Abstract

We present a detailed study of the effect of time delay on the collective dynamics of coupled limit cycle oscillators at Hopf bifurcation. For a simple model consisting of just two oscillators with a time delayed coupling, the bifurcation diagram obtained by numerical and analytical solutions shows significant changes in the stability boundaries of the amplitude death, phase locked and incoherent regions. A novel result is the occurrence of amplitude death even in the absence of a frequency mismatch between the two oscillators. Similar results are obtained for an array of N oscillators with a delayed mean field coupling and the regions of such amplitude death in the parameter space of the coupling strength and time delay are quantified. Some general analytic results for the N tending to infinity (thermodynamic) limit are also obtained and the implications of the time delay effects for physical applications are discussed.Comment: 20 aps formatted revtex pages (including 13 PS figures); Minor changes over the previous version; To be published in Physica

    Similar works