15 research outputs found

    Application of Linear Discriminant Analysis in Dimensionality Reduction for Hand Motion Classification

    Get PDF
    The classification of upper-limb movements based on surface electromyography (EMG) signals is an important issue in the control of assistive devices and rehabilitation systems. Increasing the number of EMG channels and features in order to increase the number of control commands can yield a high dimensional feature vector. To cope with the accuracy and computation problems associated with high dimensionality, it is commonplace to apply a processing step that transforms the data to a space of significantly lower dimensions with only a limited loss of useful information. Linear discriminant analysis (LDA) has been successfully applied as an EMG feature projection method. Recently, a number of extended LDA-based algorithms have been proposed, which are more competitive in terms of both classification accuracy and computational costs/times with classical LDA. This paper presents the findings of a comparative study of classical LDA and five extended LDA methods. From a quantitative comparison based on seven multi-feature sets, three extended LDA-based algorithms, consisting of uncorrelated LDA, orthogonal LDA and orthogonal fuzzy neighborhood discriminant analysis, produce better class separability when compared with a baseline system (without feature projection), principle component analysis (PCA), and classical LDA. Based on a 7-dimension time domain and time-scale feature vectors, these methods achieved respectively 95.2% and 93.2% classification accuracy by using a linear discriminant classifier

    Advanced Feature Extraction and Dimensionality Reduction for Unmanned Underwater Vehicle Fault Diagnosis

    Get PDF
    This paper presents a novel approach to the diagnosis of blade faults in an electric thruster motor of unmanned underwater vehicles (UUVs) under stationary operating conditions. The diagnostic approach is based on the use of discrete wavelet transforms (DWT) as a feature extraction tool and a dynamic neural network (DNN) for fault classification. The DNN classifies between healthy and faulty conditions of the trolling motor by analyzing the stator current and vibration signals. To overcome feature redundancy, which affects diagnosis reliability, the Orthogonal Fuzzy Neighbourhood Discriminant Analysis (OFNDA) approach is found to be the most effective. Four faulty conditions were analyzed under laboratory conditions, and the results obtained from experiment demonstrate the effectiveness and reliability of the proposed methodology in classifying the different faults faster and more accurately

    Selection of suitable hand gestures for reliable myoelectric human computer interface

    Get PDF
    Background: Myoelectric controlled prosthetic hand requires machine based identification of hand gestures using surface electromyogram (sEMG) recorded from the forearm muscles. This study has observed that a sub-set of the hand gestures have to be selected for an accurate automated hand gesture recognition, and reports a method to select these gestures to maximize the sensitivity and specificity. Methods: Experiments were conducted where sEMG was recorded from the muscles of the forearm while subjects performed hand gestures and then was classified off-line. The performances of ten gestures were ranked using the proposed Positive-Negative Performance Measurement Index (PNM), generated by a series of confusion matrices. Results: When using all the ten gestures, the sensitivity and specificity was 80.0% and 97.8%. After ranking the gestures using the PNM, six gestures were selected and these gave sensitivity and specificity greater than 95% (96.5% and 99.3%); Hand open, Hand close, Little finger flexion, Ring finger flexion, Middle finger flexion and Thumb flexion. Conclusion: This work has shown that reliable myoelectric based human computer interface systems require careful selection of the gestures that have to be recognized and without such selection, the reliability is poor

    Feature and muscle selection for an effective hand motion classifier based on electromyography

    Get PDF
    An issue that arises in the hand motion classification based on the electromyography (EMG) system is the failure of choosing the right features and number of muscles. These parameters are fundamental in determining the accuracy and effectiveness of the classifier system. Therefore, the objective of this study is to develop and evaluate an effective hand motion classifier based on the EMG signal. The three-channel of EMG was collected by placing three pairs of electrodes on the surface of the skin. Six statistic features (mean, variance, standard deviation, kurtosis, skewness, and entropy) were selected to extract the EMG signal using a window length of 100 samples. A muscle and features selection is applied to the classifier machine (linear discriminant analysis (LDA), support vector machine (SVM) and K nearest neighborhood (KNN)) to retrieve the most useful feature and muscle. In this study, we found that there was no significant difference in accuracy among a number of muscles (p-value>0.05). LDA and SVM showed the best accuracy and no significant difference in accuracy between both were found. This study concluded that EMG signal from a single muscle can classify the hand motion (hand close, open, wrist flexion, and extension) effectively.

    Myoelectric Control Systems for Hand Rehabilitation Device: A Review

    Get PDF
    One of the challenges of the hand rehabilitation device is to create a smooth interaction between the device and user. The smooth interaction can be achieved by considering myoelectric signal generated by human's muscle. Therefore, the so-called myoelectric control system (MCS) has been developed since the 1940s. Various MCS's has been proposed, developed, tested, and implemented in various hand rehabilitation devices for different purposes. This article presents a review of MCS in the existing hand rehabilitation devices. The MCS can be grouped into main groups, the non-pattern recognition and pattern recognition ones. In term of implementation, it can be classified as MCS for prosthetic and exoskeleton hand. Main challenges for MCS today is the robustness issue that hampers the implementation of MCS on the clinical application

    Orthogonal fuzzy neighborhood discriminant analysis for multifunction myoelectric hand control

    Full text link
    Developing accurate and powerful electromyogram (EMG) driven prostheses controllers that can provide the amputees with effective control on their artificial limbs, has been the focus of a great deal of research in the past few years. One of the major challenges in such research is extracting an informative subset of features that can best discriminate between the different forearm movements. In this paper, a new dimensionality reduction method, referred to as orthogonal fuzzy neighborhood discriminant analysis (OFNDA), is proposed as a response to such a challenge. Unlike existing attempts in fuzzy linear discriminant analysis, the objective of the proposed OFNDA is to minimize the distance between samples that belong to the same class and maximize the distance between the centers of different classes, while taking into account the contribution of the samples to the different classes. The proposed OFNDA is validated on EMG datasets collected from seven subjects performing a range of 5 to 10 classes of forearm movements. Practical results indicate the significance of OFNDA in comparison to many other feature projection methods (including locality preserving and uncorrelated variants of discriminant analysis) with accuracies ranging from 97.66% to 87.84% for 5 to 10 classes of movements, respectively, using only two EMG electrodes. © 2010 IEEE
    corecore