152 research outputs found

    Outage performance of underlay cognitive radio networks over mix fading environment

    Get PDF
    In this paper, the underlay cognitive radio network over mix fading environment is presented and investigated. A cooperative cognitive system with a secondary source node S, a secondary destination node D, secondary relay node Relay, and a primary node P are considered. In this model system, we consider the mix fading environment in two scenarios as Rayleigh/Nakagami-m and Nakagami-m/Rayleigh Fading channels. For system performance analysis, the closed-form expression of the system outage probability (OP) and the integral-formed expression of the ergodic capacity (EC) are derived in connection with the system's primary parameters. Finally, we proposed the Monte Carlo simulation for convincing the correctness of the system performance

    A Study Of Cooperative Spectrum Sharing Schemes For Internet Of Things Systems

    Get PDF
    The Internet of Things (IoT) has gained much attention in recent years with the massive increase in the number of connected devices. Cognitive Machine-to-Machine (CM2M) communications is a hot research topic in which a cognitive dimension allows M2M networks to overcome the challenges of spectrum scarcity, interference, and green requirements. In this paper, we propose a Generalized Cooperative Spectrum Sharing (GCSS) scheme for M2M communication. Cooperation extends the coverage of wireless networks as well as increasing their throughput while reducing the energy consumption of the connected low power devices. We study the outage performance of the proposed GCSS scheme for M2M system and derive exact expressions for the outage probability. We also analyze the effect of varying transmission powers on the performance of the system

    Esquemas de retransmissão baseados no protocolo decodifica-e-encaminha em redes cognitivas do tipo underlay

    Get PDF
    Orientador: José Cândido Silveira Santos FilhoTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de ComputaçãoResumo: O conceito de compartilhamento de espectro do tipo underlay tem sido proposto como uma técnica promissora para contornar o problema da escassez e da subutilização do espectro, permitindo que usuários não licenciados, chamados de usuários secundários, possam acessar simultaneamente uma banda licenciada, alocada aos usuários primários, desde que o nível de interferência sobre os mesmos seja mantido abaixo de um dado limiar aceitável. Entretanto, isso implica que a potência de transmissão na rede secundária deve ser restringida, comprometendo assim a confiabilidade e a cobertura da comunicação. A fim de contornar esse problema, técnicas de retransmissão cooperativa, as quais proveem um novo tipo de diversidade espacial, podem ser exploradas como um meio eficaz para melhorar o desempenho da rede secundária. De fato, a utilização conjunta de ambas as técnicas ¿ compartilhamento de espectro do tipo underlay e retransmissão cooperativa ¿ em redes cooperativas e cognitivas tem recebido especial atenção, já que a eficiência espectral do sistema e o desempenho da rede secundária podem ser melhorados significativamente. Esta tese apresenta quatro contribuições principais na referida área. Em particular, estuda-se o efeito conjunto de duas restrições de potência importantes sobre o desempenho de outage de redes cooperativas e cognitivas, especificamente, o nível máximo de potência interferente tolerada pelo receptor primário e o valor máximo de potência transmitida nos usuários secundários. Foca-se em esquemas de retransmissão baseados no protocolo decodifica-e-encaminha, abordando cenários em que o enlace direto entre fonte e destino está disponível para transmitir informação útil. Como uma primeira contribuição, analisa-se o desempenho de dois esquemas baseados no protocolo de retransmissão half-duplex incremental, os quais exploram a diversidade espacial dos enlaces diretos em redes cooperativas e cognitivas multiusuário. A segunda contribuição investiga o impacto de estimativas desatualizadas do canal sobre o mecanismo de seleção de destino para um desses esquemas anteriores, focando-se apenas no aspecto cooperativo da rede, ou seja, desconsiderando-se o uso de compartilhamento espectral. A terceira contribuição estuda o desempenho de redes cooperativas e cognitivas baseadas no modo full-duplex. Para esse cenário, avalia-se o impacto tanto da autointerferência residual, que é inerente ao modo full-duplex, bem como das restrições de potência que caracterizam o compartilhamento de espectro do tipo underlay. Como contribuição final, motivada pelo compromisso entre a perda de eficiência espectral e o problema da autointerferência residual, próprios dos modos half-duplex e full-duplex, respectivamente, propõe-se e analisa-se um esquema de transmissão adaptativo para redes cooperativas e cognitivas, através do qual, antes de cada processo de comunicação, um dos seguintes modos de transmissão é selecionado: retransmissão half-duplex, retransmissão full-duplex ou transmissão direta. Para todos os cenários considerados, expressões analíticas exatas para a probabilidade de outage são obtidas. Adicionalmente, uma análise assintótica é realizada a fim de caracterizar a ordem de diversidade e o comportamento de outage da rede secundária no regime assintótico de alta relação sinal-ruído. Simulações de Monte Carlo validam os resultados analíticos apresentadosAbstract: Underlay spectrum sharing has been proposed as a promising technique to alleviate the problem of spectrum scarcity and underutilization, by enabling secondary (unlicensed) users to concurrently access a licensed band, provided that the resulting interference on the primary (licensed) users remains below a given acceptable level. However, such a technique implies that the transmit power at the secondary network must be constrained, thereby compromising the communication reliability and coverage. To counteract this, cooperative relaying techniques, which provide a new form of spatial diversity, can be exploited as an effective means to boost the performance of the secondary network. Indeed, the joint use of both techniques¿underlay spectrum sharing and cooperative relaying¿in cognitive relaying networks has drawn special attention, since the overall spectral efficiency and the secondary-network performance can be significantly improved. This dissertation comprises four main contributions in this field. In particular, we examine the combined effect of two crucial power constraints on the outage performance of cognitive relaying networks, namely, the maximum tolerable interference power at the primary receiver and the maximum transmit power at the secondary users. We focus on relaying schemes operating under the decode-and-forward protocol, for scenarios in which the direct link between source and destination is available to convey useful information. As a first contribution, we analyze the performance of two incremental half-duplex relaying schemes, which exploit the spatial diversity of the direct links in a multiuser scenario. Our second contribution investigates the impact of outdated channel estimates on the destination-scheduling mechanism of one of those incremental schemes, from the perspective of a cooperative network only, that is, in the absence of spectrum sharing. The third contribution addresses cognitive full-duplex relaying networks. More specifically, we assess the system performance as a function of both the residual self-interference, which is inherent to the full-duplex relaying mode, and the underlay spectrum-sharing power constraints. As a final contribution, driven by the tradeoff between the spectral-efficiency loss and the residual self-interference problem, intrinsic to the half- and full-duplex relaying modes, respectively, we propose and analyze an adaptive transmission scheme whereby, before each communication process, one out of the following transmission modes is selected: half-duplex relaying, full-duplex relaying, or direct transmission. For all the considered scenarios, exact analytical expressions for the outage probability are derived. In addition, an asymptotic analysis is performed to obtain further insights on the diversity order and outage behavior of the secondary network at the high signal-to-noise ratio regime. Monte Carlo simulations corroborate the accuracy of the presented mathematical analysisDoutoradoTelecomunicações e TelemáticaDoutor em Engenharia ElétricaCAPE

    Security-Reliability Tradeoff Analysis for Underlay Cognitive Two-Way Relay Networks

    Get PDF
    We consider an underlay wiretap cognitive two-way relay network (CTWRN), where two secondary sources exchange their messages via multiple secondary decode-and-forward digital network coding relays in the presence of an eavesdropper by using a three-phase time division broadcast protocol and sharing the licensed spectrum of primary users. To mitigate eavesdropping attacks, an artificial noise (AN)-aided opportunistic relay selection scheme, called generalized max-min (GMM) relay selection is proposed to enhance physical layer security for the wiretap CTWRNs. The performance of the GMM scheme is analyzed, and evaluated by the exact closed-form outage probability and intercept probability. Additionally, we also provide asymptotic approximations for the outage probability and intercept probability at high signal-to-noise ratio. For comparison, we analyze the performance of the conventional max-min (MM) relay selection scheme as well. It is shown that the GMM scheme outperforms the MM scheme in terms of the security-reliability tradeoff (SRT), where the security and reliability are quantified by the intercept probability and outage probability, respectively. Moreover, the SRTs of the MM and GMM schemes can be substantially improved by increasing the number of secondary relays, while the improvement of the GMM scheme is more evident than that of the MM scheme

    Fast antijamming timing acquisition using multilayer synchronization sequence

    No full text
    Pseudonoise (PN) sequences are widely used as preamble sequences to establish timing synchronization in military wireless communication systems. At the receiver, searching and detection techniques, such as the full parallel search (FPS) and the serial search (SS), are usually adopted to acquire correct timing position. However, the synchronization sequence has to be very long to combat jamming that reduces the signal-to-noise ratio (SNR) to an extremely low level. In this adverse scenario, the FPS scheme becomes too complex to implement, whereas the SS method suffers from the drawback of long mean acquisition time (MAT). In this paper, a fast timing acquisition method is proposed, using the multilayer synchronization sequence based on cyclical codes. Specifically, the transmitted preamble is the Kronecker product of Bose–Chaudhuri-Hocquenghem (BCH) codewords and PN sequences. At the receiver, the cyclical nature of BCH codes is exploited to test only a part of the entire sequence, resulting in shorter acquisition time. The algorithm is evaluated using the metrics of MAT and detection probability (DP). Theoretical expressions of MAT and DP are derived from the constant false-alarm rate (CFAR) criterion. Theoretical analysis and simulation results show that our proposed scheme dramatically reduces the acquisition time while achieving similar DP performance and maintaining a reasonably low real-time hardware implementation complexity, in comparison with the SS schem

    Secrecy performance of TAS/SC-based multi-hop harvest-to-transmit cognitive WSNs under joint constraint of interference and hardware imperfection

    Get PDF
    In this paper, we evaluate the secrecy performance of multi-hop cognitive wireless sensor networks (WSNs). In the secondary network, a source transmits its data to a destination via the multi-hop relaying model using the transmit antenna selection (TAS)/selection combining (SC) technique at each hop, in the presence of an eavesdropper who wants to receive the data illegally. The secondary transmitters, including the source and intermediate relays, have to harvest energy from radio-frequency signals of a power beacon for transmitting the source data. Moreover, their transmit power must be adjusted to satisfy the quality of service (QoS) of the primary network. Under the joint impact of hardware imperfection and interference constraint, expressions for the transmit power for the secondary transmitters are derived. We also derive exact and asymptotic expressions of secrecy outage probability (SOP) and probability of non-zero secrecy capacity (PNSC) for the proposed protocol over Rayleigh fading channel. The derivations are then verified by Monte Carlo simulations.Web of Science195art. no. 116

    Outage probability analysis for hybrid TSR-PSR based SWIPT systems over log-normal fading channels

    Get PDF
    Employing simultaneous information and power transfer (SWIPT) technology in cooperative relaying networks has drawn considerable attention from the research community. We can find several studies that focus on Rayleigh and Nakagami-m fading channels, which are used to model outdoor scenarios. Differing itself from several existing studies, this study is conducted in the context of indoor scenario modelled by log-normal fading channels. Specifically, we investigate a so-called hybrid time switching relaying (TSR)-power splitting relaying (PSR) protocol in an energy-constrained cooperative amplify-and-forward (AF) relaying network. We evaluate the system performance with outage probability (OP) by analytically expressing and simulating it with Monte Carlo method. The impact of power-splitting (PS), time-switching (TS) and signal-to-noise ratio (SNR) on the OP was as well investigated. Subsequently, the system performance of TSR, PSR and hybrid TSR-PSR schemes were compared. The simulation results are relatively accurate because they align well with the theory

    Wireless-Powered Communication Assisted by Two-Way Relay with Interference Alignment Underlaying Cognitive Radio Network

    Full text link
    This study investigates the outage performance of an under-laying wireless-powered secondary system that reuses the primary users (PU) spectrum in a multiple-input multiple-output (MIMO) cognitive radio (CR) network. Each secondary user (SU) harvests energy and receives information simultaneously by applying power splitting (PS) protocol. The communication between SUs is aided by a two-way (TW) decode and forward (DF) relay. We formulate a problem to design the PS ratios at SUs, the power control factor at the secondary relay, and beamforming matrices at all nodes to minimize the secondary network's outage probability. To address this problem, we propose a two-step solution. The first step establishes closedform expressions for the PS ratios at each SU and secondary relay's power control factor. Furthermore, in the second step, interference alignment (IA) is used to design proper precoding and decoding matrices for managing the interference between secondary and primary networks. We choose IA matrices based on the minimum mean square error (MMSE) iterative algorithm. The simulation results demonstrate a significant decrease in the outage probability for the proposed scheme compared to the benchmark schemes, with an average reduction of more than two orders of magnitude achieved

    Hybrid satellite–terrestrial networks toward 6G : key technologies and open issues

    Get PDF
    Future wireless networks will be required to provide more wireless services at higher data rates and with global coverage. However, existing homogeneous wireless networks, such as cellular and satellite networks, may not be able to meet such requirements individually, especially in remote terrain, including seas and mountains. One possible solution is to use diversified wireless networks that can exploit the inter-connectivity between satellites, aerial base stations (BSs), and terrestrial BSs over inter-connected space, ground, and aerial networks. Hence, enabling wireless communication in one integrated network has attracted both the industry and the research fraternities. In this work, we provide a comprehensive survey of the most recent work on hybrid satellite–terrestrial networks (HSTNs), focusing on system architecture, performance analysis, design optimization, and secure communication schemes for different cooperative and cognitive HSTN network architectures. Different key technologies are compared. Based on this comparison, several open issues for future research are discussed
    • …
    corecore