157 research outputs found

    Lookahead Computation in G-DEVS/HLA Environment

    No full text
    International audienceIn this article, we present new methods to evaluate lookahead of DEVS/G-DEVS federates participating in a HLA federation. We propose first an algorithm to compute the lookahead according to the current state of a DEVS/G-DEVS model. This solution is designed for models with lifetime function depending on one state variable. Then, we extend this computation to models with lifetime functions defined with several state variables. We use the Dijkstra graph theory search to compute the different values of state variables and a mathematical function analysis to determine the lookahead for the model states. Finally, we illustrate with an example how this solution extends the range of DEVS/G-DEVS models that can be involved into distributed simulations and we present some simulation results

    The Effect of Modeling Simultaneous Events on Simulation Results

    Get PDF
    This thesis explores the method that governs the prioritizing process for simultaneous events in relation to simulation results for discrete-event simulations. Specifically, it contrasts typical discrete-event simulation (DES) execution algorithms with how events are selected and ordered by the discrete-event system specification (DEVS) formalism. The motivation for this research stems from a desire to understand how the selection of events affects simulation output (i.e., response). As a particular use case, we briefly investigate the processing of simultaneous events by the Advanced Framework for Simulation, Integration and Modeling (AFSIM), a military discrete-event combat modeling and simulation package. To facilitate the building of classic DEVS-based models, the python software package PythonPDEVS is used. Initial results indicate that the explicit modeling of how simultaneous events are selected as promoted by the DEVS formalism plays a significant role on simulation results

    Introducing Explicit Causality in Object-oriented Hybrid System Modeling

    Get PDF
    International audienceAlong with the rapid development of embedded devices and network technology, the area of CyberPhysical Systems (CPS), has arisen. In terms of modeling and simulation, CPS—like many technical systems—have ahybrid nature, i.e., discrete-event behavior and continuous-time dynamics have to be integrated with each other.Basically, this integration is supported by modern object-oriented modeling paradigms such as Modelica®. Theequation-based concept resolves the causality between interconnected components, which qualifies this modelingscheme for complex multi-domain systems. However, in hybrid systems, explicit causality is required to correctlymanage iterative events. This paper highlights these issues, including algorithmic loops and instantaneous multipleupdates, which essentially arise from incompatibilities between the object-oriented concept and specific discrete-eventphenomena. We discuss several possible solutions and introduce the concept of re-allocating the objects’ behavioralintelligence

    A novel parallelization technique for DEVS simulation of continuous and hybrid systems.

    Get PDF
    In this paper, we introduce a novel parallelization technique for Discrete Event System Specification (DEVS) simulation of continuous and hybrid systems. Here, like in most parallel discrete event simulation methodologies, the models are first split into several sub-models which are than concurrently simulated on different processors. In order to avoid the cost of the global synchronization of all processes, the simulation time of each sub-model is locally synchronized in a real-time fashion with a scaled version of physical time, which implicitly synchronizes all sub-models. The new methodology, coined Scaled Real-Time Synchronization (SRTS), does not ensure a perfect synchronization in its implementation. However, under certain conditions, the synchronization error introduced only provokes bounded numerical errors in the simulation results. SRTS uses the same physical time-scaling parameter throughout the entire simulation. We also developed an adaptive version of the methodology (Adaptive-SRTS) where this parameter automatically evolves during the simulation according to the workload. We implemented the SRTS and Adaptive-SRTS techniques in PowerDEVS , a DEVS simulation tool, under a real-time operating system called the Real-Time Application Interface (RTAI) . We tested their performance by simulating three large-scale models, obtaining in all cases a considerable speedup.Fil: Bergero, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaFil: Kofman, Ernesto Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaFil: Cellier, François. Swiss Federal Institute Of Technology Zurich. Departament Informatik. Modeling And Simulation Research Group; Suiz

    Using Finite Forkable DEVS for Decision-Making Based on Time Measured with Uncertainty

    Get PDF
    International audienceThe time-line in Discrete Event Simulation (DES) is a sequence of events defined in a numerable subset of R +. When it comes from an experimental measurement, the timing of these events has a limited precision. This precision is usually well-known and documented for each instruments and procedures used for collecting experimental datas. Therefore, these instruments and procedures produce measurement results expressed using values each associated with an uncertainty quantification, given by uncertainty intervals. Tools have been developed in Continuous Systems modeling for deriving the uncertainty intervals of the final results corresponding to the propagation of the uncertainty intervals being evaluated. These tools cannot be used in DES as they are defined, and no alternative tools that would apply to DES have been developed yet. In this paper, we propose simulation algorithms, based on the Discrete Event System Specification (DEVS) formalism, that can be used to simulate and obtain every possible output and state trajecto-ries of simulations that receive input values with uncertainty quantification. Then, we present a subclass of DEVS models , called Finite Forkable DEVS (FF-DEVS), that can be simulated by the proposed algorithms. This subclass ensures that the simulation is forking only a finite number of processes for each simulation step. Finally, we discuss the simulation of a traffic light model and show the trajectories obtained when it is subject to input uncertainty

    A Behavioral Model for Simultaneous Event Execution in Sequential Discrete Event System Simulations

    Get PDF
    The sequential execution of simultaneous events in a discrete event system simulation can cause unexpected behavior in a system. Current studies have provided approaches such as applying a priority order for simultaneous events. However, this is still a problem because executing simultaneous events in sequential order can still lead to two issues of simultaneous event conflicts: the case where simultaneous events cause changes to state variables required by other simultaneous events and the case where two or more simultaneous events cause changes to the same state variables. The objective of this thesis is to develop a behavioral model as a framework for executing simultaneous events such that simultaneous events access the same system state and the developer can provide rules on how to handle multiple simultaneous event changes to a state variable after all potential changes are registered for consideration. The paper describes the design of the framework and example approaches to implement the framework

    Hybrid Multiresolution Simulation & Model Checking: Network-On-Chip Systems

    Get PDF
    abstract: Designers employ a variety of modeling theories and methodologies to create functional models of discrete network systems. These dynamical models are evaluated using verification and validation techniques throughout incremental design stages. Models created for these systems should directly represent their growing complexity with respect to composition and heterogeneity. Similar to software engineering practices, incremental model design is required for complex system design. As a result, models at early increments are significantly simpler relative to real systems. While experimenting (verification or validation) on models at early increments are computationally less demanding, the results of these experiments are less trustworthy and less rewarding. At any increment of design, a set of tools and technique are required for controlling the complexity of models and experimentation. A complex system such as Network-on-Chip (NoC) may benefit from incremental design stages. Current design methods for NoC rely on multiple models developed using various modeling frameworks. It is useful to develop frameworks that can formalize the relationships among these models. Fine-grain models are derived using their coarse-grain counterparts. Moreover, validation and verification capability at various design stages enabled through disciplined model conversion is very beneficial. In this research, Multiresolution Modeling (MRM) is used for system level design of NoC. MRM aids in creating a family of models at different levels of scale and complexity with well-formed relationships. In addition, a variant of the Discrete Event System Specification (DEVS) formalism is proposed which supports model checking. Hierarchical models of Network-on-Chip components may be created at different resolutions while each model can be validated using discrete-event simulation and verified via state exploration. System property expressions are defined in the DEVS language and developed as Transducers which can be applied seamlessly for model checking and simulation purposes. Multiresolution Modeling with verification and validation capabilities of this framework complement one another. MRM manages the scale and complexity of models which in turn can reduces V&V time and effort and conversely the V&V helps ensure correctness of models at multiple resolutions. This framework is realized through extending the DEVS-Suite simulator and its applicability demonstrated for exemplar NoC models.Dissertation/ThesisDoctoral Dissertation Computer Science 201

    Advanced modelling and simulation of water distribution systems with discontinuous control elements

    Get PDF
    Water distribution systems are large and complex structures. Hence, their construction, management and improvements are time consuming and expensive. But nearly all the optimisation methods, whether aimed at design or operation, suffer from the need for simulation models necessary to evaluate the performance of solutions to the problem. These simulation models, however, are increasing in size and complexity, and especially for operational control purposes, where there is a need to regularly update the control strategy to account for the fluctuations in demands, the combination of a hydraulic simulation model and optimisation is likely to be computationally excessive for all but the simplest of networks. The work presented in this thesis has been motivated by the need for reduced, whilst at the same time appropriately accurate, models to replicate the complex and nonlinear nature of water distribution systems in order to optimise their operation. This thesis attempts to establish the ground rules to form an underpinning basis for the formulation and subsequent evaluation of such models. Part I of this thesis introduces some of the modelling, simulation and optimisation problems currently faced by water industry. A case study is given to emphasise one particular subject, namely reduction of water distribution system models. A systematic research resulted in development of a new methodology which encapsulate not only the system mass balance but also the system energy distribution within the model reduction process. The methodology incorporates the energy audits concepts into the model reduction algorithm allowing the preservation of the original model energy distribution by imposing new pressure constraints in the reduced model. The appropriateness of the new methodology is illustrated on the theoretical and industrial case studies. Outcomes from these studies demonstrate that the new extension to the model reduction technique can simplify the inherent complexity of water networks while preserving the completeness of original information. An underlying premise which forms a common thread running through the thesis, linking Parts I and II, is in recognition of the need for the more efficient paradigm to model and simulate water networks; effectively accounting for the discontinuous behaviour exhibited by water network components. Motivated largely by the potential of contemplating a new paradigm to water distribution system modelling and simulation, a further major research area, which forms the basis of Part II, leads to a study of the discrete event specification formalism and quantised state systems to formulate a framework within which water distribution systems can be modelled and simulated. In contrast to the classic time-slicing simulators, depending on the numerical integration algorithms, the quantisation of system states would allow accounting for the discontinuities exhibited by control elements in a more efficient manner, and thereby, offer a significant increase in speed of the simulation of water network models. The proposed approach is evaluated on a number of case studies and compared with results obtained from the Epanet2 simulator and OpenModelica. Although the current state-of-art of the simulation tools utilising the quantised state systems do not allow to fully exploit their potential, the results from comparison demonstrate that, if the second or third order quantised-based integrations are used, the quantised state systems approach can outperform the conventional water network simulation methods in terms of simulation accuracy and run-time
    • …
    corecore