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Abstract 

 
Cache invalidation is an effective approach to 

maintaining data consistency between the server and 
mobile clients in a mobile environment. This paper 
presents two new cache invalidation schemes which 
are designed according to the real situations and are 
therefore able to comply with the more practical needs 
in a mobile environment. The ABI+HCQU divides 
data into different groups based on their utilization 
rates (Hot/ Cold/ Query/ Update) and adapts their 
broadcasting intervals (ABI) accordingly to suit the 
actual needs. The SWRCC + MUVI (Sleep/ Wakeup/ 
Recovery/ Check/ Confirm + Modified/ Uncertain/ 
Valid/ Invalid) aims to solve the validity problem of 
cached data after a client is disconnected from the 
server. The new cache invalidation schemes are shown 
through experimental evaluation to outperform most 
existing schemes in terms of data access time, cache 
miss rates and bandwidth consumption. 
 
1. Introduction 
 

A mobile environment contains a large number of 
mobile clients and a small number of database servers. 
The servers (each contains all the data in the system) 
are connected through a wired network, while the 
mobile clients (each stores only a part of the data in its 
cache) are connected to a server through a wireless 
communication channel. In such a mobile 
environment, users can use mobile computers to access 
data without temporal or spatial limitations. To reduce 
data access time and bandwidth consumption for 
mobile communications, data items are usually cached 
at the end of the mobile clients. Thus when a server 
updates its data items, the corresponding cached data at 
the mobile clients must be updated as well to maintain 
data consistency and correctness. Cache invalidation is 
a popular and effective approach to attain data 

consistency between the server and mobile clients. In 
cache invalidation, the server will broadcast, 
periodically or aperiodically, invalidation reports (IRs) 
to the mobile clients which then invalidate and update 
the cached data items according to the reports. Various 
cache invalidation schemes have been proposed in the 
literature, including the Timestamp (TS, the simplest 
method [1]), Bit-Sequence (BS which broadcasts 
additional bit sequences [2]), Invalidation by Absolute 
Validity Interval (IAVI in which the cached items can 
verify their validity using AVIs [3]), Update 
Invalidation Report (UIR – based on TS but 
broadcasting additional UIRs between two successive 
IRs [4]), Counter-based (CONT which broadcasts 
additional hotly accessed data [5]), Reducing 
Improving Handling (RIH – based on UIR but the 
server can answer a query after each UIR packet [6]) 
and Adaptive Energy Efficient Cache Invalidation 
Scheme (AEECIS which decides the cache invalidation 
method – Group/TS/Real-Time – according to the 
uplink ratio of the clients [7]). 

To attain better performance, this paper presents 
two new cache invalidation schemes which are 
designed according to the actual situations in a mobile 
environment and are therefore able to comply with the 
more practical needs. Our first scheme, ABI+HCQU, 
aims to make IRs carry the most effective information 
and also to reduce data access time or query latency. In 
the scheme, we adopt an Adaptive Broadcasting 
Interval (ABI) approach which first divides data into 5 
groups (Hot Query, Hot Update, Cold Query, Cold 
Update and ReMAinder) based on their utilization 
conditions and then adapts the broadcasting intervals of 
the 5 groups according to their utilization frequency. 
More “popular” data (such as HQ and HU) will be 
broadcast in shorter intervals to meet the practical 
demands and to save data access time, while less 
“popular” data (such as CQ, CU and RMA) will be 
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broadcast in longer intervals to avoid unnecessary 
bandwidth consumption.  

Our second scheme, SWRCC+MUVI, attempts to 
solve, in a more efficient way, the validity problem of 
cached data which happens when a client disconnects 
to the server – actively or passively. In our design for 
active disconnection (SWR), a client will send the 
server a Sleep message in advance to inform of its 
intended disconnection and later a Wakeup message to 
announce its return and meanwhile to demand for the 
first queried item. The server will then broadcast a 
Recovery message to the client, revealing all data 
items that have been updated during the disconnection 
and the valid information of the first queried item. In 
the approach for passive disconnection, a reconnected 
client can obtain the queried data items from its 
neighboring clients by exchanging the Check and 
Confirm (CC) messages with them via low-power 
broadcasting and also by classifying the validity of the 
acquired data into Modified, Uncertain, Valid and 
Invalid (MUVI). The approach allows a reconnected 
client to obtain most queried data from its neighboring 
clients, instead of from the server, saving a significant 
amount of bandwidth consumption.  

Extended simulation runs are conducted to evaluate 
the performance of our new cache invalidation 
schemes and existing schemes. The results show that 
the proposed ABI+HCQU not only outperforms the 
other existing cache invalidation schemes in average 
data access time and cache miss rates, but is also 
bandwidth-conserving as it consumes more bandwidth 
than SWRCC+MUVI and BS only. As to 
SWRCC+MUVI, it is shown to consume the least 
bandwidth among all schemes except BS (which has 
the smallest broadcast bit sequences), mainly because 
it is able to get most data from neighboring clients, 
instead of from the server. 

 
2. The New Cache Invalidation scheme 

 
Our study on existing cache invalidation schemes 

leads to the following three critical questions which, if 
properly answered, can save remarkable amounts of 
resources (energy and bandwidth) and as a result 
improve the quality of mobile communications. 
(1) How can a stateless server broadcast IRs to the 
mobile clients in a more efficient way?  
(2) When a client uplinks requests to a server, how 
can we shorten the server’s response time (i.e., the 
query time)? 
(3) After a client reconnects to the server, how can 
we make the most of the cached data in that client? 

 

2.1 The Adaptive Broadcasting Interval (ABI) 
 

To make IRs carry the most effective information 
and also to reduce query latency, we adopt an adaptive 
broadcasting interval (ABI) approach which adjusts the 
broadcasting intervals of IRs to meet practical 
communication needs. The main function of ABI is to 
bring more prompt and critical information to the 
mobile clients, i.e., to amend the weakness of 
periodically broadcast IRs. To operate ABI, we first 
define a threshold value H to decide if the information 
in an IR is valid:  
(1) If the number of updated data exceeds H during 
1 broadcasting interval, the information in the IR is 
considered outdated. The broadcasting interval thus 
must be adjusted. Assuming the original broadcasting 
interval is B, it can now be changed to B/2 
(5<B/2<20). That is, IRs will be broadcast in shorter 
intervals to satisfy the frequent query requests of 
clients. 
(2) If the number of updated data falls below H 
during 1 broadcasting interval (i.e., the clients do not 
file frequent queries to the server), the length of IR 
broadcasting intervals can be doubled. For instance, if 
the original interval is B, it can be lengthened into B*2 
(20<B*2<80), to save resources. 
 
2.2 The Hot/Cold vs. Query/Update (HCQU) 
Approach 
 

The concept and definition of “hot data” in UIR and 
CONT inspire us to categorize data into different 
groups according to their frequency of being queried or 
updated. To achieve more effective cache invalidation 
as well as more desirable bandwidth utilization, we 
divide data into 5 groups: Hot Update (HU), Hot Query 
(HQ), Cold Update (CU), Cold Query (CQ) and the 
remainder (RMA), each with a proper broadcasting 
interval that suits their different demands. The HCQU 
approach operates as follows. 
(1) The server and clients first predefine the five 
groups, to be redefined after a fixed time interval. To 
give an example, the five groups can be predefined as  
HU：The top 5% of data updated most frequently. 
HQ：The top 5% of data queried most frequently. 
CU：The bottom 5% of data updated least frequently. 
CQ：The bottom 5% of data queried least frequently. 
RMA：The remainder of data, belonging to none of 
HU, HQ, CU or CQ. 
(2) The server will broadcast five different IRs 
(HU-IR, HQ-IR, CU-IR, CQ-IR and RMA-IR) in their 
own broadcasting intervals. 
(3) Repeat steps 1 and 2. 
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2.3 ABI + HCQU   
 
As stated above, the proposed ABI can adapt the IR 

broadcasting intervals (based on the amount of updated 
data) to reduce data access time or query latency, while 
the proposed HCQU can divide data into different 
groups (based on utilization frequency) to attain 
desirable bandwidth utilization. When ABI works 
together with HCQU, better performance is expectable.   

After HCQU divides data (in the server) into groups 
HU, CU, HQ, CQ and RMA, ABI will check each 
group’s update and query frequency during 1 
broadcasting interval and adapt their broadcasting 
intervals according to the result. The broadcasting 
intervals of HU/CU/RMA and HQ/CQ will be adjusted 
according to the update frequency or the query 
frequency in a fixed period of time.  As each group 
has its own broadcasting interval, we will follow the 
broadcasting priority HQ>HU>RMA>CQ>CU to 
avoid overlapped broadcasting time of different 
groups.  

Before answering a query, a mobile client must use 
the next received IR to check the validity of the cached 
data. We adjust the broadcasting interval of each group 
as follows to reduce the response time. 
(1) The shorter broadcasting interval is given to HU 
and HQ (the real data will be broadcast more 
frequently), and the longer broadcasting interval is 
given to CU and CQ. 
(2) The broadcasting interval for RMA is the 
average of broadcasting intervals for HU, CU, HQ and 
CQ. 

Thus the “hot” data will be more frequently 
broadcast and the “cold” data will be less frequently 
broadcast. Note that such an arrangement consumes 
only slightly more bandwidth while substantially 
reduces the query response time. 

 
2.4 The Sleep/ Wakeup/ Recovery/ Check 
/Confirm (SWRCC) Approach 

 
A mobile client may get disconnected from the 

server actively (to conserve energy) or passively (due 
to moving or accidental factors), and thus may take 
different cache invalidation approaches to verify the 
validity of its cached data after reconnection.  
 
• Our Design for Active Disconnection (SWR): 
(1) A client will send a Sleep message to inform the 
server of its intended disconnection. 
(2) When the disconnected client reconnects to the 
server and receives the first query, it will send a 
Wakeup message (which also includes the information 
of the received first query) to the server. 

(3) Receiving such a Wakeup message, the server 
will move on to send a Recovery message to the client. 
Enclosed are all data items which have been updated 
during the disconnection period and also the valid 
information of the first query.  
(4) The client then updates its cached items and 
answers the first query according to the Recovery 
message. (By allowing a reconnected client to update 
only items which are invalidated during disconnection, 
instead of all cached items, the SWR design can avoid 
unnecessary invalidation of still valid data items to 
save the valuable bandwidth resources.)  
 
• Our Design for Passive Disconnection (CC): 
(1) When a client gets reconnected to the server and 
receives a query request after passive disconnection, it 
will send a Check message to the neighboring clients 
(via low-power broadcasting) at every Check Period 
time interval (to be set as 1/4 or 1/5 of the IR 
broadcasting interval). The Check message Check 
[(id_1,ts_1), (id_2,ts_2),…, (id_n,ts_n)] includes the 
id set of queries received during the time interval (n 
being the total number of the queried data). 
(2) Upon receiving such a Check message, a 
neighboring client first checks its own cache for the 
requested data item. If the item is in its cache and is 
still valid, the neighboring client then sends a Confirm 
message Confirm [(id_1,ts_1,data_1), (id_7, ts_7, 
data_7), …]to the reconnected client and the other 
neighboring clients. 
(3) Receiving the Check and Confirm messages, the 
other neighboring clients will respond by broadcasting 
data items which appear in the Check message but not 
in the Confirm message. 
(4) The reconnected client will not answer queries 
until it receives the next IR from the server (because 
the data obtained from Confirm messages are only 
tentative data whose validity must be confirmed by the 
newest IR). 

 
2.5 Validity States: Modified /Uncertain /Valid 
/Invalid (MUVI) 
 

When designing the SWRCC approach, we face a 
problem: How to properly indicate the validity of 
cached data items? As the validity representation of 
cached data in a mobile environment resembles that in 
a multiprocessor, we study the MESI protocol [8] in 
the multiprocessor and modify it to fit the 
Client-Server environment and our SWRCC approach. 
In our way of validity representation, we use two 
additional bits to indicate the state of each cached data 
as Modified, Uncertain, Valid or Invalid.  
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• Definitions of MUVI 
Modified (M): As mentioned above, when a client 
reconnects to the server and receives a query message, 
it will send a Check message to the neighboring clients 
via lower-power broadcasting and receive possibly 
valid data from their Confirm messages. At this point, 
the state of these possibly valid cached data will be 
changed from Uncertain to Modified.  
Uncertain (U): When a client is initially reconnected 
to the server, the validity of its all cached data is 
uncertain. Their validity state is thus marked as 
Uncertain. 
Valid (V) and Invalid (I): After reconnection and 
receiving the first IR, the client moves on to check the 
validity of its own cached data. The state of data items 
which are still valid is marked as Valid (V), while the 
state of data items which become invalid is changed 
into Invalid (I). 
 
• State Transition of MUVI 
Upon query requests, the state of the cached data item 
will change as follows. 
Cache Hit and Valid:  If the newly received IR 
shows the requested cached data item is still valid 
(M/V/U V), the client can use it to answer the query. 
Cache Hit but Invalid: If the newly received IR 
shows the requested cached data item is invalid 
(M/V/U I), the client will uplink the id of the item to 
the server and answer the query after receiving the 
broadcast data item from the server. 
Cache Hit but Uncertain: A client gets reconnected 
to the server (M/V/U U), receives a query and sends 
a Check message to the neighboring clients who then 
broadcast Confirm messages with the possibly valid 
data item to the client (U M).  
(1) After receiving the next IR, if the client finds the 
requested cached data item is valid (M V), it will 
answer the query with the item. 
(2) Otherwise (M I), it will uplink the id of the 
queried item to the server and answer the query after 
receiving the broadcast data item from the server. 
Cache Hit but Modified: In this situation, the client 
already receives the possibly valid data item and will 
wait for the next IR to invalidate the item. 
(1) After receives the next IR, if the data item is 
valid (M V), it can use the cached data item to reply 
the query. 
(2) Otherwise (M I), it uplinks the id of the queried 
item to the server and will reply that query after 
receives the broadcast data item from the server.  
Cache Miss: The queried item is not in the cache of 
the client which will then broadcast a Check message 
to the neighbors. If the client receives Confirm 
messages (along with the queried item) from neighbors, 
it will set the state to M and wait for the next IR to 

verify the item. If the client receives no Confirm 
messages from neighbors, it has to uplink the request 
to the server. 
 

 
Figure 1. The MUVI state transition diagram for 

data items in the cache. 
 

Figure 1 presents the MUVI state transition for data 
items in the cache. The acronyms in the figure are 
illustrated below. 
RD (Receive the Data item from the server): I V. 
RV (Receive the next IR and verify the cached item as 
Valid): M V, U V, V V. 
RI (Receive the next IR and verify the cached item as 
Invalid): M I, U I, V I, I I. 
RCNT (ReCoNnecT with the server): M U, U U, 
V U, I I. 
BCKRCM (Broadcast ChecK messages and Receive 
Confirm Messages): U M, I M. 
BCKNRCM (Broadcast ChecK messages but do Not 
Receive Confirm Messages): U U, I I. 
 
2.6 SWRCC+MUVI 

 
There are two major advantages for employing 

SWRCC+MUVI. One is the bandwidth conservation 
between the clients and the server -- because data 
transfer mostly happens among the clients. With 
growing number of clients in the mobile environment, 
more uplink and downlink messages will be saved, and 
so will the bandwidth resource. Another advantage is 
the real-time response after active disconnection. In 
active disconnection, the client will send a Sleep 
message to the server before going into the sleep mode. 
At the end of the Sleep, the server will broadcast a 
special invalidation report (especially for the 
disconnection time) to the client. The client wakes up 
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to receive the invalidation report and goes ahead to 
invalidate its cached data items. In this way the 
reconnected client can update the validity of its cache 
at possibly the earliest time. 

 
3. Performance Evaluation 

 
Extended simulation runs are conducted to evaluate 

and compare the performance of our new cache 
invalidation scheme and other existing schemes, 
including the TS, BS, IAVI, UIR, CONT, RIH and 
AEECIS [1-7]. 

 
3.1 The Simulation Model 

 
We have constructed a simulator similar to that 

adopted in [6]. It employs one server and a maximum 
amount of 20 clients. The maximum number of data in 
the server is 10,000 and the maximum number of 
cached data in a client is 500. Data will be updated 
only in the server, not in the clients. The size of each 
data, each data id and a timestamp is 256 bytes, 17 bits 
and 64 bits, respectively. The bandwidth for the uplink 
or between clients is 19.2 kbps, and the bandwidth for 
the downlink is 100 kbps. For a full cache, we adopt 
the Least Recently Used (LRU) policy to replace data 
items (i.e., the oldest cached item will be replaced by 
the newest one). The database contains 5% hot data 
and 95% cold data. The probability for querying and 
updating the hot data and cold data is respectively set 
as 95% and 5%. The exponentially mean update time 
and query (generating) time for the data is 1000 
seconds and 30 seconds. 

 
3.2 Simulation Results 

 
As mentioned, our invalidation scheme is designed 

mainly to reduce the data access time and bandwidth 
consumption in a mobile environment. Thus the 
performance measures of interest in our experimental 
evaluation include the average access time, cache miss 
rate and bandwidth consumption. The involved 
parameter variations include the disconnection 
probability, disconnection time, cache size and 
database size, which will exercise different influences 
on the targeted performance measures. For instance, 
growing database sizes and disconnection probabilities 
will both increase the cache miss rate, and when more 
cache misses occur, the clients need to uplink more 
requested data ids to the server, lengthening the 
average access time and as a result wasting bandwidth 
resources. 

Note that the TS-based cache invalidation strategies, 
such as TS, IAVI, UIR and CONT, will invalidate all 

cached data when the disconnection time exceeds 
broadcasting interval*broadcast window (L*w), 
despite the fact that some data items may remain valid. 
These strategies suit better only when the 
disconnection time falls between the current timestamp 
T and T-L*w. For longer disconnection time, their 
performance may degrade. The Bit-Sequence (BS) 
architecture, by contrast, is more flexible with this 
issue: If data updates happen less frequently, it can 
tolerate longer disconnection time. However, when 
data are updated more and more frequently, the 
architecture will tolerate shorter and shorter 
disconnection time. For improvement, we employ 
SWRCC+MUVI, a new design which allows a 
reconnected client to acquire queried data by 
exchanging the Check and Confirm messages with 
neighboring clients via lower-power broadcasting. 
Such a design helps reduce the uplinking and 
downlinking of requested data between the server and 
clients and thus reduce bandwidth consumption, which 
is especially important for a resource-constrained 
mobile environment.  

For cache invalidation strategies with periodical IR 
broadcasting, the server will periodically broadcast 
data, “hot” or “cold”, to the mobile clients. Periodically 
broadcasting hot data can be practical, but periodically 
broadcasting cold data will unnecessarily consume the 
bandwidth and proves futile. To avoid unnecessary 
bandwidth consumption, i.e., to attain better bandwidth 
utilization, our ABI+HCQU approach allows hot data 
to have higher broadcasting frequency while cold data 
to have lower broadcasting frequency, duly reflecting 
the real situations.  

 
• The Average Access Time 

Figures 2 and 3 demonstrate the average access time 
for various schemes under different disconnection time 
and disconnection probability. The obtained results 
clearly exhibit the effect of different designs among the 
schemes. For instance, as AEECIS is constantly in the 
Slow or Fast mode, its average access time will appear 
longer than that of TS. On the other hand, as IAVI can 
use the AVI values to predict if data are valid or not 
and uplink requests to the server ahead of time, its 
average access time stands shorter than TS. As to UIR, 
it has shorter access time than TS (due to its high 
broadcasting frequency), and longer access time than 
CONT (which is based on UIR but with additional 
broadcasting of hotly queried or updated data) and RIH 
(also based on UIR but with additional broadcasting of 
actual data after each UIR, not each IR).  

The results show that the proposed ABI+HCQU 
approach generates the shortest average access time 
among all schemes. This is because ABI+HCQU 
classifies data into different groups based on their 
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query and update frequency and adapts their 
broadcasting intervals accordingly to comply with 
practical needs. Figures 2 and 3 both indicate a nearly 
unchanged average access time, under all conditions, 
for the proposed SWRCC+MUVI approach. This is 
understandable because SWRCC+MUVI allows a 
client to attain the requested data by exchanging the 
Check and Confirm messages with neighboring clients. 
A client will go to the server only when the queried 
items are not in its cache or its neighboring clients’ 
caches – which is indeed a rare situation. 
Disconnection time or disconnection probability will 
influence its average access time only slightly. 
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Figure 2. The average access time vs. the 

disconnection probability for various schemes. 
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Figure 3. The average access time vs. the 
disconnection time for various schemes. 

 
• The Cache Miss Rate 

Figures 4 and 5 depict the cache miss rate obtained 
under varied disconnection time and disconnection 
probability. As can be expected, higher disconnection 
time and probability will generate higher cache miss 
rate. For TS-based strategies (TS and IAVI), the 
increase in cache miss rates turns milder when 
disconnection time exceeds 1000 sec, and so do the 

UIR-based strategies (UIR and RIH). Without any 
special management on hot data, the BS strategy yields 
similar cache miss rates as the TS strategy. It is clear 
that with special managements on hot data (such as 
allowing most cached data to be hot data), the 
probability for cache miss will be reduced when a 
client receives requests. Among these strategies, 
CONT, AEECIS and ABI+HCQU are strategies with 
special handling of hot data. For CONT, each data in 
the database has a counter to record its frequency of 
being queried or updated; when the value of the 
counter gets bigger than the set threshold, it will be 
broadcast after the IR. AEECIS attains desirable cache 
miss rates as it changes the mode of invalidation report 
according to the number of clients that have uplinked 
requests to the server. The proposed ABI+HCQU 
achieves the lowest cache miss rate because it first 
classifies the database into several groups based on 
their frequency of being used and accordingly adapts 
their broadcasting intervals to suit practical needs. 
 
• Bandwidth Consumption 

Figures 6 and 7 display bandwidth consumption vs. 
different disconnection time and probability. When a 
client receives a query during disconnection, it has to 
uplink the query to the server after reconnection. Thus 
when disconnection probability increases, the demand 
to uplink queries to the server will also increase. 
Bandwidth consumption thus escalates. 

As the results show here, CONT consumes the most 
bandwidth because it has to broadcast additional actual 
data, and BS consumes the least bandwidth because it 
has the smallest broadcast bit sequences. RIH also 
consumes considerable bandwidth because it 
broadcasts actual data after each UIR and may thus 
repeatedly broadcast some hot data during an IR 
broadcasting interval. The broadcast information for 
the TS-based schemes, such as TS, IAVI and UIR, is 
less than that for RIH and CONT, thus requiring less 
bandwidth consumption.  The results also reveal that 
AEECIS, which is constantly in the Fast mode or Slow 
mode, needs less bandwidth consumption than TS. 
ABI+HCQU consumes even less bandwidth as it 
dynamically adapts the broadcasting intervals of its 
classified data groups to assure that hot data are 
delivered to the needing clients at possibly the earliest 
instant while cold data are broadcast less frequently to 
avoid unnecessary broadcasting. Bandwidth 
consumption for the proposed SWRCC+MUVI stands 
higher only than that for BS. This is because 
SWRCC+MUVI first employs the Check and Confirm 
messages to get data from neighboring clients and as a 
result reduces the need to uplink requests to the server.   

Our simulation results also show that when the size 
of database grows, the broadcast information grows too 
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and so does bandwidth consumption. On the other 
hand, an enlarged cache size will accommodate more 
cached data and thus reduce cache miss rates. When 
cache miss rates are reduced, bandwidth consumption 
can be saved due to decreased query uplinks. (Due to 
limited space, the results for bandwidth consumption 
vs. cache and database sizes are not illustrated as 
figures.) 
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Figure 5. The cache miss rate vs. the 

disconnection time for various schemes. 
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Figure 6. The bandwidth consumption vs. the 
disconnection probability for various schemes. 
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Figure 7. The bandwidth consumption vs. the 
disconnection time for various schemes. 

 
•  Active / Passive disconnection 

Figures 8 and 9 respectively depict the cache miss 
rate of our SWRCC+MUVI in dealing with active 
disconnection and of the TS strategy with SWR. Note 
that 20% active disconnection indicates 80% passive 
disconnection in the network. When the active 
disconnection percentage is 0%, i.e., when all of the 
disconnection is passive disconnection, the Sleep, 
Wakeup and Recovery messages will not be sent at the 
same time. In the original MUVI design (i.e., without 
SWR), a node will send messages to the neighbors to 
ask for the data after getting reconnected to the server. 
But in the SWR approach, a server will send the 
updated IDs (updated during the disconnection period) 
to the reconnected client. Thus as the results in Figures 
8 and 9 exhibit, SWR casts less influence on 
SWRCC+MUVI than on the TS strategy, and with 
increasing active disconnection rates, cache miss rates 
will drop. 
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Figure 8. The cache miss rate vs. the active 

disconnection probability for SWRCC+MUVI. 
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TS(with SWR)
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Figure 9. The cache miss rate vs. the active 

disconnection probability for TS (with SWR). 
 

4. Conclusions 
 
This paper introduces two cache invalidation 

schemes, ABI+HCQU and SWCC+MUVI, to maintain 
data consistency between the server and clients in a 
mobile environment. The proposed ABI+HCQU first 
divides data into 5 different groups (Hot Query, Hot 
Update, Cold Query, Cold Update and ReMAinder) 
based on their utilization conditions or their query and 
update frequency, and then adapts the broadcasting 
intervals of the 5 groups according to their 
“importance” or “popularity”. That is, more popular 
data (such as HQ and HU) will be broadcast to the 
clients in shorter intervals (i.e., more frequently) to 
satisfy the actual demands and to reduce the data 
access time. By contrast, less popular data (such as 
CQ, CU and RMA) will be broadcast in longer 
intervals (i.e., less frequently) to avoid unnecessary 
bandwidth consumption.  

The proposed SWRCC+MUVI aims to solve, in a 
more efficient way, the validity problem of cached data 
which happens when a client disconnects to the server. 
Different approaches are adopted to comply with the 
different situations of active and passive 
disconnections. In active disconnection, a disconnected 
client will send the server a Sleep message, before 
going away, to inform of its intended absence and a 
Wakeup message, after getting back, to announce its 
return and meanwhile to ask for the first queried item. 
The server will respond by broadcasting a Recovery 
message to the client, which includes all data items that 
have been updated during the disconnection and also 
the valid information of the first queried item. For 
passive disconnection, when a disconnected client gets 
reconnected to the server, SWRCC+MUVI allows the 
client to obtain the queried data items from its 
neighboring clients by exchanging the Check and 

Confirm messages via low-power broadcasting, instead 
of directly uplinking the requests to the server, thus 
saving a significant amount of bandwidth 
consumption.  

Experimental performance evaluation shows that 
our ABI+HCQU outperforms the other existing cache 
invalidation schemes in average data access time and 
cache miss rates and is also bandwidth-conserving 
(consuming more bandwidth than SWRCC+MUVI and 
BS only). SWRCC+MUVI is shown to consume the 
least bandwidth among all schemes except BS as it is 
able to get most data from neighboring clients, instead 
of from the server.  
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