210 research outputs found

    Constructing Efficient Cache Invalidation Schemes in Mobile Environments

    Get PDF
    [[abstract]]Cache invalidation is an effective approach to maintaining data consistency between the server and mobile clients in a mobile environment. This paper presents two new cache invalidation schemes which are designed according to the real situations and are therefore able to comply with the more practical needs in a mobile environment. The ABI+HCQU divides data into different groups based on their utilization rates (hot/cold/query/update) and adapts their broadcasting intervals (ABI) accordingly to suit the actual needs. The SWRCC + MUVI (sleep/wakeup/recovery/check/confirm+modified/uncertain/ valid/ invalid) aims to solve the validity problem of cached data after a client is disconnected from the server. The new cache invalidation schemes are shown through experimental evaluation to outperform most existing schemes in terms of data access time, cache miss rates and bandwidth consumption.[[conferencetype]]國際[[conferencedate]]20071216~20071218[[iscallforpapers]]Y[[conferencelocation]]Shanghai, Chin

    Pervasive Data Access in Wireless and Mobile Computing Environments

    Get PDF
    The rapid advance of wireless and portable computing technology has brought a lot of research interests and momentum to the area of mobile computing. One of the research focus is on pervasive data access. with wireless connections, users can access information at any place at any time. However, various constraints such as limited client capability, limited bandwidth, weak connectivity, and client mobility impose many challenging technical issues. In the past years, tremendous research efforts have been put forth to address the issues related to pervasive data access. A number of interesting research results were reported in the literature. This survey paper reviews important works in two important dimensions of pervasive data access: data broadcast and client caching. In addition, data access techniques aiming at various application requirements (such as time, location, semantics and reliability) are covered

    Dynamic Cache Invalidation Scheme in IR-Based Wireless Environments

    Full text link

    Research in Mobile Database Query Optimization and Processing

    Get PDF

    A Hashing Scheme for Multi-channel Wireless Broadcast

    Get PDF
    The rapid development of wireless communication technology and battery-powered portable devices is making mobile information services increasingly popular. Since the bandwidth resource of wireless networks is scarce and the mobile devices have a limited battery capacity, any solution for information access must be devised in such a way that time and power consumption for the devices are minimized. Data broadcast is a promising technique to improve the bandwidth utilization and conserve the power consumption in a mobile computing environment. This paper proposes a hashing scheme for information access via wireless broadcast through multiple channels in which hash functions are used to index broadcast information across multiple channels. In this scheme, two different hash functions called Primary Hash Function (PHF) and Secondary Hash Function (SHF) are used, where PHF is used to determine the channel in which the desired data item is to be broadcasted and SHF is used to locate the data item within that channel. The proposed hashing scheme reduces both the access latency and tuning time and shortens the broadcast length. Moreover, Access Probabilities of data items and User Profiles that indicate the client behavior in the environment at any given time are considered in this system to construct an efficient broadcast schedule. This broadcast schedule is a non-flat data broadcast that further reduces the average access latency. Finally, Caching techniques are also implemented to further improve the access latency and tuning time

    Cooperative Caching in Vehicular Networks - Distributed Cache Invalidation Using Information Freshness

    Get PDF
    Recent advances in vehicular communications has led to significant opportunities to deploy variety of applications and services improving road safety and traffic efficiency to road users. In regard to traffic management services in distributed vehicular networks, this thesis work evaluates managing storage at vehicles efficiently as cache for moderate cellular transmission costs while still achieving correct routing decision. Road status information was disseminated to oncoming traffic in the form of cellular notifications using a reporting mechanism. High transmission costs due to redundant notifications published by all vehicles following a basic reporting mechanism: Default-approach was overcome by implementing caching at every vehicle. A cooperative based reporting mechanism utilizing cache: Cooperative-approach, was proposed to notify road status while avoiding redundant notifications. In order to account those significantly relevant vehicles for decision-making process which did not actually publish, correspondingly virtual cache entries were implemented. To incorporate the real-world scenario of varying vehicular rate observed on any road, virtual cache entries based on varying vehicular rate was modeled as Adaptive Cache Management mechanism. The combinations of proposed mechanisms were evaluated for cellular transmission costs and accuracy achieved for making correct routing decision. Simulation case studies comprising varying vehicular densities and different false detection rates were conducted to demonstrate the performance of these mechanisms. Additionally, the proposed mechanisms were evaluated in different decision-making algorithms for both information freshness in changing road conditions and for robustness despite false detections. The simulation results demonstrated that the combination of proposed mechanisms was capable of achieving realistic information accuracy enough to make correct routing decision despite false readings while keeping network costs significantly low. Furthermore, using QoI-based decision algorithm in high density vehicular networks, fast adaptability to frequently changing road conditions as well as quick recovery from false notifications by invalidating them with correct notifications were indicated

    Hit and Bandwidth Optimal Caching for Wireless Data Access Networks

    Get PDF
    For many data access applications, the availability of the most updated information is a fundamental and rigid requirement. In spite of many technological improvements, in wireless networks, wireless channels (or bandwidth) are the most scarce resources and hence are expensive. Data access from remote sites heavily depends on these expensive resources. Due to affordable smart mobile devices and tremendous popularity of various Internet-based services, demand for data from these mobile devices are growing very fast. In many cases, it is becoming impossible for the wireless data service providers to satisfy the demand for data using the current network infrastructures. An efficient caching scheme at the client side can soothe the problem by reducing the amount of data transferred over the wireless channels. However, an update event makes the associated cached data objects obsolete and useless for the applications. Frequencies of data update, as well as data access play essential roles in cache access and replacement policies. Intuitively, frequently accessed and infrequently updated objects should be given higher preference while preserving in the cache. However, modeling this intuition is challenging, particularly in a network environment where updates are injected by both the server and the clients, distributed all over networks. In this thesis, we strive to make three inter-related contributions. Firstly, we propose two enhanced cache access policies. The access policies ensure strong consistency of the cached data objects through proactive or reactive interactions with the data server. At the same time, these policies collect information about access and update frequencies of hosted objects to facilitate efficient deployment of the cache replacement policy. Secondly, we design a replacement policy which plays the decision maker role when there is a new object to accommodate in a fully occupied cache. The statistical information collected by the access policies enables the decision making process. This process is modeled around the idea of preserving frequently accessed but less frequently updated objects in the cache. Thirdly, we analytically show that a cache management scheme with the proposed replacement policy bundled with any of the cache access policies guarantees optimum amount of data transmission by increasing the number of effective hits in the cache system. Results from both analysis and our extensive simulations demonstrate that the proposed policies outperform the popular Least Frequently Used (LFU) policy in terms of both effective hits and bandwidth consumption. Moreover, our flexible system model makes the proposed policies equally applicable to applications for the existing 3G, as well as upcoming LTE, LTE Advanced and WiMAX wireless data access networks

    Mobile Map Browsers: Anticipated User Interaction for Data Pre-fetching

    Get PDF
    When browsing a graphical display of geospatial data on mobile devices, users typically change the displayed maps by panning, zooming in and out, or rotating the device. Limited storage space on mobile devices and slow wireless communications, however, impede the performance of these operations. To overcome the bottleneck that all map data to be displayed on the mobile device need to be downloaded on demand, this thesis investigates how anticipated user interactions affect intelligent pre-fetching so that an on-demand download session is extended incrementally. User interaction is defined as a set of map operations that each have corresponding effects on the spatial dataset required to generate the display. By anticipating user interaction based on past behavior and intuition on when waiting for data is acceptable, it is possible to device a set of strategies to better prepare the device with data for future use. Users that engage with interactive map displays for a variety of tasks, whether it be navigation, information browsing, or data collection, experience a dynamic display to accomplish their goal. With vehicular navigation, the display might update itself as a result of a GPS data stream reflecting movement through space. This movement is not random, especially as is the case of moving vehicles and, therefore, this thesis suggests that mobile map data could be pre-fetched in order to improve usability. Pre-fetching memory-demanding spatial data can benefit usability in several ways, but in particular it can (1) reduce latency when downloading data over wireless connections and (2) better prepare a device for situations where wireless internet connectivity is weak or intermittent. This thesis investigates mobile map caching and devises an algorithm for pre-fetching data on behalf of the application user. Two primary models are compared: isotropic (direction-independent) and anisotropic (direction-dependent) pre-fetching. A prefetching simulation is parameterized with many trajectories that vary in complexity (a metric of direction change within the trajectory) and it is shown that, although anisotropic pre-fetching typically results in a better pre-fetching accuracy, it is not ideal for all scenarios. This thesis suggests a combination of models to accommodate the significant variation in moving object trajectories. In addition, other methods for pre-fetching spatial data are proposed for future research
    corecore