68,932 research outputs found

    Oscillators - a simple introduction

    Get PDF

    Quasi-exactly solvable symmetrized quartic and sextic polynomial oscillators

    Full text link
    The symmetrized quartic polynomial oscillator is shown to admit an sl(2,R\R) algebraization. Some simple quasi-exactly solvable (QES) solutions are exhibited. A new symmetrized sextic polynomial oscillator is introduced and proved to be QES by explicitly deriving some exact, closed-form solutions by resorting to the functional Bethe ansatz method. Such polynomial oscillators include two categories of QES potentials: the first one containing the well-known analytic sextic potentials as a subset, and the second one of novel potentials with no counterpart in such a class.Comment: 14 pages, 4 figures; published version; main changes are in introduction, conclusion, and reference

    Aharonov-Bohm ring with fluctuating flux

    Full text link
    We consider a non-interacting system of electrons on a clean one-channel Aharonov-Bohm ring which is threaded by a fluctuating magnetic flux. The flux derives from a Caldeira-Leggett bath of harmonic oscillators. We address the influence of the bath on the following properties: one- and two-particle Green's functions, dephasing, persistent current and visibility of the Aharonov-Bohm effect in cotunneling transport through the ring. For the bath spectra considered here (including Nyquist noise of an external coil), we find no dephasing in the linear transport regime at zero temperature. PACS numbers: 73.23.-b, 73.23.Hk, 73.23.Ra, 03.65.YzComment: 17 pages, 8 figures. To be published in PRB. New version contains minor corrections and additional discussion suggested by referee. A simple introduction to the basics of dephasing can be found at http://iff.physik.unibas.ch/~florian/dephasing/dephasing.htm

    Trajectories for the Wave Function of the Universe from a Simple Detector Model

    Get PDF
    Inspired by Mott's (1929) analysis of particle tracks in a cloud chamber, we consider a simple model for quantum cosmology which includes, in the total Hamiltonian, model detectors registering whether or not the system, at any stage in its entire history, passes through a series of regions in configuration space. We thus derive a variety of well-defined formulas for the probabilities for trajectories associated with the solutions to the Wheeler-DeWitt equation. The probability distribution is peaked about classical trajectories in configuration space. The ``measured'' wave functions still satisfy the Wheeler-DeWitt equation, except for small corrections due to the disturbance of the measuring device. With modified boundary conditions, the measurement amplitudes essentially agree with an earlier result of Hartle derived on rather different grounds. In the special case where the system is a collection of harmonic oscillators, the interpretation of the results is aided by the introduction of ``timeless'' coherent states -- eigenstates of the Hamiltonian which are concentrated about entire classical trajectories.Comment: 37 pages, plain Tex. Second draft. Substantial revision

    Plasticity and learning in a network of coupled phase oscillators

    Full text link
    A generalized Kuramoto model of coupled phase oscillators with slowly varying coupling matrix is studied. The dynamics of the coupling coefficients is driven by the phase difference of pairs of oscillators in such a way that the coupling strengthens for synchronized oscillators and weakens for non-synchronized pairs. The system possesses a family of stable solutions corresponding to synchronized clusters of different sizes. A particular cluster can be formed by applying external driving at a given frequency to a group of oscillators. Once established, the synchronized state is robust against noise and small variations in natural frequencies. The phase differences between oscillators within the synchronized cluster can be used for information storage and retrieval.Comment: 10 page

    Collective Phase Chaos in the Dynamics of Interacting Oscillator Ensembles

    Full text link
    We study chaotic behavior of order parameters in two coupled ensembles of self-sustained oscillators. Coupling within each of these ensembles is switched on and off alternately, while the mutual interaction between these two subsystems is arranged through quadratic nonlinear coupling. We show numerically that in the course of alternating Kuramoto transitions to synchrony and back to asynchrony, the exchange of excitations between two subpopulations proceeds in such a way that their collective phases are governed by an expanding circle map similar to the Bernoulli map. We perform the Lyapunov analysis of the dynamics and discuss finite-size effects.Comment: 19 page

    Time Delay Effects on Coupled Limit Cycle Oscillators at Hopf Bifurcation

    Full text link
    We present a detailed study of the effect of time delay on the collective dynamics of coupled limit cycle oscillators at Hopf bifurcation. For a simple model consisting of just two oscillators with a time delayed coupling, the bifurcation diagram obtained by numerical and analytical solutions shows significant changes in the stability boundaries of the amplitude death, phase locked and incoherent regions. A novel result is the occurrence of amplitude death even in the absence of a frequency mismatch between the two oscillators. Similar results are obtained for an array of N oscillators with a delayed mean field coupling and the regions of such amplitude death in the parameter space of the coupling strength and time delay are quantified. Some general analytic results for the N tending to infinity (thermodynamic) limit are also obtained and the implications of the time delay effects for physical applications are discussed.Comment: 20 aps formatted revtex pages (including 13 PS figures); Minor changes over the previous version; To be published in Physica
    • …
    corecore