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The electrical activity of the muscles that control finger 

movements can be extracted during the performance of 

these movements and using machine learning techniques, 

the myoelectric signals can be decoded and classified 

according to the movement that generated the specific 

signal. The focus of this paper is to classify sEMG signal 

using easily accessible cheap hardware to capture the 

signal. Furthermore, to employ neural networks to classify 

the signal using established methodology i.e. feature 

extraction, with the highest possible accuracy. To classify 

these sEMG signals, an LSTM network has been developed 

and was able to classify 12 individual finger movements 

with accuracies reaching 90%.  

Keywords—sEMG, LSTM, Myo, Finger Movement 

Classification 

I. INTRODUCTION 

Endowing robots with grasping capabilities similar to 

the dexterity demonstrated by humans is a massive challenge 

[1], yet it will provide great autonomy to robots and will allow 

them to interact with humans in a natural way. Robotic grasping 

is a highly complex problem which requires knowledge about 

the shape, mass distribution, and friction of the object to grasp, 

but is also conditioned by the purpose of the proposed task to 

be executed with the object. Standard approaches to robot 

grasping try to take all these aspects into consideration and 

devise a plan on how to move individual fingers to achieve a 

suitable grasp. A promising alternative consists on learning 

grasping movements and configurations from human examples. 

However, in order to train a robotic grasping system using 

human demonstrations is necessary to know precisely how a 

human performs this task. This paper presents the contribution 

towards human demonstrations for robotic grasping by 

identifying different finger movement using a low-cost 

electromyography system. 

A popular method of examining human body 

movements in biomechanics is through the electrical outputs of 

the muscles involved in the movements being investigated, 

known as electromyography (EMG) [2]–[5]. One technique for 

measuring the EMG signal is using intramuscular needles 

inserted into the muscles to detect the myoelectric signal. 

Although very accurate, this method is a highly invasive 

procedure that requires a medical expert to ensure the safety of 

the subjects and correct placement of the electrodes on the 

muscles [6]. Another approach is through surface 

electromyography (sEMG), a non-invasive method that 

involves placing an electrode on the surface of the skin above 

the muscle regions to detect the muscles electrical activity. A 

comparative study concluded that there is no significant 

difference in the accuracy of the classification, therefore sEMG 

is generally preferred due to its non-invasive nature [6]. 

 The sEMG signal has been used in models that have 

been developed for classifying individual finger movements 

with a high degree of accuracy [4], [7]–[9]. Through the 

development of feature extraction techniques in combination 

with machine learning methods, improved performance of 

sEMG signal classification has been achieved which makes it a 

suitable technique for application with robotic systems [10]. 

Applied to robotics it can be an intuitive method of controlling 

or training an anthropomorphic robotic system based on real 

world human demonstrations.  

II. RELATED WORK 

 In [2], [11] and [12] a small selection of basic 

movements were performed i.e. simple directional arm 

movements up, down, left & right [9], elbow flexion and 

extension and forearm rotation [2] as well as functional 

gestures: power grip, precision grip, open hand, pointed index 

finger and wrist flexion/extension. The classification methods 

varied between these papers with [2] and [9] employing a back 

propagation neural network (BPNN), whereas [14] used an 

SVM classifier. A selection of commonly found time and 

frequency domain features were extracted from the original 

EMG signal in all these papers. All these works investigate 

similar type of movements, movements that generate larger 

muscle contractions, and therefore generate signals with larger 

signal to noise ratio. Furthermore, these papers use high 

sampling ratio e.g. 1000Hz devices, for collecting the data. This 

has been shown to be beneficial when performing sEMG signal 

classification as they can generate more data per movement 

making it easier to discriminate between the movement classes 

[13], [14].  

Modelling finger movements through decoding EMG 

signals generated by the muscles of the forearm when 

contracting to perform flexion and extension of the digits is a 
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relatively new application of existing EMG based techniques. 

In [4] the authors used an array of 32 sEMG electrodes wrapped 

around the forearm of the user to collect the sEMG data of a 

total of 10 finger movements i.e. flexion/extension of each 

finger and 2 grouped movements of the middle, ring and little 

fingers. The detection device sampled data at a frequency of 

2000Hz and four commonly found time domain features were 

extracted from the original signal and used as inputs into a 

feedforward neural network (FNN). To improve the 

classification of the network the features were extracted from 

overlapping windows. In a follow up work the authors 

classified individual finger movements of amputee subjects 

using the same protocols [7]. The research presented in [9] 

revolved around a benchmark database: Ninapro 1 where the 

authors collected data from able bodied and amputee subjects 

using different sEMG technologies whilst performing a 

benchmark set of movements that are associated with activities 

of daily living [15]. The authors collected sEMG signals using 

a medical grade device with ten electrodes and a sample 

frequency of 100Hz and positioned the electrodes uniformly 

around the subjects forearm. A Support Vector Machine (SVM) 

was utilized to classify 12 different movements, ten of which 

were individual finger movements, i.e. extension/flexion index 

finger. Although the author does not appear to employ any form 

of signal segmentation which could account for not achieving 

higher classification of the signals but as they are using a 

detection device with a large sampling rate and investigating 

movements that generate large signals they are still able to 

produce results with high levels of accuracy [9].  Using this 

medical grade equipment the authors were able to successfully 

classify with a relatively high degree of accuracy, the authors 

also noted that this is a commercial device that records a 

rectified signal rather than raw data and that this can have an 

effect on the final classification accuracy. These studies yielded 

classification accuracies between 80-90% for individual finger 

movements, however, they employed expensive medical grade 

EMG detection systems [9] or detection systems with high 

sample rate [4]. Systems like these are not always a viable 

option for researchers due to the cost of the systems and can 

require a level of expertise to correctly setup and operate.  

The introduction of commercially available cheap 

wearable sensors offers an alternative method of sEMG signal 

capturing. Recently the Myo gesture control armband2 has been 

released which has multiple applications i.e. a controller for an 

intuitive music device [16], sign language translation [17] and 

controlling robots and prosthetic limbs [2]–[4], [9], [11], [18]. 

However, these devices typically have a lower sampling rate 

(e.g. Myo gesture control armband samples at 200Hz) and a 

lower signal to noise ratio making the signal classification 

problem more difficult. The development of an intuitive system 

in conjunction with easily accessible wearable sensors could 

lead to a sophisticated grasping model that is based on real 

world human demonstration. Such a system will then dictate the 

movements performed by an anthropomorphic robotic hand 
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when picking up objects and performing tasks associated with 

activities of daily living. By measuring and collecting the data 

of the electrical impulses with one of these commercial devices 

and combining it with state-of-the-art machine learning 

algorithms e.g. neural networks, and robust feature selection, 

the sampling rate drawback can be mitigated against and a high 

level of accuracy can still be achieved [16], [19]–[22].  

Research using the Myo armband has shown how 

neural networks have been applied to sEMG signal 

classification i.e. convolutional neural networks (CNN) and 

Long Short Term Memory (LSTM) networks  [8], [19], [23]. 

Stephenson et al (2018), used the sEMG signal pattern as an 

image input into a CNN and performed classification on five 

finger flexion movements as well as seven gestures which 

included four combinations of flexion movements involving the 

thumb and one of the other fingers i.e. index [8]. In [23], LSTM 

and CNN networks were employed as the method of signal 

classification and were compared against each other. A bespoke 

architecture that combined LSTM layers with a single CNN 

layer that was named LSTM-CNN (LCNN). The authors 

recorded their own dataset that included some basic hand and 

wrist gestures i.e. wrist extension & closed fist. In [19], using 

an LSTM network and a mixture of different domain features 

i.e. Time & Frequency,  they were able to classify some basic 

hand gestures i.e. open hand and closed fist. Further research 

has been carried out in [17], [24], [25] using the Myo armband. 

[17], used a CNN to classify signals extracted from the subjects 

when performing any of 30 sign language gestures. In [24] six 

basic hand gestures e.g. open hand and cylindrical grasp, were 

classified using a set of five time domain features extracted 

from overlapping windows and input into an SVM classifier. 

The gestures involved in these research studies require coupled 

movements of the fingers and arms which can generate signals 

with greater amplitudes than that of the signals generated by 

individual finger movements.  

As demonstrated in the majority of the papers that have been 

reviewed, classification of hand gestures can be achieved using 

a wide range of classification methods e.g. SVM, LDA, ANN, 

LSTM, and CNN. This can be down to the fact that the 

generated sEMG signal of these dynamic gestures i.e. wrist 

flexion or gestures involving multiple fingers, generally 

generate signals with more pronounced amplitudes. Whereas, 

with individual finger movements the detected signal will be a 

lot more difficult to distinguish between movement classes due 

to the reduced amplitudes of the already inherently weak 

signals that are generated and cross over where the same muscle 

control multiple fingers i.e. mid, ring and little fingers. 

Furthermore, a range of different devices have been 

evaluated in the reviewed studies and it is evident that sEMG 

signal capture systems with higher sampling rates have 

demonstrated the ability to discriminate subtle individual finger 

movements. Whereas, devices with lower sampling rates, e.g.  

Myo armband, are less able to complete the same task. Another 

factor that has been highlighted is that when more movement 

2 https://support.getmyo.com/hc/en-us/articles/203398347-
Getting-started-with-your-Myo-armband 
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classes are introduced for classification the final classification 

accuracy is often reduced. This affects the classification of all 

devices but more so devices with reduced sampling rates.  

 The focus of this paper is to develop a neural network 

that can classify individual finger movements from the sEMG 

signal detected using wearable EMG detection hardware. 

Figure 1 shows an abstract view of the pipeline of the proposed 

system that is to be developed as part of the research being 

conducted.  

 The rest of this paper is organised as follows: Section III 
outlines the technology being used along with the architecture 
of the neural network that was created, section IV details the 
experimental protocols that were followed. Section V details the 
results of the experiments and finally a conclusion in section VI.  

III. METHODOLOGY 

Figure 1 illustrates an abstract overview of the proposed 

pipeline of the system and this following section will describe 

each stage of the pipeline. Section A provides a detailed 

description of the technology being used for data collection: the  

Myo armband. Section B focuses on feature extraction 

techniques. The final section will describe the LSTM network 

architecture used for the classification of the movement signals. 

A. sEMG Device 

The Myo armband, shown in Figure 2(a), is a wireless 

device that detects the inherently weak EMG signal generated 

by the forearm muscles in addition to other spatial information 

e.g. Orientation. The Myo is made up of eight medical grade 

stainless steel dry electrodes that detect the electrical output of 

the muscles found in the forearm that are responsible for the 

dexterous movement of the fingers and thumb i.e. Flexor 

Digitorum Profundus or Extensor Digitorum Communis. The 

Myo armband represents the EMG signal and normalises it to 

within a value range between -128 and 128. These values are 

the amplified detected signal that is measured by the eight 

electrodes. The Myo armband is also equipped with a nine axis 

inertial measurement unit (IMU) that contains a three axis 

gyroscope, three axis accelerometer and a three-axis 

magnetometer that can measure the speed of movements and 

orientation of the armband in 3D space. The addition of these 

extra sensors allows for the potential fusion of sEMG and IMU 

data from a wearable device. By fusing the data provided by the 

multiple sensors within the Myo it could allow for more 

advanced autonomous control systems by giving the system 

more information to analyse and learn from [13], [14], [19].  

The main drawback with using the Myo is the fact that it has a 

sample rate of 200Hz which is lower than medical grade sensors 

that are used in other sEMG signal classification papers e.g. [7], 

[18], [20], [21]. However, whilst this is a valid concern the 

difference between the overall classification accuracy when 

using the devices with a lower sampling frequency i.e. Myo, 

has been demonstrated to be less than 5% when employing 

techniques like feature extraction and sliding windows to 

reduce the impact of the low sampling rate [13], [14].  

B. Feature Extraction 

A large number of possible features used to reduce the 

dimensionality of the dataset can be found in the literature. 

These features can be split into three common domains: Time, 

Frequency and Time-Frequency. Features within these domains 

have all been used as a method of improving sEMG signal 

classification accuracy. Time domain features are the most 

commonly used throughout the literature as they are the most 

efficient in terms of calculation time and classification result. 

The initial set of time domain features used are the most 

commonly used in sEMG signal classification, these features 

will be tested individually and within different sets to find the 

features that produce the best classification performance. The 

features extracted from the EMG signals in this research are: 

 Mean Absolute Value (MAV) is the most commonly used 

feature found in the literature. It is the average of the 

absolute value of the EMG signal for each window that the 

signal has been segmented into.  X is the MAV of the signal 

in segment i which is N samples long. Xk is the kth sample 

in segment i and I is the total number of segments that the 

original signal sample has been split into.  

 Waveform Length (WL) is another popular feature from the 

time domain that has been used throughout the literature. 

This feature is used to quantify the complexity of the 

waveform in each signal segment. It is the cumulative 

length of the waveform over the entire signal segment. 

Xn+1-Xn is the difference in consecutive sample voltage 

values.  

 Variance (VAR) has been used as a time domain feature in 

gesture recognition studies. Variance is a measure of the 

Figure 2: Abstract view of proposed system architecture 

(a) (b) 

Figure 1: (a) Myo Armband  (b) Subject wearing device 

around forearm 
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power of an EMG signal and represents the deviation of the 

EMG signal from its mean value.  

 Slope Sign Change (SSC) has been extensively used in the 

literature, it represents the number of times that the EMG 

signal changes between the positive and negative slope 

changes between three sequential segments. The threshold 

is normally selected between 50 µV and 100 mV.  

 Autoregressive Modelling (AR) is used for classification of 

gestures and finger movements as it has been shown that 

the sEMG spectrum changes when muscle contractions are 

performed.  ai are the AR coefficients, p is the model order 

and ek is the residual white noise. Different coefficients 

have been found to be suitable for feature extraction of 

EMG signal ranging from 1 to 10 [13], [26]–[29]. In this 

paper the 1st and 2nd orders are used.  

 Zero Crossings (ZC) represents frequency information of 

an EMG signal but it is defined in the time domain. It is the 

number of times that the amplitude of the EMG signal 

crosses the zero amplitude level. As a way of avoiding 

signal fluctuations or signal noise a threshold condition is 

implemented.  

 Willison Amplitude (WAMP) is the resulting number of 

times that the difference between two adjacent signal 

segments amplitude exceeds a pre-set threshold as a 

method of reducing noise similar to ZC and SSC.  

 Root Mean Square (RMS) this is the square root of a signal 

segment’s mean value. This feature has been used in 

combination with other time domain features in many 

sEMG signal classification models.  

 Standard Deviation (STD) measures the total variation of a 

particular set of values against the mean of the population. 

This time domain feature has been used successfully in 

combination with other time domain features[11].  

 Mean Absolute Deviation (MAD) is a measure of the 

average distance between the mean of a dataset and each 

data value within it. This feature was used by [30] when 

using the Myo as part of the authors hand pose recognition 

system.  

 Kurtosis (KURT) is used as measure of how outlier-prone 

a distribution of a dataset is.  

A technique that can be employed to enhance the 

effectiveness of feature extraction is the use of overlapping 

sliding windows [4], [7], [9], [31], [32]. Overlapping windows 

are used as a method of retaining as much information as 

possible when extracting features but also for reducing the 

dimensionality of the original signal. By using overlapping 

windows the amount of data that is extracted from the signal is 

increased which potentially increases the classification 

accuracy of the proposed system. Selection of the window size 

has been chosen based on previous works found in the 

literature, the most common window size found was 200ms [4], 

[7], [9], [14], [32].  A window overlap of 20ms, has been 

selected to mitigate the reduced sample rate of the Myo device 

and provide as much data from the reduced original signal as 

possible to the LSTM classifier.  

C. Classification using LSTM Network 

LSTM is a recurrent neural network (RNN) that is trained 

though a gradient based learning algorithm that was introduced 

as a solution to the problems with error block-flow found in 

other “Back Propagation Through Time” (BPTT) and “Real-

Time Recurrent Learning (RTRL)” networks. The LSTM 

network forces constant error flow through the internal states of 

the special units found within the LSTM network architecture 

[33]. The introduction of multiplicative input gate units and 

output gate units allows for constant error flow. These gated 

cells control the flow of data depending on its strength and 

importance by either passing the contents on to the next cell or 

by blocking the information. This mechanism is controlled by 

the modification of the weights through the networks learning 

process [33]. Figure 3, shows an overview of the architecture 

that was used to classify sEMG signals in this work.  
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The LSTM network that has been developed for this work 

is comprised of six different layers. The initial input layer is a 

sequence input layer that allows sequential data to be input into 

the network. Each movement sequence sample is made up of an 

input vector that represents each feature that has been extracted 

from the original signal of each of the eight individual sEMG 

sensors. To further optimize the LSTM network the input data 

was normalized using the Z-score of the input [34]. This 

adheres to the protocol followed in [19], [23].  

The sequences are input into a bidirectional LSTM (bi-

LSTM) layer which enables the network to learn bi-directional 

long-term dependencies between the different time steps of the 

sequential data allowing the network to predict using the entire 

sequential input [22]. The number of hidden units in the bi-

LSTM layer was empirically tested during the experiment to 

find the configuration that produced the highest classification 

accuracy.  

A dropout layer was added after the bi-LSTM to reduce 

overfitting [23]. Dropout is a method of network regularization 

that attempts to reduce the co-adaption of the hidden units 

within the network. The dropout layer operates by randomly 

deactivating hidden units with a probability of p, in this case p 

= 0.3 [23].  The fourth layer in the network is the fully 

connected layer that multiplies the inputs by a weight matrix 

and adds a bias vector to the input, this layer then feeds into the 

softmax layer where a softmax function is applied to the 

activation. Finally there is a classification layer that computes 

the cross entropy loss for classification networks with mutually 

exclusive classes. Further parameters can be adjusted to suit the 

particular problem that is being investigated e.g. mini batch 

size, number of hidden units, additional layers.  

IV. DATA ACQUISITION AND PRE-PROCESSING 

This section describes the protocols followed during the 

experimentation process will be outlined. The main focus will 

be on how the data was collected and the pre-processing 

methods that were applied to the EMG signal.  

A. Data Acquisition Protocol 

The Myo was placed securely around the widest part of the 
subjects forearm. The subjects left arm was placed on a small 
platform, 16cm in height, in an effort to remove any muscle 
activity that would be used to hold arm in the air, as shown in 
Figure 2 (b). The hand was in a relaxed position with no contact 
being made with the table below. Flexion and extension of the 
fingers and thumb along with abduction and adduction of the 
thumb were performed seventy times by the subject along with 
a rest pose. The samples were randomly split into two sets, one 
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for training containing 728 (80%) samples and a test set 
containing 182 (20%) samples of each movement [17]. A script 
was created in Matlab 3  to prompt the subject to begin the 
movement and when to return to rest position. An initial 4 
second rest period began each trial, once the user was prompted 
to perform the movement the pose was held for 5 seconds and 
then returned to rest position to complete the data collection 
process. Using Matlab  and a specifically designed toolbox, Myo 
SDK MATLAB MEX wrapper [35], the raw signal data was 
extracted from the Myo armband and imported into Matlab as 
the subject was performing individual finger movements i.e. 
Index extension/flexion, as shown in Figure 4.   

B. Data Pre-Processing 

The Myo armband transmits the detected signals over Bluetooth 

via the Bluetooth dongle to the PC. The Myo has a built in notch 

filter that filters out signals at 50Hz, this is done to remove any 

interference with the EMG signal caused by European power 

line interference. This interference is caused by electrical 

interference of other systems e.g. Myo’s battery, with the EMG 

signal. No other filtering was completed on the recorded signal. 

The next stage of the protocol involved removing the surplus 

data. As aforementioned, the movement data started after the 

initial 4 second rest period and ended 5 seconds later. All data 

before 3.5 seconds was removed, this allowed a small 0.5 

second buffer to allow for user error in case of the action 

starting before the 4 second mark. Cropping the samples to a 

fixed consistent length is also important when working with 

LSTM networks, as with other types of RNN’s, as they require 

the input sequence samples to be of the same length. LSTM will 

automatically pad all samples that are shorter than the longest 

sequence in the data set. The addition of too much padding can 

distort the signals and therefore can lead to a reduction in 

classification accuracy [36]. Figure 5 shows an example of each 

EMG channel’s signal when performing the different finger 

movements.   

V. RESULTS 

An initial set of experiments were conducted where a network 

was created using a single set of features that included all the 

time domain features discussed in Section III.B. The average 

result from 30 trained LSTM networks when classifying 13 

movements (12 index/flexion movements & 1 rest pose) along 

with the best single performance of a single network was 

Dropout 

Figure 3: LSTM Architecture 

Figure 4: Finger Poses conducted for Classification. From 

(Top Row ) Left to Right: Little Extension; Flexion; Ring 

Extension; Flexion; Mid Extension; Flexion; (Bottom 

Row) Index Extension/ Flexion; Thumb Extension; 

Flexion; Thumb Abduction; Adduction 
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recorded.  Table 1 shows the parameters used for the LSTM 

network that will remain the same throughout the testing. 

To improve the classification accuracy of the network 

being implemented in this current research the number of 

hidden units in each layer were incrementally adjusted and 

additional bi-LSTM layers were added to find the best 

combination that produces the highest classification accuracy 

possible. The number of hidden units was incrementally 

increased until the average classification accuracy no longer 

increased. In the figure below, Figure 5, it shows the average 

classification for each of the networks trained when 

incrementing the number of hidden units along with the result 

of the best performing network.  

As shown in Figure 5 there is a steady increase in the 

average accuracy that peaks when using 180 hidden units in the 

bi-LSTM layer. The average accuracy achieved here is 84.49%, 

however, the single best performing network that uses 180 

hidden units achieved an accuracy of 87.36%. There were other 

networks that achieved a higher single accuracy e.g. 87.91%, 

when using less hidden units, 160 or 170, but the differences 

were negligible and the highest average was used as the 

benchmark architecture.   

A second bi-LSTM layer was added to the network with a 

dropout layer and the hidden units for that layer were 

incremented again, starting at 10 hidden units, until there was 

no more improvement on the average classification accuracy. 

Figure 6, above, shows that the when using 2 bi-LSTM layers 

with 180 and 60 hidden units in the first and second layers 

respectively, the average accuracy was increased to 86.76% 

with single best accuracy of 89.56% occurring with this LSTM 

architecture.  

A third layer was added and the same procedure was 

followed, the number of hidden units was incremented until the 

average accuracy had peaked. Figure 7 shows that the 

performance of the networks, when a third layer is added, never 

improves upon the two layer setup. Whilst some of the 

individual networks achieve an accuracy of 89.56% the average 

accuracies all drop below 86% so test up to 50 hidden units 

were only carried out to confirm the continual drop in 

classification performance.  

The overall best performing LSTM architecture from these 

empirical studies were with two bi-LSTM layers and with 180 

hidden units in the first layer and 60 in the second. With this 

architecture the single best performing network was 89.56%. 

Nonetheless, there were other architectures that classified with 

higher accuracies, e.g. 180 hidden units with either 10 or 80 

units in the additional bi-LSTM layers, the increase is 

insignificant at less than 1%. 

 Further analysis of the confusion matrix, shown in 

figure 8, shows where the confusion is occurring. A similar 

pattern across the results show that the main area of confusion 

is with the movements of the thumb. Thumb extension and 
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Figure 6: Results of LSTM with two bi-LSTM layer when 

incrementing number of hidden units 
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Figure 8: Confusion Matrix showing breakdown of individual 

finger movement classification for best performing 2 Layer LSTM 



flexion movements demonstrate to be the most difficult 

movements to classify with 61.5% and 71.4%, respectively. 

These signals were confused with the thumb adduction and 

abduction movements by the LSTM network. A potential cause 

of this is due to the fact that the not all the muscles that are 

responsible for thumb movements are found in the forearm 

where the signals were being detected from. There also intrinsic 

muscles found at the base of the thumb that control various 

aspects of the fine motor controls that the thumb can perform. 

These confusions of the thumb movements are consistent 

throughout the networks, figure 9 shows the varying levels of 

classification accuracy achieved when classifying these 

movements.  

The closest comparison that can be made is with [23] where 

an accuracy of 71.66% was reported when classifying the same 

12 movement signals. This research has improved on that 

finding with an average accuracy of 86.76% and some 

individual networks achieving 90% accuracy. 

VI. CONCLUSION 

This paper has demonstrated that Myo gesture control armband 

in combination with an LSTM network can be effectively 

implemented as a method of sEMG signal classification. The 

results of the experiments carried out show that whilst finger 

movements can be successfully classified they are much more 

difficult to classify if compared to classification of gestures that 

involve larger movements of the hand that involve multiple 

fingers or movements of the arm and wrist.  

 Developing a network that can successfully classify 

sEMG signals will allow further advancements in robotic object 

manipulation. Using human demonstrators with wearable 

sEMG devices and in combination with LSTM classifiers can 

be used not only for dexterous control of  anthropomorphic 

robotic hands but also can be used as a method of informing a 

robotic grasping system. 

 To enhance the generality of these networks the 

addition of data from a range of subjects will be carried out. 

Further analysis of LSTM network parameters and how they 

affect the classification accuracy of the trained networks is 

needed in order to optimize the performance i.e. mini batch 

size, max epochs, number of hidden units and addition of 

frequency domain features. With the thumb showing to be most 

difficult to classify an investigation into networks that classify 

finger movement’s vs thumb movements as well as introduction 

of additional sEMG collection technology that can focus on the 

muscles responsible for thumb movements that are found 

within the hand. 
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