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An unmanned marine vehicle thruster fault diagnosis scheme based on 

OFNDA  

Abstract: For a number of years there has been a growing interest in the use of fault 

analysis techniques in recent years in unmanned marine vehicles (UMVs) owing to their 

significant impact on marine operations. This study presents a novel approach to the 

diagnosis of unbalanced load (blades damage) faults in an electric thruster motor in 

UMV propulsion systems based on orthogonal fuzzy neighbourhood discriminative 

analysis (OFNDA) for feature dimensionality reduction. The diagnosis approach is 

based on the use of discrete wavelet transforms (DWTs) as a feature extraction tool and 

the optimal number of mother wavelet function and levels of resolution by analysing the 

vibration and current signals. As a result of analysis and comparisons, the Deubechies 

12 (db12) wavelet and level 8 were chosen. A dynamic recurrent neural network 

(DRNN) was chosen for fault classification and level of fault severity prediction was 

implemented. Four faulty conditions were analysed under laboratory conditions and 

these were recreated by damaging the blades of a motor. The results obtained from the 

simulation demonstrate the effectiveness and reliability of the proposed methodology in 

classifying the different faults with greater speed and accuracy compared to existing 

methods. 

KEY WORDS: Unmanned marine vehicles, fault analysis, dynamic recurrent neural 

network, feature extraction and reduction, OFNDA.  

INTRODUCTION 

End users of unmanned marine vehicles (UMVs) are now demanding longer mission lengths 

coupled with increasing vehicle autonomy. With an escalation in autonomy comes the need 

for higher reliability in such vehicles in order for them to better cope with unexpected events. 

In a large number of cases, the present generation of UMVs use electric thruster motors. The 

timely isolation of faults in a motor will thus ensure the integrity and safety of a vehicle while 

not adversely affecting the overall system performance.  

Omerdic & Roberts (2004) propose the general concept of fault diagnosis as essential 

task models. They then define them as: 



 

 Fault detection and diagnosis (FDD): detection and localisation of faults.  

 Fault analysis or identification (FA): determination of the type, cause and severity of faults, 

and prediction of the possible future faults and time frames in which these could develop, 

using available data and knowledge about the behaviour of the diagnosed process, 

mathematical, quantitative or qualitative. 

Robust FA including the diagnosis of faults and predicting their level of severity is 

necessary to optimize maintenance and improve reliability. Early diagnosis of faults that 

might occur in the supervised process renders it possible to perform important preventative 

actions, especially important for critical applications.  

FA for nonlinear systems has not been fully explored and there is still a big gap 

between FA theories and their application. Work in this paper has successfully attempted to 

fill the gap by developing an integrated FA system structure. Many pattern recognition 

approaches have been implemented for condition monitoring and fault diagnosis of electrical 

machinery such as artificial intelligence (AI), signal processing, model based and hybrid 

techniques. Recently AI has been introduced as an approach for condition monitoring and 

fault diagnosis purposes where accurate mathematical models are difficult to develop. AI 

aims to generate classifying expressions simple enough to be understood easily by humans 

(Yusuf et al. 2013). AI include techniques based on Fuzzy Logic Systems (FLSs), neural 

networks (NNs) (Gacto et al. 2011), genetic algorithms (GAs), adaptive neuro fuzzy inference 

systems  (ANFIS) and support vector machines (SVMs). With FLS, as complexity of the data 

driven fuzzy models can be reduced with so-called merging algorithms (Hyun Cheol et al. 

2010). Furthermore, a fuzzy model offers some sort of interpretability (Gacto et al. 2011) and 

adapting their parameters and structures over time (Lughofer et al. 2011). 

A NN is an effective motor fault detection method which does not need a 

mathematical model. Furthermore, NNs can recognize patterns even at high noise levels 

(Lughofer 2011). Almost all previous work in literature is based on using static NNs as fault 

classifiers, whilst most industrial systems are dynamic and nonlinear in nature, and hence 



 

during their identification it seems desirable to employ the models which can represent the 

dynamics of the system. Recently great attention has been paid to the development of 

dynamic recurrent neural networks (DRNNs) owing to their capabilities for modelling 

nonlinear dynamical systems. Yusuf et al. (2013) and Hyun Cheol et al. (2010) have shown 

that the DRNN is an attractive method for fault diagnosis in electrical machines. DRNN 

allows improved fault prediction accuracy of condition monitoring systems which are more 

powerful than static NN. In addition, DRNNs are more versatile and provide the capability to 

learn the dynamics of complicated nonlinear systems, while conventional static NN cannot 

(Wang & He 2005). 

This paper aims to develop a new bearing FA scheme for UMV thrusters, which can 

accurately detect faults and provide useful information about the severity of the fault. In this 

paper, the fault indications were obtained from vibration and current signals and passed 

through to discrete wavelet transform (DWT) to extract the useful features, and then a feature 

reduction technique is implemented to avoid redundant features.  

To reduce additional computational time for fault classification, an accurate 

dimensionality reduction tool is needed to select the most informative features from the 

wavelet feature set. Different feature reduction methods such as principle component analysis 

(PCA) (Widodo & Yang 2007), linear discriminate analysis (LDA) (Ciabattoni et al. 2015) 

and empirical mode decomposition (EMD) (Camarena-Martinez et al. 2014) have been used 

to reduce features redundancy. This paper uses the orthogonal fuzzy neighbourhood 

discriminative (OFNDA) approach and to the authors’ knowledge it has only been used in 

medical data analysis (Khushaba et al. 2010) and not used in electrical motor fault diagnosis 

systems. Results show that OFNDA has better classification accuracy compared to both PCA 

and LDA.  



 

With regards to the structure and content of the paper, following on from this 

introductory material, the next section presents the novel fault diagnosis system being 

considered herein. This is followed by a description of the feature extraction and 

dimensionality reduction approach. Next an innovative fault classification procedure based on 

a DRNN architecture is reported. Finally conclusions complete the paper. 

FAULT DIAGNOSIS SYSTEM 

Proposed scheme 

The proposed diagnostic procedures used in this work include three main stages, as illustrated 

in Fig 1. In the first stage, the physical data (current and vibration) are collected and then a 

DWT is used to extract the useful features in time and frequency domains. In the second 

stage, the features are reduced using OFNDA to remove redundancy and to decrease the 

training time. An inaccurate reduction feature tool may remove useful information and will 

jeopardise the overall performance, and thus the feature reduction stage represents the critical 

stage in the diagnosis process, the final stage is fault classification using a DRNN. 

Figure 1 here 

Experimental arrangement 

The propulsion system consists of two propellers powered by a set of 24V, 334N Minn Kota 

Riptide transom mounted saltwater thruster motors. The timely isolation of faults in a motor 

will ensure the integrity and safety of a vehicle whilst not adversely affecting the overall 

system performance. In practice when undertaking a mission, if necessary, a fault detection 

and diagnosis can be instigated on board UMVs whilst at the same time using telemetry to 

supply its mission control centre with a status report.  



 

Propellers on the thruster motors are durable but not indestructible. Hard surfaces can 

damage blades partly or fully and can imbalance the operation of a thruster motor, causing 

significant damage to the internal parts. The diagnoses of these faults are thus necessary for 

the healthy operation of the thruster motors and critical for UMVs operations. A laboratory 

prototype motor has been built for the experimental setup, the proposed technique was used to 

show the behaviour of the motor under normal operating condition and four faulty conditions 

in 10% (F1), 25% (F2), half (F3) and full cut (F4) as shown in Fig 2.  

A linear current sensor was used to measure the stator current and 3-axis 

accelerometer (ADXL325) with a full-scale range of ±5 g and bandwidth of 0.5 Hz to 1600 

Hz was mounted on the flat surface of the propeller to record the vibration data. Sensor 

outputs were logged into a PC via a data acquisition card (NI USB-6009 multifunction I/O 

device) and the motor was powered by 24V battery supply. The MATLAB environment was 

used to change the duty cycle of the pulse width modulation signals via the motor driver. An 

operational amplifier (MCP604) has been used in the circuit driver. This microchip is suitable 

for working with low power. Data was gathered for five cases: no fault F0 (normal operating 

condition), F1, F2, F3 and F4 fault at a sampling rate of 3 kHz for duration of 30s. Total of 

30,000 sample points using a MATLAB software environment were collected representing 

motor performance under low speed (500rpm) and high speed (3000rpm) conditions. 

Figure 2 here 

FEATURES EXTRACTION AND DIMENSIONAILITY REDUCTION USING 

OFNDA 

After data collection of the essential sensor signals, features are often extracted and selected 

to analyse the signals from all these embedded sensors, to assess the condition of the system. 

Feature extraction is usually the first step in any pattern recognition system. Irrelevant 

features will affect the learning process by increasing the computational cost and sample size, 



 

and may lead to over-fitting. In order to increase the robustness of the classifier and to reduce 

the data processing load, dimensionality reduction is necessary. Many extraction techniques 

have been proposed in several domains including time-domain methods, frequency-domain 

methods, and time-frequency methods. 

The DWT is an advanced time and frequency signal processing technique with a 

growing number of applications in rotating machine fault diagnosis (Abed et al. 2015). The 

windowing of a DWT is adjusted automatically for low and high frequencies, i.e. it uses short 

time intervals for high frequency components and long-time intervals for low frequency 

components. To extract the useful information, here a DWT, was applied. 

The selection of optimum levels of decomposition and mother wavelet is crucial to the 

working of a DWT. In this work, the data-independent selection (DIS) approach is used to 

determine optimal number of wavelet levels (Phinyomark, Phukpattaranont and Limsakul 

2012) whereas minimum description length (MDL) (Hamid & Kawasaki 2002) is used for the 

selection of a mother wavelet. Table 1 shows the MDL coefficients obtained on the collected 

data for the available orthogonal or non-orthogonal wavelets in order to select the optimal 

mother wavelet and the orthogonal wavelet filter 'db12' of the Daubechies family is chosen as 

the optimal mother wavelet. DIS approach is then applied to obtain the optimum level of 

decompositions which was equal to 8.  

Table 1 here 

Figs 3 and 4 show the original vibration signal, DWT details coefficients of the signal 

for level-8 decompositions (d1-d8) and approximate coefficient (a8) under normal and faulty 

operating condition, respectively. 

Figure 3 here 

Figure 4 here 



 

The DWT decomposition gives a clear idea about how the original signal is 

reconstructed using the approximations and details at various levels. However, the DWT 

yields a high dimensional feature vector (Phinyomark, Phukpattaranont and Limsakul 2012) 

and in some cases the number of features is relatively larger than the number of training 

samples. This is usually referred as the ‘curse of dimensionality’, adversely affecting training 

and testing speed. An accurate dimensionality reduction tool is thus needed to remove 

redundant features information (Prieto et al. 2013). Feature reduction is an important task in 

machine learning and it facilitates classification, compression, and visualization of high-

dimensional data by mitigating undesired properties of high-dimensional spaces by removing 

redundant features information that may lead to over fitting.  

As such, it is obvious that the main goal of feature dimensionality reduction is to 

reduce the number of features without compromising the quality of classification. Generally, 

dimension reduction approaches can be classified into linear, and nonlinear methods (Lin and 

Guo 2015). The choice of linear and nonlinear techniques will be determined by the nature of 

the classification problem. The linear case is the simplest classification problem in which both 

linear and nonlinear techniques are expected to classify all the data correctly. For nonlinear 

case, classes of data can be separated using nonlinear separating planes, where using linear 

techniques in this case would misclassify a large portion of the data.  

Here feature reduction method attempts to determine the best combination of original 

wavelet coefficients. OFNDA has been recently proposed by Khushaba et al (Khushaba et al. 

2010) as a new approach for feature reduction. The algorithms which are fully described in 

their paper works on the basis to maximize the distance between features belong to different 

classes (𝑆𝐵 ) whilst minimize the distance between features in the same class (𝑆𝑤) .  

The feature reduction technique of OFDNA described in this section was applied to 

the four fault conditions and was able to reduce the number of wavelet features, originally 



 

from 16 to 8 enabling faster computation. Fig 5 shows the distribution of OFNDA features 

and indicates that it classified the different features with clearly distinct regions which will 

help in better classification of the faults using a DRNN as described next.  

Figure 5 here 

DYNAMIC NEURAL NETWORK FOR REAL TIME FAULT 

CLASSIFICATION 

Most industrial systems are dynamic and non-linear in nature, and hence during fault 

identification it seems desirable to employ those models which can represent the dynamics of 

the system, to increase operational reliability and to optimize preventative maintenance. It is 

therefore necessary to develop an efficient tool for analysis and process monitoring, in real 

time. NNs can be classified into dynamic and static. Static NNs have no feedback and delays, 

and the output is calculated directly from the input through feed-forward connections. In 

dynamic NNs (DNNs), the output instead depends on the current and previous inputs, outputs, 

or states of the network. Generally, DNNs are more powerful than static NNs. Studies have 

shown that their use can improve the fault prediction accuracy of electrical motor condition 

monitoring systems (Hyun et al. 2010). 

In this paper, DRNN based on non-linear autoregressive classifier with exogenous 

data (NARX) model is chosen. A NARX response at any given time depends not only on the 

current input, but on the history of the input sequence. NARX neural networks are 

computationally powerful in theory, but they also have several advantages in practice. For 

example, it has been reported that gradient-descent learning can be more effective in NARX 

networks than in other recurrent architectures. NARX is commonly used in time series 

modelling. In addition, the architecture of NARX will reduce the computational cost. In this 

work, four time-delayed selected from the input and output were fed back as inputs to the 

network. After the dimensionality reduction stage the wavelet features were reduced from 16 



 

to 8 features that forms the NN inputs.  The network used is a logistic classifier that 

incorporates sigmoid activations in all the hidden and output units and uses back-propagation 

(BP) method as presented in McClelland et al. (1986) for training to compute the weights 

between connected processing elements, so that the difference between the actual output and 

the desired output is minimized.  

Input to the NN consists of the eight OFNDA features, 𝑥1
𝑂𝐹𝑁𝐷𝐴,𝑥2

𝑂𝐹𝑁𝐷𝐴, and 𝑥3
𝑂𝐹𝑁𝐷𝐴 

….𝑥8
𝑂𝐹𝑁𝐷𝐴 and the output of the network consists of five units, used to indicate particular 

blades normal and faulty conditions as shown in Table 2. 60% of the OFNDA features were 

used as a training data set and 20 % as testing and validation set respectively. 

Table 2 here 

Fig 6 indicates the performance of DRNN for a thruster motor operating under 

different severity of blades fault (F1, F2, F3, and F4). Fig 6 also shows a misclassification 

occurs when the actual value does not coincide with the desired value.  

Figure 6 here 

Several trial and error steps are used to optimize the number of hidden neurons and in 

this case 25 was found suitable. Table 3 compares the prediction of faults using a DRNN with 

PCA, LDA and OFNDA features on test data set and shows that DRNN with OFNDA 

features outperforms in classifying and predicting the severity of these faults in comparison to 

PCA and LDA. PCA performs better than LDA but there were many misclassifications 

compared to OFNDA features in this case as shown in Fig 7 and thus is not suitable for on-

line classification. 

Table 3 here 

Figure 7 here 

The superiority of the proposed algorithm is also tested with some existing algorithms 

in literatures and comparative results are shown in Table 4. The results show that mean 



 

classification accuracy using the proposed approach is 97% which is much better than most of 

the existing techniques. Many techniques only used one signal as a fault indicator and thus 

limiting the accuracy in classifying the severity of the faults.  

Table 4 here 

Conclusions 

This paper proposes a new methodology for FA of a thruster motor under different operating 

conditions based on OFNDA for feature reduction. DWT was used as an efficient feature 

extraction method. However, these features alone are not capable of a good fault classification 

performance. OFNDA was applied to obtain the best features for fault classification, and the 

results show that better classification accuracy was obtained. These features were fed to a 

DRNN for fault classification, enabling the fault classifier to incorporate a dynamic component. 

The application of these techniques to real data has shown that they constitute an effective fault 

classifier in practice, capable of detecting and classifying different type of thruster faults fairly 

accurately. These indications in real time will greatly improve the reliability of the operations 

and reducing overall maintenance costs. These technologies in future can be used to predict 

remaining useful life time of a thruster providing longer hassle free endurance of autonomous 

marine vehicles. 
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Figures and Tables 

 

 

Fig 1: Proposed diagnostic procedures 

 

  

  

Fig 2: Blades fault with four severities (a) F1 -10%, (b) F2- 25%, (c) F3- 50% and (d) F4-

100% 
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Fig 3: Vibration signal under normal operation 

  

Fig 4: Vibration signal under faulty operation 



 

 

 

Fig 5: OFNDA features under different severities of blades fault 

 

Fig 6: Overall fault diagnosis tests for motor operating under different severity of blades 

faults using OFNDA 
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Fig 7:  Overall fault diagnosis tests for motor operating under different severity of blade fault 

using PCA features 

Table 1. Mother wavelet optimization based on MDL coefficients 
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Wavelet MDL  Wavelet MDL  Wavelet MDL  

haar 14.78  db10 7.13  sym6 13.10  

db2 15.63  db11 5.13  coif1 9.65  

db3 15.67  db12 5.04   coif2 13.07  

db4 10.07  db13 5.89  coif3 10.27  

db5 9.62  db14 6.96  coif4 8.281  

db6 9.88  sym2 15.63  demy 9.89  

db7 8.17  sym3 15.67  bior1.1 14.78  

db8 7.43  sym4 11.04  bior1.3 7.132  

 db9 7.23  sym5 12.58  bior1.5 11.96  

 



 

Table 2: DRNN outputs under different blade severities 

 

Table 3: Comparison of the performance of different feature reduction methods 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Output 1 Output 2 Output 3 Output 4 Output 5 Indication 

1 0 0 0 0 F0 

0 1 0 0 0 F1 

0 0 1 0 0 F2 

       0        0        0        1        0 F3 

       0        0        0        0        1 F4 

 

 

        Speed 

 

 

Blades identified rate (%) using 

test data set  

  1          2          3           4           5 

PCA (Prieto et 

al. 2013) 

High speed 

Low speed 

 

 

97.7 

 

 

95.9 

 

 

98.1 

 

 

78.2 

 

 

80.0 

99.1 82.8 77.9 64.2 96.0 

LDA (Alok et 

al. 2006) 

High  speed 

Low speed 

 

 

95.6 

 

 

95.8 

 

 

99.2 

 

 

85.6 

 

 

85.8 

51.4 72.4 80.0 80.0 80.0 

OFNDA 

High speed 

Low speed 

 

99.0 

 

98.4 

 

96.7 

 

93.6 

 

96.4 

99.7 98.9 97.6 96.4 98.7 



 

Table 4: Comparison of the proposed method with recent published works  

References Fault 

Indicator 

Feature 

Extraction 

Tool 

Feature 

Dimensionality 

Reduction tool 

Classifier Classification 

accuracy% 

(Prieto et al. 

2013)  

Vibration 

signal        

Statistical 

time features        

PCA               Static NN                  95 

(Kankar et al. 

2011) 

Vibration 

signal       

Continuous 

Wavelet  

Transform 

(CWT)      

 Static NN  

SVM   

SOM 

93 

93 

72 

(Xu et al. 

2009)           

Vibration 

signal        

CWT                                     FLS                                                 87 

(Yusuf et al. 

2013)      

Vibration 

signal                                                                           

  DNN                       

NARX                    

91 

95 

(Camarena-

Martinez et 

al. 2014)   

Current 

signal        

EMD                                                             Static NN               90 

 

(Samanta et 

al. 2004)  

Vibration 

signal      

Statistical 

time features        

GA                   Static NN                 88 

Proposed 

approach         

Current and 

Vibration 

signals             

DWT                                    OFNDA           DNN 97 

 

 


