68 research outputs found

    GRAVITY–OPERATED IMPACT FEEDER DYNAMICS

    Get PDF
    This paper deals with the dynamics of rigid body that collide with a rigid surface; such motion with impact of bodies takes place in the gravity operated impact feeders. Feeders are mechanisms of the single- peace feeding for the forced moving of the oriented workpieces. In this work the vertical gravity-impact feeder for moving of the prismatic or plane details is presented. The parts move on inclined guiding plates, free fall and collide with the down plates, the impact phenomena may be used both for decreasing of velocity and for the orientation of the tracking workpieces (lateral reversing). System of equations of plane motion of detail, including stages of sliding on the slope guideway, free flight, impact and motion to the next guideway, are written down. System of equations is solved numerically with help of MathCAD program

    Workshop on "Robotic assembly of 3D MEMS".

    No full text
    Proceedings of a workshop proposed in IEEE IROS'2007.The increase of MEMS' functionalities often requires the integration of various technologies used for mechanical, optical and electronic subsystems in order to achieve a unique system. These different technologies have usually process incompatibilities and the whole microsystem can not be obtained monolithically and then requires microassembly steps. Microassembly of MEMS based on micrometric components is one of the most promising approaches to achieve high-performance MEMS. Moreover, microassembly also permits to develop suitable MEMS packaging as well as 3D components although microfabrication technologies are usually able to create 2D and "2.5D" components. The study of microassembly methods is consequently a high stake for MEMS technologies growth. Two approaches are currently developped for microassembly: self-assembly and robotic microassembly. In the first one, the assembly is highly parallel but the efficiency and the flexibility still stay low. The robotic approach has the potential to reach precise and reliable assembly with high flexibility. The proposed workshop focuses on this second approach and will take a bearing of the corresponding microrobotic issues. Beyond the microfabrication technologies, performing MEMS microassembly requires, micromanipulation strategies, microworld dynamics and attachment technologies. The design and the fabrication of the microrobot end-effectors as well as the assembled micro-parts require the use of microfabrication technologies. Moreover new micromanipulation strategies are necessary to handle and position micro-parts with sufficiently high accuracy during assembly. The dynamic behaviour of micrometric objects has also to be studied and controlled. Finally, after positioning the micro-part, attachment technologies are necessary

    National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program: 1995.

    Get PDF
    The JSC NASA/ASEE Summer Faculty Fellowship Program was conducted at JSC, including the White Sands Test Facility, by Texas A&M University and JSC. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of the participants' institutions; and (4) to contribute to the research objectives of the NASA centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project in collaboration with a NASA/JSC colleague. In addition to the faculty participants, the 1995 program included five students. This document is a compilation of the final reports on the research projects completed by the faculty fellows and visiting students during the summer of 1995. The reports of two of the students are integral with that of the respective fellow. Three students wrote separate reports

    Proceedings of the NASA Conference on Space Telerobotics, volume 3

    Get PDF
    The theme of the Conference was man-machine collaboration in space. The Conference provided a forum for researchers and engineers to exchange ideas on the research and development required for application of telerobotics technology to the space systems planned for the 1990s and beyond. The Conference: (1) provided a view of current NASA telerobotic research and development; (2) stimulated technical exchange on man-machine systems, manipulator control, machine sensing, machine intelligence, concurrent computation, and system architectures; and (3) identified important unsolved problems of current interest which can be dealt with by future research

    A SENSORY-MOTOR LINGUISTIC FRAMEWORK FOR HUMAN ACTIVITY UNDERSTANDING

    Get PDF
    We empirically discovered that the space of human actions has a linguistic structure. This is a sensory-motor space consisting of the evolution of joint angles of the human body in movement. The space of human activity has its own phonemes, morphemes, and sentences. We present a Human Activity Language (HAL) for symbolic non-arbitrary representation of sensory and motor information of human activity. This language was learned from large amounts of motion capture data. Kinetology, the phonology of human movement, finds basic primitives for human motion (segmentation) and associates them with symbols (symbolization). This way, kinetology provides a symbolic representation for human movement that allows synthesis, analysis, and symbolic manipulation. We introduce a kinetological system and propose five basic principles on which such a system should be based: compactness, view-invariance, reproducibility, selectivity, and reconstructivity. We demonstrate the kinetological properties of our sensory-motor primitives. Further evaluation is accomplished with experiments on compression and decompression of motion data. The morphology of a human action relates to the inference of essential parts of movement (morpho-kinetology) and its structure (morpho-syntax). To learn morphemes and their structure, we present a grammatical inference methodology and introduce a parallel learning algorithm to induce a grammar system representing a single action. The algorithm infers components of the grammar system as a subset of essential actuators, a CFG grammar for the language of each component representing the motion pattern performed in a single actuator, and synchronization rules modeling coordination among actuators. The syntax of human activities involves the construction of sentences using action morphemes. A sentence may range from a single action morpheme (nuclear syntax) to a sequence of sets of morphemes. A single morpheme is decomposed into analogs of lexical categories: nouns, adjectives, verbs, and adverbs. The sets of morphemes represent simultaneous actions (parallel syntax) and a sequence of movements is related to the concatenation of activities (sequential syntax). We demonstrate this linguistic framework on real motion capture data from a large scale database containing around 200 different actions corresponding to English verbs associated with voluntary meaningful observable movement

    A Distributed System for Robot Manipulator Control

    Get PDF
    This is the final report representing three years of work under the current grant. This work was directed to the development of a distributed computer architecture to function as a force and motion server to a robot system. In the course of this work we developed a compliant contact sensor to provide for transitions between position and force control; we have developed an end-effector capable of securing a stable grasp on an object and a theory of grasping; we have built a controller which minimizes control delays, and are currently achieving delays of the order of five milliseconds, with sample rates of 200 hertz; we have developed parallel kinematics algorithms for the controller; we have developed a consistent approach to the definition of motion both in joint coordinates and in Cartesian coordinates; we have developed a symbolic simplification software package to generate the dynamics equations of a manipulator such that the calculations may be split between background and foreground

    Advanced Sensing and Control for Connected and Automated Vehicles

    Get PDF
    Connected and automated vehicles (CAVs) are a transformative technology that is expected to change and improve the safety and efficiency of mobility. As the main functional components of CAVs, advanced sensing technologies and control algorithms, which gather environmental information, process data, and control vehicle motion, are of great importance. The development of novel sensing technologies for CAVs has become a hotspot in recent years. Thanks to improved sensing technologies, CAVs are able to interpret sensory information to further detect obstacles, localize their positions, navigate themselves, and interact with other surrounding vehicles in the dynamic environment. Furthermore, leveraging computer vision and other sensing methods, in-cabin humans’ body activities, facial emotions, and even mental states can also be recognized. Therefore, the aim of this Special Issue has been to gather contributions that illustrate the interest in the sensing and control of CAVs

    Emerging Trends in Mechatronics

    Get PDF
    Mechatronics is a multidisciplinary branch of engineering combining mechanical, electrical and electronics, control and automation, and computer engineering fields. The main research task of mechatronics is design, control, and optimization of advanced devices, products, and hybrid systems utilizing the concepts found in all these fields. The purpose of this special issue is to help better understand how mechatronics will impact on the practice and research of developing advanced techniques to model, control, and optimize complex systems. The special issue presents recent advances in mechatronics and related technologies. The selected topics give an overview of the state of the art and present new research results and prospects for the future development of the interdisciplinary field of mechatronic systems

    Haptics: Science, Technology, Applications

    Get PDF
    This open access book constitutes the proceedings of the 13th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2022, held in Hamburg, Germany, in May 2022. The 36 regular papers included in this book were carefully reviewed and selected from 129 submissions. They were organized in topical sections as follows: haptic science; haptic technology; and haptic applications
    • …
    corecore