‘DFI key-sentence’. 

(1) When a drug changes the effect of food or the effect of food component. 

(2) If an article does not provide any direct evidence. 

(3) Sentences which does not contain DFI information specified in 3.1.1, but contains 

information as follows: 

- Research methodology (subject, test dose, analysis method, etc.) 

- Dose change 

- Alternative prescription information due to Food-Drug Interaction 
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5.1.2  ‘Food-effect key-sentence’ 

A ‘food-effect key-sentence’ refers to a sentence that provides information about how food intakes 

have an effect on the bioavailability of a drug. 

 

5.1.3  ‘DDI key-sentence’ 

DDI is defined as a change in the effects of one drug by the presence of another drug. The effects 

may be an unexpected effect, a change in toxicity, treatment failure, pharmacological effect, etc. 

 

 

Figure 7.5: Example of annotated DFI and DDI key-sentences in an abstract 
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5.2 ‘Supporting sentence’ 

A ‘supporting sentence’ by itself does not provide information about the occurrence of drug/food 

interactions but must be read in advance to understand a following key-sentence. 

 

6 Relations 

In this section, I provide a guidance how to annotate relation between word entities, and between 

word and sentence entities. 

 

6.1 Relation between word entities 

Figure 7.6: Example of annotated supporting sentences in an abstract 
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6.1.1  Synonym 

Table 7.5: Relation between entities representing synonyms and definition of synonym relation 

Relation 

‘Drug’ ↔ ‘Drug’, ‘Drug Metabolizer’ ↔ ‘Drug Metabolizer’, ‘Drug 

Transporter’ ↔ ‘Drug Transporter’, ‘Well Known Target’ ↔ ‘Well 

Known Target’, ‘Food’ ↔ ‘Food’, ‘Food Component’ ↔ ‘Food 

Component’ 

Definition 

If the same object is expressed differently in the given abstract, such as 

an abbreviation or development name, annotators should tag a relation 

between synonyms. 

 

6.1.2  Food and food component 

Table 7.6: Relation between food and food component entities and definition of food component 

relation 

Relation ‘Food’ ↔ ‘Food Component’ 

Definition Annotators should tag a relation between food and its food component. 

 

6.2 Relation between word and sentence entities 

6.2.1  Relation with ‘DFI key-sentence’ 

Table 7.7: Relation between DFI key-sentence and word entities representing DFI and definition 

of relation 

Relation 

‘DFI key-sentence’ ↔ ’Drug’, ‘Food’, ‘Food Component’, 

‘Ambiguous’, ‘Drug Metabolizer’, ‘Drug Transporter’, ‘Well Known 

Target’ 

Definition 

‘DFI key-sentence’ must contain at least one relation between drug/drug 

related entity and food/food related entity. 

If the key word (drug/food entity) is expressed as a pronoun in the key 

sentence, the drug and food entity are selected as the closest noun from 

the sentence. 
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6.2.2  Relation with ‘DD key-sentence’ 

Table 7.8: Relation between DDI key-sentence and word entities representing DDI and definition 

of relation 

Relation 
‘DDI key-sentence’ ↔ ’Drug’, ‘Ambiguous’, ‘Drug Metabolizer’, 

‘Drug Transporter’, ‘Well Known Target’ 

Definition 

‘DDI key-sentence’ must contain at least two different drug/drug related 

entities. 

If the key word (drug entity) is expressed as a pronoun in the key 

sentence, the entity are selected as the closest noun from the sentence. 

 

6.2.3  Relation with ‘Food-effect key-sentence’ 

Table 7.9: Relation between food-effect key-sentence and word entities representing food-effect 

and definition of relation 

Relation ‘food-effect key-sentence’ ↔ ’Drug’, ‘Ambiguous’ 

Definition 

‘Food-effect key-sentence’ must contain at least one relation with a 

drug entity. 

If the key word (drug entity) is expressed as a pronoun in the key 

sentence, the entity are selected as the closest noun from the sentence.  

 

7 Entities & document labels 

7.1 Sentence label (sentence modality) 

I annotated DFI key-sentence as ‘positive’ if the study described in the abstract proved that there 

is an interaction between food and drug entities, and ‘negative’ if it proved there is not. 

 

7.2 Document label (evidence-level) 
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In our corpus, I annotated given document with ‘evidence-level’. I proposed seven types of 

evidence levels: ‘clinical trial’, ‘observational study’, ‘case study’, ‘in-vivo study’, ‘in-vitro 

study’, ‘bioanalysis’, and ‘others’. 

(1) ‘Clinical trial’: A clinical trial refers to a human trial that has evaluated the 

efficacy and safety of a drug or a medical procedure through randomly 

assigned patients regardless of whether or not the trial is blinded. 

(2) ‘Observational study’: An observational study refers to a trial which has not 

randomly assigned patients or an analysis using existing health data such as 

EMR that has evaluated the efficacy and safety of a drug. 

(3) ‘Case study’: A case study refers to a study that originally developed in 

epidemiology. In the case study, two groups within 10 patients differing in 

symptoms or outcome are compared retrospectively. 

(4) ‘In-vivo study’: An in-vivo study refers to an experiment in which an animal 

or plant has been used to evaluate the efficacy or safety of a specific 

substance. 

(5) ‘In-vitro study’: An in-vitro study refers to an experiment conducted using 

component of an organism extracted from animals or plants such as cells, 

molecules, proteins or enzymes. 

(6) ‘Bioanalysis’: A bioanalysis refers to an experiment that analyzes the 

composition and content of foods or drugs.  

(7) ‘others’: I annotated ‘others’ to studies where the above 6 types are not used 

or data is not directly produced from the article. Meta-analysis using clinical 

research results is also included in others  
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초 록 

 

약물 감시는 약물 부작용 또는 약물 안전성과 관련된 문제의 발생을 감지, 평가 및 이

해하기 위한 과학적 활동이다. 그러나 약물 감시에 사용되는 의약품 안전성 정보의 보

고 품질에 대한 우려가 꾸준히 제기되었으며, 해당 보고 품질을 높이기 위해서는 안전

성 정보를 확보할 새로운 자료원이 필요하다. 한편 트랜스포머 아키텍처를 기반으로 

사전훈련 언어모델이 등장하면서 다양한 도메인에서 자연어처리 기술 적용이 가속화

되었다. 이러한 맥락에서 본 학위 논문에서는 약물 감시를 위한 다음 2가지 정보 추

출 문제를 자연어처리 문제 형태로 정의하고 관련 기준 모델을 개발하였다: 1) 수동적 

약물 감시 체계에 보고된 이상사례 서술자료에서 포괄적인 약물 안전성 정보를 추출

한다. 2) 영문 의약학 논문 초록에서 약물-식품 상호작용 정보를 추출한다. 이를 위해 

안전성 정보 추출을 위한 어노테이션 가이드라인을 개발하고 수작업으로 어노테이션

을 수행하였다. 결과적으로 고품질의 자연어 학습데이터를 기반으로 사전학습 언어모

델을 미세 조정함으로써 비정형 텍스트에서 임상 정보를 추출하는 강력한 자연어처리 

모델 개발이 가능함을 확인하였다. 마지막으로 본 학위 논문에서는 약물감시와 관련된 

임상 정보 추출을 위한 어노테이션 가이드라인을 개발할 때 고려해야 할 주의 사항에 

대해 논의하였다. 본 학위 논문에서 소개한 자연어 학습데이터와 자연어처리 모델은 

약물 안전성 정보의 보고 품질을 향상시키고 자료원을 확장하여 약물 감시 활동을 보

조할 것으로 기대된다. 

주요어: 약물 감시, 의약품  안전성 정보, 자연어처리, 정보 추출 

학번: 2018-20603  
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또 공부하길 좋아하는 사람으로서의 저의 정체성을 누구보다 잘 알고 적절한 관심과 

무관심을 가져준 가족들에게도 감사합니다. 학위 논문을 작성하면서 학위 과정 중에 

채우지 못한 부분들을 떠올려보게 되었습니다. 제가 이제껏 배워 온 지식과 기술들로 

풀 수 있는 문제, 그것들 중 적절히 포장해서 팔 수 있는 문제, 그리고 시급하게 풀어

야하는 문제들이 무엇이며 얼마나 서로 떨어져 있는지 확인하고 있습니다. 앞으로도 

꾸준히 노력해서 사회에 긍정적인 기여를 하는 연구자가 되고 싶습니다. 학위 과정을 

격려해주신 모든 분들에게 감사드립니다. 

 

2023년 2월, 

김 시 언 
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