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ABSTRACT

KINEMATIC DESIGN AND MOTION PLANNING OF FAULT TOLERANT ROBOTS WITH

LOCKED JOINT FAILURES

The problem of kinematic design and motion planning of fault tolerant robots with locked joint

failure is studied in this work. In kinematic design, the problem of designing optimally fault toler-

ant robots for equal joint failure probabilities is first explored. A measure of local fault tolerance

for equal joint failure probabilities has previously been defined based on the properties of the sin-

gular values of the Jacobian matrix. Based on this measure, one can determine a Jacobian that is

optimal. Because these measures are solely based on the singular values of the Jacobian, permuta-

tion of the columns does not affect the optimality. Therefore, when one generates a kinematic robot

design from this optimal Jacobian, there will be 7! robot designs with the same locally optimal

fault tolerant property. This work shows how to analyze and organize the kinematic structure of

these 7! designs in terms of their Denavit and Hartenberg (DH) parameters. Furthermore, global

fault tolerant measures are defined in order to evaluate the different designs. It is shown that robot

designs that are very similar in terms of DH parameters, e.g., robots generated from Jacobians

where the columns are in reverse order, can have very different global properties. Finally, a com-

putationally efficient approach to calculate the global pre- and post-failure dexterity measures is

presented and used to identify two Pareto optimal robot designs. The workspaces for these optimal

designs are also shown.

Then, the problem of designing optimally fault tolerant robots for different joint failure proba-

bilities is considered. A measure of fault tolerance for different joint failure probabilities is defined

based on the properties of the singular values of the Jacobian after failures. Using this measure,

methods to design optimally fault tolerant robots for an arbitrary set of joint failure probabilities

and multiple cases of joint failure probabilities are introduced separately. Given an arbitrary set
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of joint failure probabilities, the optimal null space that optimizes the fault tolerant measure is

derived, and the associated isotropic Jacobians are constructed. The kinematic parameters of the

optimally fault tolerant robots are then generated from these Jacobians. One special case, i.e., how

to construct the optimal Jacobian of spatial 7R robots for both positioning and orienting is further

discussed. For multiple cases of joint failure probabilities, the optimal robot is designed through

optimizing the sum of the fault tolerant measures for all the possible joint failure probabilities. This

technique is illustrated on planar 3R robots, and it is shown that there exists a family of optimal

robots.

After the optimally fault tolerant robots are designed, the problem of planning the optimal

trajectory with minimum probability of task failure for a set of point-to-point tasks, after experi-

encing locked joint failures, is studied. The proposed approach first develops a method to calculate

the probability of task failure for an arbitrary trajectory, where the trajectory is divided into small

segments, and the probability of task failure of each segment is calculated based on its failure sce-

narios. Then, a motion planning algorithm is proposed to find the optimal trajectory with minimum

probability of task failure. There are two cases. The trajectory in the first case is the optimal tra-

jectory from the start configuration to the intersection of the bounding boxes of all the task points.

In the other case, all the configurations along the self-motion manifold of task point 1 need to

be checked, and the optimal trajectory is the trajectory with minimum probability of task failure

among them. The proposed approach is demonstrated on planar 2R redundant robots, illustrating

the effectiveness of the algorithm.
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Chapter 1

Introduction

1.1 Applications of Fault Tolerant Robots

In recent years, robots have become increasingly common for a wide range of applications,

and the reliability of robots operating in structured and benign environments is quite high. How-

ever for dangerous tasks in remote or hazardous environments, where routine maintenance can

not be performed, one must plan for the probability of failures. Such applications include space

exploration [3–5], underwater exploration [6–8], nuclear waste remediation [9–11], and disaster

rescue [12–14]. One may also need to plan for the probability of failures in applications requiring

high degrees of safety, such as robotic surgery [15], rehabilitation [16], and human robot interac-

tion [17–20]. Fault tolerant robots are defined as those robots that can still fulfill their remaining

assigned tasks after a failure has occurred, without any hardware repair. These types of robots are

especially useful in the above two situations.

1.2 Reliability of Robot Systems

The reliability of individual components of the robot can be calculated based on the failure rate

data that are available from a database. However, the reliability of robot systems is much more

complicated, which depends on many factors [21]. Various robot reliability assessment methods

have been developed, such as fault tree analysis [22], reliability block diagram [23] and Markov

and Non-Markovian Models [24]. It is suggested that well-designed robots are to be expected to

have a useful life of at least 40,000 working hours, mean time to failure (MTTF) of at least 400

hours, and a Mean Time To Repair (MTTR) of no more than eight hours [25].

Based on probability theory, robotics systems will inevitably experience failures. To realize

fault tolerance, one must consider the types of failures that could occur, and the effects that they will

have on the robotic system, i.e., a Failure Mode and Effects Analysis (FMEA). The potential failure
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modes of a medical robotic system, such as chemical corrosion, adhesion, cracking/breaking, etc.

and their causes and effects is studied in [26], which can be used to improve the design of the

arm structure components in order to obtain an optimized model. Two mechanical robots, 3P and

6R robots, are analyzed by using FMEA, and critical failure modes are determined for each robot

in [27]. Corrective actions are proposed for critical items to modify robots reliability and reduce

their risks.

Because it is impossible to anticipate all possible failures, it is typical to design, plan and

control robots to be fault tolerant to the classes of failures that are most likely. The most frequently

occurring failures can be categorized as locked-joint failures [28], because many failures do result

in a locked joint, but also because other joint failure modes, such as free-swinging joint failures,

can be transformed into this failure mode using fail-safe brakes [29].

1.3 Fault Tolerance of Redundant Robots

1.3.1 Overview

Many failures can be represented by the inability to control one of the degrees of freedom. In

such cases, in addition to improving the reliability of the components of the robot, one can also

employ kinematically redundant robots. These types of robots have more than the minimum num-

ber of degrees of freedom (DOF) to achieve their assigned tasks, so their extra DOFs can be used

to tolerate different types of joint failures. Many of the previous studies on using kinematically

redundant robots to achieve fault tolerance can be roughly divided into three categories, namely,

design, motion planning and control.

1.3.2 Fault Tolerant Kinematic Design

In the design category, it has been previously shown that an improperly designed kinematically

redundant robot can actually be fault intolerant [30], so that there has been significant effort devoted

to identifying fault-tolerant kinematic designs. Researchers have explored the number of DOFs

that are necessary and sufficient to guarantee fault tolerance, along with how these joints should be

2



distributed [31]. Other work has assumed a certain amount of redundancy, frequently a single addi-

tional DOF, and then developed an optimal kinematic design [32,33]. In [32], researchers applied a

genetic algorithm to optimize the joint types and link lengths based on the fault tolerant workspace

reachability index. In [33], researchers incorporate fault tolerance and reliability into the design

of robot manipulators using fault tree analysis. Other studies have shown that there exist entire

classes of designs with desired optimal fault tolerance properties [1, 34–38]. In [34] researchers

constructed optimally fault tolerant Jacobians for equal joint failure probabilities to optimize the

worst-case minimum singular value after a failure. Based on these Jacobians, families of optimally

fault tolerant planar 3R robots [35], spatial positioning 4R robots [36] and spatial positioning and

orienting 7R robots [37] were designed. The structural characteristics and global pre- and post-

failure dexterity performance of the 7! optimally fault tolerant robots generated in [37] were further

analyzed in [1]. In [30], a local measure of fault tolerance for kinematically redundant manipula-

tors, named worst-case relative manipulability, was defined. The optimally fault tolerant Jacobians

were constructed based on this fault tolerance measure, and examples of optimally fault-tolerant

7- and 8-DOF mechanisms were presented in [39]. In [38], a class of orthogonal Gough-Stewart

platforms was developed that provide optimal fault tolerant manipulability under a single failure.

1.3.3 Fault Tolerant Motion Planning

In the motion planning category, fault tolerant motion planning strategies can be applied to

self-repair or recover from joint failures [3, 4, 40–43] or be incorporated in anticipation of failures

[37,44–49]. In the first case, the goal is to adapt the robot’s motion strategy after a failure to allow

the robot to compensate for the failure and finish its task without any hardware repair. For legged

robots, the fault tolerant gaits need to be identified efficiently in response to the damage [40–42],

and for manipulators, the motion of the healthy joints needs to be re-planned after a failure to

compensate for the motion of the locked joints [3, 4, 43].

In the latter case, the goal is to keep the robot in a configuration that guarantees good perfor-

mance after a failure. This guarantee takes different forms depending on the type of task being
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performed. For point-to-point tasks, such as pick and place, the robot should be able to reach all

task points even after an arbitrary joint failure. This can be guaranteed by making sure that none

of the robot’s joints go outside of the ranges of the self-motion manifolds associated with every

task point. For a single task point, this range is determined by the bounding box enclosing the

self-motion manifolds of that task point. Similarly, for multiple task points, the robot configura-

tion must be constrained to the intersection of all bounding boxes, which provides a set of artificial

joint limits to ensure fault tolerance [44].

For path tracking tasks, such as cutting, the robot should be able to complete the entire path

after a failure. This can be guaranteed by making sure that the end effector path is within the

“fault-tolerant workspace”, which is defined as the intersection of the pre-failure and all post-

failure workspaces [45, 46, 50]. The size and shape of these workspaces are determined by the

artificial joint limits that are applied. In those cases where a relatively large pre-failure workspace

is required, it may not be possible to guarantee a sufficient fault-tolerant workspace. For such

cases, the reliability map, which is defined based on the joint failure probabilities, can be used to

maximize the probability of task completion [47].

For trajectory tracking tasks, such as arc welding and painting, the robot should be able to

maintain the required end-effector velocity even after a failure. This can be guaranteed by making

sure that for every possible joint failure, some combination of the healthy joints is able to recover

the end effector velocity lost from the failed joint. This will be true if every minimum singular

value of the post-failure Jacobians is not zero. A worst-case measure of fault tolerance is the

smallest of these minimum singular values [37], which is also related to the maximum joint velocity

jump [48, 49, 51, 52] and end-effector velocity jump [53, 54] due to failure.

1.3.4 Fault Tolerant Control

In the control category, researchers frequently developed some type of fault detection [55–57],

isolation and identification [58, 59] schemes, and then proposed fault tolerant control systems to

self-repair or recover from failures. In [60], based on the isolated fault, an inverse dynamics robust
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controller is reconfigured to include an adaptive term. In [61], a mode-dependent dynamic out-

put feedback controller for wheeled mobile manipulators is designed based on Markovian control

theory, which guarantees not only the robust stochastic stability but also a prescribed disturbance

attenuation level for the resulting closed-loop system. In [62], a fast finite time active fault tolerant

control is developed by combining a robust nonsingular fast terminal sliding mode control with

a simple fault diagnosis scheme. In [63], an active fault tolerant control system is developed for

reconfigurable manipulator actuator based on local joint information.

1.4 Contribution of This Study

The problem of kinematic design of optimally fault tolerant robots for both equal and unequal

joint failure probabilities is studied in this work first. After the optimally fault toelrant robots are

designed, the problem of planning an optimal trajectory with minimum probability of task failure

is explored. In kinematic design, the main contributions of this work are as follows: (1) analyze

the characteristics of the kinematic properties, described by Denavit and Hartenberg (DH) param-

eters, of the 7! robots generated from an optimally fault tolerant 7R Jacobian, and illustrate the

structural correlations between these 7! robots; (2) study the global pre- and post-failure dexterity

performance of the 7! robots, and obtain the optimal robot designs. (3) determine the equations

for the null space and the canonical form of a Jacobian that optimizes the minimum singular value

after a failure for arbitrary joint failure probabilities (4) design classes of robots that are optimal

in terms of the resulting minimum singular value after a failure for an arbitrary set of joint failure

probabilities, e.g., planar 3R robots, spatial positioning 4R robots and spatial positioning and ori-

enting 7R robots; (5) develop a method to design optimally fault tolerant robots for cases where

the joint failure probabilities change, and illustrate this method for planar 3R robots. In motion

planning, the main contributions of this work are as follows: (1) identify the failure probability of

an arbitrary joint path; (2) propose the method of planning the optimal trajectory with minimum

probability of task failure.
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1.5 Organization of This Study

The remainder of this dissertation is organized as follows:

Chapter 2 explores the problem of kinematic design of optimally fault tolerant robots for equal

joint failure probabilities. An optimally fault tolerant Jacobian for 7R manipulators has previously

been constructed based on a measure of local fault tolerance. Because this measure is solely based

on the singular values of the Jacobian, permutation of the columns does not affect the optimality.

Therefore, when one generates a kinematic robot design from this optimal Jacobian, there will be

7! robot designs with the same locally optimal fault tolerant property. The work described in this

chapter shows how to analyze and organize the kinematic structure of these 7! designs in terms

of their Denavit and Hartenberg (DH) parameters. Furthermore, global fault tolerant measures are

defined in order to evaluate the different designs.

Chapter 3 studies the problem of kinematic design of optimally fault tolerant robots for different

joint failure probabilities. A measure of fault tolerance for different joint failure probabilities is

defined based on the properties of the singular values of the Jacobian after failures. Using this

measure, methods to design optimally fault tolerant robots for an arbitrary set of joint failure

probabilities and multiple cases of joint failure probabilities are introduced separately.

Chapter 4 considers the problem of planning the optimal trajectory with minimum probability

of task failure for a set of point-to-point tasks, after experiencing locked joint failures. The pro-

posed approach first develops a method to calculate the probability of task failure for an arbitrary

trajectory based on the failure scenarios of different regions in the joint space. Then, a motion

planning algorithm is proposed to find the optimal trajectory with minimum probability of task

failure. The proposed approach is demonstrated on planar 2R redundant robots, illustrating the

effectiveness of the algorithm.

Chapter 5 presents the conclusions and future work of this research.
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Chapter 2

Kinematic Design of Optimally Fault Tolerant

Robots for Equal Joint Failure Probabilities 3

2.1 Chapter Overview

The work presented in this chapter falls into the category of optimal fault tolerant kinematic de-

sign of robots with a single degree of redundancy that are used for fully general spatial positioning

and orienting, i.e., 7 DOF manipulators. This chapter builds on the study of [34] and [37] that will

be briefly reviewed in the next section. In [34], an optimally fault tolerant Jacobian that is isotropic

before failure and possesses the maximal worst-case failure tolerance after failure is developed.

From the optimally fault tolerant Jacobian, a family of 7! different manipulator kinematics that

locally possesses the properties of this Jacobian was generated in [37]. Then the volume of the six-

dimensional workspace where the robot has a guaranteed level of fault tolerance was calculated for

a few examples. However, there was not an exhaustive analysis of the global properties of the large

number of robots with the desired locally optimal design. Nor has there been any taxonomy de-

veloped for the classification of robots into similar characteristics that helps to explain their global

pre- and post-failure dexterity performance.

These topics are the focus of this chapter. Specifically, the main contributions of this chapter are

as follows: (1) the characteristics of the kinematic properties, described by Denavit and Hartenberg

(DH) parameters, of the 7! robots are analyzed, and used to illustrate the structural correlations

between these 7! robots; (2) the global pre- and post-failure dexterity performance of the 7! robots

are studied and the optimal robot designs are obtained.

3Most of this chapter is published in [1].
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2.2 Background on Optimally Fault Tolerant Kinematic De-

sign

2.2.1 Definition of Optimally Fault Tolerant Jacobians

The Jacobian matrix J of a robot is a mapping from the joint angle velocities to the end-

effector velocities, which is frequently used to quantify the dexterity of a robot. For an n DOF

robot working in an m dimensional workspace, the Jacobian J is an m × n matrix, written as a

collection of columns

Jm×n =

[

j1 j2 · · · jn

]

(2.1)

where ji is the contribution of joint i to the end-effector velocity. When an arbitrary single joint f

fails and is locked, the reduced Jacobian fJ can be simply obtained by removing the f th column

from the original Jacobian to obtain

fJm×(n−1) =

[

j1 j2 · · · jf−1 jf+1 · · · jn

]

. (2.2)

In this work, failure tolerance is defined as the worst-case dexterity after an arbitrary single

joint is locked. Based on this definition, a measure of the worst-case failure tolerance is given by

σ∗

m =
n

min
f=1

fσm (2.3)

where the superscript * indicates a post-failure measure, and fσm is the minimal singular value of

fJ.

In [34], an optimally fault tolerant Jacobian is defined as follows: (1) in order to ensure that

the robot has optimal dexterity performance before failure, the optimally fault tolerant Jacobian is

required to be isotropic, i.e.,

σ1 = σ2 = · · · = σm = σ (2.4)
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where the σi’s are the singular values of the original Jacobian; (2) in order to ensure that the

robot has optimal fault tolerance after failure, the optimally fault tolerant Jacobian should have

the maximum value of the worst-case failure tolerance measure. Under the condition (2.4), the

worst-case failure tolerance measure reaches its maximum value when

1σm = 2σm = · · · = nσm = σ

√

n−m

n
(2.5)

where σ is the singular value of the original Jacobian. This optimally fault tolerant Jacobian

requires that each joint contributes equally to the null space, which physically means that the

redundancy of the robot is uniformly distributed among all the joints so that a failure at any one

joint can be compensated for by the remaining joints.

Using the above definition, the structure of an optimally fault tolerant Jacobian can be identi-

fied. For the case of a seven DOF fully spatial manipulator, the canonical optimal Jacobian is a

triangular matrix where the ith row is given by:

jik = 0 where k < i

jik = −
√

7−i
8−i

where k = i

jik =
√

1
(7−i)(8−i)

where k > i.

(2.6)

Unfortunately, this canonical Jacobian cannot be realized by any manipulator built with only rota-

tional joints. In [34], a physically realizable Jacobian for a rotary joint manipulator that is closest

to optimally fault tolerant, was calculated using a numerical approach resulting in:
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J∗ =

































1 0.43 0.75 −0.54 0.14 0.33 −0.38

0 −0.60 0.65 0.46 −0.79 −0.19 −0.80

0 −0.67 −0.14 −0.70 0.60 −0.93 −0.46

0 0.77 0.14 0.84 0.58 −0.69 −0.43

1 −0.15 −0.36 0.33 −0.42 −0.72 0.59

0 0.62 −0.92 −0.43 −0.69 −0.10 −0.68

































. (2.7)

The end-effector position and orientation at this optimally fault tolerant configuration will be re-

ferred to as the design location. The next section will show how one can identify all the physically

realizable robots that possess this optimal Jacobian.

2.2.2 Generation of Robot Kinematics From Jacobians

Once a Jacobian is identified, the DH parameters of a robot that possesses this Jacobian can be

generated by applying the technique developed in [35]. Let vi and ωi denote the end-effector linear

velocity and orientational velocity, respectively, due to the ith joint velocity. Each column of the

Jacobian consists of these two parts, which are calculated as follows,

ji =







vi

ωi






=







ẑi−1 × pi−1

ẑi−1






∀ i = 1, ..., n (2.8)

where ẑi−1 is the unit vector along the ith joint axis, and pi−1 is the position vector from the i− 1

coordinate frame to the hand coordinate frame. Consequently, all joint axes can be obtained from

the rotational velocities of the Jacobian. By definition, the x axis of coordinate i is the common

normal of zi−1 and zi, so all x axes can be obtained after the joint axes are determined. Because all

z and x axes are calculated from the Jacobian, the four DH parameters can be obtained according

to their definitions.

Permuting the columns of the Jacobian changes the physical parameters of the corresponding

robot but does not affect its fault tolerance properties. Therefore, in [37] a family of 7! differ-
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ent robot designs were generated from the Jacobian in (7), and the 6-dimensional fault tolerant

workspace volume was defined. However, only three robot designs were evaluated due to the com-

putational complexity of the workspace calculations. The following section performs an analysis

on the structure of all these 7! robots. This is followed by an analysis of their global pre- and

post-failure capabilities that ultimately can be used to determine the best robot designs.

2.3 Characteristics of the Kinematic Parameters of the 7! Op-

timal Robots

2.3.1 All the Possible Values of the Four DH Parameters

By definition, DH parameter αi is the twist angle from the zi−1 axis to the zi axis about the xi

axis, and ai is the link length, i.e., minimum distance from the zi−1 axis to the zi axis along the

xi axis, as shown in Figure 2.1. From the definition it can be seen that the value of αi and ai are

both determined by the zi−1 axis and the zi axis, which are obtained from two adjacent columns of

a Jacobian, and the permutation of the zi−1 axis and the zi axis does not affect the sign of αi and

ai due to the convention that the xi axis is chosen to point away from the zi−1 axis. Because the

order does not matter, there are C(7, 2) = 21 possible combinations to choose 2 columns from the

7 columns of the optimal Jacobian in (2.7) to generate two adjacent columns, so there are only 21

possible values of α and a in the 7! permutations. In addition, each α has a unique associated a,

and vice versa.

Similarly, by definition, DH parameter di is the distance from the origin of the i− 1 coordinate

frame to the xi axis along the zi−1 axis, and θi is the joint angle from the xi−1 axis to the xi axis

about the zi−1 axis, as shown in Figure 2.1. From the definition it can be seen that the value of di

and θi are both determined by the xi−1 axis and the xi axis, which are obtained from the zi−2, zi−1

and zi axes. Because d and θ are computed based on three consecutive columns, permuting these

columns will change their values. Thus, there are P (7, 3) = 210 possible permutations to choose
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3 columns from the 7 columns of the optimal Jacobian in (2.7), so there are 210 possible values of

d and θ in the 7! permutations. In addition, each d has a unique associated θ, and vice versa.

Figure 2.1: The four DH parameters for each joint that specify a robot’s kinematics can be obtained from

the columns of a desired Jacobian, in our case the optimally fault tolerant Jacobian given in (2.7).

In summary, for all the DH parameters of the 7! robot designs, there are only 21 pairs of α and

a, as shown in Figure 2.2a (with the joint pairs that generate them shown in Figure 2.2c), and they

have the following properties:

(1) The values of α are not uniformly distributed. In particular, there are no α’s near 0, and

there is a big gap between −0.50 and 0.86, because if joints i and k are parallel then ωi = ωk so

that ji and jk will have similar contributions to the end effector velocity, which is not beneficial

for dexterity or fault tolerance. In contrast, there are many α’s near ±π/2, because if joint i is

orthogonal to joint k then ωi ⊥ ωk so that ji and jk are more likely to maintain the optimal angular

separation for fault tolerance.

(2) The values of a vary from 0.00 to 1.57, which makes sense because a can not be greater than

2. This is true because at the optimally fault tolerant configuration all the joints are constrained to

lie on a unit sphere that is centered at the end effector, and a is the distance between two joint axes,

which can not be larger than the diameter of the unit sphere.

There are 210 pairs of d and θ, as shown in Figure 2.2b, and they have the following properties:
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(1) For each pair of d and θ there exists a pair −d and −θ that is symmetric with respect to the

origin. This is because the permutations of two x axes affect the sign of d and θ, but not the value.

(2) In contrast to the link length a, the values of d vary from −5.35 to 5.35, and are not limited

to 2. In fact, because d is the distance between the location of the two common normals before

and after its joint axis, it can theoretically be from −∞ to ∞, however, d is limited because of the

properties of α.

21 values of α
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Figure 2.2: In (a) are all possible 21 pairs of α and a for the 7! optimal fault tolerant robot designs. The

joint pairs that generate these values are shown in (c). Note the large number of robots with α near −π/2.

In (b) are all possible 210 pairs of d and θ that are symmetric with respect to the origin.
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It is important to point out that the DH parameters for a given robot’s kinematic structure are

not unique. For example, one can take the negative of any column of the Jacobian and the DH

parameters will change, however, the robot’s kinematic structure and its fault tolerant properties

will not. In particular, taking the negative of the ith column of the Jacobian changes the values of

αi−1 and αi by adding π (if αi−1 or αi is negative) or subtracting π (if αi−1 or αi is positive). The

signs of di and θi will also change.

2.3.2 Organization of the Seven Sets of DH Parameters for Each Robot

In Subsection 2.3.1, all the possible DH parameters of the 7! robot designs generated from the

optimally fault tolerant Jacobian in (2.7) were determined. In this section, we illustrate how the

DH parameters for each of the seven joints of a robot can be obtained by selecting from the above

possible values.

As stated in Subsection 2.3.1, there are 21 possible values for each individual αi and ai. Be-

cause selecting one determines the other, we will denote the pair as {αi, ai} to emphasize that they

can not be separated. In addition, it is important to recall that once an {αi, ai} is selected, this

implies that two specific columns of the Jacobian, say ja and jb must be adjacent (see Figure 2.2c),

but the order does not matter. We will denote this with the ordered pairs (ja, jb) and (jb, ja). Also,

whenever {αi+1, ai+1} is selected, note that its associated ordered pair must contain one Jacobian

column from the order pair of the previous {αi, ai}.

We now describe the possibilities for determining all seven sets of DH parameters of an optimal

robot. The value of {α1, a1} can be chosen freely from the 21 possible choices. Once the value

of {α1, a1} is determined, the first two columns of the associated Jacobian (ja, jb) or (jb, ja) are

determined. Thus there are now two possibilities for j2. These two possibilities can be paired

with five remaining choices for j3 so that there are ten possibilities for {α2, a2}. The choices

for remaining {αi, ai}’s can be determined in an analogous manner. In particular, the number of

possible choices for {α3, a3} ... {α6, a6} are 4, 3, 2, and 1, respectively. The value of {α7, a7} is
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arbitrary because the end-effector coordinate frame is arbitrary. In [35], α7 is set to be 0, and a7 is

set to be 1. The organization of all the 7 sets of {αi, ai} is a tree structure, as shown in Figure 2.3.

Figure 2.3: The tree structure of the 7 sets {αi, ai} of each robot design

2.3.3 Correlations Between the DH Parameters of Two Reverse Version De-

signs

For any robot design from the 7! robots whose associated optimally fault tolerant Jacobian is

Jl =

[

jl1 jl2 jl3 jl4 jl5 jl6 jl7

]

, there exists a reverse version of this robot whose asso-

ciated Jacobian is Jr =

[

jl7 jl6 jl5 jl4 jl3 jl2 jl1

]

, where “l” indicates left to right order,

and “r” is the reverse. Based on the analysis in Subsection A, these two robot designs have the

same α’s and a’s, but they are in reverse order, i.e., αl
1 = αr

6, al1 = ar6, ..., αl
6 = αr

1, a
l
6 = ar1. These

two robot designs have d’s and θ’s that are of opposite sign, and they are also in reverse order, i.e.,

dl2 = −dr6, θ
l
2 = −θr6, ..., dl6 = −dr2, θ

l
6 = −θr2. Figure 2.4 shows two reverse version robot designs.

It can be seen that although these two robots have very similar DH parameters, they have different

structures, and it will be shown in the next section that the global properties of these two reverse

version robots is quite different, although this is not typically the case.
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(a) (b)

Figure 2.4: Two reverse version robot designs that have very different global properties. Note how all of

the joint axes are tangent to a sphere of unit radius about the end effector position, as is required for an

optimally fault tolerant configuration. (This depiction of the robot kinematics is meant to illustrate these

properties and not to represent how the robot would be manufactured.)

2.4 Global Pre- and Post-Failure Dexterity of the 7! Robot De-

signs

2.4.1 Overview

All these 7! robot designs possess the locally optimal fault tolerant Jacobian at a specific

optimal configuration, so they have the same optimal local performance with the end effector at

the optimal design location. However, it is important to also consider the global performance

of a robot design. In [37], a global measure of a robot’s 6-dimensional fault tolerant workspace

volume was proposed, but only the global performance of three robot designs was studied due to the

computational complexity. In this section, the global pre- and post-failure dexterity performance of

all 7! robot designs are studied, and based on these results, the optimal robot designs are identified.
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2.4.2 Correlations Between Common Pre- and Post-Failure Dexterity Mea-

sures

The pre-failure dexterity performance is evaluated by using the following three commonly used

measures, i.e., minimal singular value σm, the condition number κ, and manipulability w, which

are defined as

κ =
σ1

σm

and (2.9)

w = σ1σ2 · · · σm. (2.10)

We will use the reciprocal of κ to make the measure be between 0 and 1. The post-failure dexterity

performance is frequently measured by the worst-case value of the above three dexterity measures

after an arbitrary joint is locked, i.e.,

κ∗ =
n

min
f=1

fκ, (2.11)

w∗ =
n

min
f=1

fw, (2.12)

and σ∗

m is defined as in (2.3), where fκ and fw are the condition number and manipulability,

respectively, after joint f is locked. In order to eliminate the difference in units between linear

velocity and rotational velocity, the first three rows of the Jacobian are normalized by the maximal

distance that this robot can reach, before calculating these measures.

In order to study the correlations between these six pre- and post-failure dexterity measures,

10,000 configurations are randomly sampled in the joint space of the robot design generated from

the Jacobian in (2.7). The correlation coefficient between each of the measures is shown in Ta-

ble 2.1. The three pre-failure dexterity measures are highly correlated with each other, especially

the inverse condition number and minimal singular value, and this is also true for the three post-

failure dexterity measures. However, the correlations between the pre- and post-failure dexterity

measures are relatively low. In the sub correlation coefficient matrix of the three pre-failure dexter-

ity measures, the column of σm has the largest norm, which means that σm is the most representa-

tive measure to evaluate the pre-failure dexterity performance of the robot designs. Similarly, σ∗

m is
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the most representative measure among the three post-failure dexterity measures. Figure 2.5 shows

the values of σm and σ∗

m at all 10,000 sampled configurations. It can be seen that the configurations

with a small σm must also have a small σ∗

m, however, the reverse is not true. This indicates that σ∗

m

is really a measure of a different property. For the remainder of this work σm and σ∗

m are used to

evaluate the global pre- and post-failure dexterity performance of the 7! robot designs.

Table 2.1: The correlations between the local

pre- and post-failure dexterity measures

1/κ w σm 1/κ∗ w∗ σ∗

m

1/κ 1.000 0.748 0.992 0.401 0.439 0.401

w 0.748 1.000 0.773 0.342 0.604 0.357

σm 0.992 0.773 1.000 0.398 0.454 0.405

1/κ∗ 0.401 0.342 0.398 1.000 0.817 0.996

w∗ 0.439 0.604 0.454 0.817 1.000 0.825

σ∗

m 0.401 0.357 0.405 0.996 0.825 1.000

σ
m

0 0.05 0.1 0.15 0.2 0.25

σ
m*

0

0.02

0.04

0.06

0.08

Figure 2.5: The values of σm and σ∗

m for 10,000 samples in the joint space for the robot generated from (7).

Note that σ∗

m is bounded by σm, and can take any value down to zero even for large σm.
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2.4.3 Correlations Between the Global Pre- and Post-Failure Dexterity in

the Joint Space and in the Workspace

There are two ways to approximate the average global performance of a robot, i.e., sampling

in the joint space or sampling in the workspace. One can estimate the average global dexterity in

the joint space by simply evaluating the dexterity measures at randomly generated configurations

and taking the average. That is, the global σm and σ∗

m in the joint space are calculated using

σ̄m =

N
∑

i=1

σm

N
and (2.13)

σ̄∗

m =

N
∑

i=1

σ∗

m

N
(2.14)

where σ̄m is the average dexterity, σ̄∗

m is the average fault tolerance, and N is the number of

samples. Clearly the accuracy of the average global measure increases with N , however, so does

the computation time. As a compromise between accuracy and computation time, N = 10, 000 is

used when sampling in the joint space. Based on our analysis this results in an error of ≈3% for

global σm and ≈5% for global σ∗

m.

In contrast to sampling in the joint space, the calculation of the global measure in the workspace

is much more difficult and time consuming, because at each location in the workspace, there are

multiple configurations that have different local dexterity performance. One can assume that an

inverse kinematics routine that optimizes the desired dexterity measure is being used. Therefore,

it makes sense to quantify the dexterity measure at a workspace location using the maximum

value over all configurations at that location. This requires the following steps: (a) A number of

locations (position and orientation) are randomly sampled in the 6-dimensional workspace by the

direct sampling method in [37]. (b) All the self-motion manifolds at each location are calculated,

and the local σm and σ∗

m along these self-motion manifolds are obtained. (c) The maximal σm

and σ∗

m are saved as the optimal pre- and post-failure dexterity performance at this location. (d)
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Finally, the global σm and σ∗

m in the workspace can be calculated using (2.13) and (2.14) based on

these optimal σm and σ∗

m found at each sample location. For sampling in the workspace N = 5000

is used due to the greater computational complexity. This results in an error of ≈2% for both

global σm and σ∗

m. It may at first seem strange that a higher accuracy is obtained with a lower

number of samples as compared to sampling in the joint space. However, this is due to the fact that

an optimization is done at each workspace location to identify the optimal value, which are then

averaged.

When robots are applied for a particular task, one is usually more interested in a robot’s per-

formance in the workspace. Therefore, robot designers would typically prefer a measure of the

workspace dexterity. However, as discussed above, this is much more computationally expensive,

especially when it needs to be evaluated for 7! robot designs. If it can be shown that there is a

correlation between the measures computed in the joint space and those in the workspace, then the

more computationally efficient joint-space computations can be used to identify a smaller num-

ber of optimal robot design candidates on which the more computationally expensive workspace

analysis can be performed.

To see if joint space measures are correlated to workspace measures, 20 robot designs are

randomly chosen from the 7! robots, and their global σm and σ∗

m are calculated. Figure 2.6 shows

the global σm and σ∗

m both in the joint space and in the workspace. There is a relatively strong linear

correlation between the joint space measures and the workspace measures. The linear correlation

coefficient between the global σm in the joint space and in the workspace is 0.74, and the linear

correlation coefficient between the global σ∗

m in the joint space and in the workspace is 0.71. This

means that one can use the joint-space measures as an approximation for the workspace measures

to select optimal robot design candidates.
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Figure 2.6: The correlations between global measures in the joint space and in the workspace where (a) is

the global σm and (b) is the global σ∗

m.

2.4.4 Global Pre- and Post-Failure Dexterity of the 7! Optimal Robots in

the Joint Space

Based on the relatively strong linear correlation obtained in the above section, the robot designs

with optimal global dexterity performance in the joint space are more likely to have optimal global

dexterity performance in the workspace. Therefore, the global pre- and post-failure dexterity per-

formance of all the 7! robots are first calculated in the joint space to find the robot designs with

optimal global joint space measures. These robots will be the optimal robot design candidates.

Figure 2.7 shows the global σm and σ∗

m of all the 7! robot designs in the joint space. As dis-

cussed in Section III, there are some relationships between specific DH parameters and good local

pre- and post-failure dexterity measures. Reformatting the data in Figure 2.7 reveals additional

correlations with global properties, i.e., that nearly orthogonal joints with small link lengths are

more likely to generate robots with good global pre- and post-failure dexterity. There are three

joint pairs, out of the 21 possible pairs, that nearly satisfy these conditions, i.e., the {α, a} pairs

{−1.32, 0.00}, {−1.72, 0.17} and {1.60, 0.50}. One can classify each of the 7! robot designs

into four groups according to how many of these {α, a} pairs they contain. The distribution of

global pre- and post-failure dexterity performance in the joint space of these groups is shown in
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Figure 2.8. It is easy to see that the mean dexterity performance increases as the number of good

pairs increases, and even the worst robot in the group with three pairs has relatively good global

pre- and post-failure dexterity. However, one must be careful because the order of the DH param-

eters also matters. Every one of the 7! robot designs has a reverse version that has very similar

DH parameters, but in reverse order. The global performance of the two can be quite different, as

shown in Figure 2.9 where this difference is plotted for all 7!/2 pairs.
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Figure 2.7: The global σm and σ∗

m of the 7! robots in the joint space

The red points in Figure 2.7 are the 20 optimal robot design candidates, which have optimal

global pre- and post-failure dexterity performance in the joint space. None of the remaining robot

designs have both better global pre- and post-failure dexterity than these 20 candidates. Based on

the analysis in the above section, it is likely that these 20 candidates have better global performance

in the workspace than the remaining robot designs, so only the global performance of these 20 robot

designs are calculated in the workspace. These top twenty robot designs are ordered (somewhat

arbitrarily) by the sum of their normalized global σm and σ∗

m.
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Figure 2.8: Robots that contain a larger number of nearly orthogonal and intersecting joint pairs are more

likely to have high global pre- and post-failure dexterity. The 7! robots have been grouped based on the

number of such joint pairs, and the distribution of their global pre- and post-failure dexterities are shown in

(a) and (b), respectively. The number next to the distribution indicates the numbers of robots in each group.
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Figure 2.9: The distribution of the difference in performance between a robot design and its reverse version

is shown. The difference is computed as the Euclidean distance between the normalized pre- and post-failure

measures.
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2.4.5 Global Pre- and Post-Failure Dexterity of the 20 Optimal Candidates

in the Workspace

The global dexterity performance of the 20 optimal robot design candidates are calculated in

the workspace. Both the global joint space measures and the global workspace measures of the

20 candidates are shown in Figure 2.10. Clearly, the global measures in the workspace are much

better than those in the joint space, because at each location the configuration with the optimal mea-

sures at this location are identified. Figure 2.11 shows the Pareto frontier when the two objective

functions are global σm and σ∗

m. Among the 20 robot design candidates, Candidate 4, that results

from the permutation

[

j7 j4 j5 j1 j2 j6 j3

]

, has the best global pre-failure dexterity in

the workspace, and Candidate 1, that results from the permutation

[

j6 j7 j3 j5 j2 j1 j4

]

,

has the best global post-failure dexterity in the workspace, where ji is the ith column of the opti-

mal Jacobian in (7). These two optimal robot designs are shown in their optimally fault tolerant

configurations in Figure 2.12.
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Figure 2.10: The global measures of the 20 optimal robot design candidates in the joint space and in the

workspace where (a) is the global σm and (b) is the global σ∗

m.

The pre- and post-failure dexterity measures throughout the workspace for the two optimal

robot designs are shown in Figure 2.13. Because of the difficulty of representing and visualizing
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m computed in the in the workspace are shown for the 20 optimal
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Figure 2.12: The optimal robot designs in their optimal configuration where (a) is the Candidate 1 robot

design and (b) is the Candidate 4 robot design.
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a 6-dimensional workspace, only the performance in their 3-dimensional position workspace is

plotted by constraining the orientation to be that of the optimal design configuration. In order

to show the dexterity performance in the interior of the workspace, the 3-dimensional position

workspace is shown with multiple cross-sections at the design point. Figure 2.13a and Figure 2.13b

are the pre- and post-failure dexterity performance, respectively, of the Candidate 4 robot design,

and Figure 2.13c and Figure 2.13d are the pre- and post-failure dexterity performance, respectively,

of Candidate 1. From the figure, one can see that neither σm nor σ∗

m reaches its maximum value at

the center point. This is because at this design location the robots are required to be both isotropic

and fault tolerant. At other points, the robots are no longer constrained to be isotropic so that the

values of σm and σ∗

m can be higher. Note that the volume of high pre-failure dexterity is much

more uniform than that of post-failure dexterity. To illustrate the high levels of pre- and post-

failure dexterity that can be maintained over a large portion of the workspace, Figure 2.14 shows

the configurations of Candidate 1 and 4 robot designs at the location where the fault tolerance

measure is 90% of the maximum value.

2.5 Chapter Summary

This chapter explored the structure and global pre- and post-failure dexterity performance of

the 7! robot designs generated from an optimally fault tolerant Jacobian. It was shown that when

describing the kinematic design of a robot in terms of DH parameters for all joints, there are

only 21 possible values of α and a for all 7! robot designs, and there are 210 possible values

of d and θ. In addition, these designs were organized into a tree structure based on the possible

choices for {α, a} pairs. It was also shown that each of the 7! robot designs had a reverse version

with very similar DH parameters but potentially very different global properties. Furthermore, the

global performance of the 7! robot designs was analyzed. It was shown that there is a relatively

strong correlation between performance measures computed in the joint space and workspace,

so that the computationally efficient joint space calculations could be used to identify the best

candidates for optimal designs in the workspace. These candidates were further analyzed in the
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(a) (b)
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Figure 2.13: The pre- and post-failure dexterity performance in the 3-dimensional position workspace are

shown for Candidate robot designs 1 and 4, where both are constrained to be at the orientation of the

optimal design point. Pre- and post-failure dexterity performance of Candidate 4 are shown in (a) and (b),

respectively, and Candidate 1 in (c) and (d), respectively.
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(a) (b)

Figure 2.14: The configurations of the optimal robot designs at the locations where the fault tolerance

measure is 90% of the maximum value are shown in (a) for Candidate 1 and (b) for Candidate 4.

workspace to determine two Pareto optimal designs in terms of pre- and post-failure dexterity, and

the distribution of these measures throughout the workspace were shown.
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Chapter 3

Kinematic Design of Optimally Fault Tolerant

Robots for Different Joint Failure Probabilities 4

3.1 Chapter Overview

All of the studies on fault tolerant design [34–37] only consider the case where all joints are

equally likely to fail when designing the optimally fault tolerant robots. While this is typically how

the robot components are designed, individual variations within the components or environmental

factors will change the failure probabilities over the robot’s lifetime. Identical components may

also have unequal failure probabilities due to the different loads that they are exposed to, which

is typically the case for modular robot designs [64]. Thus, when designing an optimally fault

tolerant robot, this factor needs to be considered. This is the focus of this chapter. Specifically, the

main contributions of this chapter are as follows: (1) determine the equations for the null space

and the canonical form of a Jacobian that optimizes the minimum singular value after a failure

for arbitrary joint failure probabilities (2) design classes of robots that are optimal in terms of the

resulting minimum singular value after a failure for an arbitrary set of joint failure probabilities,

e.g., planar 3R robots, spatial positioning 4R robots and spatial positioning and orienting 7R robots;

(3) develop a method to design optimally fault tolerant robots for cases where the joint failure

probabilities change, and illustrate this method for planar 3R robots. This is in contrast to the work

in [30] where unequal joint failure probabilities were first proposed, however, only for the reduced

manipulability measure of fault tolerance and not for the minimum singular value. In addition, the

kinematic design problem was not explored in [30].

4Most of this chapter is published in [2].
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3.2 A Definition of Fault Tolerance for Different Joint Failure

Probabilities

The local kinematic dexterity of a robot is frequently described by the properties of the Jacobian

matrix J, which linearly relates joint velocities to end-effector velocities. The Jacobian J can be

written as a collection of columns

Jm×n =

[

j1 j2 · · · jn

]

(3.1)

where m is the dimension of the workspace, n is the number of DOFs of the robot, and ji is the

contribution of joint i to the end-effector velocity. For redundant robots, the DOFs of the robot n

is larger than the workspace dimension m, so that the extra DOFs can be utilized to realize fault

tolerance.

If an arbitrary single joint fails and is locked, this joint is no longer able to contribute any

motion of the end-effector. Therefore, the reduced Jacobian after joint f fails can be easily obtained

by removing the f th column from the original Jacobian, i.e.,

fJm×(n−1) =

[

j1 j2 · · · jf−1 jf+1 · · · jn

]

. (3.2)

The local kinematic dexterity of the reduced robot can be quantified by combinations of the sin-

gular values of the associated reduced Jacobian, such as their ratio (condition number) or product

(manipulability). In this work, the minimal singular value of the reduced Jacobian, denoted as

fσm, is used to define the dexterity of the reduced robot after joint f is locked. This is because the

minimum singular value tends to denominate the behavior of both the condition number and the

manipulability, but also because the minimum singular value is a measure of proximity to a singu-

larity, i.e. a measure of worst-case dexterity over all end-effector motion directions [34]. A larger

value of fσm means that the reduced robot maintains a higher motion ability in the worst-case

direction, so that a robot in this configuration is more fault tolerant to the failure of joint f . When
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fσm equals 0, the reduced robot is in a singular configuration, and this robot in this configuration

is fault intolerant to the failure of joint f .

The definition of fault tolerance in this work is based on all the possible fσm considering all

the possible joint failures. A measure of fault tolerance is defined as

F = w1
1σm + w2

2σm + · · ·+ wn
nσm (3.3)

where the wi’s are the weighting coefficients, satisfying
n
∑

i=1

wi = 1. In order to weight each reduced

Jacobian’s minimum singular value with its probability of occurring, the weights are selected as

wi =
pi

p1 + p2 + · · ·+ pn
(3.4)

where pi is the failure probability of joint i. When all the joints are equally likely to fail, all the

weighting coefficients are equal, which implies that all the fσm are equally important. At the other

extreme, i.e., when one of the joints is much more likely to fail than the others, the weighting

coefficient of this joint approaches 1, and the weighting coefficients of the other joints approach 0

so that the optimization will focus on this joint’s fσm. Based on this definition of fault tolerance,

the kinematic design of optimally fault tolerant robots will be studied in the following sections.

3.3 Designing For an Arbitrary Set of Joint Failure Probabili-

ties

3.3.1 Overview

We assume that robot manufacturers have historical data on the failure probabilities of the

various physical components of joints used in the design of their robots. If such data is not avail-

able, then one can employ the reliability analysis described in [65] using the component reliability

data available in [66]. Therefore, these probabilities are known during the kinematic design of

robots where the fault tolerance measure defined in (3.3) is maximized. This insures that the robot
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achieves optimally fault tolerant performance after a locked joint failure. In addition, it is desir-

able to have optimal dexterity before a failure, so that the robot is required to have an isotropic

pre-failure Jacobian, i.e., the singular values are all equal. Therefore, the problem in this section

can be stated as finding a Jacobian that satisfies

max F = w1
1σm + w2

2σm + · · ·+ wn
nσm

s.t. σ1 = σ2 = · · · = σm = σ

(3.5)

where σ is the singular value before a failure. The variables in this optimization are the elements

of the Jacobian. Because a Jacobian is a function of a robot’s kinematic parameters, one can

determine the optimal kinematic design from the Jacobian that is the solution to (3.5).

Once an optimally fault tolerant Jacobian is identified for a given set of joint failure probabil-

ities, the method developed in [35] can be applied to generate robot kinematic parameters from

this Jacobian, and a family of optimally fault tolerant robots can be obtained. In this section, the

optimal null space that maximizes the fault tolerance measure in (3.3) is identified first. Then, the

isotropic Jacobian with this optimal null space is constructed.

3.3.2 Finding the Optimally Fault Tolerant Null Vector

For manipulators with one degree of redundancy, the absolute value of the ith component of its

Jacobian’s null vector, denoted ni, is equal to the absolute value of the determinant of the Jacobian

after joint i fails, which is the product of the singular values after joint i fails, i.e.,

|ni| = |det(iJ)| = iσ1
iσ2 · · · iσm. (3.6)

The singular values before and after a failure satisfy the following inequality [67]

σ1 >
iσ1 > σ2 >

iσ2 > · · · > σm >
iσm. (3.7)
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Note that the directions of the singular vectors associated with σi and fσi might be quite different.

Therefore, although fσi > 0, the robot might still lose the ability to move along the direction of

the singular vector associated with σi after joint f fails.

For isotropic Jacobians, the singular values before a failure are all equal, i.e., σi = σ ∀ i, so

from (3.7) it is easy to see that

iσ1 =
i σ2 = · · · =i σm−1 = σ. (3.8)

Substituting (3.8) into (3.6), the null space can be obtained as follows

|ni| = |det(iJ)| = iσmσ
m−1. (3.9)

The normalized version of the above equation is given by

|n̂i| =
iσmσ

m−1

√

n
∑

i=1

[det(iJ)]2
. (3.10)

By applying the Binet-Cauchy Theorem for an isotropic J

det(JJT) =
n

∑

i=1

[det(iJ)]2 = σ2m, (3.11)

equation (3.10) becomes

|n̂i| =
iσm

σ
(3.12)

which can be interpreted as the post-failure dexterity divided by the pre-failure dexterity. We can

now use this relationship along with the optimization defined by (3.5) to determine the form of an

optimal null vector.

Maximizing the objective function defined in (3.5) is equivalent to
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max w1|n̂1|+ w2|n̂2|+ · · ·+ wn|n̂n|

s.t. |n̂1|2 + |n̂2|2 + · · ·+ |n̂n|2 = 1.

(3.13)

This constrained optimization problem can be solved by the method of Lagrange multipliers. The

Lagrange function is defined as

L(|n̂|, λ) = w1|n̂1|+ w2|n̂2|+ · · ·+ wn|n̂n|−

λ(|n̂1|2 + |n̂2|2 + · · ·+ |n̂n|2 − 1).

(3.14)

Solving the set of equations resulting from taking partial derivatives yields

|n̂i| =
wi

√

w2
1 + w2

2 + · · ·+ w2
n

. (3.15)

Therefore, when the elements of a Jacobian’s null vector are given by (3.15) the objective function

reaches its maximum value and iσm = σwi/
√

w2
1 + w2

2 + · · ·+ w2
n.

There are two additional items that should be pointed out about the above derivation. First, if

the constraint of isotropy in (3.5) is replaced by a bound on σ1, i.e., a simple norm constraint on the

Jacobian, the optimal solution will still be the same. This is true because to maximize the objective

function, each iσm ∀ i should be as large as possible. However, the singular values before and

after a failure satisfy the inequality in (3.7), which shows that iσm is bounded by σm. Therefore,

the minimum singular value before a failure should also be as large as possible. The value of σm

reaches its maximum when σ1 = σ2 = · · · = σm = σ, i.e., the Jacobian is isotropic, which is

the same as the constraint in (3.5). Second, because of isotropy, maximizing the fault tolerance

measure defined in (3.3) also maximizes the reduced manipulability [30]. This is true because the

determinant in (3.9) is equal to the reduced manipulability. Furthermore, the ratio of the reduced

manipulabilities is equal to the ratio of the weighting coefficients.
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3.3.3 Constructing Isotropic Jacobians According to the Optimally Fault

Tolerant Null Vector

This subsection will discuss how to construct isotropic Jacobians whose associated null vectors

satisfy (3.15). An isotropic Jacobian can be decomposed into the following two matrices,

J = DU, (3.16)

where D is an m×n diagonal matrix whose diagonal elements are σ, and U is an n×n orthogonal

matrix, whose column can be written as

ui =







1
σ
ji

n̂i






. (3.17)

The first m rows of U are equal to the Jacobian divided by σ, which without loss of generality can

be considered to be equal to 1, and the last row is equal to the transpose of the null vector. For

optimally fault tolerant Jacobians, the elements of the null vector are given by (3.15), where for

the following derivation we assume each element to be non-negative.

We now construct an orthogonal U that satisfies these constraints as follows: (1) The weighting

coefficients wi are sorted in an ascending order, and the columns of the Jacobian are permuted

accordingly. (2) All the entries in the first column of the permuted Jacobian are set to 0, except

for the first entry that is computed using the constraint that ‖u1‖ = 1. (3) All the entries in the

second column of the permuted Jacobian are set to 0, except the first and second entry, where the

first entry is calculated using constraint that u1 · u2 = 0, and the second entry is calculated using

the constraint that ‖u2‖ = 1. (4) The remaining columns are obtained in a similar way, using the

properties of an orthogonal matrix, i.e., that ‖ui‖ = 1 and ui ·uj = 0 ∀i, j. The element in the pth

row and qth column of the permuted Jacobian matrix J is now in the form
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jpq = 0 where p > q

jpq = −

√

√

√

√

n
∑

i=p+1

w2
i /

n
∑

i=p

w2
i where p = q

jpq =
wpwq

√

n
∑

i=p

w2
i

n
∑

i=p+1

w2
i

where p < q

(3.18)

Finally, the columns of the Jacobian are permuted back so that the null vector of this isotropic

Jacobian is

n̂ =

[

w1
√

n
∑

i=1
w2

i

w2
√

n
∑

i=1
w2

i

· · · wn
√

n
∑

i=1
w2

i

]T

. (3.19)

After the optimally fault tolerant Jacobians are constructed, the method developed in [35] can

be applied to generate robot kinematic parameters from these Jacobians. It is important to note

that the optimally fault tolerant Jacobian is locally optimal and so results in a robot design that is

optimal at the design configuration. However, robots that have such configurations are more likely

to have better performance throughout the workspace. After an optimally fault tolerant robot design

is obtained, its workspace can be further evaluated using the method proposed in [37].

3.3.4 Results for Positioning Robots

(1) planar 3R robots

We consider four illustrative examples for this simple case, i.e., equal probability of joint failure

and an impending failure in each joint. For the equal probability of failure case, the weighting

coefficient is w =

[

1/3 1/3 1/3

]

. The optimal robot is shown in Figure 3.1a, where the link

length vector l is given by l =

[ √
2

√
2

√

2/3

]

. This is the same as the result obtained in [34].

Now, consider the other extreme cases, i.e., one of the joints is known to have an imminent failure.

The weighting coefficients for this case are wf = 1 for the f th joint that is failing and wi = 0

for the other two joints. The optimal robots for these cases are shown in Figure 3.1b-Figure 3.1d,

for f = 1 to 3 respectively, with the corresponding link lengths given by: 1l =

[

1
√
2 1

]

,
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2l =

[

1 1 1

]

and 3l =

[ √
2 1 0

]

where we have appended the superscript of the failure

joint to the link length vector l. Note that when joint i’s probability of failure is one, the end-

effector of the robot must be located on this joint axis so that the contribution of joint i to the

end-effector movement is 0 and its failure does not affect the end-effector motion.

(a) (b)

(c) (d)

Figure 3.1: The optimally fault tolerant planar 3R robots are shown for different joint failure probabilities.

The optimal robot when all the joints are equally likely to fail is shown in (a). The optimal robots when

each joint is failing are shown in (b)-(d) for joints 1 to 3, respectively. Note that for the robots in (b)-(d), the

end-effector is located at the joint axis that is likely to fail. A robot designer can use these extremal cases to

determine the desired link lengths based on the relative probability of failure for the different joint.

(2) spatial 4R robots

Similar to the planar 3R robots, we consider five illustrative examples for this case. Note that as

described in [36], there exists a family of optimal robots that can realize a given Jacobian, because

the linear velocity represented by a column of the Jacobian can be realized by a one-dimensional
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set of joint axes oriented circularly around the end effector. In [36], the entire family of optimal

robot designs were parameterized, however, here we simply select one example design where all

the twist angles are selected to be ±90◦.

The optimal robots are shown in Figure 3.2, where Figure 3.2a is the case when the joints

are equally likely to fail. The three singular values after joint i fails are iσ1 =i σ2 = 1.00,

iσm = 0.50 ∀ i, which are also equal to the length of the semi axes of the manipulability el-

lipsoid after a failure. Figure 3.2b-Figure 3.2e are the cases when joint one to four is failing,

respectively. Similarly to the 3R case, the end-effector is located on the joint axis that is failing in

Figure 3.2b-Figure 3.2e so that there is no linear motion associated with the failing joint. There-

fore, the manipulability ellipsoid after a failure is still a unit sphere, i.e., isotropic, the same as

before a failure.

3.3.5 Results for Spatial 7DOF Robots for Positioning and Orienting

The optimally fault tolerant Jacobians of spatial 7DOF robots described by (3.18) can not be

realized by rotational joints. This is true because for a rotational joint i, the associated column of

a Jacobian is given by

ji =







vi

ωωωi






=







âi × pi

âi






(3.20)

where vi and ωωωi are the linear velocity and angular velocity, respectively, âi is the unit vector

of the rotational joint axis, and pi is a position vector from the joint axis to the end-effector.

Therefore, ‖ωωωi‖ = 1 and the linear velocity must be orthogonal to the angular velocity, i.e., vi ⊥

ωωωi. These constraints are not true for the Jacobian described by (3.18). In this section, we discuss

modifications to the above approach so that spatial 7R robots can be designed.

For isotropic spatial 7R Jacobians (3.17) becomes

ui =













√

3
7
vi

√

3
7
ωωωi

n̂i













(3.21)
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(a) (b)

(c) (d)

(e)

Figure 3.2: The optimally fault tolerant spatial 4R robots are shown for different joint failure probabilities.

The optimal robot when all the joints are equally likely to fail is shown in (a). The optimal robots when

joints 1 to 4 are failing are shown in (b)-(e), respectively. Note that in (b)-(e), the end-effector is located

on the joint axis that is failing. A robot designer can use these extremal cases to determine the desired link

lengths based on the relative probability of failure for the different joint.

39



where the factor of

√

3
7

is due to the constraint that U is orthogonal. To be optimally fault tolerant,

the elements of the null vector must satisfy (3.15). In order to enforce the constraints that ‖ωωωi‖ = 1

and vi ⊥ ωωωi, one can represent the ith column of the Jacobian as

ji =







vi

ωωωi







=















































‖vi‖













cosαi sin βi cos γi + sinαi sin γi

sinαi sin βi cos γi − cosαi sin γi

− cos βi cos γi

























cosαi cos βi

sinαi cos βi

sin βi



























































.

(3.22)

where αi, βi and γi are the parameters defining joint i. Using (3.15) and the fact that ui is a unit

vector (because U is orthogonal) one can show that the norm of the linear velocity is given by

‖vi‖ =

√

√

√

√

√

4

3
− 7w2

i

3
7
∑

i=1

w2
i

. (3.23)

By imposing the constraints that the rows of U are unit norm and orthogonal one can determine

the values of the αi’s, βi’s and γi’s to identify the optimally fault tolerant 7R manipulator Jacobian

Unfortunately, it is not possible to satisfy all these constraints for an arbitrary set of joint failure

probabilities. In particular, the optimal 7R manipulator Jacobian for equal joint failure probabilities

has not been identified [34]. However, it is possible to solve the set of nonlinear constraint equa-

tions using the Levenberg-Marquardt algorithm to find one set of weighting coefficients, i.e., failure
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probabilities, that is close to equally likely, w =

[

0.15 0.11 0.11 0.12 0.19 0.19 0.12

]

5,

where the associated 7R manipulator Jacobian is

J =

































−0.38 −1.02 0.52 −0.39 −0.10 0.48 0.69

0.04 −0.30 0.39 0.79 −0.70 0.59 −0.79

−0.91 −0.16 −0.84 0.57 0.52 0.41 0.01

0.68 −0.28 −0.79 0.44 −0.65 −0.03 0.74

−0.66 0.51 0.56 0.66 −0.39 −0.55 0.65

−0.31 0.81 −0.23 −0.61 −0.66 0.83 0.17

































(3.24)

3.3.6 Extension to Multiple Degrees of Redundancy and Joint Failures

(1) multiple degrees of redundancy

The above approach can be extended to the case of robots with multiple degrees of redundancy in a

manner analogous to that in [30]. For the Jacobian of a robot with multiple degrees of redundancy,

the matrix U in (3.16) can be decomposed into the following two matrices,

U =







U1

U2






(3.25)

where U1 is equal to the Jacobian divided by σ, and U2 is a matrix of n − m orthonormal n-

dimensional vectors in the null space of J. Let n̂i be the ith column of U2, and its norm can be

calculate as

‖n̂i‖ =
det(iJ)

det(J)
=

iσ1
iσ2 · · · iσm

σ1 σ2 · · · σm

. (3.26)

Substituting (3.8) into (3.26), the relationship between the null space and the minimum singular

value after a failure is given by

‖n̂i‖ =
iσm

σ
. (3.27)

5The elements of w do not add up to 1 due to rounding.
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Equation (3.12) can be considered as a special case of this equation, in which each column has

only one element. Likewise, the generalization of the constraint in (3.13) becomes

‖n̂1‖2 + ‖n̂2‖2 + · · ·+ ‖n̂n‖2 = n−m. (3.28)

Similarly, applying the method of Lagrange multipliers, the null space of the optimally fault toler-

ant Jacobian for the robots with multiple degrees of redundancy needs to satisfy

‖n̂i‖ = wi

√

n−m

w2
1 + w2

2 + · · ·+ w2
n

6 1. (3.29)

For the cases where ‖n̂i‖ > 1, the value of ‖n̂i‖ is set to be 1, and the norms of the other columns

of the null space can be identified according to the weighting coefficients.

(2) multiple joint failures

For the case of multiple joint failures, the minimum singular value after these failures is not only

affected by the norm of the null space matrix columns, but also by the angles between them. This

is best illustrated through a simple example. Consider the case of a planar 4R manipulator that

experiences two simultaneous joint failures. If all joints are equally likely to fail then all possible

pairs of joint failures are also equally likely to fail. This means that the optimal design is one where

the remaining two columns of the Jacobian are as orthogonal as possible after the locking of any

two arbitrary joints. This results in a design like the one shown in Figure 3.3a, which is the same

as the optimal planar 4R robot obtained in [30]. The situation of unequal joint failure probabilities,

which is not discussed in [30], requires the consideration of all six possible combinations of pairs

of joint failures. Consider the extremal case where it is known which pair of joints will fail, e.g.,

joints one and three. Similar to the one joint failure case, the end-effector must be located on the

joint axes of the two joints that are going to fail, as shown in Figure 3.3b.
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(a) (b)

Figure 3.3: The optimally fault tolerant planar 4R robot designs for two simultaneous joint failures are

shown. In (a) all joints are equally likely to fail. In (b) joint 1 and joint 3 are guaranteed to fail, so that their

axes are coincident with the end effector.

3.4 Designing For Multiple Cases of Joint Failure Probabilities

3.4.1 Problem Formulation

In the previous section, a method for designing an optimally fault tolerant robot for any set of

joint failure probabilities was presented. However, joint failure probabilities are usually changing

while performing a task. In particular, one common case is that a robot is designed so that all the

joints are equally likely to fail when manufactured, however, during use one of the joints becomes

more likely to fail either due to original component variation or the characteristics of the tasks.

Unfortunately, one can not guarantee at design time which joint is the one that is more likely to

fail, so that all cases should be considered. This scenario is discussed in this section.

When all the joints are equally likely to fail, one would like to optimize 1
n
(1σm + 2σm + · · ·+

nσm). When joint i is failing, one would like to optimize iσm. To consider all of these cases

simultaneously, the objective function is the sum of the equally likely case along with all of the

iσm’s. The design problem can be stated as finding the optimal robot kinematic parameters and

the n + 1 different optimal configurations for each component of the objective function that will

maximize the overall objective function. It can be mathematically expressed as
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max F = 1
n
(1σm,c0 +

2 σm,c0 + · · ·+n σm,c0)+

1σm,c1 +
2 σm,c2 + · · ·+n σm,cn

s.t. l1 + l2 + · · ·+ ln = l

(3.30)

where the notation fσm,ci , indicates the minimum singular value of the Jacobian at the configura-

tion ci for a failure in joint f . Here, the n+1 different configurations may be at different locations,

so the robot would need to adjust the relative position between its base and the task once a joint

failure is imminent. In cases where one does not want to change the location of the task, one

can impose the additional constraint that all the f(ci)’s are equal where f() denotes the forward

kinematics function of the robot.

There are many different ways of solving the above constrained optimization problem. The

approach used here is to first discretize the space of kinematic parameters to identify candidate

robot designs. For each candidate design we discretize its workspace and find the configuration that

optimizes each component of the objective function for every workspace location. This approach

makes it easy to determine the optimal configurations with or without the constraint that the f(ci)’s

are equal.

3.4.2 Illustrative Example for Planar 3R Robots

The above optimization problem is solved for a simple 3R robot to illustrate the properties

of the various robot designs. As described above, the kinematic parameters, i.e, the three link

lengths are discretized in the interval [0 1] using an increment of 0.02 under the constraint that

the overall length is equal to one. There are no joint limits imposed, so that the resulting circular

workspaces is then uniformly sampled using 5000 points. At each workspace location, all the

self-motion manifolds are calculated, and each component of the objective function F in (3.30),

i.e., 1
3
(1σm,c0 +

2 σm,c0 +
3 σm,c0),

1σm,c1 , 2σm,c2 and 3σm,c3 are evaluated along all the self-motion

manifolds. The maximum values of each component of the objective function are saved, and
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the sum of them is the optimal objective function value at each workspace location. Finally, the

maximal objective function value over all the sampled points in the workspace is saved as the

optimal objective function value for each set of link lengths.

Figure 3.4 shows the value of the objective function F in (3.30) for each set of link lengths.

These results are shown for the version of the optimization that includes the constraint that all

the f(ci)’s are equal. However, it is interesting to point out that if one solves the unconstrained

problem, these same configurations will be part of a larger set of equally optimal configurations.

Thus one does not lose any optimality by constraining the task to be at the same location before

and after a joint failure. From Figure 3.4 one can also see that there is a family of optimal robots

that have the same value of the objective function. All these optimal robots have the property that

the third link length is equal to 0.4, i.e. l1 + l2 = 0.6.

00.20.4
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Figure 3.4: The objective function values F for all possible link lengths, which have been normalized to

equal one, is shown. Note that there is a family of optimal robots that have the same value of the objective

function F along the line where l3 = 0.4.

To distinguish between the robots in this optimal family, the values for each component of

the objective function F for all possible link lengths are shown in Figure 3.5. These figures are

obtained by the same method as describe above, only replacing the objective function by each

component. Because l3 = 1 − l1 − l2, the value of each component of the objective function is

only plotted as a function of l1 and l2. From Figure 3.5, one can see that the optimization of F also
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Figure 3.5: The value of each component of the objective function F is plotted for all the sets of link

lengths, with the first component, i.e., 1
3(

1σm +2 σm +3 σm), shown in (a) and the components for the

individual joint failures, i.e., 1σm, 2σm and 3σm, shown in (b)-(d), respectively. Note that in (a), for the

robots with link lengths l1 + l2 < 0.6, the optimal value of 1
3(

1σm +2 σm +3 σm) is a function of the sum

l1 + l2. In (b), the functional dependence of the optimal value of 1σm depends on whether the link lengths

are above or below the line defined by l1 = 1 − (
√
2/2 + 1)l2. If below, then 1σm is only a function of l2

and if above it is a function of the sum l1 + l2. In (c), for all the robots, the optimal value of 2σm is only a

function of the sum l1 + l2. In (d), for all the robots, the optimal value of 3σm is only a function of l1.
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results in the optimization of the equal failure probability case, i.e., 1
3
(1σm +2 σm +3 σm), shown

in (a) and the joint two failure case, i.e., 2σm, shown in (c) individually. Unfortunately, the joint

one and three cases, i.e., 1σm and 3σm, shown in (b) and (d), respectively, are directly competing

with each other. Obviously, one can select the weighting between these two cases based on failure

probabilities, but if failures in joint one and three are equally likely, then the optimal link lengths

are when l1 = l2 = 0.3 (with l3 = 0.4). It turns out that the optimal configurations for each of

the four components of F are very close to each other, i.e., optimization of the equal probability

and joint two failure cases result in θ = [59◦, 39◦, 115◦] (shown in Figure 3.6) and for the joint

one and three failure cases result in θ = [55◦, 44◦, 111◦]. This is fortunate, because this means

that the robot only needs to slightly adjust its configuration when the joint failure probabilities are

changing. However, this will not always be true, as shown in Figure 3.7, which depicts the optimal

configurations for the robot with l = [0.43, 0.29, 0.28].

Figure 3.6: The optimally fault tolerant planar 3R robot where l = [0.30, 0.30, 0.40] is shown at the optimal

configuration for the equal failure probability case, i.e., 1
3(

1σm +2 σm +3 σm).

3.5 Chapter Summary

This chapter presented methods to design optimally fault tolerant robots for different joint

failure probabilities. It was shown that for an arbitrary set of joint failure probabilities, the optimal
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Figure 3.7: The optimal configurations for each component of the objective function are shown for the robot

with l = [0.43, 0.29, 0.28]. Note that the configuration for optimizing one of the cases is quite different from

the others, which was not the case for the robot depicted in Figure. 3.6.

null space satisfies |n̂i| = wi/
√

w2
1 + w2

2 + · · ·+ w2
n, where the ratio of each element is equal

to the ratio of the failure probabilities of the different joints. Based on the optimal null space,

isotropic Jacobians for an arbitrary number of joints are constructed, and the kinematic parameters

of the robots are generated from these optimal Jacobians. In addition, a method for designing an

optimal spatial 7R manipulator Jacobian is derived, and it is shown that such optimal 7R designs

do not exist for all possible joint failure probabilities. An example of such a case is that of equal

joint failure probabilities. However, an optimal Jacobian for nearly equal joint failure probabilities

is given. Furthermore, a method for designing optimally fault tolerant robots for multiple cases of

joint failure probabilities is introduced and the design of optimal planar 3R robots is given as an

illustrative example. It was shown that there exists a family of optimal robots whose last link length

is equal to 40% of the total link length. This family of robots are also shown to be optimal for the

case of equally likely joint failures, as well as failures in joint two. However, the optimization for

failures in joints one and three are directly competing, so that one must select a particular design

based on the failure probabilities of these joints.
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Chapter 4

Maximizing Probability of Task Completion with

Locked Joint Failures

4.1 Chapter Overview

As described in Subsection 1.3.3, in the studies of fault tolerant motion planning, the end-

effector tasks can be classified into three categories: point-to-point tasks, path tracking tasks and

trajectory tracking tasks. The first type of task, i.e., point-to-point tasks, is studied in this chapter.

The existing fault tolerant motion planning algorithm for point-to-point tasks is to constraint the

robot configuration to the intersection of all bounding boxes enclosing the self-motion manifolds

of each task point. However, when there are many task points or task points are far away from

each other, there usually does not exist an intersection between the self-motion manifolds of all

task points. Furthermore, even though there exists an intersection, the robot may not be able to

reach all the task points when restricted to this intersection. In both these two cases, one can not

guarantee a fault tolerant joint trajectory. Therefore, similar to the reliability map for path tracking

tasks, this chapter studies the fault tolerant motion planning problem for point-to-point tasks from

a probability point of view. Specifically, given a starting configuration in the joint space and a set of

ordered tasks points in the task space, one needs to plan a trajectory from the starting configuration

to these tasks points in the specified order that maximizes the probability of completing the tasks

with locked joint failures. The main contributions of this chapter are as follows: (1) the failure

probability of an arbitrary joint path is identified; (2) the method of planning the trajectory with

minimum probability of task failure is proposed.
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4.2 Calculating the Probability of Task Failure for an Arbi-

trary Joint Trajectory

4.2.1 Self-motion Manifolds

Given a set of joint angles θθθ, the end-effector position of the robot x can be easily obtained by

the following forward kinematics equation,

x = f(θθθ). (4.1)

However, the inverse kinematics of a robot is much more complicated. In particular, for redundant

robots, there may exist an infinite number of joint angles for a given end-effector position due

to the extra DOFs. The self-motion manifolds of this task point consist of all these joint angles.

When the robot moves along these self-motion manifolds, the end-effector of the robot stays at the

same position. It is important to note that the dimension of the self-motion manifold is equal to the

degree of redundancy.

For one degree of redundancy, arguably the most common way to calculate the self-motion

manifolds of a task point is to move along the null vector of the Jacobian with a small step to reach

a new configuration on the self-motion manifold, and repeat this operation. This works because

the null vector is tangent to the self-motion manifold.

4.2.2 Joint Space Division

To efficiently compute the failure probability of a trajectory, one can first divide the joint space

up into regions of different “failure scenarios”, that correspond to specific joints failing and whether

that failure prevents the robot from reaching the desired task points. The boundaries of these

regions correspond to the limits on the ranges of the self-motion manifolds. These boundaries can

be easily identified because the corresponding element of the null vector is zero.

It is important to point out that after each task point is reached, the joint space needs to be

re-divided by different boundaries. This is true because after one of the task points is reached,
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one only needs to check the reachability of the remaining task points that have not been reached.

Therefore, the joint space is divided by the boundaries of the self-motion manifolds intersections

of all the remaining task points that have not been reached. These intersections are updated after

each task point is reached. A simple two-dimensional example with two task points is shown

in Figure 4.1 to illustrate the concept of regions. The blue and green curves are the self-motion

manifolds of task points 1 and 2, respectively. In Figure 4.1a, the robot moves from the start

configuration to task point 1, and one needs to check whether the robot is still able to reach both task

point 1 and 2 after an arbitrary failure. The dashed lines are the θ1 boundaries of the self-motion

manifolds intersections of task point 1 and 2, and the dash-dotted lines are the θ2 boundaries. The

entire joint space is divided into 9 regions by these boundaries. After task point 1 is reached, the

robot moves towards task point 2, and one only needs to check the reachability of task point 2. In

Figure 4.1b, the dashed lines are the θ1 boundaries of the self-motion manifold of task point 2, and

the dash-dotted lines are the θ2 boundaries. The entire joint space is re-divided into 9 regions by

these boundaries.

One now needs to categorize each of these regions based on their failure scenarios. For exam-

ple, consider region 1 in Figure 4.1a where regardless of whether joint 1 or joint 2 fails, task points

1 and 2 are no longer reachable. Because if either joint 1 or joint 2 fails, then the robot can only

move either vertically or horizontally, respectively. Thus for region 1 in Figure 4.1a we define two

failure scenarios: A, which is when joint 1 fails in this region and B, which is when joint 2 fails in

this region. In either scenario, it does not matter whether the other joint fails or not. Now consider

region 5 in Figure 4.1a, which is the intersection of the bounding boxes of the two self-motion

manifolds. If joint 1 is locked in any position in this region the robot is still able to reach both task

points 1 and 2, unless joint 2 is also locked in the subsequent post-failure trajectory. This is also

true if joint 2 is locked in any position in this region, unless joint 1 is also locked in the subsequent

post-failure trajectory. Therefore, the failure scenarios of region 5 in Figure 4.1a are: C, which is

when joint 1 fails in this region, and joint 2 also fails in the subsequent post-failure trajectory and

D, which is when joint 2 fails in this region, and joint 1 also fails in the subsequent post-failure
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(a) (b)

Figure 4.1: The joint space is divided into different regions according to the boundaries of the self-motion

manifolds intersections of all the remaining task points that have not been reached. The blue and green

curves are the self-motion manifolds of task point 1 and 2, respectively. The robot moves from the start

configuration to task point 1, and entire joint space is divided into 9 regions by the boundaries of the self-

motion manifolds intersections of task point 1 and 2 in (a). The dashed lines are the θ1 boundaries of the

self-motion manifolds intersections of task point 1 and 2, and the dash-dotted lines are the θ2 boundaries.

After task point 1 is reached, the robot moves towards task point 2, and the entire joint space is re-divided

into 9 regions by the boundaries of the self-motion manifold of task point 2 in (b). The dashed lines are the

θ1 boundaries of the self-motion manifold of task point 2, and the dash-dotted lines are the θ2 boundaries.
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trajectory. The failure scenarios of the regions in Figure 4.1b can be identified in a similar way,

where only the reachability of task point 2 needs to be considered. It is important to note that the

failure scenarios will increase as the number of DOFs increases, however the failure scenarios can

be enumerated in an analogous manner.

Table 4.1 lists the failure scenarios of each region both before and after task point 1 has been

reached. In each situation, according to the failure scenarios, the regions can be classified into 4

categories, as shown in the table, and the regions belonging to the same category are shown in

Figure 4.2 using the same color. Obviously, in Figure 4.2a region 5 has the lowest probability of

task failure because it is the intersection of the bounding boxes of the two self-motion manifolds.

This is also true in Figure 4.2b because region 5 is the bounding boxes of the self-motion manifold

of task point 2. In contrast, the regions belonging to Category 1 both before and after task point

1 has been reached have the highest probability of task failure. Note that higher dimensional joint

spaces can be divided and categorized in a similar manner.

(a) (b)

Figure 4.2: The joint space is classified into four categories according to the failure scenarios of each region

both before task point 1 has been reached in (a) and after task point 1 has been reached in (b), where each

category is shown in a different color.
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Table 4.1: The task failure scenarios of the different regions in the joint space

category regions
failure scenarios

task 1 not reached task 1 reached

1 1, 3, 7, 9 A, B A, B

2 2, 8 B, C B, C

3 4, 6 A, D A, D

4 5 C, D C, D

Task failure scenarios:

A: joint 1 fails in this region, regardless of whether joint 2 is healthy or locked in the subsequent

post-failure trajectory.

B: joint 2 fails in this region, regardless of whether joint 1 is healthy or locked in the subsequent

post-failure trajectory.

C: joint 1 fails in this region, and joint 2 also fails in the subsequent post-failure trajectory.

D: joint 2 fails in this region, and joint 1 also fails in the subsequent post-failure trajectory.

4.2.3 Failure Probability Calculation

For an arbitrary joint trajectory, it may go through different regions with different failure sce-

narios. To calculate its probability of task failure, the trajectory needs to be divided into several

pieces according to the regions. For example, the joint trajectory in Figure 4.3a goes through re-

gion 1 and 4 when the robot moves from the start configuration to task point 1. After task point 1

is reached, the joint space is re-divided, and the joint trajectory in Figure 4.3b goes through region

4 and 5 when the robot moves towards task points 2. Therefore, the entire trajectory is divided into

4 pieces. Based on the failure scenarios of each region, the probability of task failure is calculated

for each piece. The sum of the individual probabilities is the probability of task failure for the

entire trajectory.

As shown in Table 4.1, there are a total of four types of failure scenarios for a planar 2R robot,

and the probabilities of these four types are derived as follows. For simplicity, it is assumed that

the maximum velocity of each joint is equal, and each joint moves along the path in a constant

velocity v, which is some percentage of the maximum velocity. As each joint of the robot moves

independently, for a straight line joint trajectory, the time needed to finish this trajectory ∆t can be
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(a) (b)

Figure 4.3: The joint trajectory is divided into four pieces according to the regions. When the robot moves

from the start configuration to task point 1, the joint trajectory goes through region 1 and 4 in (a). After task

point 1 is reached, the joint space is re-divided, and the joint trajectory goes through region 4 and 5 in (b).

calculated as

∆t =
max(∆θ1,∆θ2, ...,∆θn)

v
, (4.2)

where ∆θi, i = 1, 2, ..., n is the distance that joint i moves.

For failure scenario A, if joint one fails in any position, then the task can not be completed.

Thus, the probability of task failure in scenario A, denoted PA, is equal to the probability of joint

1 failing in this region, i.e.,

PA = eλ1t0 − eλ1t1 = eλ1t0 − eλ1(t0+∆t1), (4.3)

where λ1 is the failure rate of joint 1, t0 is the time when the robot moves into this region, and

∆t1 is the time period spent in the region. Similarly, the probability of task failure in scenario B,

denoted PB, is

PB = eλ2t0 − eλ2t1 = eλ2t0 − eλ2(t0+∆t1), (4.4)

where λ2 is the failure rate of joint 2. For failure scenario C, the post-failure trajectory to reach

the task points depends on the position where joint 1 is locked, i.e., the time period spent in the
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post-failure trajectory ∆t2 is a function of the time when joint 1 fails. Therefore, the probability of

task failure in scenario C, denoted PC , is

PC =

∫ t0+∆t1

t0

λ1e
−λ1t × (eλ2t − eλ2(t+∆t2)) dt, (4.5)

where the term λ1e
−λ1t is the failure density function of joint 1 at time t, and the second factor is

the failure probability of joint 2 failing in the post-failure trajectory when joint 1 fails at time t.

Similarly, the probability of task failure in scenario D, denoted PD, is

PD =

∫ t0+∆t1

t0

λ2e
−λ2t × (eλ1t − eλ1(t+∆t2)) dt. (4.6)

The probabilities of failure scenarios A and B can be directly calculated using (4.3) and (4.4)

because the value of ∆t1 can be computed. However, the value of ∆t2 depend on when the failure

occurs. As a result, to estimate the probability of task failure in scenario C or D, the entire trajec-

tory is divided into small segments where all post-failure trajectories that occur in a segment are

considered constant.

Figure 4.4 shows examples of estimating the probabilities of failure scenarios C and D in a

small segment shown in red. Note that task point 1 is not reached yet in Figure 4.4, and the failure

scenarios of this small segment are failure scenarios C and D, shown in (a) and (b), respectively.

In failure scenario C, the new trajectory to reach both task points 1 and 2 after joint 1 fails in this

segment is the dashed line in Figure 4.4a. Therefore, the probability of failure scenario C in the

segment, denoted ∆PC , is approximately equal to the probability of joint 1 failing in this segment

times the probability of joint 2 failing in the post-failure trajectory, i.e.,

∆PC = (e−λ1t0 − eλ1t1)(e−λ2t1 − eλ2t2)

= (e−λ1t0 − eλ1(t0+∆t1))(e−λ2(t0+∆t1) − eλ2(t0+∆t1+∆t2)),

(4.7)

where t0 is the time when the robot moves into this segment, t1 is the time when the robot moves

out of this segment, and t2 is the time when the robot reaches task point 2. ∆t1 is the time period
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spent in this segment. ∆t2 is the time period spent in the post failure trajectory, which can be

calculated by ∆t2 = ∆θ2,post/v, where ∆θ2,post is the distance joint 2 moves in the post failure

trajectory, as shown in Figure 4.4a.

Similarly, in failure scenario D, the new trajectory to reach both task points 1 and 2 after joint 2

fails in this segment is the dashed line in Figure 4.4b. Therefore, the probability of failure scenario

D in the segment, denoted ∆PD, is approximately equal to the probability of joint 2 failing in this

segment times the probability of joint 1 failing in the post-failure trajectory, i.e.,

∆PD = (e−λ2t0 − eλ2t1)(e−λ1t1 − eλ1t2)

= (e−λ2t0 − eλ2(t0+∆t1))(e−λ1(t0+∆t1) − eλ1(t0+∆t1+∆t2)),

(4.8)

where ∆t2 can be calculated by ∆t2 = ∆θ1,post/v, where ∆θ1,post is the distance joint 1 moves in

the post failure trajectory, as shown in Figure 4.4b. For the segment whose path already reaches

task point 1, the new trajectories after joint 1 or 2 fails in this segment only need to reach task point

2, as shown in Figure 4.5.

4.3 Planning the Trajectory with Minimum Probability of Task

Failure

4.3.1 Overview

Once a method for estimating the probability of task failure is determined, it is desired to

find the trajectory with minimum probability of task failure for a given set of task points. For

simplicity, it is assumed that only one joint is going to fail during the motion, i.e., only failure

scenario A and B will happen. It makes sense because the failure probability in scenario C and D

is relatively small compared with the failure probability in scenario A and B, which can be ignored

when checking the failure probability of a joint trajectory. Based on this assumption, there are

two cases for identifying the optimal trajectory with minimum probability of task failure. The

first one is that there exists an intersection (or intersections) between the self-motion manifold
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(a) (b)

Figure 4.4: The method of how to estimate the probability of failure scenarios C and D are shown. In (a), it

is assumed that regardless of where joint 1 fails in the small segment shown in red, the post-failure trajectory

is the dashed line with distance ∆θ2,post. The probability of failure scenario C in this small segment is equal

to the probability of joint 1 failing in this segment times the probability of joint 2 failing in the post-failure

trajectory. Similarly, the dashed line in (b) with distance ∆θ1,post is the new trajectory after joint 2 fails in

the segment. The probability of failure scenario D in this small segment is equal to the probability of joint 2

failing in this segment times the probability of joint 1 failing in the post-failure trajectory.

Figure 4.5: In the cases where task point 1 is reached, the new trajectories to reach task point 2 after joint 1

or 2 fails in the segment are shown as ∆θ2,post and ∆θ1,post, respectively.
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bounding boxes of all the task points, and there exists self-motion manifolds of task point i in the

intersection(s) between the self-motion manifold bounding boxes of task point i, i+1, ..., n, where

i = 1, 2, ..., n − 1. If the self-motion manifolds of the task points do not satisfy the above two

conditions in Case 1, then these situations all belong to Case 2.

A simple two-dimensional example with two task points is shown in Figure 4.6 and Figure 4.7

to illustrate these two cases, respectively. In Figure 4.6, the bounding boxes of the self-motion

manifolds of task point 1 and 2 intersect each other, and there exists the self-motion manifold

of task point 1 in the intersection, which belongs to Case 1. In this case, the optimal trajectory

with minimum probability of task failure is the optimal trajectory from the start configuration

to the intersection of the bounding boxes. This is true because as long as the robot reaches the

intersection, regardless of which joint fails, the robot can always reach task point 1 (recalling that

only one joint is going to fail). After task point 1 is reached in the intersection, the robot is already

inside the bounding box of the self-motion manifold of task point 2, so the robot can always reach

task point 2 after an arbitrary failure. The details on how to find the optimal trajectory from the start

configuration to the intersection of the bounding boxes will be discussed in the next subsection.

Figure 4.7 shows two different situations belonging to Case 2. The bounding boxes of the self-

motion manifolds of task point 1 and 2 shown in Figure 4.7a intersect each other. However, if the

robot is restricted to this intersection, the robot is not able to reach task point 1. In Figure 4.7b,

there does not exist an intersection between the bounding boxes of the self-motion manifolds of

task point 1 and 2. In this case, to find the optimal trajectory with minimum probability of task

failure, all the configurations along the self-motion manifold of task point 1 need to be checked.

For each configuration of task point 1, the optimal trajectory from the start configuration to this

specific configuration and the optimal trajectory from this specific configuration to the bounding

box of the self-motion manifold of task 2 need to be identified, respectively. The total failure

probability of this trajectory is equal to the sum of the failure probabilities of these two pieces.

The optimal trajectory from start configuration to task point 1 and 2 can be eventually determined

by choosing the trajectory with smallest failure probability among all the trajectories. The details
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on how to find the optimal trajectory from the start configuration to a configuration of task point 1

and the optimal trajectory from this configuration to the bounding box of the self-motion manifold

of task 2 will be discussed in Subsection 4.3.3.

Figure 4.6: An example of Case 1 is shown. There exists an intersection between the self-motion manifold

bounding boxes of task point 1 and 2, and there exists self-motion manifold of task point 1 in the intersection.

4.3.2 Planning the Optimal Trajectory in Case 1

In Case 1, the optimal trajectory with minimum probability of task failure is the optimal tra-

jectory from the start configuration to the intersection between the bounding boxes. To illustrate

the planning algorithm more clearly, a two-dimensional joint space is used as an example, and the

optimal trajectory in a higher dimensional joint space can be identified in an analogous manner.

As described in the above section, the joint space is divided into different regions based on the

intersection. For a two-dimensional joint space, there are three sub-cases according to the region

of the start configuration. Sub-case 1 is the start configuration is already in the intersection, where

the robot can pick an arbitrary trajectory in the intersection, because the failure probabilities of all

these trajectories are all equal to zero.

60



(a) (b)

Figure 4.7: Two situations belonging to Case 2 are shown. In (a), there exists an intersection between the

self-motion manifold bounding boxes of task point 1 and 2, but there does not exist self-motion manifold

of task point 1 in the intersection. In (b), there even does not exist an intersection between the self-motion

manifold bounding boxes of task point 1 and 2.

Sub-case 2 is when the start configuration is in a region whose failure scenario is only A or

only B, i.e., region 2, 4, 6 or 8 as shown in Figure 4.8. In this sub-case, the optimal trajectories are

the trajectories that satisfy max(∆θ1,∆θ2) is equal to the θ1 distance (region 4, 6) or θ2 distance

(region 2, 8) from the start configuration (the red star in Figure 4.8) to the intersection between the

bounding boxes, which are the black trajectories in Figure 4.8, where ∆θ1 and ∆θ2 are the distance

of the trajectory in θ1 and θ2. One can pick the optimal trajectory from these potential trajectories

based on other criterion. Among these optimal trajectories, the red one in Figure 4.8 is the shortest

distance trajectory from the start configuration to the intersection between the bounding boxes.

Sub-case 3 is when the start configuration is in a region whose failure scenarios are scenario

A and B, i.e., region 1, 3, 7 or 9. To minimize the failure probability, the robot should move to

the intersection in θ1 or θ2 as soon as possible, so there are two ways to reach the intersection

between the bounding boxes, as shown in Figure 4.9. Let ∆θ′1 and ∆θ′2 be the θ1 and θ2 distance

from the start configuration to the intersection between the bounding boxes, respectively. The

first way is the robot can first reach the intersection in θ1 by rotating ∆θ′1 in joint 1 and ∆θ2 in

joint 2 simultaneously, and then the robot can reach the intersection between the bounding boxes

61



Figure 4.8: The optimal trajectories when the start configuration is in regions whose failure scenarios are

scenario B, C or A, D are shown. The red trajectory is the shortest distance trajectory.

by rotating ∆θ′2 − ∆θ2 (∆θ′2 ≥ ∆θ2) in joint 2. The other way is the robot can first reach the

intersection in θ2 by rotating ∆θ1 in joint 1 and ∆θ′2 in joint 2 simultaneously, and then the robot

can reach the intersection between the bounding boxes by rotating ∆θ′1 − ∆θ1 (∆θ′1 ≥ ∆θ1 ) in

joint 1. The failure probability of the trajectory in the first way can be calculated by

P1 =e−λ1t0 − e−λ1(t0+
max(∆θ′1,∆θ2)

v
) + e−λ2t0 − e−λ2(t0+

max(∆θ′1,∆θ2)

v
)+

e−λ2(t0+
max(∆θ′1,∆θ2)

v
) − e−λ2(t0+

max(∆θ′1,∆θ2)

v
+

∆θ′2−∆θ2
v

)

=e−λ1t0 − e−λ1(t0+
max(∆θ′1,∆θ2)

v
) + e−λ2t0 − e−λ2(t0+

max(∆θ′1,∆θ2)

v
+

∆θ′2−∆θ2
v

).

(4.9)

Similarly, the failure probability of the trajectory in the second way can be calculated by

P2 =e−λ1t0 − e−λ1(t0+
max(∆θ′2,∆θ1)

v
) + e−λ2t0 − e−λ2(t0+

max(∆θ′2,∆θ1)

v
)+

e−λ1(t0+
max(∆θ′2,∆θ1)

v
) − e−λ1(t0+

max(∆θ′2,∆θ1)

v
+

∆θ′1−∆θ1
v

)

=e−λ1t0 − e−λ1(t0+
max(∆θ′2,∆θ1)

v
+

∆θ′1−∆θ1
v

) + e−λ2t0 − e−λ2(t0+
max(∆θ′2,∆θ1)

v
).

(4.10)

If ∆θ′1 = ∆θ′2, i.e., the θ1 distance from the start configuration to the intersection between the

bounding boxes is equal to the θ2 distance from the start configuration to the intersection between
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the bounding boxes,

P1 = e−λ1t0 − e−λ1(t0+
∆θ′1
v

) + e−λ2t0 − e−λ2(t0+
∆θ′1+∆θ′2−∆θ2

v
), (4.11)

P2 = e−λ1t0 − e−λ1(t0+
∆θ′2+∆θ′1−∆θ1

v
) + e−λ2t0 − e−λ2(t0+

∆θ′2
v

). (4.12)

When ∆θ2 = ∆θ′2, P1 reaches its minimum

P ∗

1 = e−λ1t0 − e−λ1(t0+
∆θ′1
v

) + e−λ2t0 − e−λ2(t0+
∆θ′1
v

), (4.13)

and when ∆θ1 = ∆θ′1, P2 reaches its minimum

P ∗

2 = e−λ1t0 − e−λ1(t0+
∆θ′2
v

) + e−λ2t0 − e−λ2(t0+
∆θ′2
v

). (4.14)

Because ∆θ′1 = ∆θ′2, P
∗

1 = P ∗

2 , the optimal trajectory is the straight line from the start config-

uration to the corner of the intersection between the bounding boxes, which is shown in red in

Figure 4.9a. If ∆θ′1 > ∆θ′2, i.e., the θ1 distance from the start configuration to the intersection

between the bounding boxes is larger than the θ2 distance from the start configuration to the inter-

section between the bounding boxes, P1 and its minimum value are still equal to (4.11) and (4.13),

respectively. The failure probability of the second way P2 depends on the values of ∆θ′2 and ∆θ1.

If ∆θ′1 > ∆θ′2 ≥ ∆θ1, P2 is still equal to (4.12), and when ∆θ1 = ∆θ′2, P2 reaches its minimum

P ∗

2 = e−λ1t0 − e−λ1(t0+
∆θ′1
v

) + e−λ2t0 − e−λ2(t0+
∆θ′2
v

). (4.15)

If ∆θ′1 > ∆θ1 ≥ ∆θ′2, P2 becomes

P2 = e−λ1t0 − e−λ1(t0+
∆θ′1
v

) + e−λ2t0 − e−λ2(t0+
∆θ1
v

). (4.16)
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When ∆θ1 = ∆θ′2, it reaches the minimum, which is the same as (4.15). Because ∆θ′1 > ∆θ′2,

P ∗

2 in (4.15) is smaller than P ∗

1 in (4.13), so the optimal trajectory is the robot first rotates ∆θ′2

in both joint 1 and joint 2 to reach the intersection in θ2, and then it rotates ∆θ′1 − ∆θ′2 in joint 1

to reach the intersection between the bounding boxes, which is shown in red in Figure 4.9b. This

result also makes senses from a physical point of view. The robot tries to reach a closer intersection

(intersection in θ2) first, and then reach the intersection between the bounding boxes. In the first

piece, all the trajectories that satisfies ∆θ1 ≤ ∆θ′2 spend the same amount of time, i.e., the failure

probabilities of the trajectories are all the same, so the optimal one is rotating ∆θ′2 in both joint 1

and joint 2 to minimize the distance of the trajectory in the second piece. When ∆θ′1 < ∆θ′2, the

optimal trajectory can be obtained in an analogous manner by flipping θ1 and θ2, which is shown

in red in Figure 4.9c.

4.3.3 Planning the Optimal Trajectory in Case 2

The method to find the optimal trajectory in Case 2 will be discussed in this subsection. In

Case 2, all the configurations along the self-motion manifold of task point 1 need to be checked.

For each configuration of task point 1, the optimal trajectory from the start configuration to this

specific configuration and the optimal trajectory from this specific configuration to the bounding

box of the self-motion manifold of task 2 need to be identified, respectively. Applying the method

presented in the above subsection, the second piece, i.e., the optimal trajectory from one specific

configuration of task point 1 to the bounding box of the self-motion manifold of task 2 can be

identified easily. When the method is employed, the start configuration is substituted by the con-

figuration of task point 1, and the intersection between the bounding boxes is substituted by the

bounding box of the self-motion manifold of task point 2. The intersection in θ1 is substituted by

the θ1 range of the self-motion manifold of task point 2, and the intersection in θ2 is substituted

by the θ2 range of the self-motion manifold of task point 2. The key problem is how to find the

optimal trajectory from the start configuration to one configuration of task point 1.
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(a) (b)

(c)

Figure 4.9: The optimal trajectory from the start configuration to the intersection between the bounding

boxes is shown. In (a), the distance in θ1 from the start configuration to the intersection between the bound-

ing boxes ∆θ′1 is equal to the distance in θ2 from the start configuration to the intersection between the

bounding boxes ∆θ′2. The optimal trajectory is the straight line from the start configuration to the corner of

the intersection between the bounding boxes. In (b), when ∆θ′1 > ∆θ′2, the optimal trajectory is the robot

first rotates ∆θ′2 in both joint 1 and joint 2 to reach the intersection in θ2, and then it rotates ∆θ′1 − ∆θ′2
in joint 1 to reach the intersection between the bounding boxes. In (c), when ∆θ′1 < ∆θ′2, the optimal

trajectory is the robot first rotates ∆θ′1 in both joint 1 and joint 2 to reach the intersection in θ1, and then it

rotates ∆θ′2 −∆θ′1 in joint 2 to reach the intersection between the bounding boxes.
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To illustrate the planning algorithm more clearly, a two-dimensional joint space is used as an

example, and the optimal trajectory in a higher dimensional joint space can be identified in an

analogous manner. Similarly to the method presented in the above section, there are two sub-cases

according to the relation between the region of the start configuration and the region of the task

point 1 configuration. Sub-case 1 is the start configuration and the configuration of task point 1

are in the same region. One potential trajectory is the straight line from the start configuration

to the configuration of task point 1. This is the optimal trajectory when the region of the start

configuration and the configuration of task point 1 has the fewest number of failure scenarios

compared with other regions, as shown in Figure 4.10. In Figure 4.10a, the bounding boxes of

the self-motion manifolds of task point 1 and 2 do not intersect in neither θ1 or θ2, so the joint

space is only divided into one region, whose failure scenarios are A and B. Obviously, the optimal

trajectory is the straight line from the start configuration to the configuration of task point 1. In

Figure 4.10b, the bounding boxes of the self-motion manifolds of task point 1 and 2 intersect

each other in θ2, so the joint space is divided into three regions. The start configuration and the

configuration of task point 1 is in the region with the fewest number of failure scenarios, which is

failure scenario A. Therefore, the optimal trajectory is the straight line from the start configuration

to the configuration of task point 1.

However, when the adjacent regions have a fewer number of failure scenarios, to minimize the

failure probability, the robot may first go into these regions as soon as possible, and then reach

task point 1, as shown in Figure 4.11. The robot may go into only one adjacent region to reach

task point 1, as shown in Figure 4.11a, and in some situations the robot may need to go through

two adjacent regions to reach task point 1, as shown in Figure 4.11b. As described in the above

subsection, to minimize the distance of the trajectories in the adjacent regions, the robot will rotate

the same amount of degrees in both joint 1 and joint 2 when the robot goes into and outside of

the adjacent regions, which spends the same amount of time to go into and outside of the region

directly. In this sub-case, all these potential trajectories including the straight-line trajectory from

the start configuration to the configuration of task point 1 are identified first, and then the failure
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(a) (b)

Figure 4.10: The optimal trajectory from the start configuration to the configuration of task point 1 is the

straight line when the start configuration and the configuration of task point are in the same region with the

fewest number of failure scenarios. In (a), the bounding boxes of the self-motion manifolds of task point 1

and 2 do not intersect in neither θ1 or θ2, so the joint space is only divided into one region, whose failure

scenarios are A and B. In (b), the bounding boxes of the self-motion manifolds of task point 1 and 2 intersect

each other in θ2, so the joint space is divided into three regions. The start configuration and the configuration

of task point 1 is in the region with the fewest number of failure scenarios, which is failure scenario A.

probabilities of all these potential trajectories are calculated. The trajectory with the smallest

failure probability is the optimal trajectory from the start configuration to the configuration of task

point 1.

To figure out all the potential trajectories, one need to figure out the potential adjacent regions

that the robot may go into from the start configuration and go outside of to reach the configuration

of task point 1, respectively. These adjacent regions need to satisfy the following four condi-

tions. (1) the adjacent region must be inside the joint space, i.e. the boundaries of the adjacent

region is between −π and π. (2) The number of the failure scenarios of this adjacent region is

smaller than the region of the start configuration and the configuration of task point 1. (3) The

distance from the start configuration (or the configuration of task point 1) to this region is smaller

than max(∆θ′1,∆θ′2), where ∆θ′1 and ∆θ′2 are the θ1 distance and θ2 distance between the start

configuration and the configuration of task point 1, respectively. (4) When the robot rotate the

same amount of degrees in both joint 1 and joint 2 to go into the adjacent region from the start

configuration (or go outside of the adjacent region to reach the configuration of task point 1), the
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(a) (b)

Figure 4.11: When the start configuration and the configuration of task point are in the same region whose

failure scenarios are more than its adjacent regions, the robot may need to go into adjacent regions to reach

task point 1. In (a), the robot may only go into one adjacent region to reach task point 1. In (b), the robot

may need to go through two adjacent regions to reach task point 1.

configuration arriving (or leaving) the adjacent region should be still inside the boundaries of the

adjacent region. After the sets of the potential adjacent regions that the robot may go into from

the start configuration and go outside of to reach the configuration of task point 1 are identified,

respectively, all the potential trajectories from the start configuration to the configuration of task

point 1 can be obtained by taking the combinations between these two sets. The valid combination

should satisfy that the sum of the distance from the start configuration to its associated adjacent

region and the distance from the configuration of task point 1 to its associated adjacent region is

smaller than max(∆θ′1,∆θ′2); otherwise the failure probability of this potential trajectory will be

larger than the straight-line trajectory from the start configuration to the configuration of task point

1. Finally, the optimal trajectory is the trajectory with the smallest failure probability.

Sub-case 2 is the start configuration and the configuration of task point 1 are in different re-

gions. For this sub-case, one potential trajectory is the robot first goes into the region with the

fewest number of failure scenarios by following the trajectory with minimum failure probability,

and then it goes through the optimal region. Last, the robot goes outside of that region to reach

the configuration of task point 1 also by following the trajectory with minimum failure probability.

68



The first piece, i.e., the trajectory from the start configuration to the region with the fewest number

of failure scenarios, can be determined by applying the method described in the above subsection.

This is also true for the trajectory from the optimal region to the configuration of task point 1,

where the start configuration is substituted by the configuration of task point 1. Last, the config-

uration that the robot arrives the optimal region from the start configuration and the configuration

that the robot leaves the optimal region to reach the configuration of task point 1 are connected by

straight line, as shown in Figure 4.12.

Figure 4.12: The potential trajectory from the start configuration to the configuration of task point 1 when

they are in different regions. The robot first goes into the region with the fewest number of failure scenarios

by following the trajectory with minimum failure probability, and then it goes through the optimal region

in straight line. Last, the robot goes outside of that region to reach the configuration of task point 1 also by

following the trajectory with minimum failure probability.

However, when the start configuration and the configuration of task point 1 are in the regions

with the same boundaries in θ1 or θ2, the robot may not need to go through the regions with the

fewest number of failure scenarios. In this situation, the region with the fewest number of failure

scenarios among the region of the start configuration, the region of the configuration of task point

1 and the regions between them need to be identified first. The robot goes into this region from

the start configuration by following the trajectory with minimum failure probability, then it goes
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through this region. Last, the robot goes outside of that region to reach the configuration of task

point 1 also by following the trajectory with minimum failure probability. Comparing the failure

probabilities of the two potential trajectories going through and not going through the optimal

region, one can find the optimal trajectory from the start configuration to the configuration of task

point 1 when they are in different regions with the same boundaries in θ1 or θ2.

An example of the potential trajectories when the start configuration and the configuration of

task point 1 are in the regions with the same boundaries in θ1 is shown in Figure 4.13. The start

configuration is in region 3 whose failure scenarios are A and B, and the configuration of task

point 1 is in region 6 whose failure scenario is only A. As these two regions are adjacent, the

optimal region between them is region 6. If the distance in θ1 between the start configuration and

the configuration of task point 1 denoted as ∆θ′1 is smaller than the distance in θ2 from the star

configuration to region 6 denoted as ∆θ′′2 , the robot rotates ∆θ′1 in joint 1 and ∆θ′′2 in joint 2 to

go into region 6 from the start configuration, and then rotates ∆θ′2 − ∆θ′′2 in joint 2 to reach the

configuration of task point 1, where ∆θ′2 is the distance in θ2 between the start configuration and

the configuration of task point 1, as shown in Figure 4.13a. Otherwise, the robot rotates ∆θ′′2 in

both joint 1 and joint 2 to go into region 6, and then rotates ∆θ′1 −∆θ′′2 in joint 1 and ∆θ′2 −∆θ′′2

in joint 2 to reach the configuration of task point 1, as shown in Figure 4.13b. This makes sense

because the robot first moves as much as needed but less than ∆θ′′2 in θ1 to reach region 6, and then

reaches the configuration of task point 1 in straight-line trajectory in region 6, because the number

of the failure scenarios in region 6 is fewer than that in region 3.

Another example is shown in Figure 4.14. The start configuration is in region 3 whose failure

scenarios are A and B, and the configuration of task point 1 is in region 9 whose failure scenarios

are also A and B. The region between them is region 6 whose failure scenario is only A. Therefore,

the optimal region among them is region 6. The potential trajectory is divided into three pieces.

The first piece is the robot moves as much as needed but less than ∆θ′′2 in θ1 to reach region 6. The

last piece is the robot moves as much as needed but less than ∆θ′′′2 in θ1 to leave region 6 and reach

the configuration of task point 1, where ∆θ′′′2 is the distance in θ2 from the configuration of task
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point 1 to region 6. The second piece is the straight line connecting the two configurations arriving

and leaving region 6.

(a) (b)

Figure 4.13: An example of the potential trajectory from the start configuration to the configuration of task

point 1 when they are in different regions with the same boundaries in θ1 is shown. In (a), the robot rotates

as much as needed in joint 1 and a determined value in joint 2 to go into region 6 from the start configuration,

and then only rotates joint 2 to reach the configuration of task point 1. In (b), the robot rotates the maximum

value allowed in joint 1 to minimize the failure probability and a determined value in joint 2 to go into region

6, and then rotates both joint 1 and joint 2 to reach the configuration of task point 1.

4.4 Illustrative Example for Planar 2R Redundant Robots

4.4.1 Optimal Trajectory in Case 1

The above algorithm for planning the trajectory with minimum probability of task failure in

Case 1, where there exists an intersection between the self-motion manifold bounding boxes of

task point 1 and 2, and there exists self-motion manifolds of task point 1 in the intersection, is

illustrated on a simple planar 2R robot. Only the x coordinate of the end-effector is controlled, so

the robot has one degree of redundancy. The results are shown in Fig. 4.15. The blue circles are the

discrete configurations along the self-motion manifold of task point 1, and the green circles are the

discrete configurations along the self-motion manifold of task point 2. The intersection between
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(a) (b)

(c)

Figure 4.14: Another example of the potential trajectory from the start configuration to the configuration

of task point 1 when they are in different regions with the same boundaries in θ1 is shown. In (a), the robot

rotates as much as needed in joint 1 and a determined value in joint 2 to go into region 6 from the start

configuration, and then only rotates joint 2 to go through region 6 and reach the configuration of task point

1. In (b), the robot rotates the maximum value allowed in joint 1 to minimize the failure probability and a

determined value in joint 2 to go into region 6, and rotates only joint 2 to go through region 6. Last, the

robot rotates as much as needed in joint 1 and a determined value in joint 2 to leave region 6 and reach the

configuration of task point 1. In (c), the robot rotates the maximum value allowed in joint 1 to minimize the

failure probability and a determined value in joint 2 to go into region 6 and go outside of region 6 to reach

the configuration of task point 1, and it rotates both joint 1 and joint 2 to go through region 6.
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the bounding boxes of these two self-motion manifolds is the bounding box of the self-motion

manifold of task point 1.

In Figure 4.15a, the start configuration is in a region whose failure scenario is only A, so it

belongs to sub-case 2. Recall that there are infinite number of optimal trajectories as long as the

trajectory satisfy that the θ2 distance of the trajectory is less than the θ1 distance from the start

configuration to the intersection. The red trajectory is the shortest distance trajectory from the start

configuration to the bounding box. In Figure 4.15b, the start configuration is in a region whose

failure scenarios are A and B, so it belongs to sub-case 3. The optimal trajectory is the robot

rotates the same amount of value in both joint 1 and joint 2 to reach the intersection in θ1 as soon

as possible, and then the robot rotates only joint 2 to reach the intersection of the bounding boxes.

θ
1

-π 0 π

θ
2

-π

0

π

(a)

θ
1

-π 0 π

θ
2

-π

0

π

(b)

Figure 4.15: Two illustrative examples of planning the optimal trajectories with minimum probability of

task failure in Case 1 for a planar 2R robot are shown. (a) is an example of sub-case 2 where the failure

scenario of the region of the start configuration is only A, and (b) is an example of sub-case 3 where the

failure scenarios of the region of the start configuration are A and B.

4.4.2 Optimal Trajectory in Case 2

An illustrative example of planning the trajectory with minimum probability of task failure

in Case 2 is shown in Figure 4.16, Figure 4.17 and Figure 4.18. In this example, there exists an

intersection between the bounding boxes of the self-motion manifolds of task point 1 and 2, which
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is the bounding box of the self-motion manifold of task point 2. However, there does not exist

the self-motion manifold of task point 1 in the intersection, so it belongs to Case 2, and all the

configurations along the self-motion manifold of task point 1 need to be checked. In Figure 4.16,

the start configuration and the configuration of task point 1 are in the same region, which belongs

to sub-case 1. The optimal trajectory from the start configuration to the configuration of task point

1 can be a straight-line trajectory as shown in Figure 4.16a, or the optimal trajectory goes through

an adjacent region with fewer number of failure scenarios and then reaches the configuration of

task point 1, as shown in Figure 4.16b.

Sub-case 2 is the start configuration and the configuration of task point 1 are in different re-

gions, as shown in Figure 4.17. From Figure 4.17a to Figure 4.17d, the start configuration and

the configuration of task point 1 are in different regions with the same boundaries in either θ1 or

θ2. The optimal trajectory from the start configuration to the configuration of task point 1 may go

though the intersection of the bounding boxes, i.e., the region with the fewest number of failure

scenarios, as shown in Figure 4.17a and Figure 4.17c, or the optimal trajectory goes from the re-

gion of the start configuration to the region of the task point 1 configuration directly, as shown in

Figure 4.17b and Figure 4.17d. When the start configuration and the configuration of task point 1

are in different regions with different boundaries in θ1 and θ2, the optimal trajectory from the start

configuration to the configuration of task point 1 must go through the intersection, as shown in Fig-

ure 4.17e. Finally, comparing the failure probabilities of all the trajectories going through different

configurations of task point 1, one can obtain the optimal trajectory with minimum probability of

task failure, as shown in Figure 4.18.

4.5 Chapter Summary

This chapter proposed an algorithm to plan a trajectory with minimum probability of task

failure with locked joints for point-to-point tasks. The joint space is first divided into different

regions based on the intersection of the self-motion manifold bounding boxes of all the task points,

and the failure scenarios of each region are identified. These regions can be further classified
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Figure 4.16: When the start configuration and the configurations of task point 1 are in the same region,

different optimal trajectories are shown. In (a), the optimal trajectory from the start configuration to the

configuration of task point 1 is a straight line, and in (b) the optimal trajectory goes through an adjacent

region with fewer number of failure scenarios and then reaches the configuration of task point 1.

into several categories based on their failure scenarios. After each task point is reached, the joint

space is re-divided based on the intersection of the self-motion manifold bounding boxes of all the

remaining task points. The probability of task failure of an arbitrary trajectory can be calculated

by dividing the trajectory into small segments, and the equations to calculate the probability of

task failure of each segment are derived based on different failure scenarios. After the method

to calculate the probability of task failure of an arbitrary trajectory is developed, an algorithm

is proposed to find the optimal trajectory with minimum probability of task failure. There are

two cases in finding the optimal trajectory. Case 1 is when there exists an intersection between

the self-motion manifold bounding boxes of all the task points, and there exists the self-motion

manifold of a task point in the intersection of this task point and its following ones. In this case,

the optimal trajectory is the trajectory with minimum probability of task failure from the start

configuration to the intersection of the bounding boxes, and there are three sub-cases according

to the region of the start configuration. All the other situations belong to Case 2, and in this case

all the configurations along the self-motion manifold of task point 1 need to be checked to find
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Figure 4.17: When the start configuration and the configurations of task point 1 are in different regions,

different optimal trajectories are shown. In (a) and (c), the optimal trajectory from the start configuration

to the configuration of task point 1 goes through the intersection of the bounding boxes, and in (b) and

(d) the optimal trajectory goes from the region of the start configuration to the region of the task point 1

configuration directly.
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Figure 4.18: The optimal trajectory with minimum probability of task failure is shown.

the trajectory with minimum probability of task failure. Finally, examples of planning optimal

trajectories for planar 2R redundant robots are given.
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Chapter 5

Conclusions

5.1 Summary

This work focuses on the kinematic design and motion planning of fault tolerant robots with

locked joint failures. The problem of kinematic design of optimally fault toelrant robots is first

studied in Chapter 2 and 3, and then the problem of planning the optimal trajectory with minimum

probability of task failure is studied in Chapter 4. Chapter 2 explored the structure and global pre-

and post-failure dexterity performance of the 7! robot designs generated from an optimally fault

tolerant Jacobian. It was shown that when describing the kinematic design of a robot in terms of

DH parameters for all joints, there are only 21 possible values of α and a for all 7! robot designs,

and there are 210 possible values of d and θ. In addition, these designs were organized into a

tree structure based on the possible choices for {α, a} pairs. It was also shown that each of the 7!

robot designs had a reverse version with very similar DH parameters but potentially very different

global properties. Furthermore, the global performance of the 7! robot designs was analyzed. It

was shown that there is a relatively strong correlation between performance measures computed in

the joint space and workspace, so that the computationally efficient joint space calculations could

be used to identify the best candidates for optimal designs in the workspace. These candidates

were further analyzed in the workspace to determine two Pareto optimal designs in terms of pre-

and post-failure dexterity, and the distribution of these measures throughout the workspace were

shown.

Chapter 3 presented methods to design optimally fault tolerant robots for different joint failure

probabilities. It was shown that for an arbitrary set of joint failure probabilities, the optimal null

space satisfies |n̂i| = wi/
√

w2
1 + w2

2 + · · ·+ w2
n, where the ratio of each element is equal to the

ratio of the failure probabilities of the different joints. Based on the optimal null space, isotropic

Jacobians for an arbitrary number of joints are constructed, and the kinematic parameters of the
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robots are generated from these optimal Jacobians. In addition, a method for designing an optimal

spatial 7R manipulator Jacobian is derived, and it is shown that such optimal 7R designs do not

exist for all possible joint failure probabilities. An example of such a case is that of equal joint

failure probabilities. However, an optimal Jacobian for nearly equal joint failure probabilities is

given. Furthermore, a method for designing optimally fault tolerant robots for multiple cases of

joint failure probabilities is introduced and the design of optimal planar 3R robots is given as an

illustrative example. It was shown that there exists a family of optimal robots whose last link length

is equal to 40% of the total link length. This family of robots are also shown to be optimal for the

case of equally likely joint failures, as well as failures in joint two. However, the optimization for

failures in joints one and three are directly competing, so that one must select a particular design

based on the failure probabilities of these joints.

Chapter 4 proposed an algorithm to plan a trajectory with minimum probability of task failure

with locked joints for point-to-point tasks. The joint space is first divided into different regions

based on the intersection of the self-motion manifold bounding boxes of all the task points, and

the failure scenarios of each region are identified. These regions can be further classified into

several categories based on their failure scenarios. After each task point is reached, the joint

space is re-divided based on the intersection of the self-motion manifold bounding boxes of all the

remaining task points. The probability of task failure of an arbitrary trajectory can be calculated

by dividing the trajectory into small segments, and the equations to calculate the probability of

task failure of each segment are derived based on different failure scenarios. After the method

to calculate the probability of task failure of an arbitrary trajectory is developed, an algorithm

is proposed to find the optimal trajectory with minimum probability of task failure. There are

two cases in finding the optimal trajectory. Case 1 is when there exists an intersection between

the self-motion manifold bounding boxes of all the task points, and there exists the self-motion

manifold of a task point in the intersection of this task point and its following ones. In this case,

the optimal trajectory is the trajectory with minimum probability of task failure from the start

configuration to the intersection of the bounding boxes, and there are three sub-cases according
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to the region of the start configuration. All the other situations belong to Case 2, and in this case

all the configurations along the self-motion manifold of task point 1 need to be checked to find

the trajectory with minimum probability of task failure. Finally, examples of planning optimal

trajectories for planar 2R redundant robots are given.

5.2 Future Work

There are a wide range of potential issues to be explored as future work. In kinematic design

of optimally fault tolerant robots, determining for which sets of joint failure probabilities that

optimal 7R designs exist is an open problem. In addition, the characterization of the families of

optimal robots with respect to practical considerations such as joint limits and self collision, and

how they affect the resulting workspace, is an important design factor. Furthermore, this work can

be extended to consider a measure of fault tolerance with respect to a certain set of tasks that one

would like to guarantee that the robot can perform after a failure.

In planning the optimal trajectory with minimum probability of task failure, the algorithm will

be extended to a higher dimensional joint space, such as planar 3R robots for positioning, spatial

4R robots for positioning, and spatial 7R robots for positioning and orientating. The examples of

planning the optimal trajectories for these robots will be given in the future work.
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