4,644 research outputs found

    HARQ Feedback in Spectrum Sharing Networks

    Get PDF
    This letter studies the throughput and the outage probability of spectrum sharing networks utilizing hybrid automatic repeat request (HARQ) feedback. We focus on the repetition time diversity and the incremental redundancy HARQ protocols where the results are obtained for both continuous and bursting communication models. The channel data transmission efficiency is investigated in the presence of both secondary user peak transmission power and primary user received interference power constraints. Finally, we evaluate the effect of secondary-primary channel state information imperfection on the performance of the secondary channel. Simulation results show that, while the throughput is not necessarily increased by HARQ, substantial outage probability reduction is achieved in all conditions.Comment: Published in IEEE Communications Letter

    On the Outage Probability of the Full-Duplex Interference-Limited Relay Channel

    Get PDF
    In this paper, we study the performance, in terms of the asymptotic error probability, of a user which communicates with a destination with the aid of a full-duplex in-band relay. We consider that the network is interference-limited, and interfering users are distributed as a Poisson point process. In this case, the asymptotic error probability is upper bounded by the outage probability (OP). We investigate the outage behavior for well-known cooperative schemes, namely, decode-and-forward (DF) and compress-and-forward (CF) considering fading and path loss. For DF we determine the exact OP and develop upper bounds which are tight in typical operating conditions. Also, we find the correlation coefficient between source and relay signals which minimizes the OP when the density of interferers is small. For CF, the achievable rates are determined by the spatial correlation of the interferences, and a straightforward analysis isn't possible. To handle this issue, we show the rate with correlated noises is at most one bit worse than with uncorrelated noises, and thus find an upper bound on the performance of CF. These results are useful to evaluate the performance and to optimize relaying schemes in the context of full-duplex wireless networks.Comment: 30 pages, 4 figures. Final version. To appear in IEEE JSAC Special Issue on Full-duplex Wireless Communications and Networks, 201

    Wireless Information Transfer with Opportunistic Energy Harvesting

    Full text link
    Energy harvesting is a promising solution to prolong the operation of energy-constrained wireless networks. In particular, scavenging energy from ambient radio signals, namely wireless energy harvesting (WEH), has recently drawn significant attention. In this paper, we consider a point-to-point wireless link over the narrowband flat-fading channel subject to time-varying co-channel interference. It is assumed that the receiver has no fixed power supplies and thus needs to replenish energy opportunistically via WEH from the unintended interference and/or the intended signal sent by the transmitter. We further assume a single-antenna receiver that can only decode information or harvest energy at any time due to the practical circuit limitation. Therefore, it is important to investigate when the receiver should switch between the two modes of information decoding (ID) and energy harvesting (EH), based on the instantaneous channel and interference condition. In this paper, we derive the optimal mode switching rule at the receiver to achieve various trade-offs between wireless information transfer and energy harvesting. Specifically, we determine the minimum transmission outage probability for delay-limited information transfer and the maximum ergodic capacity for no-delay-limited information transfer versus the maximum average energy harvested at the receiver, which are characterized by the boundary of so-called "outage-energy" region and "rate-energy" region, respectively. Moreover, for the case when the channel state information (CSI) is known at the transmitter, we investigate the joint optimization of transmit power control, information and energy transfer scheduling, and the receiver's mode switching. Our results provide useful guidelines for the efficient design of emerging wireless communication systems powered by opportunistic WEH.Comment: to appear in IEEE Transactions on Wireless Communicatio

    Filter and nested-lattice code design for fading MIMO channels with side-information

    Full text link
    Linear-assignment Gel'fand-Pinsker coding (LA-GPC) is a coding technique for channels with interference known only at the transmitter, where the known interference is treated as side-information (SI). As a special case of LA-GPC, dirty paper coding has been shown to be able to achieve the optimal interference-free rate for interference channels with perfect channel state information at the transmitter (CSIT). In the cases where only the channel distribution information at the transmitter (CDIT) is available, LA-GPC also has good (sometimes optimal) performance in a variety of fast and slow fading SI channels. In this paper, we design the filters in nested-lattice based coding to make it achieve the same rate performance as LA-GPC in multiple-input multiple-output (MIMO) channels. Compared with the random Gaussian codebooks used in previous works, our resultant coding schemes have an algebraic structure and can be implemented in practical systems. A simulation in a slow-fading channel is also provided, and near interference-free error performance is obtained. The proposed coding schemes can serve as the fundamental building blocks to achieve the promised rate performance of MIMO Gaussian broadcast channels with CDIT or perfect CSITComment: submitted to IEEE Transactions on Communications, Feb, 200
    corecore