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Geometric grid classes and the substitution decomposition have both been

shown to be fundamental in the understanding of the structure of per-

mutation classes. In particular, these are the two main tools in the recent

classification of permutation classes of growth rate less than κ « 2.20557

(a specific algebraic integer at which infinite antichains first appear). Us-

ing language- and order-theoretic methods, we prove that the substitu-

tion closures of geometric grid classes are well partially ordered, finitely

based, and that all their subclasses have algebraic generating functions.

We go on to show that the inflation of a geometric grid class by a strongly

rational class is well partially ordered, and that all its subclasses have

rational generating functions. This latter fact allows us to conclude that

every permutation class with growth rate less than κ has a rational gener-

ating function. This bound is tight as there are permutation classes with

growth rate κ which have nonrational generating functions.
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1. INTRODUCTION

The celebrated proof of the Stanley–Wilf Conjecture by Marcus and Tardos [18] establishes that all
nontrivial permutation classes have at most exponential growth. A prominent line of subsequent
research has focused on determining the possible growth rates of these classes. In particular, Vat-
ter [24] characterised all growth rates up to

κ “ the unique real root of x3 ´ 2x2 ´ 1 « 2.20557.

The number κ is the threshold of a sharp phase transition: there are only countably many permu-
tation classes of growth rate less than κ, but uncountably many of growth rate κ. Furthermore, it
is the first growth rate at which permutation classes may contain infinite antichains, which in turn
is the cause of much more complicated structure. For this reason we single out classes of growth
rate less than κ as small. In this work we elucidate the enumerative structure of small permutation
classes, essentially completing this research programme by proving that all small permutation classes
have rational generating functions.

Our work combines and extends two of the most useful techniques for analysing the structure
of permutation classes: grid classes and the substitution decomposition. The conclusion about
small permutation classes is obtained from a general enumerative result showing that the inflation
of a geometric grid class by a strongly rational class is itself strongly rational. This also places
Theorem 3.5 of Albert, Atkinson, and Vatter [4] in a wider theoretical context. We introduce our
results gradually, and along the way prove another structural result of independent interest: the
substitution closure of a geometric grid class is well partially ordered, finitely based, and all its
subclasses have algebraic generating functions. Thereby, we generalise one of the main results of
Albert and Atkinson [1] to a more natural and applicable setting.

For the rest of the introduction, we give just enough notation to motivate and precisely state our
main results. Sections 2 and 3 offer a more thorough review of the substitution decomposition and
geometric grid classes. Our new results are proved in Sections 4–8, and Section 9 concludes by
outlining several directions for further investigation.

Given permutations π and σ (in list, or one-line, notation), we say that π contains σ, and write
σ ď π, if π has a subsequence πpi1q ¨ ¨ ¨πpikq of length k which is order isomorphic to σ; otherwise,
we say that π avoids σ. For example, π “ 391867452 contains σ “ 51342, as can be seen by consid-
ering the subsequence πp2qπp3qπp5qπp6qπp9q “ 91672. A permutation class is a downset, say C, of
permutations under this order; i.e., if π P C and σ ď π, then σ P C.

For any permutation class C there is a unique, possibly infinite, antichain B such that

C “ AvpBq “ tπ : π ğ β for all β P Bu.

This antichain B, which consists of all the minimal permutations not in C, is called the basis of C.
If B happens to be finite, we say that C is finitely based. For n P N, we denote by Cn the set of
permutations in C of length n, and we refer to

8
ÿ

n“0

|Cn|xn “
ÿ

πPC

x|π|

as the generating function of C (here |π| denotes the length of the permutation π). Since proper
permutation classes are of exponentially bounded size (by the Marcus-Tardos Theorem), they have
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associated parameters of interest related to their asymptotic growth. Specifically, every class C has
upper and lower growth rates given, respectively, by

grpCq “ lim sup
nÑ8

n
a

|Cn| and grpCq “ lim inf
nÑ8

n
a

|Cn|.

It is conjectured that the actual limit of n
a

|Cn| exists for every permutation class; when this limit
is known to exist we call it the (proper) growth rate of C and denote it by grpCq. (All growth rates
mentioned in the first paragraph are proper growth rates.)

A quasi-order (binary and transitive, but not necessarily antisymmetric binary relation) is said to
be well-quasi-ordered if it contains neither an infinite strictly descending sequence nor an infinite
antichain. Because the permutation containment order is a partial order, we use the term well par-
tially ordered (wpo) to describe this property instead. Of course, permutation classes cannot contain
infinite strictly decreasing sequences, so wpo is synonymous with the absence of infinite antichains
in this context.

Geometric grid classes are the first of our major tools, and may be defined as follows. Suppose that
M is a 0{˘1 matrix. The standard figure of M is the point set in R

2 consisting of:

• the line segment from pk ´ 1, ℓ´ 1q to pk, ℓq if Mk,ℓ “ 1 or

• the line segment from pk ´ 1, ℓq to pk, ℓ´ 1q if Mk,ℓ “ ´1.

The geometric grid class of M , denoted by GeompMq, is then the set of all permutations that can be
drawn on this figure in the following manner. Choose n points in the figure, no two on a common
horizontal or vertical line. Then label the points from 1 to n from bottom to top and record these
labels reading left to right. An example is shown in Figure 1. Note that in order for the cells of
the matrix M to be compatible with plots of permutations, we use Cartesian coordinates for matrix
entries, indexing them first by column, from left to right starting with 1, and then by row, from
bottom to top.

A permutation class is said to be geometrically griddable if it is contained in a geometric grid class.
These classes are known to be well behaved:

Theorem 1.1 (Albert, Atkinson, Bouvel, Ruškuc and Vatter [2]). Every geometrically griddable class C
is finitely based, wpo, and has a rational generating function.

Theorem 1.1 implies that every geometrically griddable class C is strongly rational, in the sense that
C and all of its subclasses have rational generating functions. Strong rationality has numerous
consequences for permutation classes, such as the following, which can be established by a simple
counting argument.

Proposition 1.2 (Albert, Atkinson, and Vatter [4]). Every strongly rational class is wpo.

Our second major tool is the substitution decomposition of permutations into intervals. An interval
in the permutation π is a set of contiguous indices I “ ra, bs “ ta, a ` 1, . . . , bu such that the
set of values πpIq “ tπpiq : i P Iu is also contiguous. Given a permutation σ of length m and
nonempty permutations α1, . . . , αm, the inflation of σ by α1, . . . , αm, denoted σrα1, . . . , αms, is the
permutation of length |α1| ` ¨ ¨ ¨ ` |αm| obtained by replacing each entry σpiq by an interval that is
order isomorphic to αi in such a way that the intervals are order isomorphic to σ. For example,

2413r1, 132, 321, 12s “ 4 798 321 56.
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Figure 1: The permutation 6327415 lies in the geometric grid class of the matrix

ˆ

´1 1 1

0 ´1 ´1

˙

.

Given two classes C and U , the inflation of C by U is defined as

CrUs “ tσrα1, . . . , αms : σ P Cm and α1, . . . , αm P Uu.

The class C is said to be substitution closed if CrCs Ď C. The substitution closure xCy of a class C is
defined as the smallest substitution closed class containing C. A standard argument shows that xCy
exists, and a detailed construction of xCy is provided by Proposition 2.5.

The main results of this paper can now be stated.

• If the class C is geometrically griddable, then every subclass of xCy is finitely based and wpo
(Theorem 4.4).

• If the class C is geometrically griddable, then every subclass of xCy has an algebraic generating
function (Theorem 6.1).

• If the class C is geometrically griddable and the class U is strongly rational, then CrUs is also
strongly rational (Theorem 7.6).

• Every small permutation class has a rational generating function (Theorem 8.5).

As already mentioned, there are uncountably many classes with growth rate κ, with uncountably
many different generating functions. Hence there are permutation classes of growth rate κ with
nonrational, nonalgebraic, and even nonholonomic generating functions, so the final result above
is best possible.

2. SUBSTITUTION CLOSURES AND SIMPLE PERMUTATIONS

Every permutation of length n ě 1 has trivial intervals of lengths 0, 1, and n; all other intervals
are termed proper. We further say that the empty permutation and the permutation 1 are trivial. A
nontrivial permutation is simple if it has no proper intervals. The shortest simple permutations are
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Figure 2: An illustration of an interval in an inflation of 285746319. The small boxes represent
the inflations of each point. The large shaded box captures the complete inflations of the interval
5746 along with (possibly) some skew-suffix of the inflation of the entry 8, and some skew-
prefix of the inflation of the entry 3.

thus 12 and 21, there are no simple permutations of length three, and the simple permutations of
length four are 2413 and 3142. Several examples of simple permutations are plotted throughout the
paper, for instance in Figures 3 and 5.

Inflations of 12 and 21 generally require special treatment and have their own names. The (direct)
sum of the permutations α1 and α2 is α1 ‘ α2 “ 12rα1, α2s. The permutation π is said to be sum
decomposable if it can be expressed as a sum of two nonempty permutations, and sum indecomposable
otherwise. For every permutation π there are unique sum indecomposable permutations α1, . . . , αk
(called the sum components of π) such that π “ α1 ‘ ¨ ¨ ¨ ‘ αk. The permutations α1 ‘ ¨ ¨ ¨ ‘ αi for
i “ 1, . . . , k are called sum-prefixes of π, and the permutations αi ‘ ¨ ¨ ¨ ‘ αk for i “ 1, . . . , k are
called sum-suffixes. The skew sum operation is defined by α1 a α2 “ 21rα1, α2s and the notions
of skew decomposable, skew indecomposable, skew components, skew-prefix, and skew-suffix are defined
analogously.

Simple permutations and inflations are linked by the following result.

Proposition 2.1 (Albert and Atkinson [1]). Every nontrivial permutation π is an inflation of a unique
simple permutation σ. Moreover, if π “ σrα1, . . . , αms for a simple permutation σ of length m ě 4,
then each αi is unique. If π is an inflation of 12 (i.e., is sum decomposable), then there is a unique sum
indecomposable α1 such that π “ 12rα1, α2s. The same holds, mutatis mutandis, with 12 replaced by 21

and sum replaced by skew.

We need several technical details about inflations, and we begin by investigating the intervals of an
inflation π “ σrα1, . . . , αms. Trivially, any subinterval of any αi will be an interval of π, and if τ is
an interval of σ corresponding to indices i through j, then the entries corresponding to τ rαi, . . . , αjs
will also form an interval of π. Any other interval contains an interval of this second type, possibly
together with some entries of αi´1 and αj`1, as indicated in Figure 2.

Proposition 2.2. Suppose that π “ σrα1, . . . , αms and that θ is an interval of π not contained in a single
αi. Then there exist a (possibly empty) interval ri, js of indices, and intervals γi´1 and γj`1 of αi´1 and
αj`1 respectively, such that τ “ σpri, jsq is an interval of σ, and the entries of θ correspond to

γi´1 ‘ τ rαi, . . . , αjs ‘ γj`1 or γi´1 a τ rαi, . . . , αjs a γj`1.



INFLATIONS OF GEOMETRIC GRID CLASSES OF PERMUTATIONS 6

In the first case γi´1 may be nonempty only if σpri´ 1, jsq is also an interval of σ of the form 1‘ τ and γi´1

is a sum-suffix of αi´1, while γj`1 may be nonempty only if σpri, j ` 1sq is also an interval of σ of the form
τ ‘ 1 and γj`1 is a sum-prefix of αj`1. Analogous conditions apply for the second alternative.

Proof. The set of indices k such that αk is wholly contained in θ forms an interval I “ ri, js. Suppose
first that I is nonempty.

Observe that if two intervals of a permutation overlap, but neither is contained in the other, then
their intersection is a sum- or skew-suffix of one and a sum- or skew-prefix of the other. So, in
the case where αi´1 and θ have entries in common, these entries βi´1 must lie with respect to
τ rαi, . . . , αjs as specified in the statement of the proposition, and similar conclusions apply to αj`1.

In case that I is empty, θ must have nontrivial intersection with exactly two consecutive intervals
αi´1 and αj`1. Then a minor modification of the argument above (relating βi´1 directly to βj`1)
completes the proof.

Inflations CrUs of one class by another feature prominently in what follows. In this area we follow
in the footsteps of Brignall [7]. Let us define a U-inflation of σ to be any permutation of the form

π “ σrα1, . . . , αms with α1, . . . , αm P U ;

we also refer to the above expression as a U-decomposition of π.

Proposition 2.3 (Brignall [7]). For every nonempty permutation class U and every permutation π, the set

tσ : π can be expressed as a U-inflation of σu

has a unique minimal element (with respect to the permutation containment order).

This unique minimal σ is called the U-profile of π; note that the U-profile of π is 1 if and only if
π P U . To verify that π P CrUs, it suffices to check whether the U-profile of π lies in C. However, for
our enumerative intents, Proposition 2.3 is not sufficient, because it does not guarantee uniqueness
of substitution decomposition, even after the U-profile has been fixed. For a very simple example,
consider the permutation 12345. The Avp123q-profile of this permutation is 123, but it has three
decompositions with respect to this profile:

12345 “ 123r12, 12, 1s “ 123r12, 1, 12s “ 123r1, 12, 12s.

To address this problem we introduce the left-greedy U-decomposition of the permutation π as
σrα1, . . . , αms, where σ is the U-profile of π and the αi P U are chosen from left to right to be as
long as possible. We may also refer to such σrα1, . . . , αms as a left-greedy U-inflation of σ. By defi-
nition the left-greedy U-decomposition is unique, and the question arises as to how to distinguish
it from other U-decompositions of π. Our next proposition shows that if a U-decomposition is not
left-greedy then either several of the αi can be merged, or a sum- or skew-prefix of one αi can be
appended to αi´1.

Proposition 2.4. Let U be a nonempty permutation class. A U-decomposition

π “ θrγ1, . . . , γks where γ1, . . . , γk P U

is not the left-greedy U-decomposition of π if and only if there is an interval ri, js of length at least 2 giving
rise to an interval of θ which is order isomorphic to a permutation τ such that
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(G1) τ rγi, γi`1, . . . , γjs P U (implying that θ is in fact not the U-profile of π); or

(G2) τ “ 12 and the sum of γi with the first sum component of γi`1 lies in U ; or, similarly,

(G3) τ “ 21 and the skew sum of γi with the first skew component of γi`1 lies in U .

Proof. One direction is trivial. To prove the other direction, let the left-greedy U-decomposition of
π be

π “ σrα1, . . . , αms.
Choose the minimum index i such that |γi| ă |αi|. By Proposition 2.2 applied to θrγ1, . . . , γks, the
interval αi of π must be of the form

τ rγi, . . . , γjs ‘ βj`1 or τ rγi, . . . , γjs a βj`1

for some sum- or skew-prefix βj`1 of γj`1. If j ą i then we already see that the condition (G1) is
met.

Otherwise, the values corresponding to γi (which form an interval) together with the subpermu-
tation of βj`1 corresponding to the first sum or skew component of γj`1 show that either (G2) or
(G3) is met.

We now turn our attention to the substitution closure xCy of a class C. Since the intersection of any
family of substitution closed classes is substitution closed, xCy can be defined nonconstructively
as the intersection of all substitution closed classes containing C. For our purposes, the following
constructive description is more useful.

Proposition 2.5. The substitution closure of a nonempty class C is given by

xCy “
8
ď

i“0

Cris,

where Cr0s “ t1u and Cri`1s “ CrCriss for i ě 0.

Proof. Since xCy is substitution closed, it contains all of the classes Cris. The other inclusion is proved
in a standard way by establishing that

Ť

Cris is substitution closed, and appealing to the minimality
of xCy. Inflations obey the associative law, i.e. X rYrZss “ pX rYsqrZs for any classes X ,Y,Z . From
this it readily follows that CrisrCrjss “ Cri`js. Now consider an inflation σrα1, . . . , αms where σ
and each αi are contained in

Ť

Cris. Because Cr0s Ď Cr1s Ď Cr2s Ď . . . , there is some k such that
σ, α1, . . . , αm P Crks. It then follows that σrα1, . . . , α2s P CrksrCrkss “ Cr2ks Ď Ť

Cris, as desired.

Another basic result about substitution closures is the following.

Proposition 2.6. The substitution closure xCy of a class C contains exactly the same set of simple permuta-
tions as C. Therefore, the permutation class D is contained in xCy if and only if all simple permutations of D
belong to C.

Proof. The first assertion and the forward implication of the second assertion follow immediately
from Proposition 2.5 and the observation that a simple permutation can never be obtained by a
nontrivial inflation. For the converse implication of the second assertion suppose that all simple
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Figure 3: The four orientations of parallel alternations.

permutations of a class D belong to C. Let π P D be a nontrivial permutation, and decompose
it as π “ σrα1, . . . , αms where σ is simple. By assumption σ P C, and if we inductively suppose
α1, . . . , αm P xCy, we obtain π P xCy by Proposition 2.5, as required.

For the remainder of this section we concern ourselves with the basis of the substitution closure of
a class.

Proposition 2.7 (Albert and Atkinson [1]). The basis of the substitution closure of a class C consists of all
minimal simple permutations not contained in C.

Proof. Suppose that β R xCy is not simple. Then β “ σrα1, . . . , αms for some simple permutation σ
and permutations α1, . . . , αm all strictly contained in β. Were σ and α1, . . . , αm all in xCy we would
have β P xCy. Hence β cannot be a basis element of xCy since all the proper subpermutations of a
basis element of a class must lie in the class. Therefore every basis element of xCy is simple, and the
proposition follows by the first part of Proposition 2.6.

A parallel alternation is a permutation whose plot can be divided into two parts, by a single hor-
izontal or vertical line, so that the points on either side of this line are both either increasing or
decreasing and for every pair of points from the same part there is a point from the other part
which separates them, i.e. lies either horizontally or vertically between them. It is easy to see that a
parallel alternation of length at least four is simple if and only if its length is even and it does not
begin with its smallest or largest entry. Thus there are precisely four simple parallel alternations of
each even length at least six, shown in Figure 3, and no simple parallel alternations of odd length.

Theorem 2.8 (Schmerl and Trotter [22]). Every simple permutation of length n ě 4 which is not a parallel
alternation contains a simple permutation of length n ´ 1. A simple parallel alternation of length n ě 4

contains a simple permutation of length n ´ 2.

Theorem 2.8 leads rapidly to a sufficient condition for xCy to be finitely based. Given any permuta-
tion class C, we let C`1 denote the class of one point extensions of elements of C, i.e., the class of all
permutations π which contain an entry whose removal yields a permutation in C.

Proposition 2.9. Let C be a class of permutations. If C`1 is wpo, then the substitution closure xCy is finitely
based.

Proof. The basis elements of xCy are the minimal simple permutations not contained in C by Propo-
sition 2.7. Clearly there are only finitely many (indeed, at most four) minimal parallel alternations
not contained in C. By Theorem 2.8, every other basis permutation β of length n contains a simple
permutation σ of length n´1which by minimality belongs to C. Hence β P C`1, and the proposition
follows from the assumption that C`1 has no infinite antichains.
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3. GEOMETRIC GRID CLASSES AND REGULAR LANGUAGES

We say that a 0{˘1 matrix M of size t ˆ u is a partial multiplication matrix if there exist column and
row signs

c1, . . . , ct, r1, . . . , ru P t1,´1u
such that every entry Mk,ℓ is equal to either ckrℓ or 0. Given a 0{˘1 matrix M , we form a new
matrix Mˆ2 by replacing each 0, 1, and ´1 by

ˆ

0 0

0 0

˙

,

ˆ

0 1

1 0

˙

, and

ˆ

´1 0

0 ´1

˙

,

respectively. It is easy to see that the standard figure ofMˆ2 is simply a scaled copy of the standard
figure of M , and thus GeompMˆ2q “ GeompMq for all matrices M . Moreover, the column and row
signs ck “ p´1qk, rℓ “ p´1qℓ, show thatMˆ2 is a partial multiplication matrix, giving the following
result.

Proposition 3.1 (Albert, Atkinson, Bouvel, Ruškuc and Vatter [2]). Every geometric grid class is the
geometric grid class of a partial multiplication matrix.

Geometric grid classes provide a link between permutations and words. Before explaining this
connection, we briefly review a few relevant facts about words. Given a finite alphabet (merely a
set of symbols) Σ, Σ˚ denotes the set of all words (finite sequences) over Σ. The set Σ˚ is partially
ordered by the subword (or, subsequence) order in which v ď w if one can obtain v fromw by deleting
letters.

Subsets of Σ˚ are called languages, and a particular type, regular languages, play a central role in our
work. The empty set, the singleton tεu containing only the empty word, and the singletons tau
for each a P Σ are all regular languages; moreover, given two regular languages K,L Ď Σ˚, their
union K Y L, their concatenation KL “ tvw : v P K and w P Lu, and the star K˚ “ tvp1q ¨ ¨ ¨ vpmq :

vp1q, . . . , vpmq P Ku are also regular. Every regular language can be obtained by a finite sequence of
applications of these rules. Alternatively, one may define regular languages as those accepted by
finite state automata, but we do not require this description.

A language L is subword closed if for every w P L and every subword v ď w we have v P L. The
generating function of the language L is

ř

x|w|, where the sum is taken over all words w P L, and
|w| denotes the length of w. In addition to the above defining properties of regular languages, we
require only a few other basic facts:

• All finite languages are regular.

• If K and L are regular languages then so are K X L and KzL.

• Every subword closed language is regular.

• The class of regular languages is closed under homomorphic images and inverse homomor-
phic images.

• Every regular language has a rational generating function.
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p1

p3

p7

p2

p4

p5

Figure 4: In this geometric grid class, with column and row signs as shown, ϕ maps the word
a12a32a21a31a32a12a22 to 6327415.

For a systematic introduction to regular languages we refer the reader to Hopcroft, Motwani, and
Ullman [14], or, for a more combinatorial slant, to Flajolet and Sedgewick [10, Section I.4 and Ap-
pendix A.7]. The regularity of subword closed languages is folkloric, but is specifically proved in
Haines [12].

Returning to geometric grid classes, given a partial multiplication matrix M with standard figure
Λ we define the cell alphabet of M as

Σ “ takℓ : Mk,ℓ ‰ 0u.

The permutations in GeompMq will be represented, or encoded, by words over Σ. Intuitively, the
letter akℓ represents an instruction to place a point in an appropriate position on the line in the pk, ℓq
cell of Λ. This appropriate position is determined as follows, and the whole process is depicted in
Figure 4.

We say that the base line of a column of Λ is the grid line to the left (resp., right) of that column if the
corresponding column sign is 1 (resp., ´1). Similarly, the base line of a row of Λ is the grid line below
(resp., above) that row if the corresponding row sign is 1 (resp., ´1). We designate the intersection
of the two base lines of a cell as its base point. Note that the base point is an endpoint of the line
segment of Λ lying in this cell. As this definition indicates, we interpret the column and row signs
as specifying the direction in which the columns and rows are ‘read’. Owing to this interpretation,
we represent the column and row signs in our figures by arrows, as shown in Figure 4.

To every word w “ w1 ¨ ¨ ¨wn P Σ˚ we associate a permutation ϕpwq. First we choose arbitrary
distances 0 ă d1 ă ¨ ¨ ¨ ă dn ă

?
2 (the length of the diagonal line in a nonempty cell). For each

1 ď i ď n, we choose a point pi corresponding to wi. Let wi “ akℓ; the point pi is chosen from the
line segment in cell Ck,ℓ, at (Euclidean) distance di from the base point of this cell. Finally, ϕpwq
denotes the permutation defined by the set tp1, . . . , pnu of points.

It is routine to show that ϕpwq does not depend on the particular choice of d1, . . . , dn, and thus
ϕ : Σ˚ Ñ GeompMq is a well-defined mapping. The basic properties of ϕ are given by the
following result.

Proposition 3.2 (Albert, Atkinson, Bouvel, Ruškuc and Vatter [2]). The mappingϕ is length-preserving,
finite-to-one, onto, and order-preserving.

We can now state the following more detailed version of Theorem 1.1.
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Theorem 3.3 (Albert, Atkinson, Bouvel, Ruškuc and Vatter [2]). Suppose that C Ď GeompMq is a
permutation class and M is a partial multiplication matrix with cell alphabet Σ. Then the following hold:

(i) The class C is wpo.

(ii) The class C is finitely based.

(iii) There is a regular language L Ď Σ˚ such that ϕ restricts to a bijection L Ñ C.

(iv) There is a regular language LS , contained in the regular language from (iii), such that ϕ restricts to a
bijection between LS and the simple permutations in C.

We also need the following result.

Theorem 3.4 (Albert, Atkinson, Bouvel, Ruškuc and Vatter [2]). If the class C is geometrically griddable,
then the class C`1 is also geometrically griddable.

We end this section with a technical note. The mapping ϕ ‘jumbles’ entries, in the sense that the
ith letter of a word w P Σ˚ typically does not correspond to the ith entry in the permutation ϕpwq.
To control for this, we define the index correspondence ψ associated to the pair pϕ,wq by letting ψpiq
denote the index of the letter of w which corresponds to the ith entry of ϕpwq.

4. FINITE BASES AND WELL PARTIAL ORDER

Two general types of classes are investigated in this paper:

(1) subclasses of substitution closures of geometric grid classes; and

(2) subclasses of inflations of geometric grid classes by strongly rational classes.

In this section we establish the wpo property for both types. As a consequence we deduce that all
classes of type (1) are finitely based. Note that we cannot hope to have a general finite basis result
for type (2), since strongly rational classes need not be finitely based themselves (see Section 9).

It follows immediately from Propositions 2.9 and 3.1 and Theorems 3.3 (ii) and 3.4 that xGeompMqy
is finitely based. The basis of an arbitrary subclass C Ď xGeompMqy therefore consists of an an-
tichain in xGeompMqy together with, possibly, some of the finitely many basis elements of xGeompMqy
itself. Therefore we need only prove that xGeompMqy is wpo. Morally, owing to the tree-like struc-
ture of nested substitutions, this is a consequence of Kruskal’s Tree Theorem [17]. However, there
are several technical issues that would need to be resolved in such an approach, so we give a proof
from first principles.

Given a poset pP,ďq, consider the set P˚ of words with letters from P . The generalised subword
order on P˚ is defined by stipulating that v “ v1 . . . vk is contained in w “ w1 . . . wn if w has a
subsequence wi1wi2 ¨ ¨ ¨wik such that vj ď wij for all j. Note that the usual subword ordering on
Σ˚ is obtained as a special case where the letters of Σ are taken to be an antichain. We then have
the following result from [13].

Higman’s Theorem. If pP,ďq is wpo then so too is P˚, under the generalized subword order.
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We can immediately deduce the wpo property for inflations of geometrically griddable classes.

Proposition 4.1. If C is a geometrically griddable class and U is a wpo class then the inflation CrUs is wpo.

Proof. It suffices to prove that GeompMqrUs is wpo for all partial multiplication matrices M . Sup-
pose that the cell alphabet of M is Σ and consider the map

ϕU : pΣ ˆ Uq˚ Ñ GeompMqrUs

which sends pw1, α1q ¨ ¨ ¨ pwm, αmq to ϕpw1 ¨ ¨ ¨wmqrαψp1q, . . . , αψpmqs where ϕ is the encoding map-
ping and ψ is the index correspondence associated to pϕ,wq, both of which have been introduced
in Section 3. This maps onto GeompMqrUs because ϕ maps onto GeompMq by Proposition 3.2. The
poset pΣ ˆ Uq˚

is ordered by the generalised subword order over Σ ˆ U , which is itself ordered
by the direct product order in which Σ is considered to be an antichain. From the fact that ϕ is
order-preserving (Proposition 3.2 again), it follows that ϕU is order-preserving as well. Since U is
wpo, Σ ˆ U is also wpo (it is simply the union of a finite number of copies of U) and thus pΣ ˆ Uq˚

is wpo by Higman’s Theorem. It immediately follows that GeompMqrUs is wpo.

In order to show that substitution closures of geometrically griddable classes are wpo, we borrow
from the study of posets. For the purposes of this discussion, we restrict ourselves to posets (such
as the poset of all permutations) which are well-founded, meaning that they have no infinite strictly
decreasing sequences. Gustedt [11] defines a partial order on the infinite antichains of a poset,
implicit in Nash-Williams [19], in which A ĺ B if for every b P B there exists a P A such that a ď b.
Note that ĺ reverses the set inclusion order: if two infinite antichains satisfy B Ď A, then A ĺ B.

Proposition 4.2 (Gustedt [11, Lemma 5]). Let P be a well-founded poset. For every infinite antichain
A Ď P there is a ĺ-minimal infinite antichain B such that B ĺ A.

Proposition 4.3 (Gustedt [11, Theorem 6]). Suppose that the poset P is well-founded and that the an-
tichain A is ĺ-minimal. Then the proper closure of A,

Aă “ tb : b ă a for some a P Au,

is wpo.

As an easy consequence we now have the following.

Theorem 4.4. If the class C is geometrically griddable, then every subclass of xCy is finitely based and wpo.

Proof. From our prior discussion, Proposition 2.9, and Theorem 3.4, both claims will follow if
we can establish that xGeompMqy is wpo for every partial multiplication matrix M . Suppose
xGeompMqy were to contain an infinite antichain. Then it would also contain an infinite ĺ-minimal
antichain A by Proposition 4.2. By Proposition 4.3 the permutation class Aă is wpo and by Propo-
sition 2.5 every element π P A can be decomposed as π “ σrα1, . . . , αms, where σ P GeompMq and
α1, . . . , αm are properly contained in π. In other words, A Ď GeompMqrAăs, but this is a contradic-
tion because GeompMqrAăs is wpo by Proposition 4.1.

In their seminal investigation of simple permutations, Albert and Atkinson [1] proved that every
permutation class with only finitely many simple permutations is wpo. Theorem 4.4 generalises
this result, as every finite set of permutations is trivially contained in some geometric grid class.
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5. PROPERTIES AND FRAMEWORKS

In order to establish our enumerative results we adapt ideas introduced by Brignall, Huczynska
and Vatter [8]. A property is any set P of permutations, and we say that π satisfies P if π P P . Given
a family P of properties and a permutation π, we write Ppπq for the collection of properties in P

satisfied by π.

In this section we use only two types of properties. An avoidance property is one of the form Avpβq
for some permutation β. Note that if P is a family of avoidance properties and σ ď π, then σ must
avoid every permutation avoided by π, so Ppσq Ě Ppπq. Additionally we need the properties D‘

and Da, which denote, respectively, the sets of sum and skew decomposable permutations.

A P-framework F is a (formal) expression σrQ1, . . . ,Qms where σ is a permutation of length m,
called the skeleton of F, and Qi Ď P for all i. We say that F describes the set of permutations

tσrα1, . . . , αms : Ppαiq “ Qi for all iu.

Informed by Proposition 2.1, we say that a P-framework σrQ1, . . . ,Qms is simple if σ is simple and
D‘ R Q1 (resp., Da R Q1) if σ “ 12 (resp., σ “ 21). We then have the following result.

Proposition 5.1. If P is a family of properties containing D‘ and Da then every non-trivial permutation
is described by a unique simple P-framework.

We say that the P-framework σrQ1, . . . ,Qms is nonempty if it describes at least one permutation;
this condition is equivalent to requiring that there be at least one permutation αi with Ppαiq “ Qi

for every i.

The family P of properties is query-complete if the collection of properties Ppσrα1, . . . , αmsq is com-
pletely determined by σ and the collections Ppα1q, . . . , Ppαmq. In other words, P is query-complete
if

Ppσrα1, . . . , αmsq “ Ppσrα1
1, . . . , α

1
msq

for all permutations σ of length m, and all m-tuples pα1, . . . , αmq and pα1
1, . . . , α

1
mq which satisfy

Ppαiq “ Ppα1
iq for all i. When P is query-complete, we may refer to the properties of a nonempty

P-framework F, for which we use the notation PpFq, defined as Ppπq where π is any permutation
described by F.

The situation we are interested in is when C Ď xGeompMqy, i.e., when the simple permutations of
C are contained in a geometric grid class (see Proposition 2.6). Without loss of generality we will
suppose that M is a partial multiplication matrix (Proposition 3.1). Let B be the basis of C; recall
that B is finite by Theorem 4.4. In order to enumerate C, the properties we are interested in are

PB “ tD‘, Dau Y tAvpδq : δ ď β for some β P Bu.

Intuitively, these properties allow us to ‘monitor’, as substitutions are iteratively formed to build
C Ď xGeompMqy, ‘how much’ of any basis element from B the resulting permutations contain.

Let us first verify that PB is query-complete; as the union of query-complete sets of properties is
again query-complete, we may prove this piece by piece. First, tD‘u is query-complete: σrα1, . . . , αms P
D‘ if and only if σ P D‘ or σ “ 1 and α1 P D‘. The case of tDau is similar. For the rest of PB , we
claim that for every β P B, the set tAvpδq : δ ď βu is query-complete. This is equivalent to stating
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that knowing the skeleton σ and exactly which of the relevant subpermutations of β each interval
contains allows us to determine whether σrα1, . . . , αms contains a given δ ď β; a formal proof is
given in Brignall, Huczynska and Vatter [8].

Now let P Ě PB be a query-complete set of properties consisting of PB together, possibly, with
finitely many additional avoidance properties. Since B is the basis of C and the properties Avpβq
(β P B) are in P , it follows that every subset of P ‘knows’ whether the permutations it describes
belong to C or not. More precisely, for a P-framework F, either every permutation described by F

lies in C or none of them do.

The first step of our enumeration of C is to encode the nonempty, simple P-frameworks which
describe permutations in C. Let Σ be the cell alphabet of M , and let ϕ : Σ˚ Ñ GeompMq be
the mapping described in Section 3. Since the set S of simple permutations in C is contained in
GeompMq, Theorem 3.3 (iv) applied to the subclass C X GeompMq of GeompMq yields a regular
language LS Ď Σ˚ such that ϕ induces a bijection between LS and S. In order to encode P-
frameworks, we extend our alphabet to Σ ˆ 2P , that is, ordered pairs whose first component is a
letter from Σ, and whose second component is a subset of P . We now define the mapping ϕP from

words in
`

Σ ˆ 2P
˘˚

to P-frameworks with underlying permutations in GeompMq by

ϕP : pw1,Q1q ¨ ¨ ¨ pwm,Qmq ÞÑ ϕpwqrQψp1q, . . . ,Qψpmqs,

where w “ w1 ¨ ¨ ¨wm, and ψ is the index correspondence associated to pϕ,wq defined at the end of
Section 3. Since ϕ is onto (Proposition 3.2), so is ϕP .

Given two P-frameworks we write

τ rR1, . . . , Rks ď σrQ1, . . . , Qms

if there are indices 1 ď i1 ă ¨ ¨ ¨ ă ik ď m such that τ is order isomorphic to σpi1q ¨ ¨ ¨σpikq and
Rj “ Qij for all 1 ď j ď k. From Proposition 3.2 it follows readily that ϕP is order-preserving when

considered as a mapping from
`

Σ ˆ 2P
˘˚

under the subword order to the set of all P-frameworks
under the above ordering.

The main result of this section shows that the P-frameworks we are interested in are described by
a finite family of regular languages.

Theorem 5.2. Let M be a partial multiplication matrix with cell alphabet Σ, let B be any finite set of
permutations, and let P be a query-complete set of properties consisting of PB together, possibly, with
finitely many additional avoidance properties. For every subset Q Ď P of properties, there is a regular

language LQ Ď
`

Σ ˆ 2P
˘˚

such that the mapping ϕP is a bijection between LQ and the nonempty, simple
P-frameworks F “ σrQ1, . . . ,Qms satisfying σ P GeompMq and PpFq “ Q.

Proof. By Theorem 3.3, there is a regular language LS Ď Σ˚ such that the mapping ϕ is a bijection
between LS and the simple permutations of GeompMq. The language

LP
S “ tpw1,Q1q ¨ ¨ ¨ pwm,Qmq : w1 ¨ ¨ ¨wm P LSu Ď

`

Σ ˆ 2P
˘˚

is the inverse image ofLS under the first-coordinate projection homomorphism, and is thus regular.

Consider first the case where D‘ P Q. Thus we must generate all nonempty, simple P-frameworks
which describe sum decomposable permutations π with Ppπq “ Q. Clearly there are only finitely
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many such frameworks because they have the form 12rQ1,Q2s. Choosing a single preimage under
ϕP for each framework yields a finite, and hence regular, set LQ with the desired properties. The
case where Da P Q is analogous.

Now suppose that D‘, Da R Q. In this case we must ensure that the P-frameworks we build are
neither sum decomposable nor skew decomposable. This is equivalent to insisting that the skeleton
have length at least four. Consider the set tF : Q Ď PpFqu of P-frameworks which satisfy at least
the properties of Q. (Note that here we do not require the skeleton be simple – it can be any element
of GeompMq.) As all of the properties of Q are avoidance properties, this set of P-frameworks is
closed downward under the P-framework ordering. Therefore, because ϕP is order-preserving,
the set

tw P
`

Σ ˆ 2P
˘˚

: PpϕPpwqq Ě Qu
is subword-closed, and thus regular. Dually, the set

tw P
`

Σ ˆ 2P
˘˚

: PpϕPpwqq Ď Qu

is upward-closed, and thus also regular. The regular language LQ we need to produce is simply
the intersection of the two sets above (to ensure that PpFq “ Q for every resulting framework F),
with the regular language LP

S (to ensure that the skeleton of F is simple), and the regular language
of words of length at least four (to ensure that D‘, Da R PpFq), completing the proof.

6. ALGEBRAIC GENERATING FUNCTIONS

Our goal now is to utilise Theorem 5.2 (P-frameworks specified by any Q Ď P are in bijection with
a regular language) to show that the generating function for a subclass C of the substitution closure
of a geometrically griddable class is algebraic. It obviously suffices to consider the case where
C Ď xGeompMqy. Without loss of generality suppose that M is a partial multiplication matrix
(Proposition 3.3), and denote the corresponding cell alphabet by Σ. Let B be the (finite) basis of C.

For the purposes of this section, it will be helpful to insist that

P “ PB Y tAvp21q,Avp12qu,

which we have shown is query complete. With these two extra properties, the family Q‚ consisting
of all avoidance properties in P except Avp1q satisfies

Ppπq “ Q‚ if and only if π “ 1.

For every subset Q Ď P let fQ be the generating function for the set

∆pQq “ tπ P xGeompMqy : Ppπq “ Qu

of all permutations in xGeompMqy described by Q. Clearly ∆pQ‚q “ t1u, and for every other Q we
have

∆pQq “
ď

σr∆pQ1q, . . . ,∆pQmqs,

where the (disjoint) union is taken over all simple P-frameworks F “ σrQ1, . . . ,Qms with σ P
GeompMq and PpFq “ Q.
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This latter set of frameworks is bijectively encoded by the languageLQ Ď pΣˆ2Pq˚ via the mapping
ϕP , as described in Section 5. Let gQ be the generating function for LQ in non-commuting variables
representing the letters of our alphabet:

gQ “
ÿ

wPLQ

w. (1)

Due to the recursive description of the sets ∆pQq above, and the fact that every non-trivial permu-
tation in xGeompMqy is described by a unique simple P-framework, a system of equations for the
fQ (Q Ď P) can be obtained by stipulating

fQ‚ “ x, (2)

and performing the following substitutions in (1):

gQ Ð fQ, pu,Rq Ð fR pR Ď Pq. (3)

The resulting system is finite, although a typical right-hand side of an equation is an infinite series.

On the other hand, the language LQ is regular by Theorem 5.2. Therefore, as is well known (see
Flajolet and Sedgewick [10, Proposition I.3]), each gQ is the solution of a finite system of linear
equations (which almost certainly includes auxiliary variables). We then take these systems to-
gether and perform the substitutions (3) on them. The resulting system, together with the equa-
tion (2), is a finite algebraic system for the fQ. We may then perform algebraic elimination (see
Flajolet and Sedgewick [10, Appendix B.1]) to produce a single polynomial equation for each
fQ. The generating function f of C is f “ ř

fQ, where the sum is taken over all Q satisfying
tAvpβq : β P Bu Ď Q Ď P , thus proving the following result.

Theorem 6.1. Every subclass of the substitution closure of a geometrically griddable class has an algebraic
generating function.

While we have established Theorem 6.1 in a purely algebraic manner, it would not be difficult to ex-
press our proof in terms of formal languages. In such an approach, the above considerations would
translate into a proof that the class C is in bijection with a context-free language, in conjunction with
the construction of an unambiguous grammar for this language. Theorem 6.1 would follow from
the fact that such languages have algebraic generating functions; see Flajolet and Sedgewick [10,
Proposition I.7].

7. INFLATIONS BY STRONGLY RATIONAL CLASSES

We now consider inflations of the form CrUs where C is geometrically griddable and U is strongly
rational, meaning that U and all its subclasses have rational generating functions. Recall that CrUs
is defined as

CrUs “ tσrα1, . . . , αms : σ P C is of length m, and α1, . . . , αm P Uu.

We cannot hope to prove the main result of this section by encoding the permutations of CrUs as
a regular language, simply because we do not know how to encode an arbitrary strongly rational
class. Thus we must consider generating functions for various subsets of U . The following result is
our starting point.
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Proposition 7.1 (Albert, Atkinson, and Vatter [4]). If the class U is strongly rational, then each of the
following sets has a rational generating function:

• the sum indecomposable permutations in U and by symmetry, its sum decomposable permutations;

• the skew indecomposable permutations in U and by symmetry, its skew decomposable permutations;
and

• the permutations in U which are both sum and skew indecomposable.

As in Section 5, given a finite set B of permutations, we define the family of properties PB by

PB “ tD‘, Dau Y tAvpδq : δ ď β for some β P Bu.

Proposition 7.2. Let U be a strongly rational permutation class, and letB be a finite set of permutations. For
every subset Q Ď PB of properties, the generating function for the permutations in U satisfying PBpπq “ Q

is rational.

Proof. Let gQ denote the generating function for the permutations we want to count, i.e., the permu-
tations in U which satisfy precisely the properties Q. Further, given a set R Ď PB of properties, let
fR denote the generating function for the permutations in U which satisfy at least the properties of
R, but possibly more. Because PB consists of the properties of being sum- and skew decomposable,
together with a collection of avoidance properties, each fR corresponds to one of the bullet points
in Proposition 7.1 for a subclass of U . Specifically, lettingB1 “ tδ : Avpδq P Ru and V “ U XAvpB1q,
we have:

• if D‘, Da R R then fR is the generating function for the class V ;

• if D‘ P R and Da R R then fR is the generating function for the sum decomposable permu-
tations in V ;

• if D‘ R R and Da P R then fR is the generating function for the skew decomposable permu-
tations in V ;

• if D‘, Da P R then fR “ 0.

In any case, fR is rational. To complete the proof, we need only note that

gQ “
ÿ

R : QĎRĎPB

p´1q|RzQ|fR

by inclusion-exclusion.

Our argument that inflations of geometrically griddable classes by strongly rational classes are
strongly rational (Theorem 7.6) is fairly technical, but the underlying idea is quite simple: Given
such a class D Ď CrUs, where C is geometrically griddable and U is strongly rational, we find
a suitable set of properties P so that we can encode all the requisite P-frameworks by a regular
language LD . Then we use a variant of Proposition 7.2 to show that the generating functions for
permutations in U described by arbitrary Q Ď P are rational. Finally, we substitute these rational
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generating functions into the rational generating function for the language LD, yielding a rational
generating function for D.

There are two major obstacles to this programme. The first is that for obvious reasons we need our
set of properties to discriminate between inflations σrα1, . . . , αms that belong to D and those that
don’t, and also, for technical reasons which will become apparent shortly, between the inflations
that belong to U and those that don’t. But we cannot assume that U (and hence D) are finitely based
and then use their basis permutations to construct P . However, U is wpo by Proposition 1.2 and
thus D is wpo by Proposition 4.1, and this property comes to the rescue.

Let BD (respectively,BU ) denote the relative basis of D (respectively, U) inside CrUs, that is the set of
all basis elements of D which lie in CrUs. Note that both BD and BU are finite sets because CrUs is
wpo. Furthermore,

D “ CrUs X AvpBDq,
U “ CrUs X AvpBU q.

We now set B “ BD YBU , and construct the set of properties PB as in Section 5.

The second obstacle is that as it stands, the family of properties PB is still not sufficiently discrim-
inating. Indeed, Proposition 2.4 demonstrates that a single PB-framework may well describe both
left-greedy and non-left-greedy U-inflations. Consider, for example, a PB-framework of the form
12rQ1,Q2s. Some U-inflations described by this PB-framework will be left-greedy (if the first sum
component of the second interval cannot ‘slide’ to the first interval), while the others will not be. To
address this issue, we say that the first component of the permutation π is the first sum component
of π if π is sum decomposable, the first skew component of π if π is skew decomposable, and π

itself otherwise (if π is neither sum nor skew decomposable). This notion is well-defined because
no permutation is both sum and skew decomposable. We can now introduce the first component
avoidance properties:

Av#1pδq “ tπ : the first component of π avoids δu.

We need the full range of these properties,

P
#1

B “ tAv#1pδq : δ ď β for some β P Bu.

The enlarged family of properties P̃B “ PB Y P
#1

B is query-complete. Indeed, it suffices to show

that the properties P#1

B of σrQ1, . . . ,Qms are completely determined by σ and the sets Qi X PB of
properties. If σ “ τ ‘ ξ for a sum indecomposable τ and nonempty ξ, we see that

Av#1pδq P P
#1
B pσrQ1, . . . ,Qmsq if and only if Avpδq P PBpτ rQ1, . . . ,Q|τ |sq,

which can be determined from τ and Q1, . . . ,Q|τ | because PB is query-complete. The analogous
assertion holds when σ “ τ a ξ for a skew indecomposable τ and nonempty ξ. If σ is neither sum
nor skew decomposable, then the criterion is even simpler:

Av#1pδq P P
#1
B pσrQ1, . . . ,Qmsq if and only if Avpδq P PBpσrQ1, . . . ,Qmsq,

which again can be determined from σ and Q1, . . . ,Qm because PB is query-complete.

We begin by reiterating that, because B contains the relative bases for D and U in CrUs, the P̃B
frameworks respect the boundary between both of these classes and their complements in CrUs.
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Proposition 7.3. Given a P̃B-framework σrQ1, . . . ,Qms with σ P C, either all U-inflations described by it
lie in D (respectively U) or none do.

Next we show that P̃B-frameworks can also distinguish between left-greedy and non-left-greedy
U-inflations.

Proposition 7.4. Given a P̃B-framework σrQ1, . . . ,Qms with σ P C, either all U-inflations described by it
are left-greedy or none are.

Proof. We need to show that either every U-inflation described by σrQ1, . . . ,Qms satisfies one of
the three conditions (G1)–(G3) of Proposition 2.4 or that none do. Suppose that some U-inflation,
say π “ σrα1, . . . , αms, described by σrQ1, . . . ,Qms satisfies at least one of these conditions. If
this condition is (G1), the assertion follows from Proposition 7.3. Now suppose that (G1) is not
satisfied, and that (G2) is. Thus σ contains an increasing run σpi ` 1q “ σpiq ` 1 and the sum of
αi and the first sum component of αi`1 lies in U . Furthermore, since (G1) does not hold, this first
sum component is not the entire αi`1. Translating to our properties, this will happen if and only if

D‘ P Qi`1, Da R Qi`1, and for all δ1, δ2 such that Avpδ1q R Qi X PB and Av#1pδ2q R Qi`1 X P
#1
B

we have δ1 ‘ δ2 R BU . Therefore (G2) will hold for π if and only if it holds for all U-inflations
described by σrQ1, . . . ,Qms. A similar argument applies in the case that (G3) is satisfied but (G1)
is not, completing the proof.

Proposition 7.4 allows us to call a non-empty P̃B-framework left-greedy if every U-inflation it de-

scribes is left-greedy. The price we pay for this additional discriminating power of P̃B is that we
must strengthen Proposition 7.2 to include first component properties.

Proposition 7.5. Let U be a strongly rational permutation class and B be a finite set of permutations. For
every subset Q Ď P̃B of properties, the generating function for the set of permutations π P U satisfying
P̃Bpπq “ Q is rational.

Proof. For any set S Ď PB of properties, let gS denote the generating function for permutations in U

satisfying PBpπq “ S; all such generating functions are rational by Proposition 7.2. Further define

R “ tAvpδq : Av#1pδq P Qu,

and let f denote the generating function of permutations in U satisfying P̃Bpπq “ Q. There are
three cases to consider.

First suppose that D‘, Da R Q. Thus if π satisfies P̃Bpπq “ Q then the first component of π is π

itself, so π P Av#1pδq if and only if π P Avpδq. Therefore f “ 0 unless R “ Q X PB , in which case
f “ gQXPB

, which is rational.

Now suppose that D‘ P Q, so we aim to count sum decomposable permutations. If Da P Q then
f “ 0, so we may assume that Da R Q. We now see that f counts permutations of the form σ ‘ τ

where PBpσq is equal to R or to R1 “ R Y tDau, and PBpσ‘ τq “ Q XPB “ T . Thus we have that

f “
ÿ

S : PBp12rR,Ssq“T

gRgS `
ÿ

S : PBp12rR1,Ssq“T

gR1gS ,

which is also rational. The case where Da P Q is analogous, completing the proof.
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A crucial step in our argument is a regular encoding of left-greedy P̃B-frameworks. While we know
(in principle) how to recognise a single left-greedy framework, this does not help to encode them
all simultaneously. To address this issue, we adapt the marking technique from Albert, Atkinson,
Bouvel, Ruškuc, and Vatter [2]. A marked permutation is a permutation in which the entries are
allowed to be marked, which we designate with an overline. The intention of a marking is to
highlight some special characteristic of the marked entries.

A marked P-framework is a P-framework σrQ1, . . . ,Qms in which the skeleton σ is marked. The
mapping ϕP defined in Section 5 can be extended in a natural manner to a mapping ϕP from
``

Σ ˆ 2P
˘

Y
`

Σ ˆ 2P
˘˘˚

to the set of marked P-frameworks σrQ1, . . . ,Qms with σ P C; here Σ “
ta : a P Σu is the marked cell alphabet, and ϕP maps marked letters to marked entries.

We can extend the order on P-frameworks defined in Section 5 to this context as follows: for two
marked frameworks we write

τ rR1, . . . ,Rks ď σrQ1, . . . ,Qms

if there are indices 1 ď i1 ă ¨ ¨ ¨ ă ik ď m such that

• σpi1q, σpi2q, . . . , σpikq is order isomorphic to τ (as ordinary, unmarked, permutations); and

• for all 1 ď j ď k, σpijq is marked if and only if τpjq is marked; and

• for all 1 ď j ď k, Rj “ Qij .

With this order, it follows from Proposition 3.2 that the mapping ϕP is order-preserving.

Theorem 7.6. The class CrUs is strongly rational for all geometrically griddable classes C and strongly
rational classes U .

Proof. We retain the set-up introduced so far, so C Ď GeompMq for a partial multiplication matrix
M with cell alphabet Σ, D is a subclass of CrUs, and B “ BD Y BU where BD and BU denote,
respectively, the relative bases of D and U in CrUs.

We now seek to encode the nonempty, left-greedy P̃B-frameworks by means of a regular language

and the mapping ϕP̃B . To do this we mark an interval of σ which might satisfy one of the conditions

(G1)–(G3) of Proposition 2.4. To this end, we say that a marking of a P̃B-framework σrQ1, . . . ,Qms
is threatening if the marked entries constitute a (possibly trivial) interval of σ given by the indices
ri, js which is order isomorphic to τ , and either

• the permutations described by τ rQi,Qi`1, . . . ,Qjs lie in U (corresponding to (G1)); or

• |τ | “ 2 and τ rQi,Qi`1s is not a left-greedy P̃B-framework (corresponding to (G2) and (G3)).

Note that every marked P̃B-framework with zero, one, or all marked letters is threatening, and

thus every P̃B-framework has several threatening markings. However, if a P̃B-framework has a

threatening marking with two or more but not all marked letters, then that P̃B-framework is not

left-greedy. Therefore, the left-greedy P̃B-frameworks are precisely the P̃B-frameworks which do
not have such markings, and our goal is to identify them.
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Importantly, given a threateningly marked P̃B-framework σrQ1, . . . ,Qms which describes permu-
tations from D (recall Proposition 7.3), if τ rR1, . . . ,Rks ď σrQ1, . . . ,Qms in the order defined above,
then τ rR1, . . . ,Rks is also threateningly marked (and also describes permutations in D). Therefore

the set of all threateningly marked P̃B-frameworks is a downset. Since ϕP̃B is order-preserving,
the pre-image of this downset

J “
!

w P
``

Σ ˆ 2P
˘

Y
`

Σ ˆ 2P
˘˘˚

: ϕP̃B pwq is threateningly marked
)

is subword-closed, and thus regular.

Now let

Γ :
´´

Σ ˆ 2P̃B

¯

Y
´

Σ ˆ 2P̃B

¯¯˚

Ñ
´

Σ ˆ 2P̃B

¯˚

denote the homomorphism which removes markings. Because every P̃B-framework has a threat-

ening marking, ΓpJq encodes all P̃B-frameworks. We want to remove from ΓpJq the set of non-left-

greedy P̃B-frameworks. These non-left-greedy frameworks are precisely the frameworks which
have a marked encoding in J XK where

K “
#

words in
´´

Σ ˆ 2P̃B

¯

Y
´

Σ ˆ 2P̃B

¯¯˚

with at

least two marked and one unmarked letters

+

.

The language K is clearly regular. Furthermore, ΓpJq and ΓpJ X Kq are both regular as they are
homomorphic images of regular languages. Therefore the language LD “ ΓpJqzΓpJXKq is regular,

and it encodes nonempty, left-greedy P̃B-frameworks describing permutations from D.

Recall that every permutation π P D has a unique left-greedy U-decomposition π “ σrα1, . . . , αms
with σ P C and α1, . . . , αm P U . Furthermore, recall that every α P U is described by a unique P̃B
framework. Therefore, the generating function for the class D is obtained by taking the generating
function

g “
ÿ

wPLD

w

in non-commuting variables representing the letters of our alphabet and substituting for each letter
pu,Qq the generating function fQ for the set of all permutations in U described by Q. The function
g is rational because LD is a regular language, and the functions fQ are rational by Proposition 7.5.
It follows that D itself has a rational generating function, and the theorem is proved.

8. SMALL PERMUTATION CLASSES

With Theorem 7.6, we have all the enumerative machinery we need to prove that small permutation
classes are strongly rational, but we must spend a bit of time beforehand aligning the results of
Vatter [24] with those of this paper.

One of the biggest differences between the two approaches is that the grid classes we have dis-
cussed so far are much more constrained than the generalised grid classes of [24]. Suppose that M
is a t ˆ u matrix of permutation classes (we use calligraphic font for matrices containing permuta-
tion classes). An M-gridding of the permutation π of length n in this context is a pair of sequences
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Figure 5: The four oscillations of length 9.

1 “ c1 ď ¨ ¨ ¨ ď ct`1 “ n ` 1 (the column divisions) and 1 “ r1 ď ¨ ¨ ¨ ď ru`1 “ n ` 1 (the
row divisions) such that for all 1 ď k ď t and 1 ď ℓ ď u, the entries of π from indices ck up to
but not including ck`1, which have values from rℓ up to but not including rℓ`1 are either empty
or order isomorphic to an element of Mk,ℓ. The grid class of M, written GridpMq, consists of all
permutations which possess an M-gridding. Furthermore, we say that the permutation class C is
D-griddable if C Ď GridpMq for some (finite) matrix M whose entries are all equal to D.

Between these generalised grid classes and the geometric grid classes we have been considering
lie the monotone grid classes, of the form GridpMq for a matrix M whose entries are restricted to
H, Avp21q, and Avp12q. When considering monotone grid classes we abbreviate these three classes
to 0, 1, and ´1 (respectively). The class C is monotone griddable if C lies in GridpMq for some 0{˘1

matrix M .

To explain the relationship between monotone and geometric grid classes we need to introduce a
graph. The row-column graph of a tˆ umatrix M is the bipartite graph on the vertices x1, . . . , xt, y1,
. . . , yu where xk „ yℓ if and only if Mk,ℓ ‰ 0. It can then be shown (see Albert, Atkinson, Bouvel,
Ruškuc, and Vatter [2, Theorem 3.2]) that GeompMq “ GridpMq if and only if the row-column
graph of M is a forest.

In order to use grid classes to describe small permutation classes one needs the following generali-
sation of a result of Huczynska and Vatter [15].

Theorem 8.1 (Vatter [24, Theorem 3.1]). A permutation class is D-griddable if and only if it does not
contain arbitrarily long sums or skew sums of basis elements of D.

We now introduce a specific class. The increasing oscillating sequence is the infinite sequence defined
by

4, 1, 6, 3, 8, 5, . . . , 2k ` 2, 2k ´ 1, . . .

(which contains every positive integer except 2). An increasing oscillation is any sum indecompos-
able permutation that is contained in the increasing oscillating sequence (this term dates back to at
least Pratt [21]). A decreasing oscillation is the reverse of an increasing oscillation, and collectively
these permutations are called oscillations.

We let O denote the downward closure of the set of (increasing and decreasing) oscillations; in other
words, O consists of all oscillations and their subpermutations. Further let Ok denote the down-
ward closure of the set of oscillations of length at most k (a finite class). Using Theorem 8.1 and
Schmerl and Trotter’s Theorem 2.8, Vatter [24] showed via a computational argument that every
small permutation class is xOy-griddable.

In fact, a much stronger result holds. It can be shown that the growth rate of the downward closure
of the set of increasing oscillations is precisely equal to κ. Therefore, if C contains all increasing
oscillations, it is not small. Moreover, the increasing oscillations ‘almost’ form a chain, and so if a
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class does not contain one increasing oscillation, there is a bound on the length of the increasing
oscillations it can contain. By symmetry, every small permutation class also has a bound on the
length of decreasing oscillations it can contain, and thus every small permutation class is actually
xOky-griddable for some integer k.

Because classes containing permutations with complicated substitution decompositions can be
shown to have growth rates greater than κ (via another computational argument), we can say more

about the griddability of small permutation classes. First, define the class Õk by

Õk “ Ok Y Avp21q Y Avp12q,

i.e., the downward closure of the set of oscillations of length at most k together with monotone
permutations of all lengths. Via a minor translation in notation, and recalling the Crds construction
from Proposition 2.5, we quote the following result.

Theorem 8.2 (Vatter [24, Theorems 4.3 and 4.4]). Every small permutation class is Õ
rds
k -griddable for

some choice of integers k and d.

The restriction to Õ
rds
k -griddings is important for two reasons. The first is that these classes are

strongly rational. Indeed, by iterating Theorem 7.6 (and recalling that geometrically griddable
classes are strongly rational by Theorem 1.1), we obtain the following.

Corollary 8.3. If the class C is geometrically griddable, then the class Crds is strongly rational for every d.

Clearly Õk, which contains only finitely many nonmonotone permutations, is geometrically grid-

dable. Therefore Corollary 8.3 implies that Õ
rds
k is strongly rational for all d and k.

The second benefit of the restriction to Õ
rds
k -griddings is that, because Õ

rds
k contains neither long

simple permutations nor complicated substitution decompositions, a technical argument allows us

to ‘slice’ the Õ
rds
k -griddings of small permutation classes, as formalised below.

Theorem 8.4 (Vatter [24, Theorem 5.4]). Every small permutation class is M-griddable for a matrix M

in which:

(S1) every entry is Õ
rds
k , Avp21q, Avp12q, or the empty set;

(S2) every entry equal to Õ
rds
k is the unique nonempty entry in its row and column; and

(S3) if two nonempty entries share a row or a column with each other (in which case they both must be
monotone by (S2)), then neither shares a row or column with another nonempty entry.

Condition (S2) shows that every small permutation class is M-griddable for a matrix M in which
every pair of ‘interacting’ cells is monotone. Therefore, we may simply view the nonmonotone
cells of M as inflations of a singleton cell, or indeed, of any type of monotone cell at all. We can
express this consequence of Theorem 8.4 in the language of monotone grid classes by saying that

every small permutation class is contained in GridpMqrÕrds
k s for some 0{˘1 matrix M and integers

k and d. Furthermore, condition (S3) implies that this matrixM can be taken so that its row-column
graph is a forest, so GridpMq “ GeompMq. Therefore we see that, for every small permutation class
C, there is a 0{˘1 matrix M and integers k and d such that

C Ď GeompMqrÕrds
k s.
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From here, we need only apply Theorem 7.6 to establish the desired result.

Theorem 8.5. All small permutation classes have rational generating functions.

9. CONCLUSION

We have extended the substitution decomposition to handle enumeration far beyond the initial
investigations of Albert and Atkinson [1], to the point where these techniques apply to all per-
mutation classes of growth rate less than κ « 2.20557. Still, it is worth reflecting on how diffi-
cult the enumeration of permutation classes remains. Over fifteen years ago Noonan and Zeil-
berger [20] suggested that every finitely based permutation class has a holonomic generating func-
tion. Roughly ten years after that, Zeilberger (see [9]) conjectured precisely the opposite, in fact
specifying a potential counterexample: he speculated that Avp1324q might not have a holonomic
generating function.

Perhaps even if the generating functions of permutation classes are not well behaved, their growth
rates might be. Balogh, Bollobás, and Morris [6] were overly optimistic in this direction: they
made a conjecture whose truth would have implied that all growth rates of permutation classes
are algebraic numbers, which was disproved by Albert and Linton [5] (and even more starkly by
Vatter [23]). However, Klazar [16] has suggested that their conjecture might be true for all finitely
based classes.

Moving from general concerns to more local matters, throughout this work we have routinely re-
quired geometric griddability as a hypotheses, and it is natural to ask if this can be replaced by the
weaker condition of strong rationality. In general the answer is no, and essentially all attempts are
thwarted by a particular strongly rational class. We feel it might be edifying to ponder this class
and what extensions of our results it does not rule out, so we describe it in some detail.

To begin with we need the increasing oscillating antichain. To construct this antichain, take the set
of increasing oscillations (oriented as on the far left of Figure 5) of odd lengths at least three and
‘anchor’ the two ends of the increasing oscillations by inflating the first and the greatest entry of
each by the permutation 12. Thus the first element of the antichain is 231r12, 12, 1s “ 23451, while
the fourth element is

241638597r12, 1, 1, 1, 1, 1, 1, 12, 1s “ 2 3 5 1 7 4 9 6 10 11 8,

shown on the left of Figure 6 (which also gives a sketch of the proof that it is an antichain; numerous
formal proofs exist elsewhere). Let A denote this antichain.

By definition we see that A Ď Ort1, 12us. Moreover, O can be seen to be strongly rational in several
ways. Perhaps the most systematic method is to consider the rank encodings of Albert, Atkinson,
and Ruškuc [3]; in this encoding the class O and all its subclasses are in bijection with regular
languages. (Also, the same technique shows that the proper closure of A, Aă, is strongly rational
despite having an infinite basis, an example promised at the beginning of Section 4.)

The class Ort1, 12us contains A and thus is not wpo. As observed in Proposition 1.2, this implies
that Ort1, 12us is not strongly rational, and this fact dooms all naive generalisations of our results.
However, the rank encoding can be used to show that every finitely based subclass of Ort1, 12us has
a rational generating function. We conjecture that this holds more generally:
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Figure 6: On the left, a member of the infinite antichain A. It is easiest to see that A forms an
antichain by considering the inversion graphs (or, permutation graphs) of its members (right),
which form an infinite antichain of graphs under the induced subgraph order.

Conjecture 9.1. If C and U are both strongly rational classes, then every finitely based subclass of
xCy (resp., CrUs) has an algebraic (resp., a rational) generating function.

As stated above, the conclusion about rationality holds for C “ O and U “ t1, 12u. It may be
enlightening to study this problem in the special case where C “ O and U is an arbitrary strongly
rational class.

Proving Conjecture 9.1 in general would almost surely require a greater understanding of the sim-
ple permutations in strongly rational classes. Although Proposition 7.1 gives us a very good idea
of the structure and enumeration of sum indecomposable permutations in a strongly rational class,
its simple permutation analogue is still open:

Conjecture 9.2. If the class C is strongly rational, then the simple permutations in C have a rational
generating function.
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