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Abstract—In this paper, we study the performance, in terms of
the asymptotic error probability, of a user which communicates
with a destination with the aid of a full-duplex in-band relay. We
consider that the network is interference-limited, and interfering
users are distributed as a Poisson point process. In this case,
the asymptotic error probability is upper bounded by the outage
probability (OP). We investigate the outage behavior for well-
known cooperative schemes, namely, decode-and-forward (DF)
and compress-and-forward (CF) considering fading and path loss.
For DF we determine the exact OP and develop upper bounds
which are tight in typical operating conditions. Also, we find the
correlation coefficient between source and relay signals which
minimizes the OP when the density of interferers is small. For
CF, the achievable rates are determined by the spatial correlation
of the interferences, and a straightforward analysis isn’t possible.
To handle this issue, we show the rate with correlated noises is
at most one bit worse than with uncorrelated noises, and thus
find an upper bound on the performance of CF. These results
are useful to evaluate the performance and to optimize relaying
schemes in the context of full-duplex wireless networks.

Index Terms—Cooperative communication, interference,
asymptotic error probability, outage probability, decode and
forward, compress and forward, marked Poisson point processes.

I. INTRODUCTION

In recent years, diversity-exploiting techniques for coop-
erative communications in wireless networks have been one
of the most promising techniques to cope with the always
increasing traffic demands. As such, strategies involving relays
have received much attention as a means for improving the
throughput and reliability of individual links [1] [2] [3]. For
example, in the context of cellular networks, fourth-generation
(4G) mobile-broadband systems allow for new coordination
and cooperation strategies among base stations and relaying
nodes. Basic relaying functionality was included in the Long
Term Evolution (LTE) Rel. 10 standard [4], while Rel. 11
introduces several Coordinated Multi-Point Operation (CoMP)
modes [5]. In the former, communications can be established
via a half-duplex relay node, wirelessly connected to a BS,
either in the same frequency as the relay-destination link (in-
band relaying), or in another band (out-of-band relaying) [4].
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The latter considers homogeneous, i.e. single-tier, networks,
with relays, and heterogeneous ones, where macro-cells and
smaller cells are jointly deployed [5].

Since the seminal paper by Cover and El Gamal [6], the re-
lay channel has received much attention from an information-
theoretic perspective. In [6], the main coding strategies,
decode-and-forward (DF) and compress-and-forward (CF)
were introduced and analyzed. A third alternative is amplify-
and-forward (AF) which we will not address in this paper.
In general, works on additive-noise relay channels assume
that transmissions are impaired by uncorrelated background
noises at the receivers. Although this assumption has proved
to be very useful, in the context of wireless networks, it may
also be interesting to consider the interference correlation,
which arises, among other things, because many receivers
will experience interference from the same sources. This
correlation appears both in the interference time signals, and
in the random, correlated interference powers at the receivers.
Moreover, in a large network, users may interact, causing each
other adverse interference conditions, an effect which is not
present when uncorrelated background noises are considered.
Stochastic geometry [7] models have emerged as a useful and
versatile toolbox for the analysis of large wireless networks, in
which the interference among neighboring nodes is a key limit
of performance [8], [9]. Through these models, the random
spatial distribution of the nodes, random interference-signal
correlation and powers, and user-interaction, can be modeled
in an elegant and compact fashion, leading to insightful results
and guidelines in network design and analysis.

In this paper, we study the performance, in terms of the
asymptotic error probability, of full-duplex in-band relaying
in a network impaired by interference between neighboring
nodes, using an information-theoretic and stochastic geometry
approach. Specifically, we consider the case in which a source
attempts to communicate to a destination using the full-duplex
DF or CF protocols. The gains in asymptotic error probability
are upper bounded in terms of the outage probability (OP),
that is, the probability that, due to instantaneous conditions,
the channel cannot support the rate attempted by a transmitting
user. The co-channel interference experienced by the users is
modeled using a homogeneous Poisson point process, consid-
ering both path loss attenuation and Rayleigh fading.

A. Related work

In the context of outage in slow-fading Gaussian networks,
works generally consider that fixed-power, uncorrelated noises
are present at the receivers, and perform analysis for each value
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of the noise powers, without considering correlated or random
interference signals. For example, [10] studies, among other
things, the performance of DF in a single-relay network in
which the source-relay link has a fixed, known amplitude, and
the source does not know if the relay is present or not. The
expected throughput of the scheme and the optimal correlation
between the transmissions of the source and the relay are char-
acterized for each value of the noise powers. In [11], a single-
relay model in a Rayleigh fading environment is considered,
with fixed, uncorrelated Gaussian background noise. The OP
and the ergodic rate for DF and the correlation coefficient
between the source and the relay, along with power allocation
between transmitters are considered. Some examples in which
correlation is considered between the nodes are [12] and [13].
Reference [12] studies the impact of noise correlation on the
achievable rates of DF and CF for fixed-power background
noises, while [13] provides analytical expressions for the end-
to-end SNR and OP of cooperative diversity in correlated
lognormal channels for full-duplex DF relaying, and selection
combining or maximum ratio combining, as a function of the
joint channel densities.

There has been much work in the context of wireless
networks with the aid of stochastic geometry models. The
simplest of these models, the one which has been most
frequently used is the homogeneous Poisson point process. The
fundamental benefit of this process is that it generally leads
to mathematically simpler and more tractable expressions than
other, more structured processes. Initially, the Poisson process
model for node distribution was taken to be a reasonable ap-
proximation for decentralized networks in which transmissions
take place in uncoordinated fashion, such as with the ALOHA
medium access strategy. Examples of these are wireless sensor
and ad hoc networks [14], [15]. In recent years, it has also
been adopted for more structured networks such as cellular
networks, where macro, pico, femto base station distributions
are modeled via this process [16], [17]. It is shown that, even
though this assumption implies the independent distribution
of base stations which may not hold in cellular networks, the
model is still accurate and conservative in predicting many
important network parameters, while retaining a higher degree
of mathematical tractability than standard regular-grid models.

There have been recent works studying the cooperative
schemes employing spatial models. In the context of de-
centralized networks, in [18], the optimal relay activation
probability for a network in which source nodes use either
direct transmission (DT) or cooperate with a full-duplex relay
using DF. In the context of cellular networks, cooperative
schemes with spatial models have mainly regarded cooperation
between two or more base stations with a wired backhaul.
In [19], the authors analyze the improvements in coverage
probability, achievable through a scheme in which each user
can be served by the base stations which is nearest to him, or
jointly served by the two nearest ones. On the other hand, in
[20], the authors use a model based on the Poisson process to
analyze the interference distribution in a network employing
non-coherent joint-transmission base station cooperation, in
which several base stations transmit the same data to a given
user, without prior phase mismatch correction.

B. Main Contributions

In this paper, we focus on a reference transmitter which
attempts to communicate with a destination with the aid
of a full-duplex in-band relay, using either the DF or CF
schemes. This channel could be interpreted as the downlink
of a reference fixed-size cell of a cellular network, in which
the base station cooperates with a wireless infrastructure relay.
The relay is therefore not connected to the wired backhaul of
the network, as in previous works, and receives the message
wirelessly from the base station. We consider that the co-
channel interference experienced by the relay and the destina-
tion of the message comes from nodes which are distributed
as Poisson process and that signals are subject to path loss
attenuation and Rayleigh fading. In this analysis, we focus
on the interference and the signal-to-interference ratio (SIR),
neglecting the presence of background noise, since in many
scenarios this is the main limit to performance [16]. For DF,
we derive the expression of the exact OP of the link in terms
of the joint Laplace transform of the interferences, which
unfortunately, can only be evaluated numerically. In addition,
we perform an asymptotic analysis of the OP as the density
of interferers tends to zero (SIR → ∞), and show that it
is minimized when the correlation coefficient between the
source and relay’s symbols is zero. We then derive closed-
form upper bounds to the OP which are tight for small OPs,
typical in wireless system designs [21]. In the case of DF,
the requirement that the relay fully decode the messages of
the source prior to forwarding them, implies that the rate
that the link can achieve does not depend on the spatial
correlation of the interference signals at the relay and the
destination. This spatial correlation is a consequence of the
spatial distribution of interfering nodes which interfere with
the relay and the destination simultaneously. In CF, however,
the relay compresses the messages received from the source
without decoding them and hence, the achievable rate depends
on the spatial correlation induced by the point process. For this
reason, a direct analysis of the CF protocol is infeasible. In this
work, we show that the achievable rate of CF with correlated
interference is at most one bit worse than with uncorrelated
interference and, using this fact, we derive an upper bound on
the OP of CF. Finally, we also compare the performance of the
analyzed protocols with a simple half-duplex DF protocol and
with DT. To do this, a lower bound on the OP for a half-duplex
DF protocol is introduced.

The rest of the paper is organized as follows: in Section
II, we present the mathematical model of the network, a
description of the DF and CF schemes, and their achievable
rates. The OP is also shown to be an upper bound on the
asymptotic error probability of the link. In Section III the OP
analysis is carried out for both schemes. Finally, numerical
results and conclusions can be found in Sections IV and V,
respectively, while proofs are relegated to the appendices.

Notation

We denote as R, C and R2, the real numbers, complex
numbers and the real plane respectively. The Euclidean norm
is denoted as ‖ · ‖. (·)∗ denotes complex conjugation and



3

<(·) the real part of complex number. PX {·} and EX [·]
denote probability and expectation with respect to the random
variable X . Ac and 1{A} denote the complement and the
indicator function of the set A, and I(X,Y ) denotes the
mutual information between the random variables X and Y .
We use the big O notation: f(x) = O (g(x)) as x → x0

if there exists M > 0 such that |f(x)| ≤ M |g(x)| in some
neighborhood of x0.

II. GENERAL CONSIDERATIONS AND NETWORK MODEL

A. Spatial Model and Preliminaries
We consider a single-antenna source node located at the ori-

gin o ∈ R2 which attempts to communicate with a destination
located at d = (D, 0) with the aid of a relaying node located
at r, working in a full-duplex fashion in the same frequency
band. We model the interfering nodes as an independently
marked homogeneous Poisson point process [7]:

Φ̃ = {(xi, hxir, hxid)} , (1)

with the following characteristics:
• The set of transmitters constitutes an homogeneous Pois-

son process Φ = {xi} of intensity λ.
• All users transmit with constant unit power. We assume

that transmissions are affected by path loss and i.i.d.
narrow-band block-fading, that is, the power received at
y by a transmitter at x is |hxy|2l(x, y) where:

– l(x, y) is a spherically symmetric path loss between
x and y. For numerical results we shall work with
the usual unbounded or simplified path loss function:
l(x, y) = ||x− y||−α with α > 2.

– |hxy|2 is the power fading coefficient associated with
the channel between points x and y. We consider
Rayleigh fading, i.e. the power fading coefficients
are independent identically distributed exponential
random variables with unit mean. This is equivalent
to saying that hxy are complex, circular, zero-mean
Gaussian random variables.

• The marks hxir and hxid model the fading coefficient
between each transmitting node in the network and the
nodes relay and destination corresponding to the trans-
mitter located at the origin, respectively. In addition we
include another fading coefficient hrd with the same
distribution as hxir and hxid, independent of Φ̃, which
models the fading between the relay and destination
corresponding to the transmitter at the origin. We denote
by lsd, lsr and lrd the source-destination, source-relay
and relay-destination path losses respectively.

Conditioning on the marked point process, the signals received
at the relay and destination, associated with the source node
at the origin, can be written as:

Yr = hsr
√
lsrXs +

∑
i:xi∈Φ

hxirl(xi, r)
1
2Xxi︸ ︷︷ ︸

Z̃r

Yd = hsd
√
lsdXs + hrd

√
lrdXr +

∑
i:xi∈Φ

hxidl(xi, d)
1
2Xxi︸ ︷︷ ︸

Z̃d

,

where, for shortness, we have dropped the dependence of the
signals on the messages to be transmitted and the discrete
time indices for the block codewords. We have denoted with
(Xs, Xr) the symbols transmitted by the source and the relay
and {Xxi} the corresponding signals for the other transmitters
in the network. If Gaussian signaling is used, that is, the {Xxi}
are generated as complex, circular, unit-variance, zero-mean
independent Gaussian random variables, and interference is
treated as noise for decoding, then for each realization of Φ̃
the aggregate interferences Z̃r and Z̃d, are zero-mean complex
circular Gaussian variables whose conditional variances are:

Ir
M
= E

[
|Z̃r|2|Φ̃

]
=
∑
i:xi∈Φ

|hxir|2l(xi, r), (2)

Id
M
= E

[
|Z̃d|2|Φ̃

]
=
∑
i:xi∈Φ

|hxid|2l(xi, d). (3)

In addition, these signals are spatially correlated by the point
process, and their correlation coefficient is:

ρN |Φ̃ =
E[Z̃rZ̃

∗
d |Φ̃]√

IrId
. (4)

As we mentioned previously, depending on the protocol used,
this correlation may have an impact on the achievable rate and
it may be necessary to take it into account in the analysis. We
can define the joint Laplace transform for these interference
power random variables Ir and Id as:

LId,Ir (ω1, ω2) := EΦ̃

[
e−(ω1Id+ω2Ir)

]
, ω1, ω2 ∈ C, (5)

with <{ω1} ,<{ω1} > 0. The general expression for the
Laplace transform of interference random variables of an
independently marked Poisson process can be found in [8,
chap. 2]. In our case, given (2) and (3) we have:

LId,Ir (ω1, ω2) = e−λ
∫
R2 E[1−e−ω1g(x,d,h1)−ω2g(x,r,h2)]dx

= exp

{
−λ
∫
R2

[
1− 1

(1 + ω1l(x, d))(1 + ω2l(x, r))

]
dx

}
(6)

where g(x, y, h) = l(x, y)|h|2 is the function appearing
inside the interferences. In the second step we computed the
expectation over {|h1|2, |h2|2}, which are unit mean inde-
pendent exponential random variables representing the fading
coefficients inside the interference random variables.

Lemma 2.1: For the simplified path loss function the Laplace
transform writes as:

LId,Ir (ω1, ω2) = e
−λ
(
C(ω

2/α
1 +ω

2/α
2 )+f(ω1,ω2)

)
, (7)

where:

C =
2πΓ

(
2
α

)
Γ
(
1− 2

α

)
α

(8)

f(ω1, ω2) =

∫
R2

ω1ω2

(ω1 + ‖x− d||α)(ω2 + ||x− r||α)
dx (9)

and Γ(z) =
∫∞

0
tz−1e−tdt is the Gamma function.

Proof: See appendix A.
f(ω1, ω2) in (9) accounts for the statistical dependence

between the interferences at two different locations, which is
inherited from the spatial correlation of the time signals Yr
and Yd. If, in fact, they were independent, the joint Laplace
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transform would be the product of their individual transforms
and this cross-term would not appear. Unfortunately this term
does not have a closed form and is very difficult to bound
tightly in a general setup for all (ω1, ω2). Taking ω1 = 0
or ω2 = 0, the separate Laplace transforms of the interference
powers, which have closed form expressions for the simplified
path loss function, can be obtained.

B. Problem Statement and Bounds on the Asymptotic Error
Probability

Our goal is to study the asymptotic error probability per-
formance of the relay channel formed by the source at the
origin together with its destination and the relay. We assume
there is no channel state information (CSI) available at the
source, that the relay only has CSI of the source-relay channel,
and the destination of both the source-destination and relay-
destination channels. A message W is chosen at random by
the source, and a transmission takes place using a single-relay
code, defined as follows:

Definition 2.1 (single-relay code): A single-relay code
Cn(n,Mn) of rate R for a set of messages {1, . . . ,Mn}
consists of:
• A set of random and independent complex Gaussian

codewords Xn
s (wi), wi ∈ {1, . . . ,Mn}, each according

to n i.i.d. draws of a unit-variance Gaussian variable.
• A decoder mapping Ŵ : Cn 7−→ {1, . . . ,Mn} ∪ {E}.
• A sequence of relay mappings ft : Ct−1 7−→ C

constrained to produce i.i.d. complex Gaussian random
variables of unit variance, for t = {1, . . . , n}.

The smallest asymptotic average (over all random parame-
ters) probability of error of the source-destination pair at the
origin is given by:

P̄e(R, λ) ≡

inf
Cn

{
lim sup
n→∞

P(n)
Θ,λ(W 6= Ŵ |Cn)

∣∣∣ lim inf
n→∞

1

n
logMn ≥ R

}
,

where Θ condenses all the randomness in the model:

Θ =
{

Φ̃, hsr, hrd, hsd, r
}
. (10)

Since the source is unaware of the instantaneous interference,
path loss attenuation and fading coefficients involved, the error
probability cannot be made arbitrary small with the code-
length. For any code Cn according to Def. 2.1, the error
probability can be bounded as [21]:

P(W 6= Ŵ |Cn) = P(W 6= Ŵ |Cn,O(R))P(O(R)|Cn)

+ P(W 6= Ŵ |Cn,Oc(R))P(Oc(R)|Cn)

≤ P(O(R)|Cn) + P(W 6= Ŵ |Cn,Oc(R)), (11)

where O(R) ∈ σ(Θ) denotes an outage event, σ(Θ) being
the σ-algebra generated by Θ. Therefore, the asymptotic error
probability can be upper bounded by any code Cn, as follows:

P̄e(R, λ) ≤ inf
O(R)∈σ(Θ)

[PΘ,λ {O(R)}

+ lim sup
n→∞

P(n)
Θ,λ

{
W 6= Ŵ |Cn,Oc(R)

}]
. (12)

If, for a given code Cn, the event Oc(R) is chosen to contain
the points in Θ such that R is achievable through Cn, the
second term on the right-hand side of (12) can be made
arbitrary small. That is, for any ε > 0:

lim sup
n→∞

P(n)
Θ,λ

{
W 6= Ŵ |Cn,Oc(R)

}
≤ ε. (13)

In this way, given a rate R, the asymptotic error probability
P̄e(R) is dominated by the OP PΘ,λ {O(R)} of the corre-
sponding achievable rate. The OP is a useful performance
metric which was extensively employed to characterize per-
formance in a Poisson field of interferers, jointly with the
associated metric of transmission capacity [9], [15].

In what follows, for shortness we write PΘ,λ ≡ P. We shall
also consider the scaling behavior of the error probability with
the density of interferers. We have the following definition:

Definition 2.2 (small node-density regime): The following
metric κ(R) characterizes the asymptotic error probability
P̄e(R, λ) as λ → 0, that is, in the high-SIR [22], [23], or
small node-density regime:

κ(R) ≡ lim
λ→0

P̄e(R, λ)

λ
≤ lim
λ→0

P {O(R, λ)}
λ

. (14)

This parameter indicates the behavior of the error probability
as the density of interferers tends to zero (SIR → ∞), in
which case we have, P̄e(R, λ) ≈ κ(R)λ. This is a good
approximation in the typical, small error probability operat-
ing regime of wireless networks [21]. Since the best error
probability, and hence, κ(R), cannot be found in closed form,
we can use the upper bound on the right side of (14), which
is the spatial contention parameter introduced in [22]. This
parameter represents the slope of the OP as λ→ 0, and is an
upper bound to the best slope attainable, given by κ(R).
C. Achievable Bounds on the Asymptotic Error Probability

Cover and El Gamal introduced the main coding strategies
for the relay channel in their seminal paper [6]: decode-and-
forward and compress-and-forward. There exists also a third
strategy, amplify-and-forward [2] which we will not consider.

1) Decode-and-Forward: in this protocol, the relay decodes
the messages sent by the source, re-encodes them and forwards
them to the destination, which employs the transmissions
of both users to decode the message. In the special case
where the memoryless relay channel is physically degraded
the achievable rate using DF is in fact the capacity. In the
general case there is not a unique scheme maximizing the
rate for all channel parameters. Since the standard version
of DF requires the relay to fully decode the message of the
source, this strategy will work best when this channel is good
enough with respect to the source-destination channel so that
a bottleneck is not introduced. In a scenario in which the
spatial attenuation of signals is considered, this will happen
when the relay is on average closer to the source than to the
destination. Other variants of DF such as partial decode-and-
forward [24] partially overcome this requirement, but they
require an optimization of the code at the encoder, which
cannot be done unless CSI is available at the source.

In order to bound the average asymptotic error probability
with P {O(R)} as discussed in the previous section, we need
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to define the outage events associated with DF. There exist
several coding schemes which achieve the same DF rate, all
based on block-Markov coding [1]. In this work we consider
the outage events associated to DF with regular encoding and
sliding-window decoding at the destination or regular encoding
and backward decoding. In [6], DF is defined using irregular
encoding, random binning and successive decoding at the
destination but this strategy has additional error events so it
will not be considered. Using regular encoding and sliding-
window decoding [1] with Gaussian signaling, the n-length
random codewords at each source and its associated relay are:

Xn
s (wi−1, wi) =

√
(1− |ρ|2)X̃n

1 (wi) + ρX̃n
2 (wi−1), (15)

Xn
r (wi−1) = X̃n

2 (wi−1), (16)

for messages wi ∈ {1, . . . , 2nR} with w0 = wB+1 = 1 and
each block i = {1, . . . , B}. X̃1 and X̃2 are independent com-
plex, circular Gaussian random variables with unit variance
and ρ is the correlation coefficient between source and relay
signals Xs and Xr. This protocol is oblivious to the presence
of the relay, that is, if the relay does not decode or choses
not to transmit, it does not degrade the performance of the
protocol with respect to DT [10], [25]. The destination needs
to know if the relay will transmit, which is cost-free as the
block-length grows. If we define the event that the relay is
able to decode source’s message:

ADF (R, ρ) =
{
C
(
|hsr|2lsr

(
1− |ρ|2)/Ir

))
< R

}
, (17)

with C(u) = log2(1 + u), then for each realization of Φ̃ any
attempted rate R that satisfies:

R ≤ 1{ADF (R, ρ)}RM (ρ) + 1{AcDF (R, ρ)}RDT , (18)

is achievable, where:

RDT = C(|hsd|2lsd/Id), (19)

RM (ρ) = C
(
|hsd|2lsd + |hrd|2lrd + 2

√
lsdlrd< (ρhsdh

∗
rd)

Id

)
,

are the rates of a DT from the source to the destination,
and a joint transmission from the source and the relay to
the destination, respectively. When ρ = 0, the rates of this
protocol are the same as those of block-Markov multiplexed
coding [26], [27]. Introducing the following outage events:

BDF (R, ρ) = {RM (ρ) < R} , (20)
ADT (R) = {RDT < R} , (21)

the outage event for this protocol is, from (18):

ODF (R, ρ)=[AcDF (R, ρ)∩BDF (R, ρ)]∪[ADF (R, ρ)∩ADT ],

for which condition (13) holds true. The event BDF (R, ρ)
means that the destination is in outage while source and relay
cooperate. The error probability is bounded by:

P̄e(R, λ)≤ inf
ρ∈C,|ρ|≤1

Pout,DF(R, ρ), (22)

where Pout,DF(R, ρ) = P {ODF (R, ρ)}. Notice that the impo-
sition of full decoding at the relay implies that the achievable
rate does not depend on the spatial correlation of the aggregate
interference signals at the relay and destination, given by (4).

2) Compress-and-Forward: In this scheme, the relay com-
presses the received signal without decoding the message and
forwards this compressed description to the destination. There
are several coding schemes which, for a given probability mass
function pXspXrpŶr|Xr,Yr , achieve the CF rate [24]:

RCF = min{I(Xs, Xr;Yd)− I(Yr, Ŷr|Xs, Xr, Yd),

I(Xs; Ŷr, Yd|Xr)}. (23)

Ŷr represents the compressed representation of the symbols
received by the relay Yr. As the relay is not compelled to
decode the source message, there is not bottleneck in the
information flow through the relay as in DF. When the relay
is close to the destination CF will compress Yr and transmit
this description to the destination with little effort and CF will
typically outperform DF and DT. In the Gaussian relay channel
it is customary [1] to choose Ŷr = Yr + Zc and Xs, Xr and
Zc independent complex, circular Gaussian random variables
with unit variance for the first two and variance nc for the
third one. Thus, the following rate can be achieved from (23):

RCF (ρN , nc) = min{R1(ρN , nc), R2(ρN , nc)}, (24)

R1(ρN , nc)= C
(
|hsd|2lsd + |hrd|2lrd

Id

)
− C

(
Ir
nc

(1− |ρN |2)

)

R2(ρN , nc)= C
(
|hsd|2lsd

Id
+

|hsd|2lsd
Id

|ρN |2 + |hsr|2lsr
Ir

− 2<
{
ρN

hsd
√
lsd√
Ir

h∗
sr

√
lsr√
Id

}
1 + nc

Ir
− |ρN |2

. (25)

We have made explicit the dependence of the achievable rate
with the spatial noise correlation coefficient ρN given by (4)
to mark a distinction with DF in which this correlation does
not affect the rate. Notice that the rate is also dependent on
the compression variance nc of choice. In general, whenever:

I(Xr;Yd) ≥ I(Yr; Ŷr|Xr, Yd), (26)

then the rate RCF is the second term in (24) [24], that is:

RCF (ρN ) = I(Xs; Ŷr, Yd|Xr). (27)

For the Gaussian relay channel, after choosing Xs, Xr and Zc
as indicated above (24), condition (26) is [6]:

nc ≥
IrId
|hrd|2lrd

(
|hsd|2lsd

Id
+
|hsr|2lsr

Ir

− 2<
{
ρN

hsdh
∗
sr

√
lsdlsr√

IrId

}
+ 1

)
. (28)

This means that is we define the event BCF (nc, ρN ) =
{(28) is not met}, then any rate R that satisfies:

R < 1{BcCF (nc, ρN , nc)}R2(ρN , nc), (29)

is achievable [6]. Condition (28) implies that the relay-
destination channel can sustain the rate to transmit the com-
pressed version of what the relay receives from the source. If
full CSI is available at the relay, we can choose the compres-
sion variance nc to achieve equality in (28). Otherwise, the
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value of nc has to be fixed a priori and an outage event will
take place when the realization of the network does not allow
(28) to be fulfilled. Therefore, we can define the outage event
OCF (R, ρN , nc) = {ACF (R, ρN ) ∪ BCF (nc, ρN )}, with:

ACF (R, ρN , nc) = {R2(ρN , nc) < R} . (30)

Notice that CF cannot perform worse than DT, because by
taking an arbitrarily large value of nc we guarantee that (28)
will be met, and in that case, inspecting (25) we check that
R2(ρN , nc) will be very arbitrarily close to the rate of DT.

3) Half-duplex DF: In order to compare the performance
of the full-duplex DF protocol we introduced before, we also
consider a half-duplex DF strategy, known as sequential DF
[10]. In this scheme, the transmission is split in two phases. In
the first one, occupying a fraction 0 ≤ ε < 1 of the block, the
source transmits its message to the destination while the relay
listens and attempts to decode the message. If the relay is able
to decode the message during the first phase, it employs the
remaining (1− ε) fraction of the block to transmit, acting as
a secondary antenna. This scheme is also oblivious, so if the
relay does not decode the message, it does not degrade the
performance with respect to DT. The event that the relay does
not decode in the first phase is:

ASDF (R, ε) = {ε C(|hsr|2lsr/Ir) < R}. (31)

Hence, any rate R which satisfies:

R < 1{AcSDF (R, ε)}RSDF (ε) + 1{ASDF (R, ε)}RDT ,

is achievable, where RDT is given by (19) and [10]:

RSDF (ε)=ε C
(
|hsd|2lsd

Id

)
+(1−ε)C

(
|hsd|2lsd + |hrd|2lrd

Id

)
.

The outage event for this protocol is therefore:

OSDF (R, ε) = [AcSDF (R, ε) ∩ BSDF (R, ε)]

∪ [ASDF (R, ε) ∩ ADT (R)], (32)

where BSDF (R, ε) = {RSDF (ε) < R}. The value of ε cannot
be adjusted for the instantaneous realization of the network,
but can be selected a priori, for example, to minimize the OP.

4) Direct transmission: We also define the outage event
ODT (R) = ADT (R) given by (21) for the case in which
there is no relay and thus the source simply uses DT. The OP
for this scheme is known to be [14]:

Pout,DT = P(ODT (R)) = 1− exp{−λδD2}, (33)

where, using C given by (8), we defined:

δ = C(2R − 1)2/α. (34)

III. OUTAGE BEHAVIOR

In this section we analyze the outage behavior of the relay
channel. In the case in which only Gaussian background noise
and Rayleigh fading are considered (without interference) very
interesting gains have been observed in terms of the OP
[2] [3]. In the scenario in which interference comes from
a network of interferers, however, we must average over
all possible configurations of interfering nodes, considering

numerous situations in which communications are severely
impaired due to the presence of heavy interference. As we will
see, this results in performance gains which are not as large
as in the case in which only fading and noise are considered.

A. Decode-and-forward

We start by considering the DF protocol. In this setup
we derive the OP and tight upper bounds under typical
network operating conditions. We also determine the symbol
correlation coefficient ρ which minimizes the OP in the small
node-density regime. To analyze the OP (22), it is convenient
to rewrite in terms of the success events as:

Pout,DF(R, ρ) =1− P (AcDF (R, ρ) ∩ BcDF (R, ρ))

− P (ADF (R, ρ) ∩ AcDT ) . (35)

It is interesting to mention that the probability of BDF in (35)
has two different expressions according to the relay position r
and the correlation coefficient ρ of the symbols transmitted by
the source and the relay. However, as we shall see, working
with only one of them is enough for characterizing the OP
behavior.

Theorem 3.1 (OP of DF): The probabilities involved in the
OP of DF (35) can be found as follows. When ||r − d|| 6= D
or ρ 6= 0 we have:

P (AcDF (R, ρ) ∩ BcDF (R, ρ)) =

µ2LId,Ir
(
T
µ2
, Tµ3

)
− µ1LId,Ir

(
T
µ1
, Tµ3

)
µ2 − µ1

, (36)

where:

µ1 =
1

2

[
lsd + lrd −

(
(lsd − lrd)2 + 4lsdlrd|ρ|2

) 1
2

]
, (37)

µ2 =
1

2

[
(lsd + lrd) +

(
(lsd − lrd)2 + 4lsdlrd|ρ|2

) 1
2

]
, (38)

µ3 = lsr
(
1− |ρ|2

)
, (39)

and LId,Ir (ω1, ω2), the Laplace transform of the interferences,
is given by (5), and T = T (R) = 2R − 1. In addition, when
||r − d|| = D and ρ = 0, we have µ1 = µ2 and:

P (AcDF (R, ρ) ∩ BcDF (R, ρ)) = LId,Ir (T/µ1, T/µ3)

− T

µ1

dLId,Ir (ω1, T/µ3)

dω1

∣∣∣∣
ω1=T/µ1

. (40)

Finally:

P (ADF ∩ AcDT ) = LId
(
T

lsd

)
− LId,Ir

(
T

lsd
,
T

µ3

)
. (41)

Proof: See Appendix B.
Notice that the OP depends only on the absolute value of ρ and
not on its phase. This is a consequence of the uniform phase
of the Rayleigh fading coefficients [1], [11]. The fact that
the OP has two different expressions comes from the fading
distribution that the destination sees from the joint source-relay
transmission when ρ = 0 is different whether the source and
relay are equidistant from the destination or not. However, the
expression of the OP when ρ = 0 and ||r − d|| = D, given
by (40), can be obtained by continuously extending the other
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expression (36) at these points. Therefore, in what follows we
shall focus our interest on (36) which fully characterizes the
OP. Unfortunately, the OP cannot be evaluated to a simple
expression, mainly because the integral in (6) does not have a
closed form. However, it can be evaluated numerically without
difficulty. Still, we can attempt to find the value of |ρ| which
minimizes the OP, by studying how this parameter appears in
(36) and (41). Among other things, ρ allows some control over
using DF or DT; this is because as |ρ| → 1, ADF given by
(17) has a higher probability and hence, DF is used less. In
the scenario in which transmissions are limited by independent
background noises at the relay and the destination, there exists
a value of |ρ|, generally non-zero, that minimizes the OP for
each value of the system parameters [1], [10]. Although this
is true for each realization of Φ̃, the same may not be true
after averaging over the interference. Unfortunately, a general
analysis of the optimal |ρ| is not possible, though we can
consider the small node-density regime:

Lemma 3.1 (Optimal ρ): In the small node-density regime,

κ(R) ≤ inf
0≤|ρ|≤1

lim
λ→0

ODF (R, ρ, λ)

λ
= lim
λ→0

ODF (R, 0, λ)

λ
.

This implies that, at least in the operating condition of the
network, the OP when using DF is minimized by taking ρ = 0.

Proof: See appendix D.
As pointed out in [1] (see remark 42) and [3], using ρ = 0
simplifies the implementation of DF because symbol synchro-
nization between the source and its relay is not required. In
what follows we focus in the small node-density regime and
the simplified path loss function, and considering Lemma 3.1
we develop bounds on the OP taking ρ = 0. If numerical
computation of the OP for other values is needed, it is
straightforward to use Lemma 2.1 in Theorem 3.1. Notice
that if we take ρ = 0, we have BDF ⊂ ADT and hence,
the protocol is always better than DT. It is straightforward to
verify that in this case the OP can be bounded as:

Pout,DF(R, 0) ≤ min{P(ADF (R, 0)),P(ADT ∩ BDF (R, 0)c)}
+ P(BDF (R, 0))

= min{P(ADT ),

,P(ADT (R, 0)) + P(BDF (R, 0))}. (42)

This bound will be a good approximation, when the relay is
close to source since a close inspection of ADF and BDF
shows that in this setting the event BDF will be dominant and
ADF will have a relatively small probability of occurrence.
The following Theorem deals with evaluating the bound (42)
and with bounding κ(R) for the small node-density regime:

Theorem 3.2 (OP upper bounds for DF): When ||r− d|| 6=
D, considering the simplified path loss function, the OP for
ρ = 0 can be upper bounded as:

Pout,DF(R, 0) ≤ min
{

1− e−λδD
2

,
(

1− e−λδ||r||
2
)

+(
1− Dαe−λδ||r−d||

2 − ||r − d||αe−λδD2

Dα − ||r − d||α

)}
, (43)

with δ given by (34). In addition, in the small node-density
regime, κ(R) can be bounded as:

κDF (R)≤

δmin

{
D2,‖r‖2 + ‖r − d‖2D2D

α−2 − ‖r − d‖α−2

Dα − ‖r − d‖α

}
. (44)

Notice again, that the case where ||r − d|| = D can be
treated via continuity arguments as mentioned above. Finally,
the following lower bound on the OP of half-duplex DF will
be useful to compare it to the OP of full-duplex DF:

Theorem 3.3: The OP of sequential DF can be lower
bounded as:

P(OSDF (R, ε)) ≥ 1−
[
LId

(
T

lsd

)
+LId,Ir

(
T

µ̃1
,

2R/ε − 1

lsr

)

+
µ̃2LId,Ir

(
T
µ̃2
, 2R/ε−1

lsr

)
− µ̃1LId,Ir

(
T
µ̃1
, 2R/ε−1

lsr

)
µ̃2 − µ̃1

 , (45)

with:

µ̃1 =
1

2
[lsd + (1− ε)lrd − |lsd − (1− ε)lrd|] , (46)

µ̃2 =
1

2
[lsd + (1− ε)lrd + |lsd − (1− ε)lrd|] . (47)

Proof: See appendix E.

B. Compress-and-forward

In this section we derive an upper bound for the OP of CF.
This analysis is far more involved than that of DF because,
as we mentioned earlier, the condition of full decoding that is
imposed on the relay for DF results in an achievable rate which
does not depend on the spatial correlation of the interference
signals at the relay and at the destination. Since in CF the
relay generates a sequence which acts as a compressed version
of what it receives, without decoding the message from the
source, the correlation of the interference signals given by
(4) does affect the achievable rate. In [12], the authors carry
out an analysis of Gaussian relay channels with correlated
noises in which the correlation coefficient is fixed and full
CSI is available at the relay. This implies that the compression
variance nc can be chosen to achieve equality in (28). Under
these conditions, the authors compare the performance of CF
with correlated and uncorrelated noises and show that negative
noise correlation always helps CF, while positive correlation
sometimes helps CF. In the setup of this paper, since full CSI
is not available at the relay, the compression variance has to
be chosen a priori and the additional outage event that (28) is
not met has to be considered. In addition, it is straightforward
to show that under this condition, in which the variance nc
is a fixed constant independent of network parameters, the
value of ρN which maximizes or minimizes the rate could be
located anywhere on the disc |ρN | ≤ 1. Since no closed-form
analysis can be carried out considering this random correlation,
we resort to a procedure which allows us to bound the effect
of the correlation of the interference on the achievable rate.
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Lemma 3.2 (Rate gap in CF): The achievable rate of CF
for any spatial noise correlation ρN is at most one bit worse
than the rate with uncorrelated noises, that is:

RCF (ρN , nc) ≥ RCF (0, nc)− 1. (48)

Proof: See appendix F.
Using the previous lemma we can work with the OP of
CF assuming that the signals are spatially uncorrelated and
increase the rate to bound the actual value of the OP, which
leads to the following result:

Theorem 3.4 (OP bound for CF): For an attemped rate R
the OP of CF can be upper bounded as:

Pout,CF(R,nc) ≤ P(OCF (R+ 1, nc, 0))

= P(ACF (R+ 1, 0) ∪ BCF (nc, 0)). (49)

In addition we can bound the OP with ρN = 0 as:

P(ACF (R+ 1, 0)) ≤ 1− e−
Tnc
lsr LIr

(
T

lsr

)
−

[
N−1∑
n=0

e
nncT
Nlsr LId,Ir

(
(N − n)T

Nlsd
,
nT

Nlsr

)
− e

(n+1)ncT
Nlsr LId,Ir

(
(N − n)T

Nlsd
,

(n+ 1)T

Nlsr

)]
, (50)

and:

P(ĀCF (R+ 1, 0) ∩ BCF (nc, 0)) ≤

1−E
[
LId,Ir

(
(1 + T )lsr|hsr|2

Tnclrd
,

(1 + T )lsd|hsd|2

Tnclrd

)]
. (51)

The expectation is over hsr and hsd, with T = T (R + 1) =
2R+1 − 1. For the simplified path loss we can bound (51) to
obtain:

P(ĀCF (R+ 1, 0) ∩ BCF (nc, 0)) ≤ 1−

E
[
LId
(

(1 + T )lsr|hsr|2

Tnclrd

)]
E
[
LIr
(

(1 + T )lsd|hsd|2

Tnclrd

)]
. (52)

Proof: See appendix G.
The previous bound has the advantage of allowing us to upper
bound the OP of CF in a rigorous manner by considering
the gap with the worst case of rate that may be achieved
when the spatial correlation between the time signals is the
worst possible. Since the correlation of the interference plays
a role in the achievable rate it is possible that the bound is
conservative of the performance of CF.

IV. NUMERICAL RESULTS

In this section we present figures to study the behavior of
the derived expressions and to compare the performance of DF
and CF with DT and half-duplex DF. In all our simulations
we take the destination at d = (10, 0) and α = 4.

In Fig. 1 we can see the comparison of DF versus DT,
both through the exact numerical evaluation of the OP using
Theorem 3.1 and Lemma 2.1, and with the upper bounds
given by (43), for different relay positions, taking ρ = 0 and
R = 0.5 b/use. We can see that these bounds are accurate
when the OP is small, and the relay is close to the source, as
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DF bou., r = (4, 0)
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DF bou., r = (1.9, 2.2)

DF, r = (−3, 0)

DF bou., r = (−3, 0)

DT

Fig. 1. OP of DF with the relay located at r versus DT. Exact expressions
for DF come from using Theorem 3.1 and Lemma 2.1 while upper bounds
come from (43). d = (10, 0), R = 0.5 b/use, α = 4, ρ = 0.

0 0.2 0.4 0.6 0.8
10−2

10−1

100 λ = 10−3

λ = 10−4

|ρ|

O
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e
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r = (−2, −2)

r = (4, 4)

r = (9, 0)

Fig. 2. Outage probability as a function of |ρ| for various relay position and
for λ = 10−3 and λ = 10−4. d = (10 0), α = 4 and R = 1 b/use. The
OP is found by using Theorem 3.1 and Lemma 2.1.

proposed. In addition, for a fixed source-relay distance the OP
increases as the relay grows further away from the destination.
This is because the probability of BDF (R, ρ) increases as this
happens.

In Fig. 2 we can observe how the variation of the true OP
of DF given by (35) and Theorem 3.1, as a function of the
correlation between the symbols of the source and the relay
|ρ|, for various relay positions, for an attempted rate R = 1
b/use. Two sets of curves are presented. One for the case of
λ = 10−4, in which the OP is small, and the other for λ =
10−3, in which the OP is larger. In both cases we see, as
Lemma 3.1 states, ρ = 0 is the optimal choice.

In Fig. 3 we compare the maximum rate R that can be
attempted given a maximum allowed OP of 0.05, that is,
the outage capacity rate for an OP of 0.05, when the relay
is located on the line between the source and destination.
We consider full-duplex DF (Theorem 3.1), half-duplex DF
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Fig. 3. Maximum rate achievable through all the studied protocols when the
relay is aligned with the source and destination and an OP smaller that 0.05
is required. The OP of full-duplex DF comes from Theorem 3.1, half-duplex
DF from Theorem 3.3, CF from Theorem 3.4 and DT from (33). The Laplace
transforms are numerical from Lemma 2.1. d = (10, 0), α = 4.

(Theorem 3.3), CF (Theorem 3.4), and DT (Eq. (33)). In the
case of half-duplex DF we numerically optimize ε, the fraction
of the block in which the relay listens and attempts to decode.
The same is done for the compression variance nc of CF.
It can be seen that full-duplex DF outperforms half-duplex
DF, specially when the relay is equidistant between the source
and destination. The gains however, are not as large near the
source or the destination. However, half-duplex DF requires
the optimization of ε which, as the relay moves away from the
source and closer to the destination, takes values on the whole
interval (0, 1), while for the full-duplex version it suffices to
take ρ = 0. On the other hand, we see that for CF, the bounds
do not predict that CF is better than DF when the relay is near
the source, as was observed in other scenarios. This hints that
the correlation of the interference may have an important effect
on the performance of CF. In order to explore this, in Fig. 4 we
plot the spatial regions in which DF or CF are preferred over
the other, for R = 2 b/use and α = 4. The performance of
CF is estimated by performing a Montecarlo simulation of the
point process, optimizing the noise variance nc and estimating
the OP. We see that, as expected, CF performs better than
DF when the relay is closer to the destination, while DF is
better everywhere else. This shows that, in fact, CF can take
advantage of the interference correlation, which impacts its
performance significantly, which DF cannot. The optimization
of the variance nc, however, is a difficult problem which is
not present in full-duplex DF. It is interesting to mention that
DT is not shown because it’s performance is not close to other
protocols in the plotted region.

V. SUMMARY AND FINAL REMARKS

In this paper we have analyzed the performance, in terms
of the OP, of a relay channel employing DF and CF when
the interference comes from a network in which nodes are
distributed as a Poisson point process. We have derived an
expression for the OP of full-duplex DF and upper bounds

−D/2 0 D/2 D 3D/2

−D/2

0

−D/2

 

 

DF is preferred

CF is preferred

Source

Destination

Fig. 4. Spatial positions in which each scheme (DF or CF) is preferred. The
OP of DF comes from Theorem 3.1 with ρ = 0, and the performance of
CF is estimated by performing a Montecarlo simulation of the point process,
optimizing the noise variance nc and estimating the OP. DT is not shown
because it is not better than the other protocols in the plotted region. λ =
0.5× 10−4. d = (10, 0), R = 4b/use, α = 4.

on the OP which are amenable for analysis and tight when
the OP is small. We have also determined the correlation
coefficient ρ of the symbols transmitted by the source and
the relay which minimizes the OP as the density of interferers
vanishes. We showed that the same analysis cannot be carried
out for CF, because the achievable rates with this protocol are
dependent on the spatial correlation of the interference signals.
To avoid this issue, we showed that for any spatial correlation
of the point process, the rate achievable is at most one bit
worse than the rate when the interferences are uncorrelated.
We compared the OP of both full-duplex protocols with half-
duplex DF and DT. We have observed that full-duplex DF
is the best alternative over the other protocols, except near
the destination, where CF is better. However, both CF and
half-duplex DF, require the optimization of parameters which
depend strongly on the relay’s position, while full-duplex DF
does not. The disadvantage of the full-duplex protocols comes
from the practical aspects involving simultaneous transmission
and reception. Hopefully, this analysis may serve as a starting
point for the analysis of more complex network systems and to
study the interactions among nodes in large wireless networks,
involving different coding and medium-access schemes and
network infrastructure.

APPENDIX A
PROOF OF LEMMA 2.1

Starting from (6) we factorize the integrand as:

1− 1

(ω1l(x, z1) + 1)(ω2l(x, z2) + 1)
=

1

1 + 1
ω1l(x,z1)

+
1

1 + 1
ω2l(x,z2)

− 1

(1 + 1
ω1l(x,z1) )(1 + 1

ω2l(x,z2) )
.

The first two terms can be found in closed form:∫
R2

1

1 + (ω1||x− r||−α)−1
dx = Cω

2/α
1 , (53)



10

a result which is known from the direct transmission case [14].
The third term is (9) after replacing the path loss expression
with its expression l(x, d) = ||x−d||−α, l(x, r) = ||x−r||−α.

APPENDIX B
PROOF OF THEOREM 3.1

In what follows we omit the dependence of the outage event
on (R, ρ). We start by (41), for which we have:

P (ADF ∩ AcDT ) = EΦ̃

[
P
{
|hsr|2<

TIr
µ3

, |hsd|2≥
TId
lsd

∣∣∣∣Φ̃}],
= EΦ̃

[(
1− e−

TIr
µ3

)
e
−TIdlsd

]
, (54)

where we considered that the power fading coefficients are
independent exponential random variables. Applying the defi-
nition of the Laplace transform (5) we have (41). For (36) we
define: Z := |hsd|2lsd + |hrd|2lrd + 2

√
lsdlrd<(ρhsdh

∗
rd), so:

P (AcDF ∩ BcDF ) = EΦ̃

[
P
{
|hsr|2 ≥

TIr
µ3

, Z ≥ TId
∣∣∣∣Φ̃}] ,

= EΦ̃

[
e−

TIr
µ3 F̄V (TId)

]
, (55)

where F̄V (·) is the complementary cumulative distribution
function of V and µ3 is given by (39). The complementary
cumulative distribution function Z is:

F̄Z(u) =

{
µ2e

−u/µ2−µ1e
−u/µ1

µ2−µ1
µ1 6= µ2

(1 + u/µ1)e−u/µ1 µ1 = µ2

(56)

To see this, notice that Z can be written as:

Z = qH
[

lsd
√
lsdlrdρ√

lsdlrdρ
∗ lrd

]
q := qHQq, (57)

where q = [hsd, hrd]
T , is a zero-mean complex circularly

symmetric Gaussian vector with identity covariance matrix and
Q is positive definite. Diagonalizing Q we can write Z =
µ1|w1|2 + µ2|w2|2, where µ1 and µ2 are the eigenvalues of
Q, given by (37) and (38), and |w1|2 and |w2|2 are unit mean
exponential variables, the same as |hsd|2 and |hrd|2. Applying
a straightforward change of variables from {|w1|2, |w2|2} to
Z (56) is obtained. Notice that when ρ = 0 and ||d− r|| = D
µ1 and µ2 coincide so Z follows a Gamma distribution with
2 degrees of freedom, which accounts for the case µ1 = µ2.
Now, replacing that expression in (54) and using the definition
of the Laplace transform (5) we obtain (36). To obtain (40)
we replace (56) in (54) and use the fact that:

dEΦ̃

[
e−(ω1Id+ω2Ir)

]
dω1

= EΦ̃

[
−Ide−(ω1Id+ω2Ir)

]
. (58)

APPENDIX C
PROOF OF THEOREM 3.2

Starting from (42), we find the probability of the events
ADF and BDF , by following the steps used to derive (54):

P {ADF (R, ρ)} = 1− LIr
(
T/(1− |ρ|2)

)
, (59)

P {BDF (R, ρ)} = 1− µ2LId (T/µ2)− µ1LId (T/µ1)

µ2 − µ1
. (60)

The Laplace transform can be found in Lemma 2.1 and setting
ω1 or ω2 to zero as needed [14] LIr (ω) = LId(ω) =
exp{−λCω2/α}, where C is given by (8). Replacing (59)
and (60) in (42) and using (34) we finish the proof. The
proof of the second part follows directly from the fact that
e−u = 1− u+O(u2) and the definition of κ(R) (14).

APPENDIX D
PROOF OF LEMMA 3.1

The Laplace transform (6) writes as:

LId,Ir (ω1, ω2) = 1− λ

×
∫
R2

[
1− 1

(1 + ω1l(x, d))(1 + ω2l(x, r))

]
dx+O(λ2) (61)

and hence, the OP (35), using Theorem 3.1 can be written as:

1− Pout,DF = O(λ2) + λ

∫
R2

{
µ3

µ3 + T l(x, r)

×
[
µ2

2(µ2 − µ1)−1

µ2 + T l(x, d)
−µ

2
1(µ2 − µ1)−1

µ1 + T l(x, d)
− lsd
lsd + T l(x, d)

]}
dx.

We now show that the integrand is decreasing in |ρ|. To do this,
it is useful now to write µ1 = a−b(ρ) and µ2 = a+b(ρ), with
a = 1

2 (lsd + lrd) and b(ρ) = 1
2

[
(lsd − lrd)2 − 4lsdlrd|ρ|2

] 1
2 .

We can therefore write:

1− Pout,DF = O(λ2) + λ

∫
R2

{
µ3(|ρ|)

µ3(|ρ|) + T l(x, r)

×
[
ϕ(b(|ρ|)) + ϕ(−b(|ρ|))

2
− lsd
lsd + T l(x, d)

]}
dx,

with: ϕ(u) = (a+u)2

u(a+u+Tl(x,d)) . By using that µ3 is decreasing
in |ρ| we see that:

µ3(|ρ|)
µ3(|ρ|) + T l(x, r)

(62)

is decreasing in |ρ|, and positive. To show that the rest is
positive, we check that

d(ϕ(b)+ϕ(−b))
db

=
−4T 2l(x, d)2b

(T 2l(x, d)2 + 2T l(x, d)a+a2 − b2)2
<0,

and since b is increasing in |ρ|, then ϕ(b(|ρ|)) +ϕ(−b(|ρ|)) is
decreasing in |ρ|. We conclude taking |ρ| = 1 to check that:

ϕ(b(1)) + ϕ(−b(1))

2
− lsd
lsd + T l(x, d)

> 0.

APPENDIX E
PROOF OF THEOREM 3.3

In what follows we omit the dependence of the outage event
on (R, ε). Using the concavity of the logarithm we can bound:

RSDF ≤ R̃SDF = C
(
|hsd|2lsd + (1− ε)|hrd|2lrd

Id

)
(63)

With this we have BSDF ⊃ B̃SDF = {R̃SDF < R} and:

OSDF ⊃ [AcSDF ∩ B̃SDF ] ∪ [ASDF ∩ ADT ], (64)

= [(AcSDF ∩ B̃cSDF ) ∪ (ASDF ∩ AcDT )]c (65)
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In the second step we used that B̃SDF ⊂ ADT and the union
is disjoint. The rest of the proof follows along the lines of the
proof in Appendix B: the first event in (65) is the same as
that of BDF by taking ρ = 0 and a path loss (1− ε)lrd. The
second term is the same as (54) with ρ = 0 and T = 2R/ε−1.

APPENDIX F
PROOF OF LEMMA 3.2

We use the CF rate given by (24), and write R1 ≡ R1(0)
and R2 ≡ R2(0):

RCF (0)−RCF (ρN ) = min{R1, R2}−min{R1(ρN ), R2(ρN )}
≤ max{R1 −R1(ρN ), R2 −R2(ρN )}.

Now we use that:

R1 −R1(ρN ) = C
(
Ir
nc

(1− |ρN |2)

)
− C

(
Ir
nc

)
(66)

= C

(
− |ρN |

2

1 + nc
Ir

)
≤ 0. (67)

On the other hand, defining:

u =
|hsd|
√
lsd√

Id
v =
|hsr|
√
lsr√

Ir
(68)

we can rewrite and bound the rate R2(ρN ) as:

R2(ρN ) = C

(
|u|2 +

|ρN |2|u|2 + |v|2 − 2<{ρNuv∗}
1 + nc

Ir
− |ρN |2

)
,

≥ C

(
|u|2 +

|ρN |2|u|2 + |v|2 − 2|ρN ||u||v|
1 + nc

Ir
− |ρN |2

)
. (69)

Now we are interested in finding a lower bound of (69). Using
standard analysis techniques it is straightforward to check that
in the range 0 ≤ ρN ≤ 1 this function has a single minimum.
We have to consider three regimes:

• |v| < |u|: there is a minimum at |ρN | = |v|
|u| < 1.

• |u| ≤ |v| ≤ (1 + nc
Ir

)|u|: the function is decreasing ρN
so there |ρ| = 1 gives the smallest rate.

• (1 + nc
Ir

)|u| < |v|: in this case there is a minimum at:

|ρN | =
(1 + nc

Ir
)|u|

|v|
< 1. (70)

With this analysis, we can show that:

R2(ρN ) ≥


C(|u|2) if |v||u| < 1,

C
(
|u|2 + (|u|−|v|)2Ir

nc

)
if 1 ≤ |v||u| ≤ (1 + nc

Ir
),

C
(
|v|2

1+nc
Ir

)
if (1 + nc

Ir
) < |v|

|u| .

Using this fact we conclude by noting that:

R2(0)−R2(ρN )≤


C
(

|v|2
|u|2(1+nc

Ir
)

)
≤ 1 if |v|

|u|(1+nc
Ir

)
≤ 1

C
(

|u|2
|v|2(1+nc

Ir
)

)
≤ 1 if |v|

|u|(1+nc
Ir

)
> 1,

APPENDIX G
PROOF OF THEOREM 3.4

Since, RCF (ρN , nc) ≥ RCF (0, nc) − 1, for an attempted
rate R, we have:

Pout,CF(R,nc) = P(RCF (ρN , nc) < R)

≤ P(RCF (0, nc)− 1 < R).

For the bound on the probability of ACF we use that:{
|hsr|2lsr
Ir + nc

< T

}
= ACF ∪

(
AcCF ∩

{
|hsr|2lsr
Ir + nc

< T

})
.

and that

AcCF ∩
{
|hsr|2lsr
Ir + nc

< T

}
⊆

N−1⋃
i=0

{
n

N
T ≤ |hsr|

2lsr
Ir + nc

<
n+ 1

N
T ,
|hsd|2lsd

Id
≥ N − n

N
T

}
,

with N a natural number. The union in the previous equation
is a disjoint coverage of the event on the left side, so we have:

P(ACF ) ≤ P
(
|hsr|2lsr
Ir + nc

< T

)
−

N−1∑
n=0

P
(
n

N
T ≤ |hsr|

2lsr
Ir + nc

<
n+ 1

N
T,
|hsd|2lsd

Id
≥ N − n

N
T

)
.

Now we can condition on the point process and using that the
fading coefficients are independent we can write the proba-
bilities in terms of the Laplace transform of the interferences.
For the other event, since nc > 0 we have:

ĀCF (R+ 1, nc, 0) ⊆ ĀCF (R+ 1, 0, 0)

=

{
1

T

(
|hsr|2lsr

Ir
+
|hsd|2lsd

Id

)
≥ 1

}
. (71)

Noticing that:

BCF (nc, 0) =

{
nc <

IrId
|hrd|2

(
|hsd|2

Id
+
|hsr|2

Ir
+ 1

)}
, (72)

we see that we can use (72) with (71) to bound:

ĀCF (R+ 1, nc, 0) ∩ BCF (nc, 0)

⊆ ĀCF (R+ 1, 0, 0) ∩ BCF (nc, 0)

⊆

{
|hsr|2lsrId + |hsd|2lsdIr

nclrd|ĥrd|2
>

T

1 + T

}
. (73)

We therefore have:

P
(
ĀCF (R+ 1, nc, 0) ∩ BCF (nc, 0)

)
≤ P

(
|hsr|2lsrId + |hsd|2lsdIr

nclrd|hrd|2
>

T

1 + T

)
= 1−E

[
LId,Ir

(
(1 + T )lsr|hsr|2

Tnclrd
,

(1 + T )lsd|hsd|2

Tnclrd

)]
,

where the expectation is over |hsr|2 and |hsd|2. To obtain this
last expression we first condition on hsr, hsd and the point
process, and evaluate the probability with respect to hrd. We
then take the expectation with respect to the point process to
obtain the joint Laplace transform and finally the expectation
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with respect to the fading coefficients. All these random
elements are independent. By using this bound we avoid
working with the product of the interference at the relay and
the destination, which complicates the evaluation of P(BCF )
significantly. In addition, when all the distances remain fixed
and for sufficiently small λ, the product term will be small
and its contribution will not be significant in comparison with
the other terms. Now observing the expression of the Laplace
transform given in lemma 2.1 we see that we can lower bound
the joint Laplace Transform by removing the function (9),
which is equivalent to assuming that the interferences are
independent and splits the joint Laplace transform into the
product of the transforms of the separate interferences.
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