
B. Luttik and M.A. Reniers (Eds.): Combined Workshop on Expressiveness in
Concurrency and Structural Operational Semantics (EXPRESS/SOS 2012)
EPTCS 89, 2012, pp. 35–48, doi:10.4204/EPTCS.89.4

c© W. Czerwiński & S. Lasota

Partially-commutative context-free languages

Wojciech Czerwiński
Institute of Informatics, University of Warsaw ∗

wczerwin@mimuw.edu.pl

Sławomir Lasota
Institute of Informatics, University of Warsaw †

sl@mimuw.edu.pl

The paper is about a class of languages that extends context-free languages (CFL) and is stable un-
der shuffle. Specifically, we investigate the class of partially-commutative context-free languages
(pc CFL), where non-terminal symbols are commutative according to a binary independence relation,
very much like in trace theory. The class has been recently proposed as a robust class subsuming CFL
and commutative CFL. This paper surveys properties of pc CFL. We identify a natural corresponding
automaton model: stateless multi-pushdown automata. We show stability of the class under natural
operations, including homomorphic images and shuffle. Finally, we relate expressiveness of pc CFL
to two other relevant classes: CFL extended with shuffle and trace-closures of CFL. Among tech-
nical contributions of the paper are pumping lemmas, as an elegant completion of known pumping
properties of regular languages, CFL and commutative CFL.

1 Introduction

Closure of languages classes under shuffle is intensively investigated, see for instance [3] and further
references therein. This paper is about a subtle way of introducing shuffle into context-free grammars.

Process algebraic motivation. In the context of infinite-state verification there are two basic well
known classes of systems. Context-free processes, called traditionally BPA1 [2], stand for the most fun-
damental abstract model of sequential recursive programs. BPA contains configuration graphs induced
by context-free grammars in Greibach normal form. The commutative variant, commutative context-free
processes, traditionally called BPP2, was proposed in [5] as the abstract model of concurrent programs.
BPP differs from BPA in that it has parallel composition instead of sequential composition. Thus a
configuration is a finite multiset of non-terminals rather than a sequence.

A natural generalization of both BPA and BPP is Process Algebra (PA) [2] where one allows for both
kinds of composition.3 A standard reference for a process-rewrite formulation of PA is [12]. However,
PA does not seem to have good algorithmic properties. For instance, bisimulation equivalence is not
known to be decidable, a long standing open problem [15], while the algorithm for normed PA is very
complex and as costly as double exponential time [11]. This has recently motivated investigation of
an alternative but equally natural generalization of both BPA and BPP, namely partially-commutative
context-free processes, called BPC4 in [6]. BPC processes are also defined by a Greibach grammar, but
one additionally assumes a binary independence relation among non-terminals, like in trace theory [13],
and only independent pairs of non-terminals commute. We stress that the independence is imposed not on
alphabet letters, which is usually the case in trace languages, but on non-terminals. Thus a configuration

∗The first author acknowledges a partial support by the Polish MNiSW grant N N206 568640.
†The second author acknowledges a partial support by the Polish MNiSW grant N N206 356036.
1A shorthand for Basic Process Algebra.
2A shorthand for Basic Parallel Processes Algebra.
3The algebra of [2] includes also left merge operation, not considered in this paper.
4A shorthand for Basic Partially Commutative Algebra.

http://dx.doi.org/10.4204/EPTCS.89.4

36 Partially-commutative context-free languages

may be modeled as a trace over non-terminals. BPA is a special case where no non-terminals commute
while BPP, on the other hand, is another special case where all non-terminals commute.

In [6, 7] an efficient polynomial-time procedure has been developed for bisimulation equivalence,
that works correctly in the subclass of normed BPC that strictly contains both normed BPA and BPP.
We also very recently analyzed the reachability problem for BPC [8]. In this paper we continue the pro-
gram that aims at finding a robust class subsuming BPA and BPP, however this time from the language-
theoretic perspective.

Language theoretic motivation. BPA clearly defines context-free languages (CFL) and BPP defines
so called commutative context-free languages (c CFL) [5]5, equivalently characterized as languages of
communication-free Petri nets. In this paper we focus on partially-commutative context-free languages
(pc CFL) [7] that are defined by BPC. Our aim is to investigate properties of this class and to relate its
expressiveness with other classes.

The class pc CFL extends CFL and is closed under the shuffle operation. By a shuffle of two words
we mean here an arbitrary interleaving of these words and by shuffle of two languages we mean all
shuffles of all pairs of words from the two languages. Other similar extensions of CFL may be found
in the literature. One such extension is PA languages. We use a shorthand shuffle CFL for this class – as
far as languages are concerned, PA is equivalent to context-free grammars where one allows to use both
concatenation and shuffle in productions [10, 14]. Another related class is trace-closures of CFL (name
this class trace CFL), where one assumes, contrary to pc CFL, an independence relation on alphabet letters.
We have found it appealing to relate the expressive power of pc CFL with shuffle CFL and trace CFL.

Our contribution. First, we show that a relevant subclass of pc CFL, subject to the restriction that
the complement of independence relation is transitive, has a natural corresponding automaton model:
stateless multi-pushdown automata (Section 2). We also prove that the membership problem for pc CFL is
NP-complete thus the complexity remains the same as for c CFL (Section 3).

Second, in Section 4 we investigate stability of pc CFL under natural operations. In particular, pc CFL

turns out to be stable under homomorphic images, substitutions and shuffle. On the other hand, the class
is not stable under inverse homomorphic images and under intersections with regular languages. The
latter is not very surprising as we consider a natural extension of c CFL, the class that lacks not only
the two closure properties, but even lacks closure under concatenation and homomorphic images! With
pc CFL one regains closure under concatenation and homomorphic images.

Third, in Sections 6 and 7 we perform mutual comparison of expressiveness of pc CFL, transitive
pc CFL, shuffle CFL and trace CFL, proving them all pairwise incomparable (except for the trivial inclusion of
transitive pc CFL in pc CFL, that we prove to be strict). Note that incomparability with respect to languages
implies incomparability with respect to bisimulation or other equivalences. As one of the tools we
formulate and prove pumping lemmas for classes pc CFL, transitive pc CFL and shuffle CFL. This provides an
elegant completion of known pumping properties of regular, context-free and commutative context-free
languages.

Technically, the most difficult part is Sections 6 and 7. On the other hand, the results of Sections 2
and 4 confirm clearly that pc CFL is a natural class of languages extending CFL, with good algorithmic and
closure properties.

Yet another relevant language class is that defined by so called Dynamic Pushdown Networks [4].
The class extends CFL and is closed under shuffle. We do not investigate this class here, but we conjecture
that it is incomparable with pc CFL.

5In fact, BPA and BPP define CFL and c CFL not containing the empty word, respectively.

W. Czerwiński & S. Lasota 37

Some of the proofs are omitted due to space limitation.

2 Preliminaries

By an interleaving of two words w and v, of length m and n, respectively, we mean any word u of length
m+ n such that its positions I = {1, . . . ,m+ n} may be split into two disjoint sets Iw and Iv such that u
restricted to Iw equals w and u restricted to Iv equals v. Let w ||v denote the set of all the interleavings of
w and v, which is clearly a finite set. By a shuffle of two languages L and K we mean

L ||K =
⋃

w∈L,v∈K

w ||v.

Partially-commutative context-free languages. The class of languages to be defined below has been
introduced in [7], however our presentation and terminology here is different.

A Greibach context-free grammar consists of a finite alphabet, a finite set of non-terminal symbols
V with a distinguished initial symbol S ∈V and a finite set of productions of the form

X a−→ α, (1)

where X ∈ V , α ∈ V ∗ and a is an alphabet letter. Additionally we assume that a grammar is always
equipped with a symmetric and irreflexive relation I ⊆ V ×V called the independence relation. For
convenience we also use the complement D = (V ×V) \ I, called the dependence relation. Two non-
terminals X ,Y ∈V are called independent if (X ,Y) ∈ I, and otherwise dependent.

Any α ∈ V ∗ we call a configuration. A derivation is a sequence of configurations such that every
configuration is obtained from the preceding one via a step and the last one is the empty configuration.
There are two kinds of steps:

• production step: Xβ
a−→ αβ , for a production X a−→ α;

• swap step: αXY β −→ αY Xβ , where X and Y are independent.

Every derivation defines a word w obtained by concatenation of alphabet letters occurring in the produc-
tion steps. We write α

w−→ β if there is a derivation that defines w, starts in α and ends in β . We usually
assume that a derivation starts with a configuration consisting of a single non-terminal, say X . If X w−→ ε

then we say that X generates w. Note that the length of w is the same as the number of production steps
performed in any derivation that defines w. We assume wlog. that every non-terminal X generates some
word.

The language generated by a grammar is the set of all words generated by the initial non-terminal.
The class of all so generated languages we call partially-commutative context-free languages (pc CFL) [7].
It clearly contains all context-free languages (CFL) and commutative context-free languages6 (c CFL) [5].
These two subclasses are special cases, where independence is either the identity, or the full relation,
respectively.

Example 1. For illustration, consider the grammar:

P a−→ WBCB̄ W a−→ WBC B̄ b̄−→ ε B b−→ ε

W ā−→ C̄ C̄ c̄−→ ε C c−→ ε

6The commutative context-free languages are also called BPP languages.

38 Partially-commutative context-free languages

The initial non-terminal is P and the independence relation is the symmetric closure of {B, B̄}×
{C,C̄}. Here is an example derivation of the word aābb̄c̄c.

P a−→ WBCB̄ ā−→ C̄BCB̄ −→ C̄BB̄C −→ BC̄B̄C −→
BB̄C̄C b−→ B̄C̄C b̄−→ C̄C c̄−→ C c−→ ε

In a similar way a word anābnb̄c̄cn is generated, for any n ≥ 1, but also anāc̄cnbnb̄ or anāc̄bncnb̄. The
language generated is ⋃

n≥1

anā(bnb̄ || c̄cn).

We might have defined configurations as Mazurkiewicz traces [13] rather than words over non-
terminals (like in [7]). This would mean that trace equivalent configurations are not distinguished. In our
terminology, two configurations are trace equivalent when one may be transformed into another using
solely swap steps. It is our deliberate choice to keep the swap steps explicit.

Transitive dependence. We distinguish a subclass of pc CFL where dependence is assumed to be transi-
tive, being thus an equivalence. This subclass we name tr

pc CFL. Equivalence classes of dependence will
be called threads.

In Example 1 the dependence is not transitive, as it contains (P,B) and (P,C) but not (B,C). In fact
we show later that this language does not belong to tr

pc CFL. Both CFL and c CFL are strict subclasses of
tr
pc CFL.

Example 2. As an illustration, consider the language generated by:

S s−→ ε S a−→ SA A c−→ A′ A′ a−→ ε

S b−→ SB B c−→ B′ B′ b−→ ε

with initial non-terminal S and the threads {S,A,B}, {A′} and {B′}. Here is an example derivation
of the word absccab.

S a−→ SA b−→ SBA s−→ BA c−→ B′A−→ AB′ c−→ A′B′ a−→ B′ b−→ ε.

The language contains words of the form wsv, where w contains only a and b and v contains only a, b and
c. Writing #a(w) for the number of occurrences of a in w and |w| for the length of w, we may characterize
the language by the following conditions:

• #a(w) = #a(v), #b(w) = #b(v) and #c(v) = #a(v)+ #b(v),

• any prefix v′ of v and any suffix w′ of w such that #c(v′) = |w′| fulfills

#a(w′)≥ #a(v′) and #b(w′)≥ #b(v′).

Automaton model. A multi-pushdown automaton is like a single-pushdown one. In a single step one
symbol is popped from one of the stacks,7 and a number of symbols are pushed on the stacks. The

7If we allowed for popping from more than one stack at a time, the model would clearly become Turing-complete, even
with only one state.

W. Czerwiński & S. Lasota 39

number of stacks is fixed for an automaton. Assume there is only one state, or equivalently no state, and
k stacks. Then a transition of an automaton is of the form:

X a−→ α1 . . .αk, (2)

to mean that when an automaton reads a, it pops X and pushes the sequence of symbols αi on the ith
stack, for i = 1 . . .k. Observe that wlog. one may assume that stack alphabets are disjoint. The following
result is an easy observation:

Theorem 1 ([8]) The tr
pc CFL class is expressively equivalent to stateless multi-pushdown automata.

Indeed, an equivalence class of configurations with respect to trace equivalence is represented by a tuple
of strings, one per thread. Similarly, a production X a−→ α is represented, up to swap steps, exactly as
in (2), with αi being the projection of α on the ith thread.

Similarly, one could also define an operational model for general pc CFL, with a stack replaced by a
partially ordered structure.

3 Derivation trees

It is very convenient to use derivation trees instead of derivations themselves. However it is not com-
pletely obvious how to define this notion in presence of commutativity of non-terminals. Below we adopt
an intuitive approach using colors.

Fix a derivation X w−→ ε . Clearly a configuration is a sequence of non-terminal occurrences. We
assume that every non-terminal occurrence in a derivation will be colored, including the occurrence of X
in the initial configuration. We impose the following simple discipline of coloring:

• if a swap step αXY β −→ αY Xβ is performed, every non-terminal occurrence in the right-hand
side configuration inherits its color from the corresponding occurrence of the same non-terminal
on the left-hand side.

• if a production step Xβ
a−→ αβ is performed, the non-terminal occurrences in β preserve their

colors, while all the non-terminals occurrences in α get fresh colors. Note that the color of the
occurrence of X in the beginning of Xβ disappears as a result of the step. We say that this disap-
pearing color drops the fresh colors.

Intuitively, a color is intended to represent the ’life cycle’ of one occurrence of a non-terminal during
a derivation. Observe that non-terminal occurrences in a given configuration are always labeled with
different colors, and that the total number of colors used in a derivation equals the number of production
steps.

Example 3. A disciplined coloring of the derivation from Example 2 is shown below. Colors are 1,2, . . .
and the coloring is denoted by subscripts.

S1
a−→ S2A3

b−→ S4B5A3
s−→ B5A3

c−→ B′6A3 −→ A3B′6
c−→ A′7B′6

a−→ B′6
b−→ ε. (3)

Color 1 drops colors 2 and 3, color 3 drops color 7, etc.
With the use of our coloring discipline, every derivation induces naturally a tree. The tree nodes

are all colors appearing in the derivation. The color c1 is a parent of c2 precisely if c1 drops c2. Every
tree node c is labeled by a non-terminal. If convenient, one may think that every node is labeled by a
production that made color c disappear.

40 Partially-commutative context-free languages

There may be many different derivations inducing the same tree. Even worse, two derivations of
different words may induce the same tree, as shown in the example below.

Example 4. Continuing the last example, the derivation (3) induces the following tree:

1 : S a−→ SA

2 : S b−→ SB

4 : S s−→ ε 5 : B c−→ B′

6 : B′ b−→ ε

3 : A c−→ A′

7 : A′ a−→ ε

However, exactly the same tree is induced by the derivation:

S1
a−→ S2A3

b−→ S4B5A3
s−→ B5A3

c−→ B′6A3
b−→ A3

c−→ A′7
a−→ ε

of a different word abscbca 6= absccab. Intuitively, the words defined by subtrees rooted in 3 and 6,
namely ca and b respectively, this time come in a different order. In fact all the interleavings of these two
words are allowed.

Useful properties. The examples confirm that our notion of derivation tree is more complex than
the classical one. However, trees may be still very useful for reasoning about partially-commutative
context-free languages, as they immediately bring to light the following useful properties:
INDUCED SUBWORD. Given a derivation tree of a word w, every node c induces a subword (i.e. a
subsequence but not an infix in general) of w. Indeed, the subword is obtained by concatenating only
those letters from w whose color, as a tree node, belongs to the subtree rooted in c. We implicitly assign
here to the letter of every production step a color that disappears in this step. For instance, for both words
considered in the last example, the subword induced by the node 2 is bscb. Analogously one defines the
subword induced by a subset of nodes of a derivation tree, assuming this subset to be an antichain with
respect to the tree ancestor relation.
INFIX REARRANGEMENT. The induced subword may be rearranged into an infix. Let L ∈ pc CFL and
let v be the subword of w ∈ L induced by a tree node c. Clearly, w ∈ v ||u, i.e., v is interleaved with the
remaining subword u of w. Then u may be split into u = u1u2 so that u1vu2 ∈ L. Indeed, let u1 be the
prefix of w preceding the first letter of v. In any derivation, after u1, the non-terminal that labels c is
clearly active. Performing the whole derivation X v−→ ε immediately after u1 does the job.
SUBSTITUTIVITY. In any derivation tree, one may replace a subtree rooted in a node c by an arbitrary
derivation tree t, assumed that both c and the root of t are labeled with the same non-terminal. The
resulting tree is clearly induced by some derivation too.

Membership problem. A derivation tree is of linear size in terms of the length of the word, which is
useful for easily obtaining the upper bound for the membership problem, where given a word w and a
presentation of a language L, one asks if w ∈ L?

Theorem 2 The membership problem is NP-complete both for pc CFL and tr
pc CFL.

NP-hardness follows easily from NP-hardness of the membership problem for c CFL, shown in [9]. The
NP upper bound one obtains easily: guess a tree and the order of its nodes, and then check in polynomial
time whether the tree is induced by some derivation of the given word that respects the order of nodes.

W. Czerwiński & S. Lasota 41

4 Closure properties

In this section we argue that pc CFL and tr
pc CFL classes are closed under union and shuffle, and pc CFL is

closed under concatenation while tr
pc CFL is not. Then we show that pc CFL is closed under homomorphic

images and substitutions. In case of tr
pc CFL we do not know the answer, however we suppose it is negative.

Finally, we show that both classes lack closure under inverse homomorphic images and intersections with
regular languages.

Comparing pc CFL with CFL, roughly speaking, one sacrifices intersection with regular languages and
inverse homomorphic images but one gains shuffle. Even if at first sight the properties listed above do
not seem exciting, one should remember that both the classes considered here subsume also commutative
context-free languages c CFL. Knowing that c CFL lacks closure under concatenation and homomorphic
images, as shown in [5], it seems that with pc CFL one retrieves these relevant closure properties. This
seems to confirm that pc CFL is a natural class of languages.

Union and complement. Both classes are closed under union and the construction is entirely standard.
On the other hand none of the classes is closed under complement.

Shuffle and concatenation. Both classes are closed under shuffle and the construction of a grammar for
the shuffle L1 ||L2 is easy. Wlog assume that the grammars that generate the two languages use distinct
non-terminals. Let S1 and S2 be the initial non-terminals. Consider the union of grammars extended with
one additional initial non-terminal S. Add additional productions

S a1−→ α1S2 S a2−→ α2S1 (4)

for any production S1
a1−→ α1 or S2

a2−→ α2. Finally, extend independence by imposing that whenever two
non-terminals come from different grammars they are independent. This clearly preserves transitivity of
dependence.

In pc CFL, concatenation L1L2 is obtained similarly as shuffle. The only difference is that two non-
terminals coming from different grammars are always declared dependent, and that only the left-hand
productions in (4) are added. Note that concatenation is in our setting no more natural than shuffle.

tr
pc CFL is not closed under concatenation, which one shows similarly as for c CFL [5]. Consider

L1 = {w : #a(w) = #b(w) = #c(w) ≥ 1, #d(w) = 0} and L2 = {d}. In the derivation of some w ∈ L1L2
a configuration is necessarily reached with at least two different threads nonempty, as otherwise the
language would be context-free. Thus the remaining suffix of w is some shuffle of at least two words
generated by these non-empty threads, and only one of these words ends with d. If that subword is
generated first, the whole word is not in L1L2, which proves that L1L2 may not belong to c CFL.

Homomorphic images and substitutions. As we consider only Greibach grammars, the empty word
never belongs to a partially-commutative context-free language. Thus it is natural to consider only ho-
momorphisms h that do not contain the empty word in the image: h(a) 6= ε for all letters a. Below we
show that pc CFL is closed under images of such homomorphisms. For tr

pc CFL the question is still open; we
conjecture however a negative answer.

We prefer to show a slightly stronger result: pc CFL is closed under substitutions. A substitution
s assigns to each alphabet letter a a language s(a) ∈ pc CFL. Similarly as above, we assume that the
languages s(a) do not contain the empty word. For a language L, the substitution L[s] contains all words
that may be obtained from a word in L, by replacing each letter a with any word from s(a).

Assume a language L ∈ pc CFL, generated by a grammar G, and a substitution s. Thus each language
s(a) has its generating grammar Ga. We describe the construction of the grammar G′ for L[s]. The non-

42 Partially-commutative context-free languages

terminals of G′ will be the union of non-terminals of G and all grammars Ga. Wlog we assume that the
non-terminal sets are disjoint.

Consider an arbitrary production X a−→ α in G. Let Sa be the initial non-terminal in Ga. For any
production Sa

b−→ β in Ga, we add to G′ the production: X b−→ βα . The independence in G′ is defined as
the set-theoretic union of independence relations of grammars G and Ga. Thus any pair of non-terminals
coming from different grammars is declared dependent (note that this is not achievable if the dependence
has to be transitive).

The construction guarantees that G′ generates exactly L[s]. Indeed, once a production X b−→ βα is
fired, the non-terminals of Ga block activity of other non-terminals, due to the dependence, until a word
of s(a) is generated.

We do not know whether the tr
pc CFL class is closed under homomorphic images; however we suppose

it is not. We conjecture that a counterexample is given by the language

L = {w : #a(w) = #b(w) = #c(w), #d(w) = 1}

together with the homomorphism h(a) = a, h(b) = b, h(c) = c, h(d) = dd.

Intersection with regular languages. Both classes pc CFL and tr
pc CFL lack closure under intersection with

regular languages. Let L = {w : #a(w) = #b(w) = #c(w)}. Clearly L ∈ c CFL but L∩a∗b∗c∗ is not in pc CFL

(and also not in shuffle CFL defined in a moment) according to:

Lemma 1 The language L = {anbncn : n≥ 1} is not in pc CFL ∪ shuffle CFL.

It is worth noting that the lack of closure is not surprising as the emptiness problem for intersection
of a partially-commutative context-free language with a regular language is undecidable, even if the
dependence is assumed to be transitive. Roughly speaking tr

pc CFL correspond to stateless multi-pushdown
automata and intersection with regular language corresponds do adding the state which makes the model
Turing powerful.

Inverse homomorphic images. Both pc CFL and tr
pc CFL are not closed under inverse homomorphic

images. Consider the shuffle L = L1 ||L2 of two context-free languages

L1 = {An+1SBnT : n≥ 1} L2 = {SBnTCn : n≥ 1},

and the homomorphism h given by h(a) = A, h(s) = SS, h(b) = BB, h(t) = T T and h(c) =C. If h−1(L) =
{an+1sbntcn : n≥ 1} were in pc CFL then its image under a homomorphism g(s) = b,g(t) = c, that is the
language L in Lemma 1, would be in pc CFL as well – a contradiction.

5 Other extensions of context-free languages

There are two other language classes know from the literature that, similarly as pc CFL, extend CFL with
some amount of commutation.

PA languages. The formalism to be described below is traditionally called Process Algebra (PA) [2, 12].
It is however nothing else than an extension of Greibach context-free grammars with an explicit shuffle
operation: a production has the form

X a−→ t,

where t is an arbitrary term built from non-terminals using binary operations of sequential composition
’;’ and parallel composition ’ || ’. The first operation one may interpret as concatenation of languages,

W. Czerwiński & S. Lasota 43

and the second one as shuffle (thus the overloading of the symbol || is absolutely deliberate). The empty
term ε is also allowed.

For convenience, terms are only considered up to a structural equivalence, that imposes associativity
of both operations, commutativity of || , and neutrality of ε with respect to both operations.

A configuration is an arbitrary term of the above form. Steps between configurations are defined by
the following rules (the last rule is in fact redundant due to commutativity of || , but we prefer to keep it
for readability):

X a−→ t is a production

X a−→ t

t a−→ t ′

t;u a−→ t ′;u

t a−→ t ′

t ||u a−→ t ′ ||u
u a−→ u′

t ||u a−→ t ||u′

As usual, a derivation is a sequence of configurations starting from a distinguished initial configuration S,
ending in the empty configuration, such that every subsequent configuration is obtained from a preceding
one by a single step. Other notions, including the language generated by a grammar, or derivation trees,
may be defined similarly as for pc CFL. The class of languages we denote by shuffle CFL.

In particular, shuffle CFL satisfy the three properties mentioned above: INDUCED SUBWORD, INFIX

REARRANGEMENT and SUBSTITUTIVITY.
The difference between pc CFL and shuffle CFL is, roughly, a difference between specifying commutation

explicitly in productions, or implicitly by an independence relation.

Trace-closures of CFL. To define trace CFL we need to assume that an independence relation ranges not
over non-terminals but over alphabet letters instead. As usual, one defines trace equivalence over words:
two words are equivalent if one may be transformed into another by swaps of neighboring independent
letters. A context-free language L is not closed under this equivalence in general and its trace closure

{w : w is trace equivalent to some v ∈ L}

is in general not context-free. By trace CFL we denote the class containing trace closures of context-free
languages. Clearly trace CFL is a superclass of CFL.

6 Pumping lemmas

Now we analyze how much the classical idea of pumping extends from CFL to larger classes. Roughly
speaking, the intuitive cutting and pasting in a derivation tree does not translate to the property of a
language as easily as in the case of CFL.

We formulate two different pumping lemmas. Remarkably, with one of them we complete nicely the
picture of pumping lemmas known for regular, context-free and commutative context-free languages.

As expected, the pumping lemmas appear to be useful tool for relating the expressive power of
language classes, as we demonstrate in Section 7.

The pumping lemmas. The length of a word w is written |w|. To motivate our conditions we start by
recalling the pumping scheme proposed for c CFL by [5].

(c CFL-PUMPING [5]) There is a constant N such that if w ∈ L with |w|> N then there exist
words x,y,s such that

1. w ∈ x(s ||y),
2. 1≤ |s| ≤ N, and

44 Partially-commutative context-free languages

3. ∀m≥ 0, x smy ∈ L.8

Point 1 reads as: w is a concatenation of some prefix x and an interleaving of s and y. We define now two
new conditions on a language L.

(SHUFFLE PUMPING) There is a constant N such that if w ∈ L with |w|> N then there exist
words x,y,z,s, t such that

1. w ∈ x((s(y || t)) ||z),
2. 1≤ |s|, |syt| ≤ N, and
3. ∀m≥ 0, x smytmz ∈ L.

Point 1 reads as: there is some subword y′ of w with w ∈ x(y′ ||z) and y′ ∈ s(y || t).
(CONCAT. PUMPING) There is a constant N such that if w ∈ L with |w|> N then there exist
words x,y,z,s, t such that

1. w = xyz,
2. 1≤ |st| ≤ N, and
3. ∀m≥ 0, x smytmz ∈ L.

Call the words s, t repeatable words. The difference between the two conditions concentrates on the
word y that separates the repeatable words in xsmytmz. On one hand SHUFFLE PUMPING seems weaker
as y is no more an infix of w, but an arbitrary subword (subsequence). On the other hand SHUFFLE

PUMPING seems stronger as the length of y is bounded.

Lemma 2 Every language L ∈ pc CFL ∪ shuffle CFL satisfies SHUFFLE PUMPING.

As an example of application we provide now a proof missing in Section 4.

Proof of Lemma 1. Assume towards contradiction that L = {anbncn : n ≥ 1} is in pc CFL or in shuffle CFL

and apply Lemma 2. Observe that the two repeatable words s and t have necessarily jointly the same
number of letters a, b and c. Thus one of them has to contains two different letters. Repeating this word
twice leads to a contradiction. 2

Lemma 3 Every language L ∈ tr
pc CFL ∪ shuffle CFL satisfies CONCAT. PUMPING.

Class pc CFL does not satisfy CONCAT. PUMPING, as witnessed by the language from Example 1. More-
over in CONCAT. PUMPING one can not bound the length of the word y.

Relating conditions. The condition SHUFFLE PUMPING is similar to the classical context-free pumping
– the only difference is the words s, y, t and z are subwords, not necessarily infixes, of w. We claim it is
an elegant completion of the pumping lemmas for regular languages (RL), context-free languages (CFL)
and commutative context-free languages (c CFL) (see [5]). All of these lemmas may be characterized by
the following two characteristics:

1. Are there one or two pumping positions?

2. Are repeatable words infixes or subwords a given word?

The known pumping lemmas have the following characteristics:

• RL: 1 pumping position, a repeatable word is an infix

8In fact in [5], the pumping scheme was xsmy′, with a suffix y′ of w (think of y′ ∈ s ||y), rather than xsmy. The proofs of
both are very similar. We discuss this issue further in Remark 1.

W. Czerwiński & S. Lasota 45

• CFL: 2 pumping positions, repeatable words are infixes

• c CFL: 1 pumping position, a repeatable word is a subword [5].

In this light, our condition SHUFFLE PUMPING offers an elegant completion of the picture: 2 pumping
positions, repeatable words are subwords. In other words, SHUFFLE PUMPING weakens c CFL-pumping
in the same way as CFL-pumping weakens RL-pumping (2 pumping positions instead of one). The other
way around: SHUFFLE PUMPING weakens CFL-pumping in the same way as c CFL-pumping weakens RL-
pumping (repeatable word is no more an infix). The relationships between the four pumping conditions
is depicted in the following diagram:

SHUFFLE PUMPING

CFL-pumping

4<

c CFL-pumping

bj

two pumping
positions

RL-pumping

6>`h

repeatable subword

one pumping
position repeatable infix

Remark 1 It is worth mentioning that another pumping scheme could be used in place of SHUFFLE

PUMPING in Lemma 2: instead of xsmytmz, one may consider

xsmy′ tmz,

with w ∈ x(y′ ||z) and y′ ∈ (s(y || t)). The proof would be very similar.

7 Expressiveness

Now we are ready to compare the expressive power of tr
pc CFL and pc CFL with other classes. We show that

tr
pc CFL is a strict subclass of pc CFL and that both shuffle CFL and trace CFL are incomparable with either pc CFL or
tr
pc CFL. More specifically, our results are as follows:

Theorem 3 tr
pc CFL is a strict subclass of pc CFL.

Theorem 4 The following non-inclusions hold:

(1) tr
pc CFL ∩ shuffle CFL is not included in trace CFL.

(2) tr
pc CFL ∩ trace CFL is not included in shuffle CFL.

Theorem 5 The following non-inclusions hold:

(1) tr
pc CFL is not included in shuffle CFL ∪ trace CFL;

(2) shuffle CFL is not included in pc CFL ∪ trace CFL;

(3) trace CFL is not included in pc CFL ∪ shuffle CFL.

46 Partially-commutative context-free languages

The proofs of the results are by identifying witnessing languages L1 . . . L6, as illustrated in Figure 1. The
pumping lemmas, namely Lemma 3 and Lemma 2, are sufficient to prove Theorem 3 and Theorem 5(3),
respectively. On the other hand they are not sufficient for Theorem 4(2) and Theorem 5(1)–(2), as shuffle CFL

satisfies both the lemmas, and thus we have to perform a more delicate analysis of a derivation tree. We
illustrate the first kind of argument in the proof of Theorem 5(3) and the second kind in the proof of
Theorem 5(2) below.

Figure 1: Relating the expressive power.

Proof of Theorem 5(3). Consider the language

L6 = {w ∈
⋃
n≥0

(
anā d̄ dn ||bncn

)
: every b preceds every d and d̄ in w}. (5)

Clearly, L6 is the trace closure of the context-free language {(ab)nā d̄ (cd)n : n≥ 0}, if for the indepen-
dence on alphabet letters one chooses the symmetric closure of:

{a, ā}×{b,c} ∪ {d̄,d}×{c}.

Using Lemma 2 we will show that L6 belongs to neither pc CFL nor shuffle CFL. Consider a word

wn = anābncnd̄ dn

and recall that for n larger that N of Lemma 2 we would obtain

wn ∈ x(y′ ||z) y′ ∈ s(y || t)

for a substring y′ of wn. Recall also the pumping scheme of SHUFFLE PUMPING from Lemma 2:

xsmytmz ∈ L6, for m≥ 0. (6)

We do a sequence of simple observations. First, to keep the same number of appearances of letters a,b,c
and d, each of the four letters must appear either in s or t. Second, both s and t are necessarily non-empty
as otherwise we would observe an illegal order of letters in (6), and moreover a and b occur in s and c
and d occur in t, keeping in mind that in L6 every a precedes every d and every b precedes every c and
d. Third, the length of the prefix x is at most n, as otherwise both s and t would appear to the right of ā
and thus could not contain a. Thus, x contains only a. Now, d is not in x, cannot be in s or t, and cannot
be in z since otherwise (s and) t could not contain d. Therefore d is in y, and z contains no b. As neither
x nor z contains b, and wn ∈ x(y′ ‖ z), y′ must contain n occurrences of b, but |y′|= |syt| ≤ N, hence this

W. Czerwiński & S. Lasota 47

is not possible. We have thus shown that L6 does not satisfy Lemma 2 and therefore it does not belong
to pc CFL ∪ shuffle CFL. 2

Proof of Theorem 4(2). Consider the language L3 ∈ tr
pc CFL:

L3 =
⋃
n≥0

ans(bn ||cn) (7)

and a grammar that generates the language:

S a−→ SP P b−→ C C c−→ ε

S s−→ ε P c−→ B B b−→ ε

The initial non-terminal is S and the threads are {S,P},{B},{C}. L3 also belongs to trace CFL as it is
the trace closure of the context-free language {ans(bc)n : n≥ 0} with independence {(b,c),(c,b)}.

It remains thus to show that L3 /∈ shuffle CFL. Intuitively, the idea is to show that L3 cannot benefit from
parallel composition.

Assume that L3 ∈ shuffle CFL, aiming at deducing a contradiction. Fix a grammar that generates L3. For
simplicity think of the productions of the following form (the first two we will call sequential):

X a−→ ε X ε−→ Y ;Z X ε−→ Y ||Z.

We will exploit the property that s divides every word in L3 into two separated regions. We partition the
non-terminals into symbols that generate some word containing s, and symbols that do not; and call them
s-symbols and non-s-symbols, respectively. By SUBSTITUTIVITY, each word generated by an s-symbol
contains necessarily s.

Consider a derivation tree T of a word wsv ∈ L3. The unique path leading from the root to the leaf
labeled by s call the spine. Observe that an s-symbol may only appear on the spine and a non-s-symbol
may only appear outside the spine. Knowing that the number of occurrences of a and b on both sides of
the spine is the same, we deduce that

each production labeling a node of the spine is necessarily sequential. (8)

Indeed, assume a parallel production X ε−→ Y ||Z labels a node of the spine. Wlog. let Y be a s-symbol.
Let u, u′ be the subwords induced by the Y -node and Z-node, respectively. Clearly there are two inter-
leavings of u and u′ such that the letter s, appearing in u, is placed in the interleaving in two different
positions in the word u′. Thus at least one of these interleavings must lead to a violation of the condi-
tion (7) in a word belonging to L3. Condition (8) is thus proved.

Now consider a non-s-symbol X appearing in T . The number of occurrences #a(u) of a in all words
u generated by X is necessarily the same, and the same applies to #b(u) and #c(u). Indeed, otherwise one
gets a similar contradiction as above by considering two words induced by the X node, differing in the
number of occurrences of a or b, and using SUBSTITUTIVITY. As a consequence X generates a finite
language which may clearly be defined by a context-free grammar, say GX .

If we apply the last observation to the very first non-s-symbol X on every path in T (except the
spine), we obtain a tree without parallel nodes. As GX does not depend on the particular derivation tree
T chosen, and the word wsv∈ L3 was chosen arbitrary, we conclude that L3 is generated by a context-free
grammar. The grammar is obtained by replacing productions of every non-s-symbol X in G with GX . As
L is clearly not context-free we obtain a contradiction and thus complete the proof. 2

48 Partially-commutative context-free languages

References
[1] J. A. Bergstra & J. W. Klop (1985): Algebra of Communicating Processes with Abstraction. Theor. Comput.

Sci. 37, pp. 77–121, doi:10.1016/0304-3975(85)90088-X.
[2] Jan A. Bergstra & Jan Willem Klop (1984): Process Algebra for Synchronous Communication. Information

and Control 60(1-3), pp. 109–137, doi:10.1016/S0019-9958(84)80025-X.
[3] Jean Berstel, Luc Boasson, Olivier Carton, Jean-Eric Pin & Antonio Restivo (2010): The expressive power

of the shuffle product. Inf. Comput. 208(11), pp. 1258–1272, doi:10.1016/j.ic.2010.06.002.
[4] Ahmed Bouajjani, Markus Müller-Olm & Tayssir Touili (2005): Regular Symbolic Analysis of Dynamic

Networks of Pushdown Systems. In: CONCUR, pp. 473–487, doi:10.1007/11539452_36.
[5] S. Christensen (1993): Decidability and Decomposition in Process Algebras. Ph.D. thesis, Department of

Computer Science, University of Edinburgh.
[6] W. Czerwiński, S. B. Fröschle & S. Lasota (2009): Partially-Commutative Context-Free Processes. In:

CONCUR, pp. 259–273, doi:10.1007/978-3-642-04081-8_18.
[7] W. Czerwiński, S. B. Fröschle & S. Lasota (2011): Partially-commutative context-free processes: express-

ibility and tractability. Inf. Comput. 209(5), pp. 782–798, doi:10.1016/j.ic.2010.12.003.
[8] W. Czerwiński, P. Hofman & S. Lasota (2012): Reachability problem for weak multi-pushdown automata.

To appear.
[9] J. Esparza (1997): Petri Nets, Commutative Context-Free Grammars, and Basic Parallel Processes. Fundam.

Inform. 31(1), pp. 13–25, doi:10.1007/3-540-60249-6_54.
[10] Jay L. Gischer (1981): Shuffle Languages, Petri Nets, and Context-Sensitive Grammars. Commun. ACM

24(9), pp. 597–605, doi:10.1145/358746.358767.
[11] Y. Hirshfeld & M. Jerrum (1999): Bisimulation Equivalence Is Decidable for Normed Process Algebra. In:

ICALP, pp. 412–421, doi:10.1007/3-540-48523-6_38.
[12] R. Mayr (2000): Process Rewrite Systems. Inf. Comput. 156(1-2), pp. 264–286, doi:10.1006/inco.1999.2826.
[13] A. W. Mazurkiewicz (1988): Basic notions of trace theory. In: REX Workshop, pp. 285–363.
[14] M.-J. Nederhof, G. Satta & S. Shieber (2003): Partially Ordered Multiset Context-Free Grammars And Free-

Word-Order Parsing. In: Proc. 8th Intl Workshop on Parsing Technologies, pp. 171–182.
[15] J. Srba (2002): Roadmap of Infinite Results. Bulletin of the EATCS 78, pp. 163–175.

http://dx.doi.org/10.1016/0304-3975(85)90088-X
http://dx.doi.org/10.1016/S0019-9958(84)80025-X
http://dx.doi.org/10.1016/j.ic.2010.06.002
http://dx.doi.org/10.1007/11539452_36
http://dx.doi.org/10.1007/978-3-642-04081-8_18
http://dx.doi.org/10.1016/j.ic.2010.12.003
http://dx.doi.org/10.1007/3-540-60249-6_54
http://dx.doi.org/10.1145/358746.358767
http://dx.doi.org/10.1007/3-540-48523-6_38
http://dx.doi.org/10.1006/inco.1999.2826

	1 Introduction
	2 Preliminaries
	3 Derivation trees
	4 Closure properties
	5 Other extensions of context-free languages
	6 Pumping lemmas
	7 Expressiveness

