
HAL Id: inria-00563331
https://hal.inria.fr/inria-00563331

Preprint submitted on 4 Feb 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Orthogonality and Boolean Algebras for Deduction
Modulo

Alois Brunel, Olivier Hermant, Clement Houtmann

To cite this version:
Alois Brunel, Olivier Hermant, Clement Houtmann. Orthogonality and Boolean Algebras for Deduc-
tion Modulo. 2011. �inria-00563331�

https://hal.inria.fr/inria-00563331
https://hal.archives-ouvertes.fr

Orthogonality and Boolean Algebras for

Deduction Modulo

Alöıs Brunel1, Olivier Hermant2, and Clément Houtmann3

1 ENS de Lyon, Alois.Brunel@ens-lyon.org
2 ISEP, Olivier.Hermant@isep.fr

3 INRIA Saclay, Clement.Houtmann@inria.fr

Abstract. Originating from automated theorem proving, deduction mod-

ulo removes computational arguments from proofs by interleaving rewrit-
ing with the deduction process. From a proof-theoretic point of view,
deduction modulo defines a generic notion of cut that applies to any
first-order theory presented as a rewrite system. In such a setting, one
can prove cut-elimination theorems that apply to many theories, pro-
vided they verify some generic criterion. Pre-Heyting algebras are a gen-
eralization of Heyting algebras which are used by Dowek to provide a
semantic intuitionistic criterion called superconsistency for generic cut-
elimination. This paper uses pre-Boolean algebras (generalizing Boolean
algebras) and biorthogonality to prove a generic cut-elimination theorem
for the classical sequent calculus modulo. It gives this way a novel appli-
cation of reducibility candidates techniques, avoiding the use of proof-
terms and simplifying the arguments.

1 Introduction

In the usual models of predicate logic (Boolean algebras, Heyting algebras,
Kripke models), the interpretations of logically equivalent formulæ are always
equal. In particular, valid formulæ are all interpreted by one unique truth value
representing truthness. This is adequate for the study of purely logical systems
but insufficient for the study of deduction modulo [DHK03]: indeed, in order
to remove irrelevant computational arguments from proofs, deduction modulo
interleaves rewriting with the deduction process and therefore defines a com-
putational equivalence which is usually strictly weaker than logical equivalence
and that appeals to a distinction at the semantical level too. For example, Eu-
clid’s algorithm can be specified in deduction modulo: in particular when a < b
and b mod a 6= 0, the gcd of a and b is equal to the gcd of (b mod a) and a.
Propositions “2 is the gcd of 4 and 6” and “2 is the gcd of 2 and 4” are then
computationally and logically equivalent (because 2 = 6 mod 4). These two
propositions are also logically equivalent to Fermat’s Last Theorem (all of them
are valid), but they are not computationally equivalent to it. Indeed reducing
this theorem to a trivial assertion such as “2 is the gcd of 4 and 6” involves
proving the theorem. Such a proof hardly qualifies as a computation.

Introduced by Dowek [Dow06], pre-Heyting algebras are a generalization of
Heyting algebras which take into account such a distinction between compu-
tational and logical equivalences. Interestingly, they provide a semantic intu-
itionistic criterion called superconsistency for generic cut-elimination in deduc-
tion modulo. A theory is superconsistent if it has an interpretation in any pre-
Heyting algebra. Since reducibility candidates in deduction modulo [DW03] are
a remarkable example of a pre-Heyting algebra, any superconsistent theory can
be interpreted in this algebra and consequently verifies the generic notion of
cut-elimination provided by deduction modulo. Therefore pre-Heyting algebras
are adequate for deduction modulo in intuitionistic logic.

In this paper, we propose a similar notion of model for deduction modulo in
classical logic that we call pre-Boolean algebras. We show that these models lead
to a classical version of superconsistency which implies cut-elimination in clas-
sical sequent calculus modulo. Our approach significantly differs on two points
from the original use of reducibility candidates in deduction modulo [DW03].
First, we do not use original Girard’s reducibility candidates [Gir72] or Tait’s
saturated sets [Tai75], but rather orthogonality which easily adapts to classical
sequent calculi: This technique has first been introduced to prove strong nor-
malization of linear logic [Gir87] and has since been used many times for various
linear logic fragments [Oka99,Gim09] but also for the classical version of system
Fω [LM08] and is the basis of Krivine’s classical realizability [Kri09]. Second, we
only prove cut-elimination instead of normalization, hence our proof is consid-
erably simplified. Our technique is related to the proofs of cut-elimination for
linear logic that use phase semantics [Oka02,Abr91,CT06], but whereas those
cut-elimination models can be seen as projections of typed reducibility candi-
dates models [Oka99], ours is crucially designed in a untyped fashion: supercon-
sistency forecloses the degree of freedom to choose the interpretation of atomic
formulæ, and the truth values must be forced to contain all the axioms, in order
to be able to conclude.

This paper is organized as follows: Deduction modulo, impersonated by a
classical sequent calculus, is presented in Section 2. In Section 3, we define
pre-Boolean algebras, our generalization of Boolean algebra which acknowledge
the distinction between computational and logical equivalences. Section 4 intro-
duces orthogonality for classical deduction modulo using sets of pointed sequents,
which allows us to construct a pre-Boolean algebra of sequents and prove ad-
equacy (i.e. cut-elimination) in Section 5. Finally in Section 6, we extract a
non-trivial Boolean algebra from the pre-Boolean algebra of sequents presented
in Section 5.

2 Classical sequent calculus modulo

We suppose given a signature containing a set of variables (x, y, z . . .), a set
of function symbols and a set of predicate symbols. Each function symbol and
each predicate symbol has a fixed arity. Terms (t, u, v . . .) and atomic formulæ
(a, b, c . . .) are constructed as usual. Formulæ (A,B,C . . .) are constructed from

atomic formulæ, negated atomic formulæ (ā, b̄, c̄ . . .), conjunctions (∧), disjunc-
tions (∨), universal quantification (∀) and existential quantification (∃).

A,B ::= a | ā | ⊤ | ⊥ | A ∧B | A ∨B | ∀x.A | ∃x.A

Negation is the involutive function (.)⊥ recursively defined as

a⊥ = ā ⊥⊥ = ⊤ (A ∧B)⊥ = A⊥ ∨B⊥ (∀x.A)⊥ = ∃x.A⊥

ā⊥ = a ⊤⊥ = ⊥ (A ∨B)⊥ = A⊥ ∧B⊥ (∃x.A)⊥ = ∀x.A⊥

Capture avoiding substitutions are denoted [t/x]. Sequents are finite multisets
of formulæ (denoted ⊢ A1, A2 . . .). If ≡ is a congruence relation on formulæ, the
(one-sided) sequent calculus LK modulo ≡ is described in Figure 1.

⊢ A,A⊥
(Axiom)

⊢ A,∆1 ⊢ A⊥, ∆2

⊢ ∆1, ∆2

(Cut)
⊢ A,∆ A ≡ B

⊢ B,∆
(Conv)

⊢ A,A,∆

⊢ A,∆
(Contr)

⊢ ∆

⊢ A,∆
(Weak)

⊢ ⊤
(⊤)

(no rule for ⊥)

⊢ A,∆1 ⊢ B,∆2

⊢ A ∧B,∆1, ∆2

(∧)
⊢ A,B,∆

⊢ A ∨B,∆
(∨)

⊢ A[t/x], ∆

⊢ ∃x.A,∆
(∃)

⊢ A,∆ x fresh in ∆

⊢ ∀x.A,∆
(∀)

Fig. 1. Sequent calculus LK modulo ≡

3 A generalized semantics

This section introduces a generalization of Boolean algebras based on the same
idea as the extension from Heyting algebras to pre-Heyting algebras (also known
as Truth Values Algebras) [Dow06]: in order to make a distinction between com-
putational and logical equivalences, the antisymmetry condition on the order
is released, imposing therefore similar but weaker conditions than having dis-
tributed complemented lattice. The definition given here is stricter than the one
given by Dowek in his course notes [Dow10] since we force the negation operator
to be involutive. Of course, when the pre-order becomes an order, both notions
boil down to Boolean algebras.

Definition 1 (pre-Boolean algebra). A pre-Boolean algebra is a structure

〈B,≤,⊤,⊥,∧,∨, (.)⊥, ∀, ∃〉

where B is a set, ≤ is a pre-order relation on B (i.e. a transitive and reflexive
relation, but not necessarily antisymmetric), ⊤ and ⊥ are elements of B, ∧ and
∨ are functions from B × B to B, and .⊥ is a function from B to B.

The structure must verify, for any a, b, c ∈ B:

1. a ∧ b is a greatest lower bound of a and b:

a ∧ b ≤ a
a ∧ b ≤ b
c ≤ a and c ≤ b implies c ≤ a ∧ b

2. a ∨ b is a lowest upper bound of a and b:

a ≤ a ∨ b
b ≤ a ∨ b
a ≤ c and b ≤ c implies a ∨ b ≤ c

3. ⊤ (resp. ⊥) is a greatest (resp. lowest) element:

a ≤ ⊤ ⊥ ≤ a

4. ∨ is distributive over ∧ and ∧ is distributive over ∨:

a ∨ (b ∧ c) ≤ (a ∨ b) ∧ (a ∨ c) and (a ∨ b) ∧ (a ∨ c) ≤ a ∨ (b ∧ c)
a ∧ (b ∨ c) ≤ (a ∧ b) ∨ (a ∧ c) and (a ∧ b) ∨ (a ∧ c) ≤ a ∧ (b ∨ c)

5. a⊥ is a complement of a: a ∧ a⊥ ≤ ⊥ and ⊤ ≤ a ∨ a⊥.
6. (.)⊥ is idempotent: a⊥⊥ = a.

For any S ⊆ B, ∀S denotes one of its greatest lower bounds when it exists. ∃S
denotes one of the lowest upper bounds of S when it exists. A pre-Boolean algebra
is said complete when greatest lower bounds and lowest upper bounds exist for
any arbitrary S ⊆ B.

The first points 1-3 correspond to the definition of a bounded lattice adapted
to a pre-order. Point 4 imposes the lattice to be distributive and point 5 to
be complemented. Points 1-5 are exactly equivalent to the pre-Boolean algebra
definition of [Dow10], by defining, as usual, a ⇒ b as a⊥ ∨ b (conversely, by
defining a⊥ to be a ⇒ ⊥). In addition, we impose the idempotency to the
negation operator (.)⊥ (point 6). Any pre-Boolean algebra whose pre-order is
actually a (partial) order is a Boolean algebra. Let us also remark that the
quotient set of any pre-Boolean algebra by the equivalence relation induced by
the pre-order (≥ ∩ ≤) is a Boolean algebra.

Interpretations in pre-Boolean algebras are defined as usual.

Definition 2 (Interpretation). Let 〈B,≤,⊤,⊥,∧,∨, (.)⊥, ∀, ∃〉 be a pre-
Boolean algebra and (.)∗ be a function from n-ary atomic predicates to functions
in Mn → B and from n-ary function symbols to functions in Mn → M , for

some chosen domain M . Let φ be a valuation assigning to each variable a value
in M . If C is a formula and t is a term, then their respective interpretations C∗

φ

and t∗φ are defined inductively as:

f(t1, . . . , tn)
∗
φ = f∗((t1)

∗
φ, . . . , (tn)

∗
φ) x∗

φ = φ(x)

P (t1, . . . , tn)
∗
φ = P ∗((t1)

∗
φ, . . . , (tn)

∗
φ) (for n-ary predicates)

(⊤)∗ = ⊤ (A ∧B)∗φ = A∗
φ ∧B∗

φ (∀x.A)∗φ = ∀{ (A)∗φ+(d/x) | d ∈ M }

(⊥)∗ = ⊥ (A ∨B)∗φ = A∗
φ ∨B∗

φ (∃x.A)∗φ = ((∀x.(A⊥))∗φ)
⊥

where φ+ (d/x) is the valuation assigning d to x and φ(y) to any y 6= x.

Lemma 1 (Substitution). For any formula A, terms t and u, and valuation
φ, (u[t/x])∗φ = u∗

φ+(t∗
φ
/x) and (A[t/x])∗φ = A∗

φ+(t∗
φ
/x) .

Proof. By structural induction on u (resp. A).

Definition 3 (Model interpretation). Let ≡ be a congruence on terms and
formulæ. An interpretation (.)∗ is said to be a model interpretation for ≡ if and
only if for any valuation φ, any terms t ≡ u and formulæ A ≡ B, t∗φ = u∗

φ and
A∗

φ = B∗
φ.

The usual definition of consistency states that a theory is consistent if it can
be interpreted in a model. In particular, a congruence ≡ is consistent if there
exists a model interpretation (.)∗ for ≡ in some model, i.e. in some pre-Boolean
algebra. Such a definition is strengthened to define superconsistency [Dow06] as
follows.

Definition 4 (Superconsistency). A congruence ≡ is superconsistent if for
all pre-Boolean algebra D, an interpretation can be found for ≡ in D.

4 Behaviours

We dedicate the following sections to a proof that superconsistency is a crite-
rion which entails cut-elimination in our one-sided classical sequent calculus:
if ≡ is superconsistent, then cut-elimination holds in LK modulo ≡. To estab-
lish such a cut-elimination result, we use orthogonality to design a pre-Boolean
algebra of pointed sequents and demonstrate adequacy which in turn implies
cut-elimination. The technique used here to prove cut-elimination significantly
differs from Dowek and Werner’s approach [DW03], mainly by the use of orthog-
onality instead of reducibility candidates. Another minor difference is that we do
not prove strong normalization but cut-elimination (i.e. admissibility of the Cut
rule). However the philosophy remains: in the process of proving cut-elimination,
we demonstrate that a pre-Boolean algebra is constructed. Therefore we finally
obtain a superconsistency criterion, based on our definition of pre-Boolean alge-
bra, for cut-elimination in our classical sequent calculus modulo.

The notion of orthogonality that we will use in Section 5 relies on sets of
pointed sequents. These are usual sequents where one formula is distinguished.

Definition 5 (Pointed Sequents). We define pointed sequents as sequents of
the form ⊢ ∆ where at most one formula A of ∆ is distinguished. We denote
this formula by A◦. The set of pointed sequents is the set of sequents of the form
⊢ A◦, ∆ and is noted P ◦. The set of usual sequents is the set of sequents of
the form ⊢ ∆ with no distinguished formula and is noted P . Pointed sequents
are represented by letters t, u, s . . . Moreover, the subset of P ◦ which contains
exactly all the sequents whose distinguished formula is A is denoted by P ◦(A).
If X ⊆ P ◦ we pose X(A) = X ∩ P ◦(A).

Pointed sequents are meant to interact through cuts, and therefore define
orthogonality.

Definition 6 (Cut). If t = (⊢ A◦, ∆1) and u = (⊢ B◦, ∆2) are pointed sequents
with B ≡ A⊥, then the sequent t ⋆ u is defined by t ⋆ u = (⊢ ∆1, ∆2). Obviously
t ⋆ u ∈ P . Notice that if B 6≡ A⊥, t ⋆ u is undefined.

We denote by Ax the set of all axioms, that is the sequents ⊢ A⊥, A for every
A. Ax◦ is the set of pointed axioms.

Definition 7 (Orthogonal). In what follows, we pose

⊥⊥ = { ⊢ ∆ | ⊢ ∆ has a cut-free proof in LK modulo ≡ } .

We will write ⊥⊥◦ for the set of pointed sequents which have a cut-free proof. If
X ⊆ P ◦, then we define the orthogonal of X as

X⊥ =
⋃

B

{ u ∈ P ◦(B) | ∀t ∈ X(C) with B ≡ C⊥, t ⋆ u ∈ ⊥⊥ }

Lemma 2. The usual properties on orthogonality hold:

X ⊆ X⊥⊥, X ⊆ Y implies Y ⊥ ⊆ X⊥, X⊥⊥⊥ = X⊥ .

Definition 8 (Behaviour). A set of sequents X is said to be a behaviour when
X⊥⊥ = X.

Lemma 3. Behaviours are always stable by conversion through ≡.

Proof. Let us prove first that any orthogonal X⊥ is stable by conversion: if (⊢
A◦, ∆) ∈ X⊥ and A ≡ B, then (⊢ B◦, ∆) ∈ X⊥. Let us assume that (⊢ C◦, ∆′) ∈
X with C ≡ B⊥. Then C ≡ A⊥ (since B⊥ ≡ A⊥) and since (⊢ A◦, ∆) ∈ X⊥,
there exists a cut-free proof of ⊢ ∆,∆′. We just proved that (⊢ B◦, ∆) ∈ X⊥.

Now, any behaviour X = X⊥⊥ is the orthogonal of X⊥ and therefore is
stable by conversion through ≡. ⊓⊔

Lemma 4. The set of behaviours is closed under unrestricted intersection.

Proof. If S is a set of behaviours, then we show that

(
⋂

X∈S

X

)⊥⊥

⊆
⋂

X∈S

X .

Let us take an element t ∈ (
⋂
S)⊥⊥. Let X be an element of S. Let u ∈ X⊥.

Because
⋂
S ⊆ X, we have X⊥ ⊆ (

⋂
S)⊥. Hence u ∈ (

⋂
S)⊥ and so t ⋆ u ∈ ⊥⊥.

That means t ∈ X⊥⊥, but X is a behaviour, so t ∈ X. This is true for every
X ∈ S so finally t ∈

⋂

X∈S
X. ⊓⊔

Definition 9 (Behaviours Operations). if X and Y are behaviours and S
is a set of behaviours, then X ∧ Y and ∀S are respectively defined as X ∧ Y =
((X.Y) ∪Ax◦)⊥⊥ where X.Y is

{ ⊢ (A ∧B)◦, ∆A, ∆B | (⊢ A◦, ∆A) ∈ X and (⊢ B◦, ∆B) ∈ Y }

and

∀S = ({ ⊢ (∀xA)◦, ∆ | for any t ∈ T , X ∈ S, (⊢ (A[t/x])◦, ∆) ∈ X } ∪Ax◦)⊥⊥

where T is the set of open terms of the language.

By definition and by Lemma 2, X⊥, X ∧ Y and ∀S are always behaviours.

5 The pre-Boolean algebra of sequents

The next step towards cut-elimination is the construction of a pre-Boolean al-
gebra whose elements are behaviours. The base set of our algebra is

D = { X | Ax◦ ⊆ X ⊆ ⊥⊥◦ and X = X⊥⊥ }

Let us construct a pre-Boolean algebra from D using operators (.)⊥, ∧ and ∀.

Lemma 5. If S ⊆ D then
⋂
S is the greatest lower bound of S in D (for the

inclusion order ⊆).

Proof. Since the base set D is closed under unrestricted intersection (Lemma 4),
⋂
S ∈ D. Now if C ∈ D is a lower bound of S, then C ⊆

⋂
S. Hence

⋂
S is the

greatest lower bound of S in D. ⊓⊔

Lemma 6. For all X ∈ D, X⊥ ∈ D.

Proof. Let us notice that (Ax◦)⊥ = ⊥⊥◦. Then Ax◦ ⊆ X ⊆ ⊥⊥◦ (since X ∈ D)
and Lemma 2 imply Ax◦ ⊆ (Ax◦)⊥⊥ = (⊥⊥◦)⊥ ⊆ X⊥ ⊆ (Ax◦)⊥ = ⊥⊥◦. ⊓⊔

Lemma 7. If X,Y ∈ D, then for every C, (⊢ (C⊥)◦, C) ∈ (X.Y ∪Ax◦)⊥.

Proof. We prove equivalently that for all (⊢ C◦, ∆) ∈ (X.Y ∪Ax◦), the sequent
((⊢ (C⊥)◦, C) ⋆ (⊢ C◦, ∆)) = (⊢ C,∆) has a cut-free proof.

– If (⊢ C◦, ∆) ∈ Ax◦, then ∆ = C⊥. Therefore (⊢ (C⊥)◦, C) ⋆ (⊢ C⊥, C◦) =
(⊢ C⊥, C) has obviously a cut-free proof.

– If (⊢ C◦, ∆) ∈ X.Y , then C = A ∧ B, ∆ = ∆1, ∆2 and both ⊢ A,∆1 and
⊢ B,∆2 have cut-free proofs. By application of the (∧) rule, ⊢ A∧B,∆1, ∆2

has a cut-free proof. ⊓⊔

Theorem 1. D is stable under (.)⊥, ∧ and ∀.

Proof. First, Lemma 6 implies stability under (.)⊥.
Let us prove stability under ∧: let us assume X,Y ∈ D and prove X∧Y ∈ D.

– X ∧ Y is a behaviour by definition.
– Ax◦ ⊆ X ∧ Y since Ax◦ ⊆ (X.Y ∪Ax◦) ⊆ (X.Y ∪Ax◦)⊥⊥ = X ∧ Y .
– Now, let us prove that X ∧ Y ⊆ ⊥⊥◦. We take (⊢ C◦, ∆) ∈ X ∧ Y and we

show that it has a cut-free proof. First, we can notice that (⊢ (C⊥)◦, C) ∈
(X.Y ∪Ax◦)⊥ (Lemma 7). Hence, (⊢ C◦, ∆) ⋆ (⊢ (C⊥)◦, C) = (⊢ C,∆) ∈ ⊥⊥
and so (⊢ C,∆) has a cut-free proof: (⊢ C◦, ∆) ∈ ⊥⊥◦.

Finally let us prove stability under ∀: let us assume that S is a subset of D
and prove that ∀S ∈ D.

– ∀S is a behaviour by definition.
– The definition of ∀S shows that it is the biorthogonal X⊥⊥ of a set X

containing Ax◦. Therefore Ax◦ ⊆ X ⊆ X⊥⊥ = ∀S.
– Finally to prove ∀S ⊆ ⊥⊥◦, it suffices to show that

({ ⊢ (∀xA)◦, ∆ | for any t ∈ T , X ∈ S, (⊢ (A[t/x])◦, ∆) ∈ X } ∪Ax◦) ⊆ ⊥⊥◦

because ⊥⊥◦ is a behaviour. Ax◦ ⊆ ⊥⊥◦ obviously. Now, we assume that
for any t ∈ T and any X ∈ S, (⊢ (D[t/x])◦, Γ) ∈ X. Let us prove that
(⊢ (∀x.D)◦, Γ) ∈ ⊥⊥◦. It suffices to take a fresh variable y ∈ T : then (⊢
(D[y/x]◦, Γ)) is cut-free and by the ∀ rule, we obtain that (⊢ ∀x.D, Γ) is
cut-free too. ⊓⊔

Theorem 2. The structure 〈D,≤,⊤,⊥,∧,∨, (.)⊥, ∀, ∃〉, where

– ≤ be the trivial pre-order on D,

– ⊤ is ⊥⊥◦ and ⊥ is ⊥⊥◦⊥,
– the operators ∧, (.)⊥, ∀ are those defined in Definition 9 and 7
– and the operators ∨ and ∃ are the respective boolean dual of ∧ and ∀, i.e.

X ∨ Y = (X⊥ ∧ Y ⊥)⊥ and ∃S = (∀S⊥)⊥ where S⊥ = { X⊥ | X ∈ S },

is a pre-Boolean algebra.

Proof. Since we chose a trivial pre-order, there is nothing to check but the sta-
bility of D under all the operators, that holds by the above lemmata. ⊓⊔

Finally we can state our main result.

Theorem 3 (Adequacy). Let ≡ be a congruence on terms and formulæ and
(.)∗ be a model interpretation for ≡ in D. Let ⊢ C1, ..., Ck be a provable sequent in
LK modulo ≡, let σ be a substitution whose domain does not contain any bounded
variable in C1, ..., Ck, φ be a valuation and let (⊢ (σC⊥

1)◦, ∆1) ∈ ((C1)
∗
φ)

⊥, . . . ,

(⊢ (σC⊥
k)◦, ∆k) ∈ ((Ck)

∗
φ)

⊥. Then ⊢ ∆1, ..., ∆k ∈ ⊥⊥.

Proof. The proof is done by induction on the last rule of the proof of ⊢ C1, . . . , Ck.

Axiom For simplicity we suppose that the axiom is performed on C1 and C2 =
C⊥

1 . Therefore (C2)
∗
φ = ((C1)

∗
φ)

⊥ and since (⊢ (σC⊥
1)◦, ∆1) ∈ ((C1)

∗
φ)

⊥ =

(C2)
∗
φ and (⊢ (σC⊥

2)◦, ∆2) ∈ ((C2)
∗
φ)

⊥, then ⊢ ∆1, ∆2 ∈ ⊥⊥. By weakening,
⊢ ∆1, . . . , ∆k ∈ ⊥⊥.

Conjunction For simplicity we assume that the derivation is

⊢ A1, C2, . . . , Ck ⊢ A2, Ck+1, . . . , Cn
(∧)

⊢ A1 ∧A2
︸ ︷︷ ︸

C1

, C2, . . . , Ck, Ck+1, . . . , Cn

Let us assume (⊢ (σC⊥
i)◦, ∆i) ∈ ((Ci)

∗
φ)

⊥ for all i > 1. By induction hypoth-

esis, ⊢ σA◦
1, ∆2, . . . , ∆k is in ((A1)

∗
φ)

⊥⊥ = (A1)
∗
φ and ⊢ σA◦

2, ∆k+1, . . . , ∆n

is in ((A2)
∗
φ)

⊥⊥ = (A2)
∗
φ. Therefore ⊢ σC◦

1 , ∆2, . . . , ∆n is in

(A1)
∗
φ.(A2)

∗
φ ⊆ ((A1)

∗
φ.(A2)

∗
φ)

⊥⊥ ⊆ ((A1)
∗
φ.(A2)

∗
φ ∪Ax◦)⊥⊥

= (C1)
∗
φ = ((C1)

∗
φ)

⊥⊥ .

Then ⊢ ∆1, . . . , ∆n ∈ ⊥⊥.
Disjunction For simplicity we assume that the derivation is

⊢ A1, A2, C2, . . . , Ck
(∨)

⊢ A1 ∨A2
︸ ︷︷ ︸

C1

, C2, . . . , Ck

Let us assume that (⊢ (σC⊥
i)◦, ∆i) is in ((Ci)

∗
φ)

⊥ for all i > 1 and let us

prove that for all (⊢ (σC⊥
1)◦, ∆1) ∈ ((C1)

∗
φ)

⊥, the sequent ⊢ ∆1, . . . , ∆k is
in ⊥⊥. It is equivalent to prove that ⊢ σC◦

1 , ∆2, . . . , ∆k is in

((C1)
∗
φ)

⊥⊥ = ((A1)
∗
φ ∨ (A2)

∗
φ)

⊥⊥ = (((A1)
∗
φ)

⊥ ∧ ((A2)
∗
φ)

⊥)⊥⊥⊥

= (((A1)
∗
φ)

⊥ ∧ ((A2)
∗
φ)

⊥)⊥ = (((A1)
∗
φ)

⊥.((A2)
∗
φ)

⊥ ∪Ax◦)⊥⊥⊥

= (((A1)
∗
φ)

⊥.((A2)
∗
φ)

⊥ ∪Ax◦)⊥

or equivalently to prove that for all sequent (⊢ (σC⊥
1)◦, ∆1) in the set

((A1)
∗
φ)

⊥.((A2)
∗
φ)

⊥ ∪Ax◦, the sequent ⊢ ∆1, . . . , ∆k is in ⊥⊥.

– if (⊢ (σC⊥
1)◦, ∆1) ∈ Ax◦, then ∆1 = σC1. Since ⊢ (σA⊥

1)
◦, σA1 and

⊢ (σA⊥
2)

◦, σA2 are respectively in ((A1)
∗
φ)

⊥ and ((A2)
∗
φ)

⊥, then by in-
duction hypothesis, ⊢ σA1, σA2, ∆2, . . . , ∆k ∈ ⊥⊥ . Using (∨R),

⊢ A1 ∨A2, ∆2, . . . , ∆k = ⊢ ∆1, . . . , ∆k ∈ ⊥⊥ .

– if (⊢ (σC⊥
1)◦, ∆1) ∈ ((A1)

∗
φ)

⊥.((A2)
∗
φ)

⊥, then there exist sequents with

⊢ (σA⊥
1)

◦, ∆a and ⊢ (σA⊥
2)

◦, ∆b respectively in ((A1)
∗
φ)

⊥ and ((A2)
∗
φ)

⊥

such that ∆1 is ∆a, ∆b. Then by induction hypothesis,

⊢ ∆a, ∆b, ∆2, . . . , ∆k = ⊢ ∆1, ∆2, . . . , ∆k ∈ ⊥⊥ .

Universal quantifier For simplicity we assume that the derivation is

⊢ A,C2, . . . , Ck x is fresh in each Ci
(∀)

⊢ ∀x.A
︸ ︷︷ ︸

C1

, C2, . . . , Ck

Let us assume that (⊢ (σC⊥
i)◦, ∆i) is in ((Ci)

∗
φ)

⊥ for all i > 1 and that the

sequent (⊢ ((σ∀x.A)⊥)◦, Γ) is in ((∀xA)∗φ)
⊥. We now want to prove that the

sequent (⊢ ∆2, . . . , ∆k, Γ) is in ⊥⊥. It is sufficient to prove that the sequent
(⊢ ∆2, . . . , ∆k, (σ(∀x.A))◦) is in (∀x.A)∗Φ. By noticing that σ only substitutes
variables that are free in ∀x.A, we get that σ(∀x.A) = ∀x.(σA). It remains
to prove that if t ∈ T and d ∈ M , then (⊢ (σA[t/x])◦, Γ) ∈ (A∗

φ+[d/x]). But,
because x is fresh in Ci,

(⊢ ((σ + [t/x])C⊥
i)◦, ∆i) = (⊢ (σC⊥

i)◦, ∆i)

for each i > 1. Again since x is fresh in each Ci, it is easy to see that
((Ci)

∗
φ)

⊥ = ((Ci)
∗

φ+[d/x])
⊥ for each i > 1. Hence the induction hypothesis

applies to (σ + [t/x]) and (φ+ [d/x]). We then know that

⊢ ∆1, . . . , ∆k, ((σ + [t/x])A)◦ ∈ A∗

φ+[d/x]

which is what we wanted.
Existential quantifier For simplicity we assume that the derivation is

⊢ A[t/x], C2, . . . , Ck
(∃)

⊢ ∃x.A
︸ ︷︷ ︸

C1

, C2, . . . , Ck

Let us assume that (⊢ (σC⊥
i)◦, ∆i) is in ((Ci)

∗
φ)

⊥ for all i > 1 and that

(⊢ ((σ∃x.A)⊥)◦, Γ) ∈ ((∃x.A)∗φ)
⊥ = (∀x.A⊥)∗φ. Since x is not in the do-

main of σ (because x is bounded in ∃x.A), and by definition of (.)⊥, we
have (σ∃x.A)⊥ = ∀x.(σA)⊥. Hence we know that (⊢ (∀x.(σA)⊥)◦, Γ) ∈
∀{ (A⊥)∗φ+[d/x] | ∀d ∈ M }. In particular, we have (⊢ (σA[t/x])⊥, Γ) ∈

(A⊥)∗φ+[t∗
φ
/x]. By Lemma 1, (A⊥)∗φ+[t∗

φ
/x] = (A[t/x]⊥)∗φ, so we can apply

the induction hypothesis and finally obtain that ⊢ ∆1, . . . , ∆k, Γ ∈ ⊥⊥.
Cut The derivation is

⊢ A,C1, . . . , Cp ⊢ A⊥, Cp+1, . . . , Ck
(Cut)

⊢ C1, . . . , Ck

for some 1 6 p 6 k. Let us suppose that (⊢ (σC⊥
i)◦, ∆i) is in ((Ci)

∗
φ)

⊥ for
all i. Then by induction hypothesis,

– if ⊢ (σA⊥)◦, ∆ is in (A∗
φ)

⊥, then ⊢ ∆,∆1, . . . , ∆p ∈ ⊥⊥
– and if ⊢ σA◦, ∆ is in A∗

φ, then ⊢ ∆,∆p+1, . . . , ∆k ∈ ⊥⊥.

Therefore ⊢ σA◦, ∆1, . . . , ∆p is in A∗
φ and ⊢ (σA⊥)◦, ∆p+1, . . . , ∆k is in

(A⊥)∗φ = (A∗
φ)

⊥. Then ⊢ ∆1, . . . , ∆k, Γ1, . . . , Γn ∈ ⊥⊥.
Weakening For simplicity we assume that the derivation is

⊢ C2, . . . , Ck
(Weak)

⊢ C1, C2 . . . , Ck

Let us suppose that (⊢ (σC⊥
i)◦, ∆i) is in ((Ci)

∗
φ)

⊥ for all i > 1. Then by
induction hypothesis, ⊢ ∆2, . . . , ∆k ∈ ⊥⊥. Therefore by weakening in cut-free
proofs, ⊢ ∆1, . . . , ∆k ∈ ⊥⊥.

Contraction For simplicity we assume that the derivation is

⊢ C1, C1, . . . , Ck
(Contr)

⊢ C1, . . . , Ck

Let us suppose that (⊢ (σC⊥
i)◦, ∆i) is in ((Ci)

∗
φ)

⊥ for all i > 0. Then by
induction hypothesis, ⊢ ∆1, ∆1, . . . , ∆k ∈ ⊥⊥. Therefore by contraction in
cut-free proofs, ⊢ ∆1, . . . , ∆k ∈ ⊥⊥.

Conversion For simplicity, we assume that the derivation is

⊢ A,C2, . . . , Ck A ≡ C1
(≡)

⊢ C1, C2, . . . , Ck

and since A ≡ C1, we know that A∗
φ = (C1)

∗
φ and (A∗

φ)
⊥ = ((C1)

∗
φ)

⊥.

Let us suppose that ⊢ (σC⊥
i)◦, ∆i is in ((Ci)

∗
φ)

⊥ for all i > 1. Then since

σC⊥
1 ≡ σA⊥, the sequent ⊢ σA⊥, ∆ is also in ((Ci)

∗
φ)

⊥ = (A∗
φ)

⊥. Finally by
induction hypothesis, ⊢ ∆1, . . . , ∆k ∈ ⊥⊥. ⊓⊔

Cut-elimination is a corollary of our adequacy result.

Corollary 1 (Superconsistency implies cut-elimination). If ≡ is a super-
consistent theory, then cut-elimination holds for LK modulo ≡, i.e. any sequent
⊢ ∆ derivable in LK modulo ≡ has a cut-free proof in LK modulo ≡.

Proof. Superconsistency of ≡ implies that there exists a model interpretation
(.)∗ for ≡ in the pre-Boolean algebra of sequents D (corresponding to ≡). Let
⊢ C1, . . . , Ck be some provable sequent in LK modulo ≡. Let us remark that
(⊢ (C⊥

i)◦, Ci) ∈ ((Ci)
∗
φ)

⊥ for each Ci (where φ is the empty valuation). Then
by our adequacy result (Theorem 3), (⊢ C1, . . . , Ck) ∈ ⊥⊥. In other words, this
sequent has a cut-free proof in LK modulo ≡. ⊓⊔

Remark 1. To prove cut-elimination, we crucially rely on the fact that for each
formula A and whatever the model interpretation (.)∗ given by the superconsis-
tency is, A∗

φ contains all the axioms of the form ⊢ B⊥, B◦, including ⊢ A⊥, A◦.
This cannot be achieved using phase semantics based cut-elimination models,
or any other typed framework because we do not have control on the model
interpretation (.)∗.

6 An underlying Boolean algebra

In this section, we exhibit a (non-trivial) Boolean algebra, similar but simpler
to the one that can be found in [DH07], extracted from the pre-Boolean algebra
of sequents of section 5.

Definition 10 (Context Extraction). Let A be a formula, we define ⌊A⌋ to
be the set of contexts Γ = A1, · · · , An such that for any valuation φ, substitution
σ, and any sequence of contexts ∆i such that ⊢ ∆i, ((σAi)

⊥)◦ ∈ (Ai)
∗
φ
⊥
, ⊢

∆1, · · · , ∆n, (σA)
◦ ∈ A∗

φ.

Equivalently, one may impose that for any context ∆ such that ⊢ ∆, ((σA)⊥)◦ ∈
A∗

φ
⊥, we have ⊢ ∆1, · · · , ∆n, ∆ ∈ ⊥⊥.

Definition 11 (Boolean algebra). We define 〈B,≤,⊤,⊥,∧,∨, .⊥, ∀, ∃〉 as fol-
lows. B is the set containing ⌊A⌋ for any A. The order is inclusion, and the
operations are

⊤ = ⌊⊤⌋ ⌊A⌋ ∧ ⌊B⌋ = ⌊A ∧B⌋ ⌊A⌋
⊥
= ⌊A⊥⌋

⊥ = ⌊⊥⌋ ⌊A⌋ ∨ ⌊B⌋ = ⌊A ∨B⌋

∀ and ∃ are defined only on sets of the form { ⌊A[t/x]⌋ | t ∈ T }, where T is the
set of equivalence classes modulo ≡ of open terms:

∀{ ⌊A[t/x]⌋ | t ∈ T } = ⌊∀xA⌋ ∃{ ⌊A[t/x]⌋ | t ∈ T } = ⌊∃xA⌋

Notice that ⌊A[t/x]⌋ for t ∈ T does not depend of the chosen representative
of the equivalence class t since as soon as t1 ≡ t2, ⌊A[t1/x]⌋ = ⌊A[t2/x]⌋.

Lemma 8. Let A and B be two formulæ. Then:

– A⊥ ∈ ⌊A⌋
– if A1, ..., An ∈ ⌊A⌋ then ⊢ A1, ..., An, A has a cut-free proof.
– ⊢ A⊥, B has a cut-free proof if, and only if, ⌊A⌋ ⊆ ⌊B⌋

Proof.

– ⊢ ∆, (σA)⊥⊥◦
∈ (A⊥)∗φ

⊥
and ⊢ ∆,σA◦ ∈ A∗

φ are the same statement.

– ⊢ (A⊥
i)

◦, Ai ∈ A∗
i
⊥

φ for each Ai and φ. By Definition 10, ⊢ A1, ..., An, A ∈ ⊥⊥.

– the if part follows from the two previous points: A⊥ ∈ ⌊A⌋ ⊆ ⌊B⌋ and
therefore ⊢ A⊥, B has a proof. For the only if part, let A1, ..., An ∈ ⌊A⌋, σ
be a substitution and φ be a valuation. Let ∆i such that ⊢ ∆i, ((σAi)

⊥)◦ ∈

(Ai)
∗
φ
⊥
. By hypothesis ⊢ ∆1, ..., ∆n, (σA)

◦ ∈ A∗
φ, so Theorem 3 applied

to the proof of ⊢ A⊥, B implies that ⊢ ∆1, ..., ∆n, (σB)◦ ∈ B∗
φ. Therefore

A1, ..., An ∈ ⌊B⌋.

Proposition 1. 〈B,≤,⊤,⊥,∧,∨, .⊥, ∀, ∃〉 is a boolean algebra, and ⌊.⌋ is a model
interpretation in this algebra, where the domain for terms is T .

Proof. This proposition is a consequence of the adequacy Theorem 3. Let us
check the points of Definition 11:

1. ⌊A⌋ ∧ ⌊B⌋ is the greatest lower bound of ⌊A⌋ and ⌊B⌋.

– ⌊A ∧B⌋ ⊆ ⌊A⌋: by Lemma 8 since ⊢ (A ∧B)⊥, A has a two-step proof.
– ⌊A ∧B⌋ ⊆ ⌊B⌋: by Lemma 8 since ⊢ (A ∧B)⊥, B has a two-step proof.
– ⌊C⌋ ⊆ ⌊A⌋ and ⌊C⌋ ⊆ ⌊B⌋ implies ⌊C⌋ ⊆ ⌊A ∧B⌋: by hypothesis and

Lemma 8, C⊥ ∈ ⌊C⌋ ⊆ ⌊A⌋ ∩ ⌊B⌋, and we have two proofs of ⊢ C⊥, A
and ⊢ C⊥, B. We combine them to form a proof of ⊢ C⊥, A ∧ B and
conclude by Lemma 8.

2. ⌊A⌋ ∨ ⌊B⌋ is the least upper bound of ⌊A⌋ and ⌊B⌋.

– ⌊A⌋ ⊆ ⌊A ∨B⌋: by Lemma 8 since ⊢ A⊥, A ∨B has a two-step proof.
– ⌊B⌋ ⊆ ⌊A ∨B⌋: by Lemma 8 since ⊢ B⊥, A ∨B has a two-step proof.
– ⌊A⌋ ⊆ ⌊C⌋ and ⌊B⌋ ⊆ ⌊C⌋ implies ⌊A ∨B⌋ ⊆ ⌊C⌋: by hypothesis and

Lemma 8, A⊥ ∈ ⌊A⌋ ⊆ ⌊C⌋ and ⊢ A⊥, C has a proof. By a similar
argument ⊢ B⊥, C has also a proof. We combine them to form a proof
of ⊢ (A ∨B)⊥, C and conclude by Lemma 8.

3. properties of greatest and lowest elements.

– ⌊C⌋ ⊆ ⌊⊤⌋: by Lemma 8 since ⊢ C⊥,⊤ has a two-step proof.
– ⌊⊥⌋ ⊆ ⌊C⌋: by Lemma 8 since ⊢ ⊥⊥, C has a two-step proof.

4. distributivity of ∧ and ∨ follow from the same laws in the logic, through
Lemma 8: if two formulæ A and B are equivalent then ⌊A⌋ = ⌊B⌋.

5. ⌊A⊥⌋ is a complement of ⌊A⌋.

– ⌊⊤⌋ ⊆ ⌊A⊥ ∨A⌋: by Lemma 8 since ⊢ ⊤⊥, A⊥ ∨A has a two-step proof.
– ⌊A⊥ ∧A⌋ ⊆ ⌊⊥⌋: by Lemma 8 since ⊢ (A⊥∧A)⊥,⊥ has a two-step proof.

6. idempotency of (.)⊥: ⌊A⌋
⊥⊥

= ⌊A⊥⊥⌋ = ⌊A⌋.

Lastly, we check that the operators ∀ and ∃ define a greatest lower bound and
a lowest upper bound, respectively. Notice that although the order is set inclu-
sion, those operators are not set intersection and union1: B is neither complete,
nor closed under arbitrary union and intersection and it misses many sets.

– ⌊∀xA⌋ ⊆
⋂
{ ⌊A[t/x]⌋ | t ∈ T }: by Lemma 8 since for any t, ⊢ (∀xA)⊥, A[t/x]

has a one-step proof.
– ⌊C⌋ ⊆

⋂
{ ⌊A[t/x]⌋ | t ∈ T } implies C ⊆ ⌊∀xA⌋: assume without loss of

generality that x does not appear freely in C. By hypothesis and Lemma 8,
C⊥ ∈ ⌊C⌋ ⊆

⋂
{ ⌊A[t/x]⌋ | t ∈ T } ⊆ ⌊A[x/x]⌋ and ⊢ C⊥, A has a proof.

Adding a (∀) rule yields a proof of ⊢ C⊥, ∀xA. We conclude by Lemma 8.
–

⋃
{ ⌊A[t/x]⌋ | t ∈ T } ⊆ ⌊∃xA⌋: by Lemma 8 since for any t, ⊢ A[t/x]⊥, ∃xA

has a one-step proof.
–

⋃
{ ⌊A[t/x]⌋ | t ∈ T } ⊆ ⌊C⌋ implies ⌊∃xA⌋ ⊆ ⌊C⌋: assume without loss of

generality that x does not appear freely in C. By hypothesis and Lemma 8,
A⊥ ∈ ⌊A[x/x]⌋ ⊆ C and ⊢ A⊥, C has a proof. Adding a (∀) rule yields a
proof of ⊢ (∃xA)⊥, C. We conclude by Lemma 8.

1 so, for instance, the greatest lower bound is allowed to be smaller than set intersection

Definition 10 ensures that ⌊.⌋ is an interpretation (Definition 2), provided
that terms are interpreted by their equivalence class modulo ≡. Lastly, if A ≡ B
then they are logically equivalent and by Lemma 8 ⌊A⌋ = ⌊B⌋.

A direct proof of Proposition 1, bypassing Lemma 3, is possible. In this
option, each of its case uses the same arguments than the corresponding case
of Theorem 3. Such a proof would be made easier by considering the definition
of [Dow10] for pre-Boolean algebra where one has conditions on ⇒ rather than
distributivity laws.

The benefits of a direct proof would be an alternative proof of the cut-
elimination theorem, as it is done in [DH07], through the usual soundness theo-
rem with respect to Boolean Algebras and strong completeness with respect to
the particular Boolean Algebra we presented here.

7 Conclusion

We have generalized Boolean algebras into pre-Boolean algebras, a notion of
model for classical logic which acknowledges the distinction between compu-
tational and logical equivalences. We also have demonstrated how superconsis-
tency —a semantic criterion for generic cut-elimination in (intuitionistic) deduc-
tion modulo— adapts to classical logic: We have proposed a classical version of
superconsistency based on pre-Boolean algebras. Using orthogonality, we have
constructed a pre-Boolean algebra of sequents which allows to prove that our
classical superconsistency criterion implies cut-elimination in classical sequent
calculus modulo. In the last section, we have explained how a non-trivial Boolean
algebra of contexts can be extracted from the pre-Boolean algebra of sequents,
therefore relating our orthogonality cut-elimination proof with the usual seman-
tics of classical logic (i.e. Boolean algebras). Finally we have proved that the
same cut-elimination result can be obtained from this particular Boolean alge-
bra, without going through the proof of adequacy for the pre-Boolean algebra.

Let us notice that any pre-Boolean algebra is also a pre-Heyting algebra.
Therefore a theory which is superconsistent on pre-Heyting algebras is automat-
ically superconsistent on pre-Boolean algebras. (The converse does not hold in
general and pre-Heyting algebras are not always pre-Boolean algebras.) Dowek
has proved [Dow06] that several theories of interest are superconsistent on pre-
Heyting algebras: arithmetic, simple type theory, the theories defined by a con-
fluent, terminating and quantifier free rewrite system, the theories defined by a
confluent, terminating and positive rewrite system and the theories defined by a
positive rewrite system such that each atomic formula has at most one one-step
reduct. We automatically obtain that these theories are also superconsistent on
pre-Boolean algebras, and therefore that cut-elimination holds in classical se-
quent calculus modulo these theories.

Using Pre-Boolean algebras is not the unique way of connecting the supercon-
sistency criterion with classical logic. For instance, one can use double-negation
translations and prove that superconsistency (on pre-Heyting algebras) of a

theory implies superconsistency (still on pre-Heyting algebras) of its double-
negation translation which in turn implies cut-elimination in classical logic, us-
ing [DW03]. Superconsistency of double-negated theories on pre-Heyting alge-
bras and superconsistency on pre-Boolean algebras remain to be compared. Both
are implied by superconsistency on pre-Heyting algebras, and in both cases, no
counterexample of the inverse has been found yet.

References

[Abr91] V.M. Abrusci. Phase semantics and sequent calculus for pure noncommutative
classical linear propositional logic. Journal of Symbolic Logic, 56(4):1403–1451,
1991.

[CT06] A. Ciabattoni and K. Terui. Towards a semantic characterization of cut-
elimination. Studia Logica, 82(1):95–119, 2006.

[DH07] Gilles Dowek and Olivier Hermant. A simple proof that super-consistency
implies cut elimination. In RTA, pages 93–106, 2007.

[DHK03] Gilles Dowek, Thérèse Hardin, and Claude Kirchner. Theorem proving mod-
ulo. Journal of Automated Reasoning, 31(1):33–72, Nov 2003.

[Dow06] Gilles Dowek. Truth values algebras and proof normalization. In TYPES,
pages 110–124, 2006.

[Dow10] Gilles Dowek. Fondements des systèmes de preuve. Course notes, 2010.
[DW03] Gilles Dowek and Benjamin Werner. Proof normalization modulo. Journal of

Symbolic Logic, 68(4):1289–1316, 2003.
[Gim09] Stéphane Gimenez. Programmer, Calculer et Raisonner avec les Réseaux de

la Logique Linéaire. PhD thesis, Université Paris 7, 2009.
[Gir72] Jean-Yves Girard. Interprétation Fonctionnelle et Élimination des Coupures

de l’Arithmétique dOrdre Supérieur. PhD thesis, Université Paris 7, 1972.
[Gir87] Jean-Yves Girard. Linear logic. Theor. Comput. Sci., 50:1–102, 1987.
[Kri09] Jean-Louis Krivine. Realizability in classical logic. Panoramas et synthèses,

27:197–229, 2009.
[LM08] S. Lengrand and A. Miquel. Classical F [omega], orthogonality and symmetric

candidates. Annals of Pure and Applied Logic, 153(1-3):3–20, 2008.
[Oka99] M. Okada. Phase semantic cut-elimination and normalization proofs of first-

and higher-order linear logic. Theoretical Computer Science, 227(1-2):333–396,
1999.

[Oka02] M. Okada. A uniform semantic proof for cut-elimination and completeness
of various first and higher order logics. Theoretical Computer Science, 281(1-
2):471–498, 2002.

[Tai75] W.W. Tait. A realizability interpretation of the theory of species. In R.J.
Parikh, editor, Logic Colloquium, pages 240–251. Springer, 1975.

