320 research outputs found

    Inflations of geometric grid classes of permutations

    Get PDF
    All three authors were partially supported by EPSRC via the grant EP/J006440/1.Geometric grid classes and the substitution decomposition have both been shown to be fundamental in the understanding of the structure of permutation classes. In particular, these are the two main tools in the recent classification of permutation classes of growth rate less than κ ≈ 2.20557 (a specific algebraic integer at which infinite antichains first appear). Using language- and order-theoretic methods, we prove that the substitution closures of geometric grid classes are well partially ordered, finitely based, and that all their subclasses have algebraic generating functions. We go on to show that the inflation of a geometric grid class by a strongly rational class is well partially ordered, and that all its subclasses have rational generating functions. This latter fact allows us to conclude that every permutation class with growth rate less than κ has a rational generating function. This bound is tight as there are permutation classes with growth rate κ which have nonrational generating functions.PostprintPeer reviewe

    Partially-commutative context-free languages

    Get PDF
    The paper is about a class of languages that extends context-free languages (CFL) and is stable under shuffle. Specifically, we investigate the class of partially-commutative context-free languages (PCCFL), where non-terminal symbols are commutative according to a binary independence relation, very much like in trace theory. The class has been recently proposed as a robust class subsuming CFL and commutative CFL. This paper surveys properties of PCCFL. We identify a natural corresponding automaton model: stateless multi-pushdown automata. We show stability of the class under natural operations, including homomorphic images and shuffle. Finally, we relate expressiveness of PCCFL to two other relevant classes: CFL extended with shuffle and trace-closures of CFL. Among technical contributions of the paper are pumping lemmas, as an elegant completion of known pumping properties of regular languages, CFL and commutative CFL.Comment: In Proceedings EXPRESS/SOS 2012, arXiv:1208.244

    Church-Rosser Systems, Codes with Bounded Synchronization Delay and Local Rees Extensions

    Full text link
    What is the common link, if there is any, between Church-Rosser systems, prefix codes with bounded synchronization delay, and local Rees extensions? The first obvious answer is that each of these notions relates to topics of interest for WORDS: Church-Rosser systems are certain rewriting systems over words, codes are given by sets of words which form a basis of a free submonoid in the free monoid of all words (over a given alphabet) and local Rees extensions provide structural insight into regular languages over words. So, it seems to be a legitimate title for an extended abstract presented at the conference WORDS 2017. However, this work is more ambitious, it outlines some less obvious but much more interesting link between these topics. This link is based on a structure theory of finite monoids with varieties of groups and the concept of local divisors playing a prominent role. Parts of this work appeared in a similar form in conference proceedings where proofs and further material can be found.Comment: Extended abstract of an invited talk given at WORDS 201

    Decision Problems For Convex Languages

    Full text link
    In this paper we examine decision problems associated with various classes of convex languages, studied by Ang and Brzozowski (under the name "continuous languages"). We show that we can decide whether a given language L is prefix-, suffix-, factor-, or subword-convex in polynomial time if L is represented by a DFA, but that the problem is PSPACE-hard if L is represented by an NFA. In the case that a regular language is not convex, we prove tight upper bounds on the length of the shortest words demonstrating this fact, in terms of the number of states of an accepting DFA. Similar results are proved for some subclasses of convex languages: the prefix-, suffix-, factor-, and subword-closed languages, and the prefix-, suffix-, factor-, and subword-free languages.Comment: preliminary version. This version corrected one typo in Section 2.1.1, line

    Small permutation classes

    Full text link
    We establish a phase transition for permutation classes (downsets of permutations under the permutation containment order): there is an algebraic number κ\kappa, approximately 2.20557, for which there are only countably many permutation classes of growth rate (Stanley-Wilf limit) less than κ\kappa but uncountably many permutation classes of growth rate κ\kappa, answering a question of Klazar. We go on to completely characterize the possible sub-κ\kappa growth rates of permutation classes, answering a question of Kaiser and Klazar. Central to our proofs are the concepts of generalized grid classes (introduced herein), partial well-order, and atomicity (also known as the joint embedding property)

    Document Spanners: From Expressive Power to Decision Problems

    Get PDF
    We examine document spanners, a formal framework for information extraction that was introduced by Fagin et al. (PODS 2013). A document spanner is a function that maps an input string to a relation over spans (intervals of positions of the string). We focus on document spanners that are defined by regex formulas, which are basically regular expressions that map matched subexpressions to corresponding spans, and on core spanners, which extend the former by standard algebraic operators and string equality selection. First, we compare the expressive power of core spanners to three models - namely, patterns, word equations, and a rich and natural subclass of extended regular expressions (regular expressions with a repetition operator). These results are then used to analyze the complexity of query evaluation and various aspects of static analysis of core spanners. Finally, we examine the relative succinctness of different kinds of representations of core spanners and relate this to the simplification of core spanners that are extended with difference operators
    corecore