20 research outputs found

    Parallel Manipulators

    Get PDF
    In recent years, parallel kinematics mechanisms have attracted a lot of attention from the academic and industrial communities due to potential applications not only as robot manipulators but also as machine tools. Generally, the criteria used to compare the performance of traditional serial robots and parallel robots are the workspace, the ratio between the payload and the robot mass, accuracy, and dynamic behaviour. In addition to the reduced coupling effect between joints, parallel robots bring the benefits of much higher payload-robot mass ratios, superior accuracy and greater stiffness; qualities which lead to better dynamic performance. The main drawback with parallel robots is the relatively small workspace. A great deal of research on parallel robots has been carried out worldwide, and a large number of parallel mechanism systems have been built for various applications, such as remote handling, machine tools, medical robots, simulators, micro-robots, and humanoid robots. This book opens a window to exceptional research and development work on parallel mechanisms contributed by authors from around the world. Through this window the reader can get a good view of current parallel robot research and applications

    Appropriate Design of Parallel Manipulators

    Get PDF
    International audienceAlthough parallel structures have found a niche market in many applications such as machine tools, telescope positioning or food packaging, they are not as successful as expected. The main reason of this relative lack of success is that the study and hardware of parallel structures have clearly not reached the same level of completeness than the one of serial structures. Among the main issues that have to be addressed, the design problem is crucial. Indeed, the performances that can be expected from a parallel robot are heavily dependent upon the choice of the mechanical structure and even more from its dimensioning. In this chapter, we show that classical design methodologies are not appropriate for such closed-loop mechanism and examine what alternatives are possible

    A Kinematic Analysis and Evaluation of Planar Robots Designed From Optimally Fault-Tolerant Jacobians Khaled M. Ben-Gharbia, Student Member, IEEE,

    Get PDF
    Abstract—It is common practice to design a robot’s kinematics from the desired properties that are locally specified by a manipulator Jacobian. In this work, the desired property is fault tolerance, defined as the postfailure Jacobian possessing the largest possible minimum singular value over all possible locked-joint failures. A mathematical analysis based on the Gram matrix that describes the number of possible planar robot designs for optimally fault-tolerant Jacobians is presented. It is shown that rearranging the columns of the Jacobian or multiplying one or more of the columns of the Jacobian by ±1 will not affect local fault tolerance; however, this will typically result in a very different manipulator. Two examples, one that is optimal to a single joint failure and the second that is optimal to two joint failures, are analyzed. This analysis shows that there is a large variability in the global kinematic properties of these designs, despite being generated from the same Jacobian. It is especially surprising that major differences in global behavior occurs for manipulators that are identical in the working area. Index Terms—Fault-tolerant robots, robot kinematics, redundant robots. I

    Kinematic design and motion planning of fault tolerant robots with locked joint failures

    Get PDF
    2019 Summer.Includes bibliographical references.The problem of kinematic design and motion planning of fault tolerant robots with locked joint failure is studied in this work. In kinematic design, the problem of designing optimally fault tolerant robots for equal joint failure probabilities is first explored. A measure of local fault tolerance for equal joint failure probabilities has previously been defined based on the properties of the singular values of the Jacobian matrix. Based on this measure, one can determine a Jacobian that is optimal. Because these measures are solely based on the singular values of the Jacobian, permutation of the columns does not affect the optimality. Therefore, when one generates a kinematic robot design from this optimal Jacobian, there will be 7! robot designs with the same locally optimal fault tolerant property. This work shows how to analyze and organize the kinematic structure of these 7! designs in terms of their Denavit and Hartenberg (DH) parameters. Furthermore, global fault tolerant measures are defined in order to evaluate the different designs. It is shown that robot designs that are very similar in terms of DH parameters, e.g., robots generated from Jacobians where the columns are in reverse order, can have very different global properties. Finally, a computationally efficient approach to calculate the global pre- and post-failure dexterity measures is presented and used to identify two Pareto optimal robot designs. The workspaces for these optimal designs are also shown. Then, the problem of designing optimally fault tolerant robots for different joint failure probabilities is considered. A measure of fault tolerance for different joint failure probabilities is defined based on the properties of the singular values of the Jacobian after failures. Using this measure, methods to design optimally fault tolerant robots for an arbitrary set of joint failure probabilities and multiple cases of joint failure probabilities are introduced separately. Given an arbitrary set of joint failure probabilities, the optimal null space that optimizes the fault tolerant measure is derived, and the associated isotropic Jacobians are constructed. The kinematic parameters of the optimally fault tolerant robots are then generated from these Jacobians. One special case, i.e., how to construct the optimal Jacobian of spatial 7R robots for both positioning and orienting is further discussed. For multiple cases of joint failure probabilities, the optimal robot is designed through optimizing the sum of the fault tolerant measures for all the possible joint failure probabilities. This technique is illustrated on planar 3R robots, and it is shown that there exists a family of optimal robots. After the optimally fault tolerant robots are designed, the problem of planning the optimal trajectory with minimum probability of task failure for a set of point-to-point tasks, after experiencing locked joint failures, is studied. The proposed approach first develops a method to calculate the probability of task failure for an arbitrary trajectory, where the trajectory is divided into small segments, and the probability of task failure of each segment is calculated based on its failure scenarios. Then, a motion planning algorithm is proposed to find the optimal trajectory with minimum probability of task failure. There are two cases. The trajectory in the first case is the optimal trajectory from the start configuration to the intersection of the bounding boxes of all the task points. In the other case, all the configurations along the self-motion manifold of task point 1 need to be checked, and the optimal trajectory is the trajectory with minimum probability of task failure among them. The proposed approach is demonstrated on planar 2R redundant robots, illustrating the effectiveness of the algorithm

    Modeling, Control and Estimation of Reconfigurable Cable Driven Parallel Robots

    Get PDF
    The motivation for this thesis was to develop a cable-driven parallel robot (CDPR) as part of a two-part robotic device for concrete 3D printing. This research addresses specific research questions in this domain, chiefly, to present advantages offered by the addition of kinematic redundancies to CDPRs. Due to the natural actuation redundancy present in a fully constrained CDPR, the addition of internal mobility offers complex challenges in modeling and control that are not often encountered in literature. This work presents a systematic analysis of modeling such kinematic redundancies through the application of reciprocal screw theory (RST) and Lie algebra while further introducing specific challenges and drawbacks presented by cable driven actuators. It further re-contextualizes well-known performance indices such as manipulability, wrench closure quality, and the available wrench set for application with reconfigurable CDPRs. The existence of both internal redundancy and static redundancy in the joint space offers a large subspace of valid solutions that can be condensed through the selection of appropriate objective priorities, constraints or cost functions. Traditional approaches to such redundancy resolution necessitate computationally expensive numerical optimization. The control of both kinematic and actuation redundancies requires cascaded control frameworks that cannot easily be applied towards real-time control. The selected cost functions for numerical optimization of rCDPRs can be globally (and sometimes locally) non-convex. In this work we present two applied examples of redundancy resolution control that are unique to rCDPRs. In the first example, we maximize the directional wrench ability at the end-effector while minimizing the joint torque requirement by utilizing the fitness of the available wrench set as a constraint over wrench feasibility. The second example focuses on directional stiffness maximization at the end-effector through a variable stiffness module (VSM) that partially decouples the tension and stiffness. The VSM introduces an additional degrees of freedom to the system in order to manipulate both reconfigurability and cable stiffness independently. The controllers in the above examples were designed with kinematic models, but most CDPRs are highly dynamic systems which can require challenging feedback control frameworks. An approach to real-time dynamic control was implemented in this thesis by incorporating a learning-based frameworks through deep reinforcement learning. Three approaches to rCDPR training were attempted utilizing model-free TD3 networks. Robustness and safety are critical features for robot development. One of the main causes of robot failure in CDPRs is due to cable breakage. This not only causes dangerous dynamic oscillations in the workspace, but also leads to total robot failure if the controllability (due to lack of cables) is lost. Fortunately, rCDPRs can be utilized towards failure tolerant control for task recovery. The kinematically redundant joints can be utilized to help recover the lost degrees of freedom due to cable failure. This work applies a Multi-Model Adaptive Estimation (MMAE) framework to enable online and automatic objective reprioritization and actuator retasking. The likelihood of cable failure(s) from the estimator informs the mixing of the control inputs from a bank of feedforward controllers. In traditional rigid body robots, safety procedures generally involve a standard emergency stop procedure such as actuator locking. Due to the flexibility of cable links, the dynamic oscillations of the end-effector due to cable failure must be actively dampened. This work incorporates a Linear Quadratic Regulator (LQR) based feedback stabilizer into the failure tolerant control framework that works to stabilize the non-linear system and dampen out these oscillations. This research contributes to a growing, but hitherto niche body of work in reconfigurable cable driven parallel manipulators. Some outcomes of the multiple engineering design, control and estimation challenges addressed in this research warrant further exploration and study that are beyond the scope of this thesis. This thesis concludes with a thorough discussion of the advantages and limitations of the presented work and avenues for further research that may be of interest to continuing scholars in the community

    Kinematics and Robot Design I, KaRD2018

    Get PDF
    This volume collects the papers published on the Special Issue “Kinematics and Robot Design I, KaRD2018” (https://www.mdpi.com/journal/robotics/special_issues/KARD), which is the first issue of the KaRD Special Issue series, hosted by the open access journal “MDPI Robotics”. The KaRD series aims at creating an open environment where researchers can present their works and discuss all the topics focused on the many aspects that involve kinematics in the design of robotic/automatic systems. Kinematics is so intimately related to the design of robotic/automatic systems that the admitted topics of the KaRD series practically cover all the subjects normally present in well-established international conferences on “mechanisms and robotics”. KaRD2018 received 22 papers and, after the peer-review process, accepted only 14 papers. The accepted papers cover some theoretical and many design/applicative aspects

    Advanced Strategies for Robot Manipulators

    Get PDF
    Amongst the robotic systems, robot manipulators have proven themselves to be of increasing importance and are widely adopted to substitute for human in repetitive and/or hazardous tasks. Modern manipulators are designed complicatedly and need to do more precise, crucial and critical tasks. So, the simple traditional control methods cannot be efficient, and advanced control strategies with considering special constraints are needed to establish. In spite of the fact that groundbreaking researches have been carried out in this realm until now, there are still many novel aspects which have to be explored

    Robot Manipulators

    Get PDF
    Robot manipulators are developing more in the direction of industrial robots than of human workers. Recently, the applications of robot manipulators are spreading their focus, for example Da Vinci as a medical robot, ASIMO as a humanoid robot and so on. There are many research topics within the field of robot manipulators, e.g. motion planning, cooperation with a human, and fusion with external sensors like vision, haptic and force, etc. Moreover, these include both technical problems in the industry and theoretical problems in the academic fields. This book is a collection of papers presenting the latest research issues from around the world
    corecore