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Abstract
We examine document spanners, a formal framework for information extraction that was intro-
duced by Fagin et al. (PODS 2013). A document spanner is a function that maps an input string
to a relation over spans (intervals of positions of the string). We focus on document spanners that
are defined by regex formulas, which are basically regular expressions that map matched subex-
pressions to corresponding spans, and on core spanners, which extend the former by standard
algebraic operators and string equality selection.

First, we compare the expressive power of core spanners to three models – namely, patterns,
word equations, and a rich and natural subclass of extended regular expressions (regular expres-
sions with a repetition operator). These results are then used to analyze the complexity of query
evaluation and various aspects of static analysis of core spanners. Finally, we examine the rel-
ative succinctness of different kinds of representations of core spanners and relate this to the
simplification of core spanners that are extended with difference operators.
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1 Introduction

Information Extraction (IE) is the task of automatically extracting structured information
from texts. This paper examines document spanners, a formalization of the IE query language
AQL, which is used in IBM’s SystemT. Document spanners were introduced by Fagin et
al. [7] in order to allow the theoretical examination of AQL, and were also used in [6].

A span is an interval on positions of a string w, and a spanner is a function that maps w
to a relation over spans of w. A central topic of [7] and of the present paper are core
spanners. The primitive building blocks of core spanners are regex formulas, which are
regular expressions with variables. Each of these variables corresponds to a subexpression,
and whenever a regex formula α matches a string w, each variable is mapped to the span in w
that matches that subexpression. Hence, each match of α on w determines a tuple of spans;
and as there can be multiple matches of a regex formula to a string, this process creates a
relation over spans of w. Core spanners are then defined by extending regex formulas with
the relational operations projection, union, natural join, and string equality selection.

∗ Supported by Deutsche Forschungsgemeinschaft (DFG) under grant FR 3551/1-1.

© Dominik D. Freydenberger and Mario Holldack;
licensed under Creative Commons License CC-BY

19th International Conference on Database Theory (ICDT 2016).
Editors: Wim Martens and Thomas Zeume; Article No. 17; pp. 17:1–17:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62921177?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.ICDT.2016.17
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


17:2 Document Spanners: From Expressive Power to Decision Problems

One of the two main topics of the present paper is the examination of decision problems
for core spanners, in particular evaluation and static analysis. These results are mostly
derived from the other main topic, the examination of the expressive power of core spanners
in relation to three other models that use repetition operators, which act similar to the
spanners’ string equality selection.

The first of these models are patterns. A pattern is word that consists of variables and
terminals, and generates the language of all words that can be obtained by substitution of
the variables with arbitrary terminal words. For example, the pattern α = xxaby (where x
and y are variables, and a and b are terminals) generates the language of all words that have
a prefix that consists of a square, followed by the word ab. Although pattern languages have
a simple definition, various decision problems for them are surprisingly hard. For example,
their membership problem is NP-complete (cf. Jiang et al. [19]), and their inclusion problem
is undecidable (cf. Bremer and Freydenberger [3]). As we show that core spanners can
recognize pattern languages, this allows us to conclude that evaluation of core spanners is
NP-hard, and that spanner containment is undecidable.

The second model we consider are word equations, which are equations of the form α = β,
where α and β are patterns, which can be used to define word relations. We show that word
equations with regular constraints can express all relations that are expressible with core
spanners. By using an improved version of Makanin’s algorithm (cf. Diekert [5]), this allows
us to show that satisfiability and hierarchicality for core spanners can be decided in PSPACE.
Moreover, using coding techniques from word equations, we show that two common relations
from combinatorics on words can be selected with core spanners.

The third model are regexes (also called extended regular expressions in literature). These
are regular expressions that can use a repetition operator, that is available in most modern
implementations for regular expressions (see, e. g., Friedl [14]) and that allows the definition
of non-regular languages. For example, the regex x{Σ∗}&x&x generates all words www
with w ∈ Σ∗, as x{Σ∗} generates some word w which is stored in the variable x, and each
occurrence of &x repeats that w. As a consequence of this increase in expressive power,
many decision problems are harder for regexes than for their “classical” counterparts. In
particular, various problems of static analysis are undecidable (Freydenberger [11]).

But as shown by Fagin et al. [7], document spanners cannot define all languages that are
definable by regexes. Intuitively, the reason for this is that regexes can use their repetition
operators inside a Kleene star, which allows them to repeat an arbitrary word an unbounded
number of times, while core spanners have to express repetitions with variables and string
equality selections. Inspired by this observation, we introduce variable-star free (or vstar-
free) regexes as those regexes that neither define nor use variables inside a Kleene star.
We show that every vstar-free regex can be converted into an equivalent core spanner.
Since all undecidability results by Freydenberger [11] also apply to vstar-free regexes, these
undecidability results carry over to core spanners. This also has various consequences to the
minimization and the relative succinctness of classes of spanner representations, and to the
simplification of core spanners with difference operators. As a further contribution, we also
develop tools to prove inexpressibility for vstar-free regular expressions and for core spanners.

As we shall see, many of the observed lower bounds hold even for comparatively restricted
classes of core spanners (in particular, most of the results hold for spanners that do not use
join). Hence, the authors consider it reasonable to expect that these results can be easily
adapted to other information extraction languages that combine regular expressions with
capture variables and a string equality operator.

In addition to regex formulas, Fagin et al. [7] also consider two types of automata as basic
building blocks of spanner representations. While the present paper does not discuss these



D.D. Freydenberger and M. Holldack 17:3

in detail, most of the results on spanner representations that are based on regex formulas
can be directly converted to the respective class of spanner representations that are based on
automata.

Related work. For an overview of related models, we refer to Fagin et al. [7]. In addition to
this, we highlight connections to models with similar properties. In [7], Fagin et al. showed
that there is a language that can be defined by regexes, but not by core spanners. Furthermore,
they compared the expressive power of core spanners and a variant of conjunctive regular
path queries (CRPQs), a graph querying language. Barceló et al. [1] introduced extended
CRPQs (ECRPQs), which can compare paths in the graph with regular relations. While
there is no direct connection between ECRPQs and core spanners, both models share the
basic idea of combining regular languages with a comparison operator that can express string
equality. As shown by Freydenberger and Schweikardt [13], ECRPQs have undecidability
results that are comparable to those in the present paper, and to those for regexes (cf.
Freydenberger [11]). Furthermore, Barceló and Muñoz [2] have used word equations with
regular constraints for variants of CRPQs.

Structure of the paper. In Section 2, we give definitions of regexes and of core spanners.
Section 3 compares the expressive power of core spanners to patterns, word equations, and
vstar-free regular expressions. The results from this section are then used in Section 4 to
examine the complexity of evaluation and static analysis of spanners. We also examine the
consequences of these results to the relative succinctness of different spanner representations.
Section 5 concludes the paper. Due to space reasons, all proofs were moved to an appendix
that is contained in the full version of the paper.

2 Preliminaries

Let N and N>0 be the sets of non-negative and positive integers, respectively. Let Σ be a
fixed finite alphabet of (terminal) symbols. Except when stated otherwise, we assume |Σ| ≥ 2.
We use ε to denote the empty word. For every word w ∈ Σ∗ and every a ∈ Σ, let |w| denote
the length of w, and |w|a the number of occurrences of a in w. A word x ∈ Σ∗ is a subword
of a word y ∈ Σ∗ if there exist u, v ∈ Σ∗ with y = uxv. A word x ∈ Σ∗ is a prefix of a word
y ∈ Σ∗ if there exists a v ∈ Σ∗ with y = xv, and a proper prefix if it is a prefix and x 6= y.
For every n ∈ N, an n-ary word relation (over Σ) is a subset of (Σ∗)n.

2.1 Regexes (Extended Regular Expressions)
This section introduces the syntax and semantics of regexes, which we shall also use for
spanners in Section 2.2. We begin with the syntax, which follows the definition from [7].

I Definition 1. We fix an infinite set X of variables and define the set M of meta symbols
as M := {ε, ∅, (, ), {, }, ·,∨, ∗,&}. Let Σ, X, and M be pairwise disjoint. The set of regexes
(extended regular expressions) is defined as follows:
1. The symbols ∅, ε, and every a ∈ Σ are regexes.
2. If α1 and α2 are regex, then (α1 · α2) (concatenation), (α1 ∨ α2) (disjunction), and (α∗1)

(Kleene star) are regexes.
3. For every x ∈ X and every regex α that contains neither x{· · · } nor &x as a subword,

x{α} is a regex (variable binding).
4. For every x ∈ X, &x is a regex (variable reference).

ICDT 2016



17:4 Document Spanners: From Expressive Power to Decision Problems

If a subword β of a regex α is a regex itself, we call β a subexpression (of α). The set of
all subexpressions of α is denoted by Sub (α), and the set of variables occurring in variable
bindings in a regex α is denoted by Vars (α). If a regex α contains neither variable references,
nor variable bindings, we call α a proper regular expression.

In other words, we use the term “proper” to distinguish those expressions that are usually
just called “regular expressions” from the more general extended regular expressions. We
use the notation α+ as a shorthand for α · α∗. Parentheses can be added freely. We may
also omit parentheses and the concatenation operator, where we assume ∗ and + are taking
precedence over concatenation, and concatenation precedes disjunction. Furthermore, we use
Σ as a shorthand for the regular expression

∨
a∈Σ a.

Before introducing the semantics of regexes formally, we give an intuitive explanation.
An expression of the form α = x{β} matches the same strings as β, but α additionally stores
the matched string in the variable x. Using a variable reference &x, this string can then be
repeated. For example, let α := (x{Σ∗} ·&x). The subexpression x{Σ∗} matches any string
w ∈ Σ∗ and stores this match in x. The following variable reference &x repeats the stored w.
Thus, α defines the (non-regular) copy-language {ww | w ∈ Σ∗}.

The following definition of the semantics of regexes is based on the semantics by Freyden-
berger [11], which is an adaption of the semantics from Câmpeanu et al. [4] (the former uses
variables, the latter backreferences). In comparison to [11], the case for Kleene star has been
changed, in order to make the definition compatible with the parse trees from Fagin et al. [7].

I Definition 2. Let γ be a regex over Σ and X. A γ-parse tree is a finite, directed, and
ordered tree Tγ . Its nodes are labeled with tuples of the form (w, γ′) ∈ (Σ∗ × Sub (γ)). The
root of every γ-parse tree Tγ is labeled with (w, γ), w ∈ Σ∗; and the following rules must
hold for each node v of Tγ :
1. If v is labeled (w, a) with a ∈ (Σ ∪ {ε}), then v is a leaf, and w = a.
2. If v is labeled (w, (β1 · β2)), then v has exactly one left child v1 and exactly one right

child v2 with respective labels (w1, β1) and (w2, β2), and w = w1w2.
3. If v is labeled (w, (β1 ∨ β2)), then v has a single child, labeled (w, β1) or (w, β2).
4. If v is labeled (w, β∗), then one of the following cases holds:

(a) w = ε, and v is a leaf, or
(b) w = w1w2 . . . wk for words w1, . . . , wk ∈ Σ+ (with k ≥ 1), and v has k children

v1, . . . , vk (ordered from left to right) that are labeled (w1, β), . . . , (wk, β).
3. If v is labeled (w, x{β}), then v has a single child, labeled (w, β).
4. If v is labeled (w,&x), let ≺ denote the post-order of the nodes of Tγ (that results from

a left-to-right, depth-first traversal). Then one of the following cases applies:
(a) If there is no node v′ with v′ ≺ v that is labeled (w′, x{β′}) ∈ Σ∗ × Sub (γ), then v

is a leaf, and w = ε.
(b) Otherwise, let v′ be the node with v′ ≺ v that is ≺-maximal among nodes labeled

(w′, x{β′}). Then v is a leaf, and w = w′.
If the root of a γ-parse tree Tγ is labeled (w, γ), we call Tγ a γ-parse tree for w. If the
context is clear, we omit γ and call Tγ a parse tree.

There is no parse tree for ∅, and references to unbound variables (i. e., variables that were
not assigned a value with a variable binding operator) default to ε. For an example of a
parse tree, see Figure 1.

We use parse trees to define the semantics of regexes:

I Definition 3. A regex γ recognizes the language L(γ) of all w ∈ Σ∗ for which there exists
a γ-parse tree Tγ with (w, γ) as root label.
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(abab,&x · (x{(a ∨ b)∗} ·&x))

(ε,&x) (abab, x{(a ∨ b)∗} ·&x)

(ab, x{(a ∨ b)∗})

(ab, (a ∨ b)∗)

(ab,&x)

(a, a ∨ b)

(a, a)

(b, a ∨ b)

(b, b)

Figure 1 The α-parse tree for w, where α := &x · (x{(a ∨ b)∗} ·&x) and w := abab.

I Example 4. Let α := x{Σ+} · (&x)+. Then L(α) = {wn | w ∈ Σ+, n ≥ 2}. Furthermore,
let β := x{Σ+} ·&x · x{Σ+} ·&x. Then L(β) = {x1x1x2x2 | x1, x2 ∈ Σ+}. Finally, for some
a ∈ Σ, let γ := x{aa+} · (&x)+. Then L(γ) = {an | n ≥ 2, n is not prime}.

2.2 Document Spanners
Let w := a1a2 · · · an be a word over Σ, with n ∈ N and a1, . . . , an ∈ Σ. A span of w is an
interval [i, j〉 with 1 ≤ i ≤ j ≤ n + 1 and i, j ∈ N. For each span [i, j〉 of w, we define a
subword w[i,j〉 := ai · · · aj−1. In other words, each span describes a subword of w by its
bounding indices. Two spans [i, j〉 and [i′, j′〉 of w are equal if and only if i = i′ and j = j′.
These spans overlap if i ≤ i′ < j or i′ ≤ i < j′, and are disjoint, otherwise. The span [i, j〉
contains the span [i′, j′〉 if i ≤ i′ ≤ j′ ≤ j. The set of all spans of w is denoted by Spans (w).

I Example 5. Let w := aabbcabaa. As |w| = 9, both [3, 3〉 and [5, 5〉 are spans of w, but
[10, 11〉 is not. As 3 6= 5, the first two spans are not equal, even though w[3,3〉 = w[5,5〉 = ε.
The whole word w is described by the span [1, 10〉.

I Definition 6. Let SVars be a fixed, infinite set of span variables, where Σ and SVars are
disjoint. Let V ⊂ SVars be a finite subset of SVars, and let w ∈ Σ∗. A (V,w)-tuple is a
function µ : V → Spans (w), that maps each variable in V to a span of w. If context allows,
we write w-tuple instead of (V,w)-tuple. A set of (V,w)-tuples is called a (V,w)-relation.

As V and Spans (w) are finite, every (V,w)-relation is finite by definition. Our next step is
the definition of spanners, which map words w to (V,w)-relations:

I Definition 7. Let V and Σ be alphabets of variables and symbols, respectively. A
(document) spanner is a function P that maps every word w ∈ Σ∗ to a (V,w)-relation P (w).
Let V be denoted by SVars (P ). A spanner P is n-ary if |SVars (P )| = n, and Boolean
if SVars (P ) = ∅. For all w ∈ Σ∗, we say P (w) = True and P (w) = False instead of
P (w) = {()} and P (w) = ∅, respectively. Let P be a spanner and w ∈ Σ∗. A w-tuple
µ ∈ P (w) is hierarchical if for all x, y ∈ SVars (P ) at least one of the following holds:
1. The span µ(x) contains µ(y),
2. the span µ(y) contains µ(x), or
3. the spans µ(x) and µ(y) are disjoint.

ICDT 2016



17:6 Document Spanners: From Expressive Power to Decision Problems

A spanner P is hierarchical if, for every w ∈ Σ∗, every µ ∈ P (w) is hierarchical.
A spanner P is total on w if P (w) contains all w-tuples over SVars (P ). Let Y ⊂ SVars

be a finite set of variables. The universal spanner over Y is denoted by ΥY . It is the unique
spanner P ′ such that SVars (P ′) = Y and P ′ is total on every w ∈ Σ∗. Furthermore, a
spanner P is hierarchical total on w if P (w) is exactly the set of all hierarchical w-tuples
over SVars (P ); and the universal hierarchical spanner over a set Y is the unique spanner
ΥH
Y that is hierarchical total on every w ∈ Σ∗.
For two spanners P1 and P2, we write P1 ⊆ P2 if P1(w) ⊆ P2(w) for every w ∈ Σ∗, and

P1 = P2 if P1(w) = P2(w) for every w ∈ Σ∗.

Hence, a spanner can be understood as a function that maps a word w to a set of functions,
each of which assigns spans of w to the variables of the spanner. As Boolean spanners
are functions that map words to truth values, they can be interpreted as characteristic
functions of languages. For every Boolean spanner P , we define the language recognized
by P as L(P ) := {w ∈ Σ∗ | P (w) = True}. We extend this to arbitrary spanners P by
L(P ) := {w ∈ Σ∗ | P (w) 6= ∅}.

I Definition 8. A regex formula is a regex α over Σ and X := SVars such that α does not
contain any variable references, and for every β ∈ Sub (α) with β = γ∗, no subexpression of
γ may be a variable binding.

In other words, a regex formula is a proper regular expression that is extended with variable
binding operators, but these operators may not occur inside a Kleene star. We define
SVars (γ) := Vars (γ) for all regex formulas γ.

To define the semantics of regex formulas, we use the definition of parse trees for regexes,
see Definition 2. Intuitively, the goal of this definition is that, each occurrence of a variable x
in a γ-parse tree is matched to the corresponding span. Here, two problems can arise. Firstly,
a variable might not occur in the parse tree; for example, when matching the regex formula
(x{a} ∨ bb) to the word bb. Secondly, a variable might be defined too often, as e. g. in the
regex formula x{Σ+} · x{Σ+}. In order to avoid such problems, we introduce the notion of a
functional regex formula.

I Definition 9. Let γ be a regex formula. We call γ functional if for every w ∈ Σ∗ and every
γ-parse tree Tγ for w, each variable in SVars (γ) occurs in exactly one node label of Tγ . The
class of all functional regex formulas is denoted by RGX.

As shown in Proposition 3.5 in Fagin et al. [7], functionality has a straightforward syntactic
characterization: Basically, variables may not be redeclared, variables may not be used inside
of Kleene stars, and if variables are used in a disjunction, each side of a disjunction has to
contain exactly the same variables. Consider the following example:

I Example 10. The regex formula γ1 := (x{a} ∨ x{b}) is functional even though it contains
two occurrences of variable definitions for x. There are just two γ1-parse trees, both of
which only contain one node labeled (c, x{c}), where c ∈ {a, b}. As a trivial case, even
γ2 := x{∅} is functional (as no γ2-parse tree exists). Furthermore, the regex formulas
γ3 := x{(a∨ b)∗} · x{b+} and γ4 := a∗ ∨ x{b} are not functional. Finally, γ5 := x{a}∗ is not
a regex formula at all.

For functional regex formulas, we use parse trees to define the semantics:

I Definition 11. Let γ be a functional regex formula and let T be a γ-parse tree for a word
w ∈ Σ∗. For every node v of T , the subtree that is rooted at v naturally maps to a span p(v)
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of w. As γ is functional, for every x ∈ SVars (γ), exactly one node vx of T has a label that
contains x. We define µT : SVars (γ)→ Spans (w) by µT (x) := p(vx). Each γ ∈ RGX defines
a spanner JγK by JγK(w) := {µT | T is a γ-parse tree for w} for each w ∈ Σ∗.

I Example 12. Assume that a, b ∈ Σ. We define the regex formula

α := Σ∗ · x
{

a · y{Σ∗} · (z{a} ∨ z{b})
}
· Σ∗.

Let w := baaba. Then JαK(w) consists of the tuples ([2, 4〉, [3, 3〉, [3, 4〉), ([2, 5〉, [3, 4〉, [4, 5〉),
([2, 6〉, [3, 5〉, [5, 6〉), ([3, 5〉, [4, 4〉, [4, 5〉), ([3, 6〉, [4, 5〉, [5, 6〉).

For every w ∈ Σ∗, a spanner P defines a (V,w)-relation P (w). In order to construct more
sophisticated spanners, we introduce spanner operators.

I Definition 13. Let P, P1, P2 be spanners and let w ∈ Σ∗. The algebraic operators union,
projection, natural join and selection are defined as follows.
Union Two spanners P1 and P2 are union compatible if SVars (P1) = SVars (P2), and their

union (P1∪P2) is defined by SVars (P1 ∪ P2) := SVars (P1)∪SVars (P2) and (P1∪P2)(w) :=
P1(w) ∪ P2(w) for every w ∈ Σ∗.

Projection Let Y ⊆ SVars (P ). The projection πY P is defined by SVars (πY P ) := Y and
πY P (w) := P |Y (w) for all w ∈ Σ∗, where P |Y (w) is the restriction of all w-tuples in
P (w) to Y .

Natural join Let Vi := SVars (Pi) for i ∈ {1, 2}. The (natural) join (P1 ./ P2) of P1 and P2
is defined by SVars (P1 ./ P2) := SVars (P1)∪SVars (P2) and, for all w ∈ Σ∗, (P1 ./ P2)(w)
is the set of all (V1 ∪ V2, w)-tuples µ for which there exist (Vi, w)-tuples µi (i ∈ {1, 2})
with µ|V1

(w) = µ1(w) and µ|V2
(w) = µ2(w).

Selection Let R ∈ (Σ∗)k be a k-ary relation over Σ∗. The selection operator ζR is parame-
terized by k variables x1, . . . , xk ∈ SVars (P ), written as ζRx1,...,xk

. The selection ζRx1,...,xk
P

is defined by SVars
(
ζRx1,...,xk

P
)

:= SVars (P ) and, for all w ∈ Σ∗, ζRx1,...,xk
P (w) is the set

of all µ ∈ P (w) for which
(
wµ(x1), . . . , wµ(xk)

)
∈ R.

Like [7], we mostly consider the string equality selection operator ζ=. Hence, unless otherwise
noted, the term “selection” refers to selection by the n-ary string equality relation. Note
that unlike selection (which compares strings), join requires that the spans are identical.

Regarding the join of two spanners P1 and P2, P1 ./ P2 is equivalent to the intersection
P1 ∩ P2 if SVars (P1) = SVars (P2), and to the Cartesian Product P1 × P2 if SVars (P1) and
SVars (P2) are disjoint. Hence, if applicable, we write ∩ and × instead of ./.

For convenience, we may add and omit parentheses. We assume there is an order of
precedence with projection and selection ranking over join ranking over union, e.g. we may
write πY ζ=

x,yP1 ∪ P2 ./ P3 instead of (πY ζ=
x,yP1 ∪ (P2 ./ P3)), where projection and selection

are applied to P1, and the result is united with the join of P2 and P3.

I Example 14. Let P1 := ζ=
x,yJx{Σ∗} · y{Σ∗}K and P2 := ζ=

x,y,zJx{Σ∗} · y{Σ∗} · z{Σ∗}K.
Then L(P1) = {ww | w ∈ Σ∗}, and the variables x and y always refer to the span of the first
and second occurrence of w, respectively. Analogously, L(P2) = {www | w ∈ Σ∗} (and z
refers to the third occurrence of w). Assume that we want to construct a spanner for the
language {wn | w ∈ Σ∗, n ∈ {2, 3}}. As P1 and P2 are not union compatible, we cannot
simply define P1 ∪ P2. Union compatibility can be achieved by projecting P2 to the set of
common variables; i. e., π{x,y}P2.

I Definition 15. A spanner algebra is a finite set of spanner operators. If O is a spanner
algebra, then RGXO denotes the set of all spanner representations that can be constructed

ICDT 2016



17:8 Document Spanners: From Expressive Power to Decision Problems

by (repeated) combination of the symbols for the operators from O with regex formulas from
RGX. For each spanner representation of the form oρ (or ρ1 o ρ2), where o ∈ O, we define
JoρK = oJρK (and Jρ1 oρ2K = Jρ1K o Jρ2K). Furthermore, JRGXOK is the closure of JRGXK under
the spanner operators in O.

We define L(ρ) := L(JρK) for every spanner representation ρ. Fagin et al. [7] refer to JRGXK as
the class of hierarchical regular spanners and to JRGX{π,∪,./}K as the class of regular spanners.
In addition to (hierarchical) regular spanners, Fagin et al. also introduced the so-called core
spanners, which are obtained by combining regex formulas with the four algebraic operators
projection, selection, union, and join – in other words, the class of core spanners is the class
JRGX{π,ζ

=,∪,./}K. Analogously, RGX{π,ζ
=,∪,./} is the class of core spanner representations.

3 Expressibility Results

3.1 Pattern Languages
We begin our examination of the expressive power of core spanners by comparing them to
one of the simplest mechanisms with repetition operators:

I Definition 16. Let X be an infinite variable alphabet that is disjoint from Σ. A pattern is a
word α ∈ (Σ∪X)+ that generates the language L(α) := {σ(α) | σ is a pattern substitution},
where a pattern substitution is a homomorphism σ : (Σ ∪X)∗ → Σ∗ with σ(a) = a for all
a ∈ Σ. We denote the set of all variables in α by Vars (α).

Intuitively, a pattern α generates exactly those words that can be obtained by replacing the
variables in α with terminal words homomorphically (i. e., multiple occurrences of the same
variable have to be replaced in the same way). This type of pattern languages is also called
erasing pattern language (cf. Jiang et al. [19]).

I Example 17. Let x, y ∈ X and a, b ∈ Σ. The patterns α := xx and β := xaybx generate
the languages L(α) = {ww | w ∈ Σ∗} and L(β) = {vawbv | v, w ∈ Σ∗}.

From every pattern α, we can straightforwardly construct a regex for L(α). A similar
observation holds for core spanners:

I Theorem 18. Given a pattern α, we can compute in polynomial time a ρα ∈ RGX{ζ
=}

such that L(ρα) = L(α).

I Example 19. Let x, y, z ∈ X, a, b ∈ Σ, and define the pattern α := xayybxzx. The
construction in the proof of Theorem 18 leads to the spanner representation ζ=

x1,x2,x3
ζ=
y1,y2

γ,
where γ = x1{Σ∗} · a · y1{Σ∗} · y2{Σ∗} · b · x2{Σ∗} · z1{Σ∗} · x3{Σ∗}.

While the construction in the proof of Theorem 18 is so easy that it might not seem noteworthy,
it will prove quite useful: In contrast to their simple definition, many canonical decision
problems for them are surprisingly hard. Via Theorem 18, the corresponding lower bounds
also apply to spanners, as we discuss in Sections 4.1 and 4.2.

3.2 Word Equations and Existential Concatenation Formulas
In this section, we introduce word equations, which are equations of patterns (cf. Definition 16)
and can be used to define languages and relations, cf. Karhumäki et al. [20]:
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I Definition 20. A word equation is a pair η = (ηL, ηR) of patterns ηL and ηR. A pattern
substitution σ is a solution of η if σ(ηL) = σ(ηR). We define Vars (η) := Vars (ηL)∪Vars (ηR).
For k ≥ 1, a relation R ⊆ (Σ∗)k is defined by a word equation η = (ηL, ηR) if there exist
variables x1, . . . , xk ∈ Vars (η) such that R = {(σ(x1), . . . , σ(xk)) | σ is a solution of η} .

We also write (ηL, ηR) as ηL = ηR. The following relations are well known examples of
relations that are definable by word equations:

I Definition 21. Over Σ∗, we define relations Rcom := {(x, y) | x, y ∈ {u}∗ for some u ∈ Σ∗}
and Rcyc := {(x, y) | x is a cyclic permutation of y}.

As shown in Lothaire [22], the relation Rcom is defined by the equation xy = yx, and Rcyc is
defined by the equation xz = zy.

Let R be a k-ary string relation, and let C be a class of spanners. We say that R is
selectable by C, if for every spanner P ∈ C and every sequence of variables ~x = (x1, . . . , xk)
with x1, . . . , xk ∈ SVars (P ), the spanner ζR~x P is also in C.

I Proposition 22. The relations Rcom and Rcyc are selectable by core spanners.

In particular, this means that we can add ζRcom and ζRcyc to core spanner representations,
without leaving the class JRGX{π,ζ

=,∪,./}K.

I Example 23. Define Limp := {wn | w ∈ Σ+, n ≥ 2} and ρ := ζRcom
x,y (x{Σ+}y{Σ+}).

Then L(ρ) = Limp.

This does not imply that Rcom can be used to select relations like Rpow := {(x, xn) | n ≥ 0}.
For example, if x := abab, (x, y) ∈ Rcom holds for all y ∈ {ab}∗. The authors conjecture
that Rpow is not selectable by core spanners.

Furthermore, the spanner that is constructed for Rcom in the proof of Proposition 22 is
more complicated than the corresponding word equation xy = yx. In fact, we constructed
both spanners not from the equations, but from a characterization of the solutions. This
appears to be necessary, due the fact that spanners need to relate their variables to an
input w, while word equations use their variables without such constrictions. We shall see in
Theorem 28 further down that, if this restriction is kept in mind, core spanners can be used
to simulate word equations.

Before we consider this topic further, we examine how word equations can simulate
spanners, as this shall provide useful insights on some question of static analysis in Section 4.2.
One drawback of word equations is that they are unable to express many comparatively
simple regular languages; like A∗ for any non-empty A ⊂ Σ∗ (cf. Karhumäki et al. [20]). In
order to overcome this problem, we consider the following extension:

I Definition 24. Let η = (ηL, ηR) be a word equation. A regular constraints function1 is a
function Cstr that maps each x ∈ Vars (η) to a regular language Cstr(x), where each of these
languages is defined by a nondeterministic finite automaton. A solution σ of η is a solution
of η under constraints Cstr if σ(x) ∈ Cstr(x) holds for every x ∈ Vars (η).

Hence, regular constraints restrict the possible substitutions of a variable x to a regular
language Cstr(x).

A syntactic extension of word equations are existential concatenation formulas, which
are obtained by extending word equations with ∨, ∧, and existential quantification over

1 While most existing literature uses the term rational constraints, we follow the terminology of [2].
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variables. For example, Rcyc is expressed by the formula ϕcyc(x, y) := ∃z : (xz = zy). Using
appropriate coding techniques, one can transform every existential concatenation formula
into an equivalent word equation (see Diekert [5]). In particular, this transformation is
possible in polynomial time.

Like word equations, these formulas can be further extended by adding regular constraints.
For each variable x and each nondeterministic finite automaton (NFA) A, the (regular)
constraint LA(x) is satisfied for a solution σ if σ(x) ∈ L(A). We call the resulting formulas
existential concatenation formulas with regular constraints, or ECreg-formulas.

I Example 25. Let A be an NFA with L(A) = {abia | i ≥ 1}, and define the ECreg-formula
ϕ(x, y) := ∃z : (LA(z) ∧ (∃z1, z2 : x = z1zz2) ∧ (∃z1, z2 : y = z1zz2)).

Then ϕ expresses the relation of all (x, y) that have a common subword z from L(A).

Using the same techniques as for formulas without constraints, ECreg-formulas can be
transformed into equivalent word equations with regular constraints, and this construction is
possible in polynomial time as well (cf. Diekert [5]). In order to express core spanners with
ECreg-formulas, we introduce the following definition:

I Definition 26. Let P be a core spanner with SVars (P ) = {x1, . . . , xn}, n ≥ 0, and
let ϕ(xw, xP1 , xC1 , . . . xPn , xCn ) be an ECreg-formula. We say that ϕ realizes P if, for all
w,wP1 , w

C
1 , . . . , w

P
n , w

C
n ∈ Σ∗, ϕ(w,wP1 , wC1 , . . . , wPn , wCn ) = True holds if and only if there is

a µ ∈ P (w) with wPk = w[1,ik〉 and wCk = w[ik,jk〉 for each 1 ≤ k ≤ n, where [ik, jk〉 = µ(xk).

This definition uses the fact that spans are always defined in relation to a word w. Note
that every span [i, j〉 ∈ Spans (w) is characterized by the words w[1,i〉 and w[i,j〉. Hence, if
µ ∈ JρK(w), the ECreg-formula models µ(xk) = [ik, jk〉 by mapping xw to w, xPk to w[1,ik〉,
and xCk to w[ik,jk〉. In the naming of the variables, C stands for content, and P for prefix.
This allows us to model spanners in ECreg-formulas:

I Theorem 27. Given ρ ∈ RGX{π,ζ
=,∪,./} with SVars (ρ) = {x1, . . . , xn}, n ≥ 0, we can

compute in polynomial time an ECreg-formula ϕρ(xw, xP1 , xC1 , . . . xPn , xCn ) that realizes JρK.

As we shall see in Section 4.2, this result allows us to find upper bounds on two problems
from the static analysis of spanners. We now examine how spanners can simulate word
equations (and, thereby, also ECreg-formulas). As discussed above, spanners need to relate
their variables to an input word. Hence, we only state the following result, which is a weaker
form of simulation than for the other direction:

I Theorem 28. Every word equation η = (ηL, ηR) with regular constraints Cstr can be
converted computably into a ρ ∈ RGX{ζ

=,./} with SVars (ρ) ⊆ Vars (η) such that for all
w ∈ Σ∗, there is a solution σ of η under constraints Cstr with w = σ(ηL) = σ(ηR) if and
only if there is a µ ∈ JρK(w) with σ(x) = wµ(x) for all x ∈ Vars (η).

While this form of simulation is weaker (as w has to be present), it still shows that the
constructed spanner is satisfiable if and only if the word equation (with constraints) is
satisfiable; and computed (V,w)-relation encodes solutions of the equation.

I Example 29. Let a, b ∈ Σ and define η := (xy, yx) with Cstr(x) = L(aab+), Cstr(y) = Σ+.
The construction from the proof of Theorem 28 results in ρ := ζ=

x,x2
ζ=
y,y2

(η̂L × η̂R), where
η̂L := x{aab+} · y{Σ+} and η̂R := y2{Σ+} · x2{aab+}.

The only reason that this construction is not necessarily possible in polynomial time is that
regular constraints are specified with NFAs, while core spanners use regular expressions,
which can lead to an exponential increase in the size.
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There is a similar construction that does not use the join operator: By adding new
variables z1, z2, we can construct ρ̂ := ζ=

x,x2
ζ=
y,y2

ζ=
z1,z2

(z1{η̂L}z2{η̂R}), which behaves almost
like ρ; the only difference that the solution is encoded in w = σ(ηL · ηR), instead of σ(ηL).

3.3 Regexes

As shown by Fagin et al. [7], there are languages that are recognized by regexes, but not by
core spanners. In order to prove this, [7] introduced the so-called “uniform-0-chunk”-language
Luzc: Assuming 0, 1 ∈ Σ, Luzc is defined as the language of all w = s1 · t · s2 · t · · · sn−1 · t · sn,
where n > 0, s1, . . . , sn ∈ {1}+, and t ∈ {0}+. Then L(αuzc) = Luzc holds for the regex
αuzc := 1+ · x{0∗} · (1+ ·&x)∗ · 1+, but no core spanner recognizes Luzc.

Considering that the syntax of regex formulas does not allow the use of variables inside a
Kleene star (or plus), this inexpressibility result might be considered expected, as αuzc uses
variable references inside of a Kleene plus. This raises the question whether regexes that
restrict variables in a similar manner can still recognize languages that core spanners cannot.
In order to examine this question, we define the following subclass of regexes:

I Definition 30. A regex α is variable star-free (short: vstar-free) if, for every β ∈ Sub (α)
with β = γ∗, no subexpression of γ is a variable binding or a variable reference. We denote
the class of all vstar-free regexes by vsfRX.

As we shall see in Theorem 36 below, every language that is recognized by a vstar-free regex
is also recognized by a core spanner. While this observation might be considered not very
surprising, its proof needs to deal with some technicalities. In particular, one needs to deal
with expressions like α := x{Σ∗} · (&x ∨&x&x). A conversion in the spirit of Theorem 18
would need to replace the &x with distinct variables and ensure equality with selections; but
as the disjunction contains subexpressions with distinct numbers of occurrences of &x, we
would not be able to ensure functionality of the resulting regex formula. We avoid these
problems by working with the following syntactically restricted class of vstar-free regexes:

I Definition 31. An α ∈ vsfRX is a regex path if, for every β ∈ Sub (α) with β = (γ1 ∨ γ2),
no subexpression of γ1 or γ2 is a variable binding or a variable reference. We denote the
class of all regex paths by RXP.

Intuitively, a regex path α ∈ RXP can be understood as a concatenation α = α1 · · ·αn, where
each αi is either a proper regular expression, a variable reference, or a variable binding of
the form αi = x{α̂}, where α̂ is also a regex path. By “multiplying out” disjunctions that
contain variables, we can convert every vstar-free regex into a disjunction of regex paths.

I Lemma 32. Given α ∈ vsfRX, we can compute α1, . . . , αn ∈ RXP with L(α) =
⋃n
i=1 L(αi).

I Example 33. Let α := x{Σ∗} · (&x∨ y{Σ∗}) · (&x∨&y). Multiplying out the disjunctions,
we obtain regex paths α1 = x{Σ∗} ·&x ·&x, α2 = x{Σ∗} · y{Σ∗} ·&x, α3 = x{Σ∗} ·&x ·&y,
and α4 = x{Σ∗} · y{Σ∗} ·&y. Then L(α) =

⋃4
i=1 L(αi).

This transformation process might result in an exponential number of regex paths; but as
efficiency is not of concern right now, this is not a problem. Each of these regex paths is
then transformed into a functional regex formula:

I Lemma 34. Given α ∈ RXP, we can be compute a ρ ∈ RGX{π,ζ
=} with L(ρ) = L(α).
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I Example 35. Consider the regex path α := &x · x{Σ∗ · y{Σ∗}} ·&x ·&y · y{Σ∗} ·&x ·&y.
The construction from the proof of Lemma 34 leads to the equivalent regex path γ :=
ε ·x{Σ∗ · y{Σ∗}} ·&x ·&y · ŷ{Σ∗} ·&x ·&ŷ, from which we derive the functional regex formula

δ := x {Σ∗y{Σ∗}}x1{Σ∗}y1{Σ∗}ŷ{Σ∗}x2{Σ∗}ŷ1{Σ∗},

which we use in the spanner representation ρ := π∅ζ
=
x,x1,x2

ζ=
y,y1

ζ=
ŷ,ŷ1

δ. Then L(α) = L(ρ).

As these spanner representations are Boolean, they are also union compatible. Hence, we
can now combine Lemma 32 and Lemma 34 to observe the following.

I Theorem 36. Given α ∈ vsfRX, we can compute a ρ ∈ RGX{π,ζ
=,∪} with L(ρ) = L(α).

In Section 4.2, we use Theorem 36 together with the undecidability results from [11] to obtain
multiple lower bounds for static analysis problems. Theorem 36 also raises the question
whether every language that is recognized by a core spanner is also recognized by a vstar-free
regular expression. As we have already seen in Example 23, it is possible to express the
language Limp := {wn | w ∈ Σ+, n ≥ 2} with core spanners. Hence, under certain conditions,
core spanners can simulate constructions like (&x)∗.

While Limp might seem to be an obvious witness that separates the classes of languages
that are recognized by core spanners and by vstar-free regexes, proving this appears to be
quite involved. Instead, we consider a related language, which allows us to use the following
tool:

I Definition 37. Let k ∈ N>0. We call a set A ⊆ Nk linear if there exist an r ≥ 0 and
m0, . . . ,mr ∈ Nk with A = {m0 +m1i1 +m2i2 + · · ·+mrir | i1, i2, . . . , ir ∈ N}. A set A ⊆ Nk
is semi-linear if it is a finite union of linear sets. Assume Σ is ordered; i. e., Σ = {a1, a2 . . . , ak}.
The Parikh map Ψ: Σ∗ → Nk is defined by Ψ(w) := (|w|a1 , |w|a2 , . . . , |w|ak

), and is extended
to languages by Ψ(L) := {Ψ(w) | w ∈ L}. We call L semi-linear if Ψ(L) is semi-linear.

According to Parikh’s Theorem [24], every context-free language is semi-linear. Moreover,
as shown by Ginsburg and Spanier [15], a set is semi-linear if and only if it is definable in
Presburger arithmetic. Building on this, we state the following:

I Theorem 38. For every α ∈ vsfRX, the language L(α) is semi-linear.

We use Theorem 38 to separate the classes of languages that are recognized by core spanners
and by vstar-free regexes:

I Lemma 39. Let Lnsl := {(abm)n | m,n ≥ 2} and ρ := ζRcom
x,y (x{abb+}y{Σ+}) for

Σ := {a, b}. Then Lnsl = L(ρ), but there is no α ∈ vsfRX with L(α) = Lnsl.

We do not need the join operator to define non-semi-linear languages: Consider the core
spanner representation ρ from Example 29 with L(ρ) = Lnsl. If we construct ρ̂ as explained
below that example, we obtain L(ρ̂) = {ww | w ∈ Lnsl}, which is also not semi-linear.

It is worth pointing out Lemma 39 does not resolve the open question from [7] whether
there is a language that is recognized by a core spanner, but not by a regex, as Theorem 38
only applies to vstar-free regexes. We have already seen languages that are not semi-linear,
but are recognized by regexes: The language Lnsl is recognized by αnsl := x{abb+}&x+; and
a similar approach is used for the following language (which we already met in Example 4):

I Example 40. Let Σ := {a}, and define the language Lnpr := {amn | m,n ≥ 2}. In other
words, Lnpr is the language of all words ai with i ≥ 4 such that i is not a prime number. Let
αnpr := x{aa+} · (&x)+. Then L(αnpr) = Lnpr.
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While Lnsl and Lnpr are defined by very similar regexes, the latter cannot be recognized by
core spanners. In order to show this with a semi-linearity argument, we observe:

I Theorem 41. Let |Σ| = 1 and let P be a core spanner over Σ. Then L(P ) is semi-linear.

Apart from the observation that Lnpr from Example 40 is not recognized by core spanners,
Theorem 41 also allows us to conclude that on unary alphabets, core spanners recognize
exactly the class of regular languages (which, on unary alphabets, is identical to the class of
context-free languages).

4 Decision Problems

4.1 Spanner Evaluation
We first examine the combined complexity of the evaluation problem for core spanners, the
problem CSp-Eval: Given a ρ ∈ RGX{π,ζ

=,∪,./}, a w ∈ Σ∗, and a (SVars (ρ), w)-tuple µ, is
µ ∈ JρK(w)? In order to prove lower bounds for this problem, we consider the membership
problem for pattern languages: Given a pattern α and a word w, decide whether w ∈ L(α).
As shown by Jiang et al. [19], this problem is NP-complete. Due to Theorem 18, we observe
the following (the proof of NP-membership is straightforward).

I Theorem 42. CSp-Eval is NP-complete, even if restricted to RGX{π,ζ
=}.

The question arises whether there are natural restrictions to CSp-Eval that make this problem
tractable. It appears that any subclass of the core spanners that extends regular spanners
in a meaningful way while having a tractable evaluation problem can not be allowed to
recognize the full class of pattern languages.

For pattern languages, it was shown by Ibarra et al. [18] that bounding the number of
variables in the pattern leads to an algorithm for the membership problem with a running time
that is polynomial, although in O(nk) (where n is the length of the word w, and k the number
of variables). From a parameterized complexity point of view, this is usually not considered
satisfactory. In fact, it was first observed by Stephan et al. [26] that the membership problem
for pattern languages isW [1]-complete if the number of variable occurrences (not of variables)
is used as a parameter. As the number of variable occurrences in a pattern corresponds
to the number of variables in an equivalent spanner, this implies that using the number of
variables in a spanner as parameter leads to W [1]-hardness for this parameter of CSp-Eval.

Fernau and Schmid [9] and Fernau et al. [10] discuss various other potential restrictions
to pattern languages that still do not lead to tractability (among these a bound on the length
of the replacement of each variable, which corresponds to a bound on the length of spans).
On the other hand, Reidenbach and Schmid [25] and Fernau et al. [8] examine parameters for
patterns that make the membership problem tractable. While this does not directly translate
to spanners, the authors consider these directions promising for further research.

We also consider the data complexity of the evaluation problem for core spanners. For
every core spanner representation ρ over Σ, we define the decision problem CSp-Eval(ρ):
Given a w ∈ Σ∗ and a w-tuple µ, is µ ∈ JρK(w)? Using a slight variation of the proof of
Theorem 42, we obtain the following.

I Theorem 43. For every ρ ∈ RGX{π,ζ
=,∪,./}, CSp-Eval(ρ) is in NL.

4.2 Static Analysis
We consider the following common decision problems for core spanner representations, where
the input is ρ ∈ RGX{π,ζ

=,∪,./} or ρ1, ρ2 ∈ RGX{π,ζ
=,∪,./}:
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1. CSp-Sat: Is JρK(w) 6= ∅ for some w ∈ Σ∗?
2. CSp-Hierarchicality: Is JρK hierarchical?
3. CSp-Universality: Is JρK = ΥSVars(ρ)?
4. CSp-Equivalence: Is Jρ1K = Jρ2K?
5. CSp-Containment: Is Jρ1K ⊆ Jρ2K?
6. CSp-Regularity: Is JρK ∈ JRGX{π,∪,./}K?

We approach the first two of these problems by using Theorem 27 to convert core spanner
representations to ECreg-formulas, for which satisfiability is in PSPACE (cf. Diekert [5]).
Hence, we observe:

I Theorem 44. CSp-Sat is PSPACE-complete, even if restricted to RGX{ζ
=}.

For the lower bound, the proof of Theorem 44 uses the PSPACE-hardness of the intersection
emptiness problem for regular expressions. But even if the variables in the regex formulas
were only bound to Σ∗, it follows from Theorem 28 that this problem would still be at least
as hard as the satisfiability problem for word equations without constraints (cf. Diekert [5]).

Furthermore, it is possible to use ECreg-formulas to express a violation of the criteria for
hierarchicality. This allows us to state the following result:

I Theorem 45. CSp-Hierarchicality is PSPACE-complete, even if restricted to RGX{ζ
=,./}.

For the remaining problems, we use Theorem 36, and the fact that the undecidability results
from Freydenberger [11] also hold for vstar-free regexes:

I Theorem 46. CSp-Universality and CSp-Equivalence are not semi-decidable, and CSp-
Regularity is neither semi-decidable, nor co-semi-decidable. This holds even if the input is
restricted to RGX{π,ζ

=,∪}.

As the proof of Theorem 46 relies only on Boolean spanners, the decidability status of CSp-
Regularity does not change if the problem asks for hierarchical regularity (i. e., membership
in JRGXK) instead of regularity, as the two classes coincide for Boolean spanners. Likewise,
CSp-Universality remains not semi-decidable if one replaces ΥSVars(ρ) with ΥH

SVars(ρ).
In the construction from this proof, variables are only bound to a language a+. Hence,

the same undecidability results hold for spanners that use selections by equal length relation,
instead of the string equality relation. While the proof builds on regexes αX that use only a
single variable x, the resulting core spanners use an unbounded amount variables, as every
occurrence of a variable reference &x in a regex path is converted to a spanner variable xi.
But undecidability remains even if we bound the number of variables in the spanners, as the
αX can be modified to use only a bounded number of variable references (see Section 4.1
in [11]). Theorem 46 also implies that CSp-Containment is not semi-decidable. This holds
even for a more restricted class of spanners:

I Theorem 47. CSp-Containment is not semi-decidable, even if restricted to RGX{π,ζ
=}.

As shown by Bremer and Freydenberger [3], the inclusion problem for pattern languages
remains undecidable if the number of variables in the patterns is bounded. In fact, that proof
constructs patterns where even the number of variable occurrences is bounded. Therefore,
CSp-Containment is not semi-decidable even if restricted to representations from RGX{π,ζ

=}

with a bounded number of variables. It is a hard open question whether the equivalence
problem for pattern languages is decidable (cf. Ohlebusch and Ukkonen [23], Freydenberger
and Reidenbach [12]). Undecidability of this problem would imply undecidability of CSp-
Equivalence, even if restricted to representations from RGX{π,ζ

=}.
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4.2.1 Minimization and Relative Succinctness
In order to address the minimization of spanner representations, we first formalize the notion
of the size or complexity of a spanner representation. Even for proper regular expressions,
there are various different definitions of size, see e. g. Holzer and Kutrib [17], and there
might be convincing reasons to add additional weight to the number of variables or other
parameters. As we shall see, these distinctions do not affect the negative results that we
prove further down. Hence, instead of defining a single fixed notion of size, we use the
following general definition of complexity measures from Kutrib [21]:

I Definition 48. Let SR be a class of spanner representations. A complexity measure for SR
is a recursive function c : SR→ N such that for each Σ, the set of all ρ ∈ SR that represent
spanners over Σ can be computably enumerated in order of increasing c(ρ), and does not
contain infinitely many ρ ∈ SR with the same value c(ρ).

By recursive, we mean a function that is total and computable. Definition 48 is general
enough to include all notions of complexity that take into account that descriptions are
commonly encoded with a finite number of distinct symbols, and that it should be decidable
if a word over these symbols is a valid encoding from SR. Regardless of the chosen complexity
measure, computable minimization of core spanners is impossible:

I Theorem 49. Let c be a complexity measure for RGX{π,ζ
=,∪,./}. There is no algorithm that,

given a ρ ∈ RGX{π,ζ
=,∪,./}, computes an equivalent ρ̂ ∈ RGX{π,ζ

=,∪,./} that is c-minimal.

In addition to regex formulas, Fagin et al. [7] also define spanner representations that are
based on so-called vset- and vstk-automata (denoted by VAset and VAstk) and extended
with the same spanner operators; and they compare the expressive power of these spanner
representations to RGX{π,ζ

=,∪,./} and its subclasses. Without going into details, we note that
their equivalence proofs use computable conversions between the models. Hence, Theorem 49
also applies to those spanner representations from [7] that can express core spanners, like
VAstk

{π,ζ=,∪,./} and VAset
{π,ζ=,∪,./}, and it implies that an algorithm that converts from one

of these classes of representations to another cannot guarantee that its result is minimal.
Using a technique by Hartmanis [16], we can use the fact that CSp-Regularity is not co-semi-

decidable to compare the relative succinctness of regular and core spanner representations:

I Theorem 50. Let c1, c2 be complexity measures for RGX{π,∪,./} and RGX{π,ζ
=,∪,./},

respectively. For every recursive function f : N→ N, there exists a ρ ∈ RGX{π,ζ
=,∪,./} such

that JρK ∈ JRGX{π,∪,./}K, but c1(ρ̂) > f(c2(ρ)) holds for every ρ̂ ∈ RGX{π,∪,./} with Jρ̂K = JρK.

Hence, the blowup from RGX{π,ζ
=,∪,./} to RGX{π,∪,./} is not bounded by a recursive function.

As above, we can replace each of this classes with a class with the same expressive power;
for example, we can replace RGX{π,∪,./} with VAstk

{π,∪,./}, VAset, or VAset
{π,∪,./} (or, as the

proof uses Boolean spanners, RGX or VAstk, or any class between those).
We also consider the relative succinctness of representations of core spanners and

representations of their complements. For every spanner P , we define its complement
C(P ) := ΥSVars(P ) \ P , and its hierarchical complement CH(P ) := ΥH

SVars(P ) \ P .

I Theorem 51. Let c be a complexity measure for RGX{π,ζ
=,∪,./}. For every recursive

function f : N → N, there exists a ρ ∈ RGX{π,ζ
=,∪,./} such that C(JρK) ∈ JRGX{π,ζ

=,∪,./}K,
but c(ρ) > f(c(ρ̂)) holds for every ρ̂ ∈ RGX{π,ζ

=,∪,./} with Jρ̂K = C(JρK). This also holds if
we consider CH instead of C.
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In other words, there are core spanners where the (hierarchical) complement is also a core
spanner, but the blowup between their representations is not bounded by any recursive
function. Again, this holds for the other classes of representations as well.

This result has consequences to an open question of Fagin et al. One of the central tools
in [7] is the core-simplification-lemma, which states that every core spanner is definable by
an expression of the form πV SA, where A is a vset-automaton, V ⊆ SVars (A), and S is a
sequence of selections ζ=

x,y for x, y ∈ SVars (A).
In addition to core spanners, Fagin et al. also discuss adding a set difference operator \,

and ask “whether we can find a simple form, in the spirit of the core-simplification lemma,
when adding difference to the representation of core spanners”. It is a direct consequence of
Theorem 51 that such a simple representation, if it exists, cannot be obtained computably,
as reducing the number of difference operators can lead to a non-recursive blowup. While
this observation does not prove that such a simple form does not exist, it suggests that any
proof of its existence should be expected to be non-constructive.

5 Conclusions and Further Work

In Section 3, we have seen that core spanners can express languages that are defined by
patterns or by vstar-free regexes. We used this in Section 4 to derive various lower bounds on
decision problems, even for subclasses of core spanner representations. Note that in most of
the cases, these lower bounds do not require the join operator, and mostly rely on the string
equality selection. This can be interpreted as a sign that string equality (or repetition) is an
expensive operator, in particular as similar results have been observed for related models
(e. g., [1, 11, 13]).

On a more positive note, there is reason to hope that these connections can be beneficial
for spanners: There is recent work on restricted classes of pattern languages with an efficient
membership problem (e. g., [9, 25]), which could lead to subclasses of spanners that can be
evaluated more efficiently. Furthermore, as Theorems 27 and 28 show, core spanners and
word equations with regular constraints are closely related. Recent work on word equations
has also considered tasks like enumerating all solutions of an equation. The employed
compression techniques (cf. [5]) might also be used to improve the evaluation of core spanners.
In particular, the ECreg-formulas that are constructed in the proof of Theorem 27 have the
special property that there is a variable xw (for w), and for every solution σ and every
variable x, σ(x) is a subword of σ(xw). It remains to be seen whether this restriction leads
to favorable lower bounds.

Also note that conversion from vstar-free regular expressions to core spanner representa-
tions that is used for Theorem 36 can lead to an exponential increase in size. If this size
blowup cannot be avoided, allowing vstar-free regexes as primitive spanner representations
might be useful as syntactic sugar.

Finally, while we only mentioned this explicitly in Section 4.2.1, note that most of
the other results in this paper can also be directly converted to the appropriate spanner
representations that use vset- and vstk-automata from [7].
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