1,249 research outputs found

    Organisational Metamodel for Large-Scale Multi-Agent Systems: First Steps Towards Modelling Organisation Dynamics

    Get PDF
    The research presented in this paper is a thesis proposal with the main goal of defining an ontology comprising chosen organisational concepts applicable to large-scale multiagent systems (LSMAS), and building a metamodel for modelling selected organisational features in such systems. The method of applying aspects of human organisations to multiagent systems (MAS) comprising autonomous intelligent agents will be enriched through this research with a new perspective of modelling organisation dynamics in LSMAS. Results of this research, in their final version, will be tested using testbed scenarios based on a specific massively multi-player online role-playing game (MMORPG), since MMORPGs are one of the identified application domains of LSMAS. It is important to note that results described in this paper showcase partial results in their early stage of development. Nevertheless, first traces of a modelling tool that is expected to aid in development of LSMAS for numerous application domains, and ease their organisational design, are recognisable in the proposed combination of ontology engineering, metamodelling and code generating methods

    Using a situational method engineering approach to identify reusable method fragments from the secure TROPOS methodology

    Full text link
    Situational method engineering (SME) has as a focus a repository of method fragments, gleaned from extant methodologies and best practice. Using one such example, the OPF (OPEN Process Framework) repository, we identify deficiencies in the current SME support for securityrelated issues in the context of agent-oriented software engineering. Specifically, theoretical proposals for the development of reusable security-related method fragments from the agent-oriented methodology Secure Tropos are discussed. Since the OPF repository has already been enhanced by fragments from Tropos and other non-security-focussed agent-oriented software development methodologies, the only method fragments from Secure Tropos not already contained in this repository are those that are specifically security-related. These are identified, clearly defined and recommended for inclusion in the current OPF repository of method fragments. ©JOT 2010

    Supporting Tropos concepts in Agent OPEN

    Full text link
    The growth of interest in agent-orientation as a new paradigm has introduced the need for developing concepts, tools and techniques for modeling and engineering agent-based software systems. Object technology has been supporting the development of information systems for many years but is now slowly evolving to encompass more recent ideas relating to the concept of "agent". Integrating agent concepts into existing OO methodologies has resulted in several agent-oriented methodologies, one of which is Agent OPEN. In this paper, we evaluate the existing Agent OPEN description against ideas formulated within Tropos, an agent-oriented software development methodology. © Springer-Verlag Berlin Heidelberg 2004

    Evaluating how agent methodologies support the specification of the normative environment through the development process

    Full text link
    [EN] Due to the increase in collaborative work and the decentralization of processes in many domains, there is an expanding demand for large-scale, flexible and adaptive software systems to support the interactions of people and institutions distributed in heterogeneous environments. Commonly, these software applications should follow specific regulations meaning the actors using them are bound by rights, duties and restrictions. Since this normative environment determines the final design of the software system, it should be considered as an important issue during the design of the system. Some agent-oriented software engineering methodologies deal with the development of normative systems (systems that have a normative environment) by integrating the analysis of the normative environment of a system in the development process. This paper analyses to what extent these methodologies support the analysis and formalisation of the normative environment and highlights some open issues of the topic.This work is partially supported by the PROMETEOII/2013/019, TIN2012-36586-C03-01, FP7-29493, TIN2011-27652-C03-00, CSD2007-00022 projects, and the CASES project within the 7th European Community Framework Program under the grant agreement No 294931.Garcia Marques, ME.; Miles, S.; Luck, M.; Giret Boggino, AS. (2014). Evaluating how agent methodologies support the specification of the normative environment through the development process. Autonomous Agents and Multi-Agent Systems. 1-20. https://doi.org/10.1007/s10458-014-9275-zS120Cossentino, M., Hilaire, V., Molesini, A., & Seidita, V. (Eds.). (2014). Handbook on agent-oriented design processes (Vol. VIII, 569 p. 508 illus.). Berlin: Springer.Akbari, O. (2010). A survey of agent-oriented software engineering paradigm: Towards its industrial acceptance. Journal of Computer Engineering Research, 1, 14–28.Argente, E., Botti, V., Carrascosa, C., Giret, A., Julian, V., & Rebollo, M. (2011). An abstract architecture for virtual organizations: The THOMAS approach. Knowledge and Information Systems, 29(2), 379–403.Argente, E., Botti, V., & Julian, V. (2009). GORMAS: An organizational-oriented methodological guideline for open MAS. In Proceedings of AOSE’09 (pp. 440–449).Argente, E., Botti, V., & Julian, V. (2009). Organizational-oriented methodological guidelines for designing virtual organizations. In Distributed computing, artificial intelligence, bioinformatics, soft computing, and ambient assisted living. Lecture Notes in Computer Science (Vol. 5518, pp. 154–162).Boella, G., Pigozzi, G., & van der Torre, L. (2009). Normative systems in computer science—Ten guidelines for normative multiagent systems. In G. Boella, P. Noriega, G. Pigozzi, & H. Verhagen (Eds.), Normative multi-agent systems, number 09121 in Dagstuhl seminar proceedings.Boella, G., Torre, L., & Verhagen, H. (2006). Introduction to normative multiagent systems. Computational and Mathematical Organization Theory, 12(2–3), 71–79.Bogdanovych, A., Esteva, M., Simoff, S., Sierra, C., & Berger, H. (2008). A methodology for developing multiagent systems as 3d electronic institutions. In M. Luck & L. Padgham (Eds.), Agent-Oriented Software Engineering VIII (Vol. 4951, pp. 103–117). Lecture Notes in Computer Science. Berlin: Springer.Boissier, O., Padget, J., Dignum, V., Lindemann, G., Matson, E., Ossowski, S., Sichman, J., & Vazquez-Salceda, J. (2006). Coordination, organizations, institutions and norms in multi-agent systems. LNCS (LNAI) (Vol. 3913).Bordini, R. H., Fisher, M., Visser, W., & Wooldridge, M. (2006). Verifying multi-agent programs by model checking. In Autonomous agents and multi-agent systems (Vol. 12, pp. 239–256). Hingham, MA: Kluwer Academic Publishers.Botti, V., Garrido, A., Giret, A., & Noriega, P. (2011). The role of MAS as a decision support tool in a water-rights market. In Post-proceedings workshops AAMAS2011 (Vol. 7068, pp. 35–49). Berlin: Springer.Breaux, T. (2009). Exercising due diligence in legal requirements acquisition: A tool-supported, frame-based approach. In Proceedings of the IEEE international requirements engineering conference (pp. 225–230).Breaux, T. D., & Baumer, D. L. (2011). Legally reasonable security requirements: A 10-year ftc retrospective. Computers and Security, 30(4), 178–193.Breaux, T. D., Vail, M. W., & Anton, A. I. (2006). Towards regulatory compliance: Extracting rights and obligations to align requirements with regulations. In Proceedings of the 14th IEEE international requirements engineering conference, RE ’06 (pp. 46–55). Washington, DC: IEEE Computer Society.Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., & Mylopoulos, J. (2004). Tropos: An agent-oriented software development methodology. Autonomous Agents and Multi-Agent Systems, 8(3), 203–236.Cardoso, H. L., & Oliveira, E. (2008). A contract model for electronic institutions. In COIN’07: Proceedings of the 2007 international conference on Coordination, organizations, institutions, and norms in agent systems III (pp. 27–40).Castor, A., Pinto, R. C., Silva, C. T. L. L., & Castro, J. (2004). Towards requirement traceability in tropos. In WER (pp. 189–200).Chopra, A., Dalpiaz, F., Giorgini, P., & Mylopoulos, J. (2009). Modeling and reasoning about service-oriented applications via goals and commitments. ICST conference on digital business.Cliffe, O., Vos, M., & Padget, J. (2006). Specifying and analysing agent-based social institutions using answer set programming. In O. Boissier, J. Padget, V. Dignum, G. Lindemann, E. Matson, S. Ossowski, J. Sichman, & J. Vázquez-Salceda (Eds.), Coordination, organizations, institutions, and norms in multi-agent systems. Lecture Notes in Computer Science (Vol. 3913, pp. 99–113). Springer. Berlin.Criado, N., Argente, E., Garrido, A., Gimeno, J. A., Igual, F., Botti, V., Noriega, P., & Giret, A. (2011). Norm enforceability in Electronic Institutions? In Coordination, organizations, institutions, and norms in agent systems VI (Vol. 6541, pp. 250–267). Springer.Dellarocas, C., & Klein, M. (2001). Contractual agent societies. In R. Conte & C. Dellarocas (Eds.), Social order in multiagent systems (Vol. 2, pp. 113–133)., Multiagent Systems, Artificial Societies, and Simulated Organizations New York: Springer.DeLoach, S. A. (2008). Developing a multiagent conference management system using the o-mase process framework. In Proceedings of the international conference on agent-oriented software engineering VIII (pp. 168–181).DeLoach, S. A., & Garcia-Ojeda, J. C. (2010). O-mase; a customisable approach to designing and building complex, adaptive multi-agent systems. International Journal of Agent-Oriented Software Engineering, 4(3), 244–280.DeLoach, S. A., Padgham, L., Perini, A., Susi, A., & Thangarajah, J. (2009). Using three aose toolkits to develop a sample design. International Journal Agent-Oriented Software Engineering, 3, 416–476.Dignum, F., Dignum, V., Thangarajah, J., Padgham, L., & Winikoff, M. (2007). Open agent systems? Eighth international workshop on agent oriented software engineering (AOSE) in AAMAS07.Dignum, V. (2003). A model for organizational interaction:based on agents, founded in logic. PhD thesis, Utrecht University.Dignum, V., Meyer, J., Dignum, F., & Weigand, H. (2003). Formal specification of interaction in agent societies. Formal approaches to agent-based systems (Vol. 2699).Dignum, V., Vazquez-Salceda, J., & Dignum, F. (2005). Omni: Introducing social structure, norms and ontologies into agent organizations. In R. Bordini, M. Dastani, J. Dix, & A. Seghrouchni (Eds.)Programming multi-agent systems. Lecture Notes in Computer Science (Vol. 3346, pp. 181–198). Berlin: Springer.d’Inverno, M., Luck, M., Noriega, P., Rodriguez-Aguilar, J., & Sierra, C. (2012). Communicating open systems, 186, 38–94.Elsenbroich, C., & Gilbert, N. (2014). Agent-based modelling. In Modelling norms (pp. 65–84). Dordrecht: Springer.Esteva, M., Rosell, B., Rodriguez, J. A., & Arcos, J. L. (2004). AMELI: An agent-based middleware for electronic institutions. In AAMAS04 (pp. 236–243).Fenech, S., Pace, G. J., & Schneider, G. (2009). Automatic conflict detection on contracts. In Proceedings of the 6th international colloquium on theoretical aspects of computing, ICTAC ’09 (pp. 200–214).Garbay, C., Badeig, F., & Caelen, J. (2012). Normative multi-agent approach to support collaborative work in distributed tangible environments. In Proceedings of the ACM 2012 conference on computer supported cooperative work companion, CSCW ’12 (pp. 83–86). New York, NY: ACM.Garcia, E., Giret, A., & Botti, V. (2011). Regulated open multi-agent systems based on contracts. In Information Systems Development (pp. 243–255).Garcia, E., Tyson, G., Miles, S., Luck, M., Taweel, A., Staa, T. V., & Delaney, B. (2012). An analysis of agent-oriented engineering of e-health systems. In 13th international eorkshop on sgent-oriented software engineering (AOSE-AAMAS).Garcia, E., Tyson, G., Miles, S., Luck, M., Taweel, A., Staa, T. V., and Delaney, B. (2013). Analysing the Suitability of Multiagent Methodologies for e-Health Systems. In Agent-Oriented Software Engineering XIII, volume 7852, pages 134–150. Springer-Verlag.Garrido, A., Giret, A., Botti, V., & Noriega, P. (2013). mWater, a case study for modeling virtual markets. In New perspectives on agreement technologies (Vol. Law, Gover, pp. 563–579). Springer.Gteau, B., Boissier, O., & Khadraoui, D. (2006). Multi-agent-based support for electronic contracting in virtual enterprises. IFAC Symposium on Information Control Problems in Manufacturing (INCOM), 150(3), 73–91.Hollander, C. D., & Wu, A. S. (2011). The current state of normative agent-based systems. Journal of Artificial Societies and Social Simulation, 14(2), 6.Hsieh, F.-S. (2005). Automated negotiation based on contract net and petri net. In E-commerce and web technologies. Lecture Notes in Computer Science (Vol. 3590, pp. 148–157).Kollingbaum, M., Jureta, I. J., Vasconcelos, W., & Sycara, K. (2008). Automated requirements-driven definition of norms for the regulation of behavior in multi-agent systems. In Proceedings of the AISB 2008 workshop on behaviour regulation in multi-agent systems, Aberdeen, Scotland, U.K., April 2008.Li, T., Balke, T., Vos, M., Satoh, K., & Padget, J. (2013). Detecting conflicts in legal systems. In Y. Motomura, A. Butler, & D. Bekki (Eds.), New Frontiers in Artificial Intelligence (Vol. 7856, pp. 174–189)., Lecture Notes in Computer Science Berlin Heidelberg: Springer.Lomuscio, A., Qu, H., & Solanki, M. (2010) Towards verifying contract regulated service composition. Journal of Autonomous Agents and Multi-Agent Systems (pp. 1–29).Lopez, F., Luck, M., & d’Inverno, M. (2006). A normative framework for agent-based systems. Computational and Mathematical Organization Theory, 12, 227–250.Lpez, F. y, Luck, M., & dInverno, M. (2006). A normative framework for agent-based systems. Computational and Mathematical Organization Theory, 12(2–3), 227–250.Mader, P., & Egyed, A. (2012). Assessing the effect of requirements traceability for software maintenance. In 28th IEEE International Conference on Software Maintenance (ICSM) (pp. 171–180), Sept 2012.Mao, X., & Yu, E. (2005). Organizational and social concepts in agent oriented software engineering. In AOSE IV. Lecture Notes in Artificial Intelligence (Vol. 3382, pp. 184–202).Meyer, J.-J. C., & Wieringa, R. J. (Eds.). (1993). Deontic logic in computer science: Normative system specification. Chichester, UK: Wiley.Okouya, D., & Dignum, V. (2008). Operetta: A prototype tool for the design, analysis and development of multi-agent organizations (demo paper). In AAMAS (pp. 1667–1678).Malone, T. W., Smith J. B., & Olson, G. M. (2001). Coordination theory and collaboration technology. Mahwah, NJ: Lawrence Erlbaum Associates.Oren, N., Panagiotidi, S., Vázquez-Salceda, J., Modgil, S., Luck, M., & Miles, S. (2009). Towards a formalisation of electronic contracting environments. COIN (pp. 156–171).Osman, N., Robertson, D., & Walton, C. (2006). Run-time model checking of interaction and deontic models for multi-agent systems. In AAMAS ’06: Proceedings of the fifth international joint conference on Autonomous agents and multiagent systems (pp. 238–240). New York, NY: ACM.Pace, G., Prisacariu, C., & Schneider, G. (2007). Model checking contracts a case study. In Automated technology for verification and analysis. Lecture Notes in Computer Science (Vol. 4762, pp. 82–97).Rotolo, A., & van der Torre, L. (2011). Rules, agents and norms: Guidelines for rule-based normative multi-agent systems. RuleML Europe, 6826, 52–66.Saeki, M., & Kaiya, H. (2008). Supporting the elicitation of requirements compliant with regulations. In CAiSE ’08 (pp. 228–242).Siena, A., Mylopoulos, J., Perini, A., & Susi, A. (2009). Designing law-compliant software requirements. In Proceedings of the 28th international conference on conceptual modeling, ER ’09 (pp. 472–486).Singh, M. P. Commitments in multiagent systems: Some history, some confusions, some controversies, some prospects.Solaiman, E., Molina-Jimenez, C., & Shrivastav, S. (2003). Model checking correctness properties of electronic contracts. In Service-oriented computing—ICSOC 2003. Lecture Notes in Computer Science (Vol. 2910, pp. 303–318). Berlin: Springer.Telang, P. R., & Singh, M. P. (2009). Conceptual modeling: Foundations and applications. Enhancing tropos with commitments (pp. 417–435).Vázquez-Salceda, J., Confalonieri, R., Gomez, I., Storms, P., Nick Kuijpers, S. P., & Alvarez, S. (2009). Modelling contractually-bounded interactions in the car insurance domain. DIGIBIZ 2009.Viganò, F., & Colombetti, M. (2007). Symbolic model checking of institutions. In ICEC (pp. 35–44).Walton, C. D. (2007). Verifiable agent dialogues. Journal of Applied Logic, 5(2):197–213, Logic-Based Agent Verification.Winkler, S., & Pilgrim, J. (2010). A survey of traceability in requirements engineering and model-driven development. Software and Systems Modeling (SoSyM), 9(4), 529–565.Wooldridge, M., Fisher, M., Huget, M., & Parsons, S. (2002). Model checking multi-agent systems with mable. In AAMAS02 (pp. 952–959). ACM

    Fostering the adoption of i* by practitioners: some challenges and research directions

    Get PDF
    The i* framework is a widespread formalism in the software engineering discipline that allows expressing intentionality of system actors. From the time it was issued, in the mid-nineties, a growing research community has adopted it either in its standard form or formulating variations in order to adapt it to some particular purpose. New methods, techniques and tools have made evolve the framework in a way that it may be currently considered quite mature from the scientific perspective. However, the i* framework has not been transferred to practitioners at the same extent yet: industrial experiences using i* are not many and have been mainly conducted by i* experts that are part of that very research community. Therefore, it may be argued that some steps are needed for boosting the adoption of i* by practitioners. In this chapter, we identify some scientific challenges whose overcoming could represent a step towards this goal. For each challenge, we present the problem that is addressed, its current state of the art and some envisaged lines of research.Preprin

    Emergent Workflow

    Get PDF

    A platform-independent model for agents

    Get PDF
    Various agent-oriented methodologies and metamodels exist to describe multiagent systems ([VIAS) in an abstract manner. Frequently, these frameworks specialize on particular parts of the MAS and only few works have been invested to derive a common standardization. This limits t he impact of agent-related systems in commercial applications. In this paper, we present a metamodel for agent systems that abstract from existing agent-oriented methodologies and platforms and could thus be called platform-independent. This metamodel provides the core language that is used in our agentoriented software development process that conforms to the principles of Model-Driven Developrnent (MDD). Beside the domain-specific modelling language, we further provide two model transformations that allow to transform the generated models into textual code that call be executed with JACK and JADE

    Augmenting Bottom-Up Metamodels with Predicates

    Get PDF
    Metamodeling refers to modeling a model. There are two metamodeling approaches for ABMs: (1) top-down and (2) bottom-up. The top down approach enables users to decompose high-level mental models into behaviors and interactions of agents. In contrast, the bottom-up approach constructs a relatively small, simple model that approximates the structure and outcomes of a dataset gathered fromthe runs of an ABM. The bottom-up metamodel makes behavior of the ABM comprehensible and exploratory analyses feasible. Formost users the construction of a bottom-up metamodel entails: (1) creating an experimental design, (2) running the simulation for all cases specified by the design, (3) collecting the inputs and output in a dataset and (4) applying first-order regression analysis to find a model that effectively estimates the output. Unfortunately, the sums of input variables employed by first-order regression analysis give the impression that one can compensate for one component of the system by improving some other component even if such substitution is inadequate or invalid. As a result the metamodel can be misleading. We address these deficiencies with an approach that: (1) automatically generates Boolean conditions that highlight when substitutions and tradeoffs among variables are valid and (2) augments the bottom-up metamodel with the conditions to improve validity and accuracy. We evaluate our approach using several established agent-based simulations
    corecore