120 research outputs found

    Orthogonality and Boolean Algebras for Deduction Modulo

    Get PDF
    Originating from automated theorem proving, deduction modulo removes computational arguments from proofs by interleaving rewriting with the deduction process. From a proof-theoretic point of view, deduction modulo defines a generic notion of cut that applies to any first-order theory presented as a rewrite system. In such a setting, one can prove cut-elimination theorems that apply to many theories, provided they verify some generic criterion. Pre-Heyting algebras are a generalization of Heyting algebras which are used by Dowek to provide a semantic intuitionistic criterion called superconsistency for generic cut-elimination. This paper uses pre-Boolean algebras (generalizing Boolean algebras) and biorthogonality to prove a generic cut-elimination theorem for the classical sequent calculus modulo. It gives this way a novel application of reducibility candidates techniques, avoiding the use of proof-terms and simplifying the arguments

    Deduction modulo theory

    Get PDF
    This paper is a survey on Deduction modulo theor

    Semantic A-translation and Super-consistency entail Classical Cut Elimination

    Get PDF
    We show that if a theory R defined by a rewrite system is super-consistent, the classical sequent calculus modulo R enjoys the cut elimination property, which was an open question. For such theories it was already known that proofs strongly normalize in natural deduction modulo R, and that cut elimination holds in the intuitionistic sequent calculus modulo R. We first define a syntactic and a semantic version of Friedman's A-translation, showing that it preserves the structure of pseudo-Heyting algebra, our semantic framework. Then we relate the interpretation of a theory in the A-translated algebra and its A-translation in the original algebra. This allows to show the stability of the super-consistency criterion and the cut elimination theorem

    Models and termination of proof reduction in the λ\lambdaΠ\Pi-calculus modulo theory

    Full text link
    We define a notion of model for the λ\lambdaΠ\Pi-calculus modulo theory and prove a soundness theorem. We then define a notion of super-consistency and prove that proof reduction terminates in the λ\lambdaΠ\Pi-calculus modulo any super-consistent theory. We prove this way the termination of proof reduction in several theories including Simple type theory and the Calculus of constructions

    Revisiting the Duality of Computation: An Algebraic Analysis of Classical Realizability Models

    Get PDF

    Polarities & Focussing: a journey from Realisability to Automated Reasoning

    No full text
    This dissertation explores the roles of polarities and focussing in various aspects of Computational Logic.These concepts play a key role in the the interpretation of proofs as programs, a.k.a. the Curry-Howard correspondence, in the context of classical logic. Arising from linear logic, they allow the construction of meaningful semantics for cut-elimination in classical logic, some of which relate to the Call-by-Name and Call-by-Value disciplines of functional programming. The first part of this dissertation provides an introduction to these interpretations, highlighting the roles of polarities and focussing. For instance: proofs of positive formulae provide structured data, while proofs of negative formulae consume such data; focussing allows the description of the interaction between the two kinds of proofs as pure pattern-matching. This idea is pushed further in the second part of this dissertation, and connected to realisability semantics, where the structured data is interpreted algebraically, and the consumption of such data is modelled with the use of an orthogonality relation. Most of this part has been proved in the Coq proof assistant.Polarities and focussing were also introduced with applications to logic programming in mind, where computation is proof-search. In the third part of this dissertation, we push this idea further by exploring the roles that these concepts can play in other applications of proof-search, such as theorem proving and more particularly automated reasoning. We use these concepts to describe the main algorithm of SAT-solvers and SMT-solvers: DPLL. We then describe the implementation of a proof-search engine called Psyche. Its architecture, based on the concept of focussing, offers a platform where smart techniques from automated reasoning (or a user interface) can safely and trustworthily be implemented via the use of an API

    Models and termination of proof reduction in the λΠ-calculus modulo theory

    Get PDF
    We define a notion of model for the λΠ-calculus modulo theory and prove a soundness theorem. We then define a notion of super-consistency and prove that proof reduction terminates in the λΠ-calculus modulo any super-consistent theory. We prove this way the termination of proof reduction in several theories including Simple type theory and the Calculus of constructions
    corecore