146 research outputs found

    Opportunistic Relaying in Time Division Broadcast Protocol with Incremental Relaying

    Get PDF
    In this paper, we investigate the performance of time division broadcast protocol (TDBC) with incremental relaying (IR) when there are multiple available relays. Opportunistic relaying (OR), i.e., the “best” relay is select for transmission to minimize the system’s outage probability, is proposed. Two OR schemes are presented. The first scheme, termed TDBC-OIR-I, selects the “best” relay from the set of relays that can decode both flows of signal from the two sources successfully. The second one, termed TDBC-OIR-II, selects two “best” relays from two respective sets of relays that can decode successfully each flow of signal. The performance, in terms of outage probability, expected rate (ER), and diversity-multiplexing tradeoff (DMT), of the two schemes are analyzed and compared with two TDBC schemes that have no IR but OR (termed TDBC-OR-I and TDBC-OR-II accordingly) and two other benchmark OR schemes that have no direct link transmission between the two sources

    Adaptive Relay-Selection In Decode-And-Forward Cooperative Systems

    Get PDF
    In the past few years adaptive decode-and-forward cooperative diversity systems have been studied intensively in literature. Many schemes and protocols have been proposed to enhance the performance of the cooperative systems while trying to alleviate its drawbacks. One of the recent schemes that had been shown to give high improvements in performance is the best-relay selection scheme. In the best-relay selection scheme only one relaying nodes among the relays available in the system is selected to forward the source\u27s message to the destination. The best relay is selected as the relay node that can achieve the highest end-to-end signal-to-noise ratio (snr) at the destination node. Performance improvements have been reported as compared to regular fixed decode-and-forward relaying in which all relays are required to forward the source\u27s message to the destination in terms of spectral efficiency and diversity order. In this thesis, we use simulations to show the improvement in the outage performance of the best-relay selection scheme

    Analysis of Outage Probability and Throughput for Half-Duplex Hybrid-ARQ Relay Channels

    No full text
    International audienceWe consider a half-duplex wireless relay network with hybrid-automatic retransmission request (HARQ) and Rayleigh fading channels. In this paper, we analyze the average throughput and outage probability of the multirelay delay-limited (DL) HARQ system with an opportunistic relaying scheme in decode-and-forward (DF) mode, in which the best relay is selected to transmit the source's regenerated signal. A simple and distributed relay selection strategy is considered for multirelay HARQ channels. Then, we utilize the nonorthogonal cooperative transmission between the source and selected relay for retransmission of source data toward the destination, if needed, using space-time codes. We analyze the performance of the system. We first derive the cumulative density function (cdf) and probability density function (pdf) of the selected relay HARQ channels. Then, the cdf and pdf are used to determine the exact outage probability in the lth round of HARQ. The outage probability is required to compute the throughput-delay performance of this half-dublex opportunistic relaying protocol. The packet delay constraint is represented by L, which is maximum number of HARQ rounds. Furthermore, simple closed-form upper bounds on outage probability are derived. Based on the derived upper bound expressions, it is shown that the proposed schemes achieve the full spatial diversity order of N+1, where N is the number of potential relays. In addition, simulation shows that our proposed scheme can achieve higher average throughput, compared with direct transmission and conventional tho-phase relay networks

    Cooperative Communications: Network Design and Incremental Relaying

    Get PDF

    A Study Of Cooperative Spectrum Sharing Schemes For Internet Of Things Systems

    Get PDF
    The Internet of Things (IoT) has gained much attention in recent years with the massive increase in the number of connected devices. Cognitive Machine-to-Machine (CM2M) communications is a hot research topic in which a cognitive dimension allows M2M networks to overcome the challenges of spectrum scarcity, interference, and green requirements. In this paper, we propose a Generalized Cooperative Spectrum Sharing (GCSS) scheme for M2M communication. Cooperation extends the coverage of wireless networks as well as increasing their throughput while reducing the energy consumption of the connected low power devices. We study the outage performance of the proposed GCSS scheme for M2M system and derive exact expressions for the outage probability. We also analyze the effect of varying transmission powers on the performance of the system

    Adaptive relaying protocol multiple-input multiple-output orthogonal frequency division multiplexing systems

    Get PDF
    In wireless broadband communications, orthogonal frequency division multiplexing (OFDM) has been adopted as a promising technique to mitigate multi-path fading and provide high spectral efficiency. In addition, cooperative communication can explore spatial diversity where several users or nodes share their resources and cooperate through distributed transmission. The concatenation of the OFDM technique with relaying systems can enhance the overall performance in terms of spectral efficiency and improve robustness against the detrimental effects of fading. Hybrid relay selection is proposed to overcome the drawbacks of conventional forwarding schemes. However, exciting hybrid relay protocols may suffer some limitations when used for transmission over frequency-selective channels. The combination of cooperative protocols with OFDM systems has been extensively utilized in current wireless networks, and have become a promising solution for future high data rate broadband communication systems including 3D video transmission. This thesis covers two areas of high data rate networks. In the first part, several techniques using cooperative OFDM systems are presented including relay selection, space time block codes, resource allocation and adaptive bit and power allocation to introduce diversity. Four (4) selective OFDM relaying schemes are studied over wireless networks; selective OFDM; selective OFDMA; selective block OFDM and selective unequal block OFDM. The closed-form expression of these schemes is derived. By exploiting the broadcast nature, it is demonstrated that spatial diversity can be improved. The upper bound of outage probability for the protocols is derived. A new strategy for hybrid relay selection is proposed to improve the system performance by removing the sub-carriers that experience deep fading. The per subcarrier basis selection is considered with respect to the predefined threshold signal-to-noise ratio. The closed-form expressions of the proposed protocol in terms of bit error probability and outage probability are derived and compared with conventional hybrid relay selection. Adaptive bit and power allocation is also discussed to improve the system performance. Distributed space frequency coding applied to hybrid relay selection to obtain full spatial and full data rate transmission is explored. Two strategies, single cluster and multiple clusters, are considered for the Alamouti code at the destination by using a hybrid relay protocol. The power allocation with and without sub-carrier pairing is also investigated to mitigate the effect of multipath error propagation in frequency-selective channels. The second part of this thesis investigates the application of cooperative OFDM systems to high data rate transmission. Recently, there has been growing attention paid to 3D video transmission over broadband wireless channels. Two strategies for relay selection hybrid relay selection and first best second best are proposed to implement unequal error protection in the physical layer over error prone channels. The closed-form expressions of bit error probability and outage probability for both strategies are examined. The peak signal-to-noise ratio is presented to show the quality of reconstruction of the left and right views
    • …
    corecore