29 research outputs found

    Advanced wireless communications using large numbers of transmit antennas and receive nodes

    Get PDF
    The concept of deploying a large number of antennas at the base station, often called massive multiple-input multiple-output (MIMO), has drawn considerable interest because of its potential ability to revolutionize current wireless communication systems. Most literature on massive MIMO systems assumes time division duplexing (TDD), although frequency division duplexing (FDD) dominates current cellular systems. Due to the large number of transmit antennas at the base station, currently standardized approaches would require a large percentage of the precious downlink and uplink resources in FDD massive MIMO be used for training signal transmissions and channel state information (CSI) feedback. First, we propose practical open-loop and closed-loop training frameworks to reduce the overhead of the downlink training phase. We then discuss efficient CSI quantization techniques using a trellis search. The proposed CSI quantization techniques can be implemented with a complexity that only grows linearly with the number of transmit antennas while the performance is close to the optimal case. We also analyze distributed reception using a large number of geographically separated nodes, a scenario that may become popular with the emergence of the Internet of Things. For distributed reception, we first propose coded distributed diversity to minimize the symbol error probability at the fusion center when the transmitter is equipped with a single antenna. Then we develop efficient receivers at the fusion center using minimal processing overhead at the receive nodes when the transmitter with multiple transmit antennas sends multiple symbols simultaneously using spatial multiplexing

    Lens antenna arrays: an efficient framework for sparse-aware large-MIMO communications

    Get PDF
    The recent increase in the demand for higher data transmission rates in wireless communications has entailed many implementation issues that can only be resolved by going through a full paradigm shift. Making use of the millimetric spectrum bands is a very attractive solution to the shortage of radio resources but, to garner all their potential, new techniques must be developed. Most of them are contained in the Massive Multiple Input Multiple Output (M-MIMO) framework: the idea of using very large antenna arrays for cellular communications. In this thesis, we propose the usage of Lens Antenna Arrays (LAA) to avoid the unbearable power and infrastructure costs posed by traditional M-MIMO architectures. This novel communication system exploits the angular-dependent power focusing capabilities of an electromagnetic lens to discern between waves with different angles of arrival and departure, without explicit signal processing. The work presented in this document motivates the use of LAAs in mmWave communications, studies some of their mathematical properties and proposes their application in noncoherent schemes. Numerical results validate the performance of this novel kind of systems and confirm their strengths in both multi-user and block fading settings. LAAs that use noncoherent methods appear to be very suitable for vehicular communications and densely populated cellular networks.En los últimos tiempos, el incremento en la demanda de mayor velocidad de transmisión de datos en redes de comunicación inalámbricas ha conllevado varios problemas de implementación que solo se podrán resolver a través de un cambio total de paradigma. Utilizar bandas milimétricas del espectro es una solución muy atractiva a la escasez de recursos de radio pero, para poder extraer todo su potencial, es necesario desarrollar nuevas técnicas. La mayor parte de éstas pasa por la infraestructura Massive Multiple Input Multiple Output (M-MIMO): la idea de usar matrices de antenas muy grandes para comunicaciones celulares. En esta tesis, proponemos el uso de matrices de antenas con lente, o Lens Antenna Arrays (LAA), para evitar los inasumibles costes energéticos y de instalación propios de las arquitecturas M-MIMO tradicionales. Este novedoso sistema de comunicaciones explota las capacidades de concentración de energía con dependencia angular de las lentes electromagnéticas para distinguir entre ondas con distintas direcciones de llegada y de salida, sin procesado de la señal explícito. El trabajo presentado en este documento motiva el uso de los LAAs en comunicaciones en bandas milimétricas (mmWave), estudia varias propiedades matemáticas y propone su aplicación en esquemas no coherentes. Resultados numéricos validan su ejecución y confirman sus fortalezas en entornos multiusuario y con desvanecimiento en bloque. Los LAAs que utilizan métodos no coherentes parecen ser idóneos para comunicaciones vehiculares y para redes celulares altamente pobladas.En els darrers temps, l'increment en la demanda de major velocitat de transmissió de dades en xarxes de comunicació inalàmbriques ha comportat diversos problemes d'implementació que tan sols es podran resoldre a través d'un canvi total de paradigma. Utilitzar les bandes mil·limètriques de l'espectre és una solució molt atractiva a l'escassetat de recursos de ràdio però, per tal d'extreure'n tot el seu potencial, és necessari desenvolupar noves tècniques. La majoria d'aquestes passa per la infraestructura Massive Multiple Input Multiple Output (M-MIMO): la idea d'utilitzar matrius d'antenes molt grans per a comunicacions cel·lulars. En aquesta tesi, proposem l'ús de matrius d'antenes amb lent, o Lens Antenna Arrays (LAA), per tal d'evitar els inassumibles costos energètics i d'instal·lació propis d'arquitectures M-MIMO tradicionals. Aquest innovador sistema de comunicacions explota les capacitats de concentració d'energia amb dependència angular de les lents electromagnètiques per tal de distingir entre ones amb diferents direccions d'arribada i de sortida, sense processament de senyal explícit. El treball presentat en aquest document motiva l'ús dels LAAs per comunicacions en bandes mil·limètriques (mmWave), n'estudia diverses propietats matemàtiques i proposa la seva aplicació en esquemes no coherents. Resultats numèrics en validen l'execució i confirmen les seves fortaleses en entorns multi-usuari i amb esvaïment en bloc. Els LAAs que utilitzen mètodes no coherents semblen ser idonis per a comunicacions vehiculars i per a xarxes cel·lulars altament poblades

    Target localization in passive and active systems : performance bonds

    Get PDF
    The main goal of this dissertation is to improve the understanding and to develop ways to predict the performance of localization techniques as a function of signal-to-noise ratio (SNR) and of system parameters. To this end, lower bounds on the maximum likelihood estimator (MLE) performance are studied. The Cramer-Rao lower bound (CRLB) for coherent passive localization of a near-field source is derived. It is shown through the Cramer-Rao bound that, the coherent localization systems can provide high accuracies in localization, to the order of carrier frequency of the observed signal. High accuracies come to a price of having a highly multimodal estimation metric which can lead to sidelobes competing with the mainlobe and engendering ambiguity in the selection of the correct peak. The effect of the sidelobes over the estimator performance at different SNR levels is analyzed and predicted with the use of Ziv-Zakai lower bound (ZZB). Through simulations it is shown that ZZB is tight to the MLEs performance over the whole SNR range. Moreover, the ZZB is a convenient tool to assess the coherent localization performance as a function of various system parameters. The ZZB was also used to derive a lower bound on the MSE of estimating the range and the range rate of a target in active systems. From the expression of the derived lower bound it was noted that, the ZZB is determined by SNR and by the ambiguity function (AF). Thus, the ZZB can serve as an alternative to the ambiguity function (AF) as a tool for radar design. Furthermore, the derivation is extended to the problem of estimating target’s location and velocity in a distributed multiple input multiple output (MIMO) radar system. The derived bound is determined by SNR, by the product between the number of transmitting antennas and the number of receiving antennas from the radar system, and by all the ambiguity functions and the cross-ambiguity functions corresponding to all pairs transmitter-target-receiver. Similar to the coherent localization, the ZZB can be applied to study the performance of the estimator as a function of different system parameters. Comparison between the ZZB and the MSE of the MLE obtained through simulations demonstrate that the bound is tight in all SNR regions

    Relaying Techniques for Multi Hop Differential Transmitted Reference IR-UWB Systems

    Get PDF
    This thesis develops novel relaying techniques to overcome the limited coverage of Impulse Radio Ultra Wideband (IR-UWB) systems based on Differential Transmitted Reference (DTR). Firstly, we describe a cooperative approach for two hop Amplify-and-Forward (A&F) relaying that exploits both the signal forwarded by the relay and the one directly transmitted by the source. After deriving the log-likelihood ratio based decision rule, we propose a semi-analytical power allocation strategy by evaluating a closed form expression for the effective Signal to Noise Ratio (SNR) at the destination, which is maximized by exhaustive search. Successively, we present a Joint Power Allocation and Path Selection (JPAPS) method for multi hop Decode-and-Forward (D&F) relaying. Starting from the heuristic consideration that the overall Bit Error Rate (BER) of the system is essentially driven by the quality of the path with the best performance, the proposed technique associates to each possible route a metric given by an approximation of the minimum BER which can be achieved as the power allocation coefficients vary and then takes into account only the path minimizing that metric. Specifically, we employ an equal SNR power allocation strategy that yields a closed form expression for the power allocation coefficients and we describe a path selection algorithm with polynomial complexity. Simulation results show the remarkable SNR gains obtained by the proposed schemes with respect to direct transmission and existing relaying techniques. Lo scopo di questa tesi è elaborare nuove tecniche di relaying per risolvere il problema della copertura limitata in sistemi radio ad impulsi a banda ultra larga (Impulse-Radio Ultra-Wideband, IR-UWB) basati su Differential Transmitted Reference (DTR). Innanzi tutto, si descrive un approccio cooperativo per singolo relay Amplify-and-Forward (A&F) che sfrutta sia il segnale inoltrato dal relay sia quello trasmesso direttamente dalla sorgente. Dopo aver introdotto una regola di decisione basata sul logaritmo del rapporto di verosimiglianza, si propone una strategia di allocazione di potenza semi-analitica valutando un'espressione in forma chiusa per il rapporto segnale rumore (SNR) effettivo al nodo destinazione, che viene massimizzato per mezzo di una ricerca esaustiva. Successivamente, si presenta un metodo congiunto di allocazione di potenza e scelta del cammino ottimo (Joint Power Allocation and Path Selection, JPAPS) per relay Decode-and-Forward (D&F) multipli. Partendo dalla considerazione euristica che la probabilità d'errore complessiva del sistema dipende essenzialmente dalla qualità del cammino migliore, la tecnica proposta associa ad ogni possibile percorso una metrica data da un'approssimazione della minima probabilità d'errore ottenibile al variare dei coefficienti di allocazione di potenza e poi prende in considerazione soltanto il cammino che minimizza tale metrica. Specificatamente, si adopera una strategia di allocazione di potenza in cui si impone l'uguaglianza degli SNR dei singoli link (equal SNR power allocation strategy), ottenendo un'espressione in forma chiusa per i coefficienti di allocazione di potenza. Inoltre, si descrive un algoritmo di scelta del cammino ottimo con complessità polinomiale. I risultati delle simulazioni mostrano i notevoli guadagni in termini di SNR ottenuti dagli schemi proposti rispetto alla trasmissione diretta e alle altre tecniche di relaying esistenti

    MOCZ for Blind Short-Packet Communication: Practical Aspects

    Get PDF
    We investigate practical aspects of a recently introduced blind (noncoherent) communication scheme, called modulation on conjugate-reciprocal zeros (MOCZ). MOCZ is suitable for a reliable transmission of sporadic and short-packets at ultra-low latency and high spectral efficiency via unknown multipath channels, which are assumed to be static over the receive duration of one packet. The information is modulated on the zeros of the transmitted discrete-time baseband signal’s z− transform. Because of ubiquitous impairments between the transmitter and receiver clocks, a carrier frequency offset occurs after down-conversion to the baseband. This results in a common rotation of the zeros. To identify fractional rotations of the base angle in the zero-pattern, we propose an oversampled direct zero-testing decoder to identify the most likely one. Integer rotations correspond to cyclic shifts of the binary message, which we determine by cyclically permutable codes (CPC). Additionally, the embedding of CPCs into cyclic codes, enables additive error-correction which reduces the bit-error-rate tremendously. Furthermore, we exploit the trident structure in the signal’s autocorrelation for an energy based detector to estimate timing offsets and the effective channel delay spread. We finally demonstrate how this joint data and channel estimation can be largely improved by receive antenna diversity at low SNR

    Single data set detection for multistatic doppler radar

    Get PDF
    The aim of this thesis is to develop and analyse single data set (SDS) detection algorithms that can utilise the advantages of widely-spaced (statistical) multiple-input multiple-output (MIMO) radar to increase their accuracy and performance. The algorithms make use of the observations obtained from multiple space-time adaptive processing (STAP) receivers and focus on covariance estimation and inversion to perform target detection. One of the main interferers for a Doppler radar has always been the radar’s own signal being reflected off the surroundings. The reflections of the transmitted waveforms from the ground and other stationary or slowly-moving objects in the background generate observations that can potentially raise false alarms. This creates the problem of searching for a target in both additive white Gaussian noise (AWGN) and highly-correlated (coloured) interference. Traditional STAP deals with the problem by using target-free training data to study this environment and build its characteristic covariance matrix. The data usually comes from range gates neighbouring the cell under test (CUT). In non-homogeneous or non-stationary environments, however, this training data may not reflect the statistics of the CUT accurately, which justifies the need to develop SDS methods for radar detection. The maximum likelihood estimation detector (MLED) and the generalised maximum likelihood estimation detector (GMLED) are two reduced-rank STAP algorithms that eliminate the need for training data when mapping the statistics of the background interference. The work in this thesis is largely based on these two algorithms. The first work derives the optimal maximum likelihood (ML) solution to the target detection problem when the MLED and GMLED are used in a multistatic radar scenario. This application assumes that the spatio-temporal Doppler frequencies produces in the individual bistatic STAP pairs of the MIMO system are ideally synchronised. Therefore the focus is on providing the multistatic outcome to the target detection problem. It is shown that the derived MIMO detectors possess the desirable constant false alarm rate (CFAR) property. Gaussian approximations to the statistics of the multistatic MLED and GMLED are derived in order to provide a more in-depth analysis of the algorithms. The viability of the theoretical models and their approximations are tested against a numerical simulation of the systems. The second work focuses on the synchronisation of the spatio-temporal Doppler frequency data from the individual bistatic STAP pairs in the multistatic MLED scenario. It expands the idea to a form that could be implemented in a practical radar scenario. To reduce the information shared between the bistatic STAP channels, a data compression method is proposed that extracts the significant contributions of the MLED likelihood function before transmission. To perform the inter-channel synchronisation, the Doppler frequency data is projected into the space of potential target velocities where the multistatic likelihood is formed. Based on the expected structure of the velocity likelihood in the presence of a target, a modification to the multistatic MLED is proposed. It is demonstrated through numerical simulations that the proposed modified algorithm performs better than the basic multistatic MLED while having the benefit of reducing the data exchange in the MIMO radar system

    Remote Sensing

    Get PDF
    This dual conception of remote sensing brought us to the idea of preparing two different books; in addition to the first book which displays recent advances in remote sensing applications, this book is devoted to new techniques for data processing, sensors and platforms. We do not intend this book to cover all aspects of remote sensing techniques and platforms, since it would be an impossible task for a single volume. Instead, we have collected a number of high-quality, original and representative contributions in those areas
    corecore