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Abstract

The aim of this thesis is to develop and analyse single data set (SDS) detection algorithms that
can utilise the advantages of widely-spaced (statistical) multiple-input multiple-output (MIMO)
radar to increase their accuracy and performance. The algorithms make use of the observations
obtained from multiple space-time adaptive processing (STAP) receivers and focus on covari-
ance estimation and inversion to perform target detection.

One of the main interferers for a Doppler radar has always been the radar’s own signal being
reflected off the surroundings. The reflections of the transmitted waveforms from the ground
and other stationary or slowly-moving objects in the background generate observations that can
potentially raise false alarms. This creates the problem of searching for a target in both additive
white Gaussian noise (AWGN) and highly-correlated (coloured) interference. Traditional STAP
deals with the problem by using target-free training data to study this environment and build
its characteristic covariance matrix. The data usually comes from range gates neighbouring
the cell under test (CUT). In non-homogeneous or non-stationary environments, however, this
training data may not reflect the statistics of the CUT accurately, which justifies the need to de-
velop SDS methods for radar detection. The maximum likelihood estimation detector (MLED)
and the generalised maximum likelihood estimation detector (GMLED) are two reduced-rank
STAP algorithms that eliminate the need for training data when mapping the statistics of the
background interference. The work in this thesis is largely based on these two algorithms.

The first work derives the optimal maximum likelihood (ML) solution to the target detection
problem when the MLED and GMLED are used in a multistatic radar scenario. This applica-
tion assumes that the spatio-temporal Doppler frequencies produces in the individual bistatic
STAP pairs of the MIMO system are ideally synchronised. Therefore the focus is on providing
the multistatic outcome to the target detection problem. It is shown that the derived MIMO
detectors possess the desirable constant false alarm rate (CFAR) property. Gaussian approxi-
mations to the statistics of the multistatic MLED and GMLED are derived in order to provide
a more in-depth analysis of the algorithms. The viability of the theoretical models and their
approximations are tested against a numerical simulation of the systems.

The second work focuses on the synchronisation of the spatio-temporal Doppler frequency
data from the individual bistatic STAP pairs in the multistatic MLED scenario. It expands
the idea to a form that could be implemented in a practical radar scenario. To reduce the
information shared between the bistatic STAP channels, a data compression method is proposed
that extracts the significant contributions of the MLED likelihood function before transmission.
To perform the inter-channel synchronisation, the Doppler frequency data is projected into
the space of potential target velocities where the multistatic likelihood is formed. Based on
the expected structure of the velocity likelihood in the presence of a target, a modification to
the multistatic MLED is proposed. It is demonstrated through numerical simulations that the
proposed modified algorithm performs better than the basic multistatic MLED while having the
benefit of reducing the data exchange in the MIMO radar system.
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Chapter 1
Introduction

The invention of modern radar has been largely credited to Robert Watson-Watt in 1935 [1]. It
played an instrumental part in deciding the outcome of World War II and has seen numerous
applications since then. While the main interest in radar has always been due to its military
uses, commercial air travel has also become dependent on it. Other important applications
include weather forecast, astronomy, road traffic control, naval detection and ranging, geology,

remote sensing and mapping, medical imaging, etc.

Radar has seen a lot of improvements throughout the decades since its creation. A lot of these
improvements can be attributed to the hardware advances that have become available over the
past few decades: from continuous waveform to pulse-Doppler radar [2,3], from monostatic to
bistatic [4] and multiple-input multiple-output (MIMO) applications [5], etc. These allow for

improved detection methods to be implemented through the physical radar setup.

Another area where radar performance has seen a lot of improvement is the signal processing of
the observation data collected by the physical installation. With the high computational power
available nowadays [6], better target detection algorithms are being developed. The ability to
quickly process high quantities of data has lead to the development of detection methods like
space-time adaptive processing (STAP) [7] that would have been impossible to implement in

the past.

This thesis focuses on the signal processing improvements to radar performance, but makes
use of the physical advances provided by widely-spaced (multistatic) MIMO setups that can be
implemented nowadays. A number of MIMO algorithms have been developed in the framework
of STAP that improve the target detection process in a practical radar scenario. While traditional
detectors use a secondary data set for training and a primary data set for operation, the focus in
this thesis will be exclusively on single data set (SDS) detection methods that operate blindly

and without any sources of prior knowledge on the background interference.
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1.1 Motivation

This thesis proposes a potential way of combining multiple concepts in radar research that are
currently considered to be the state-of-the-art. The two main such principles are MIMO and
SDS detection. While STAP for radar detection may not be considered novel, it has become
practical only recently due to the advances in the available real-time computational power for

digital signal processing [6].

As all operations reliant on radiowave transmission, radar detection suffers from background
noise and interference. In radar, the main interference source is the reflection of the transmitted
signal from objects or surfaces other than the actual target. If strong enough, these reflections
give rise to the detection of false alarms - signals classified as returns from moving airborne
targets that don’t actually exist [3, 8]. The problem is challenging because this type of inter-
ference is coloured and is not necessarily stationary or homogeneous. To deal with clutter, a
target detection algorithm needs to be able to estimate its characteristics and suppress it from
the incoming observations. Most traditional algorithms are based on estimating and invert-
ing the covariance matrix of the clutter observed in a particular transmission [9, 10]. This can
whiten the process and thus make it easier to average out [11]. Other more recent algorithms
use different methods to estimate and project the clutter subspace from the target one [12—14].
In both cases this involves some prior knowledge of the clutter attained before the primary ob-
servations are tested. Covariance estimation methods in particular require a secondary set of
training observations to estimate the statistics of the clutter [9, 10]. This training set must be
target-free and homogeneous with respect to the clutter statistics in the primary observations.
In most cases a radar installation will search a certain range for potential targets; it is assumed
that outside the investigated range, referred to as the cell under test (CUT), the data coming
from other distances to the radar is target-free. Thus, if the clutter statistics of ranges outside
the CUT is homogeneous, it can directly provide the samples necessary to perform covariance

estimation and inversion.

In some scenarios the data coming from ranges outside the CUT cannot be used for covari-
ance estimation. A rapidly-changing environment or a diverse physical background can result
in inhomogeneous statistics of the clutter coming from locations that are otherwise relatively
close [15]. In other cases the observed area is target-rich, so obtaining enough target-free sam-
ples to characterise and suppress the interference is not possible [16]. This justifies the need to

develop SDS detection algorithms that perform both interference estimation and target detection
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on the same primary data set and require no training samples [12,13,17-21]. These algorithms
offer more flexibility than traditional target detectors since they can operate under a wider
range of conditions and environments. Even if a reliable training data set can be obtained, SDS
detection algorithms can still be used to further enhance the performance of the existing meth-
ods [19]. This thesis builds upon the work of the previously developed maximum likelihood es-
timation detector (MLED) and generalised maximum likelihood estimation detector (GMLED)

algorithms for SDS clutter covariance estimation and target detection [17-21].

The other major focus of this thesis is multistatic radar. The application of the principles of
MIMO in the field of radar research has gained a significant popularity in the past decade. The
main reason for this interest comes from the improvements in processing power and data trans-
mission that have enabled the practical implementation of multistatic radar [22-24]. MIMO
is the natural direction of improvement when the benefits of developing new mono/bistatic
radar detection algorithms become incremental. It offers an overall increase in performance
that constitutes higher accuracy of target localisation, higher detection rate under a certain
false alarm probability, increased spatial and angular diversity, increased resolution [25-41].
Moreover, widely-spaced MIMO radar is one of the potential countermeasures to stealth tech-

nology [42,43] which provides significant motivation for research on the topic.

Multistatic radar offers great benefits to target detection, but it also vastly increases the com-
plexity of the problems that have to be solved in its practical implementation. In addition to all
the challenges in designing a mono/bistatic system, data exchange and synchronisation must be
taken into account. When the radar elements are widely-separated, sharing their observations
and their results to produce one target detection decision can involve lengthy transmissions.
Before fusing this information, it has to be synchronised to reflect the different locations and
parameters associated with the individual units in the network [44]. Multistatic radar is also
associated with more complex issues in the field of waveform design, orthogonality, and am-
biguity [45—-47]. It is also important to analyse and characterise the performance of a MIMO
system with respect to the number of elements it is composed of. When a radar installation con-
sists of multiple units, physical cost can become a significant issue [24]; thus the benefits and
drawbacks of every additional transmitter or receiver added to a multistatic radar setup must be

carefully evaluated in the design stage.

This thesis offers solutions to most of the practical problems associated with the implementation

of a multistatic SDS detection algorithm. It outlines the overall process of designing the detector
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and using it in a physical MIMO radar setup.

1.2 Contributions and outline

This thesis involves a series of contributions that can all be combined to form an outline of the
practical implementation of a multistatic SDS detector based on clutter covariance estimation

and inversion. The rest of the thesis is outlined as follows.

Chapter 2 contains the background materials on which the work in this thesis is built. It intro-
duces the basic principles of STAP for radar detection. A historical overview of the existing
target detection methods and the progression to MIMO radar and SDS detection is also given.
The challenges associated with the ambiguity function in MIMO radar involving orthogonal
waveforms is introduced. The signal model, the physical radar parameters, the assumptions
undertaken, and the general outline of the detection procedure developed in this thesis can also

be found in this chapter.

Chapter 3 is devoted to the derivation of the multistatic MLED and GMLED detection algo-
rithms. It assumes ideal transmission and data synchronisation between the radar nodes and fo-
cuses on the maximum likelihood (ML) combination of the results from the individual bistatic
transmit-receive pairs. A Gaussian approximation to the statistics of the multistatic detectors
is proposed in order to facilitate the simple and easy analysis of the the performance of the
MIMO system. This enables the most suitable cost-to-performance ratio for a specific scenario
to be calculated at the design stage. Appendix B contains a mathematical proof of some of
the concepts needed to facilitate the Gaussian approximation developed in Chapter 3. It in-
volves an investigation into Lindeberg’s generalised version of the central limit theorem (CLT)
for convergence of independent and non-identically distributed random variables to a Gaussian

random variable.

Chapter 4 proposes solutions to some of the major challenges associated with the practical im-
plementation of the multistatic MLED algorithm. A pre-transmission data compression method
is described that would reduce the amount of information that the radar network will have to
exchange to reach a detection decision. A solution to the issue of synchronising the infor-
mation from the individual radar nodes is proposed that involves a likelihood projection from
frequency to velocity space. Based on the suggested methods, a modification to the multistatic

MLED algorithm is proposed that combines the soft and hard decisions coming from the dif-
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ferent bistatic pairs in the MIMO radar setup. It is shown that the new algorithm provides a
slightly better performance than the standard one while requiring less information exchange in

the radar network.

Chapter 5 deals with the practical issue of waveform orthogonality experienced by growing
MIMO radar networks and the restrictions that it imposes on the resulting ambiguity function. It
proposes a frequency and/or time orthogonality solution that circumvents the inherent reduction
of the area of ambiguity space that can be kept clear of sidelobes in the multistatic scenario.
An example is investigated that involves a waveform consisting of multiple Gaussian-shaped
pulses. It is shown that frequency orthogonality between the different waveforms in the MIMO

system relaxes the ambiguity bound developed for waveforms orthogonal in fast-time.

Chapter 6 summarises the work done in this thesis. It contains a discussion on the potential

directions where future research can be conducted based on the ideas developed here.



Chapter 2

Single data set detection in space-time
adaptive processing

2.1 Introduction

Target detection methods have seen some vast improvements since the invention of radar in
1935 [1]. These advances have come both in the form of better hardware and signal processing
algorithms for estimation and detection. The traditional rotating analogue antenna is slowly
being replaced by a digitally-steered uniform linear array (ULA) [48]. This gave rise to the
development of STAP for moving target detection [11]. In theory STAP could provide improved
target detection rate and better clutter mitigation. However, at the time of its introduction
the concept was impractical; it is a computationally-heavy signal processing method that was
impossible to implement in real time due to hardware limitations [49]. In the past few decades
Moore’s Law [6] has been diligently observed, and the available computational power for signal
processing has been vastly increased. As a result, STAP has become one of the most widely-
researched method for moving target detection through radar [7]. A brief introduction to the
principle of operation of STAP is provided in Section 2.2. The target and clutter signal models

that are used in this thesis are described there as well.

Most STAP target detection algorithms are based on covariance estimation of the underlying
background clutter and interference processes [15,50-52]. The statistical estimations are usu-
ally reliant on the assumption that a target-free training data set of observations is available to
build a sample covariance matrix and perform sample matrix inversion (SMI) [9, 10]. Because
these algorithm perform detection on a primary set of observations while using a secondary set
of training data for clutter estimation, this work will refer to them as two data set (TDS) detec-
tion methods. Some of the fundamental covariance-based traditional detectors are described in

Section 2.3.

For more than a decade TDS algorithms have been the norm in radar detection. While robust

and relatively reliable, their need for target-free training data with statistics that match that of
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the background clutter and interference cannot always be met and is ultimately considered a
shortcoming. This gave rise to the idea of SDS detection that performs both the estimation
and detection on the same set of observations. Some SDS algorithms are based on covariance
estimation [17-21] while others use subspace projection methods to isolate and suppress clutter
from the observations [12-14]. Some examples relevant to the work in this thesis will be shown

in detail in Section 2.4.

As the available real-time processing power has increased significantly in the past decade,
MIMO radar has become a very popular research topic [25—41]. One application of MIMO
is naturally covered in part by STAP since the receiver consists of multiple elements. A STAP
implementation with an ULA transmitter is an example of a coherent closely-spaced MIMO
radar setup [25-28]. Statistical widely-spaced (multistatic) radar has also attracted a lot of in-
terest due to the spatial diversity that it provides in the target detection problem [28-41]. As
this thesis will focus mainly on multistatic Doppler radar, Section 2.5 will provide some more

details on the recent advances in this research area.

One of the limitations imposed on MIMO radar is the reduction of the region in the ambiguity
function that is clear of sidelobes as the radar network grows larger [45,46]. This problem
arises in the scenario where multiple orthogonal waveforms are transmitted in a system and has
to be considered in a practical MIMO implementation. Section 2.6 provides a short description

and the mathematical framework in which the ambiguity problem is posed.

The general problem solved in this thesis is described in Section 2.7. The multistatic signal
model and some of the physical radar parameters used in the simulated scenarios are discussed
there. An overview of the physical implementation of the target detection solutions derived in

this thesis is given.

2.2 Space-time adaptive processing signal model

STAP is a concept in radar detection that was first introduced in 1973 [11]; it has attracted
significant attention in recent years due to the increased computational power available for
real-time signal processing [7, 15, 17-21,49-56]. The STAP receiver consists of multiple lis-
tening elements that are closely-spaced together. They don’t have to be arranged in any special
configuration, although this thesis will focus on ULAs of Pr elements each for simplicity and

consistency. The focus in this thesis is on pulse-Doppler radar that transmits K7 pulses in
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one coherent pulse interval (CPI); the Doppler shifts between the reflected pulses are used to
perform target detection and ranging. STAP is an adaptive detection method that simultane-
ously processes the spatial Py pulse returns observed by the individual ULA elements and the

temporal K7 returns observed by the receiver from consecutive pulses.

The incoming STAP target data is characterised by the spatial steering vector ss(fs) and the
temporal steering vector s;(fy). Assuming a ULA receiver and a constant target velocity, both
of these vectors take a Vandermonde form and depend on the spatial and temporal frequencies

of the target fs and f,; respectively.

. . T
ss(fs) = [1, eIt eﬂ”“’T*l)fs} .1)

. . T
si(fa) = [1, ef2mfa eﬂ”(KT’”fd} 2.2)

The superscript (-)7 indicates the transpose operator. The spatial steering vector characterises
the response of the receiver ULA to a signal coming at an angle 6,.,, (Figure 2.1) to the normal

of the array. The corresponding spatial frequency is thus shown in [4]

d
fs = 1 sinbr 2.3)

where d is the spacing between the ULA’s elements, and ), is the radar operating wavelength.
For convenience, the spacing will be chosen as half the wavelength of the incoming radar signal
so that

fs = % sin 0,4 2.4)

Note that in this work two-dimensional (2-D) motion and position are assumed for all targets
and radar elements. This is a simplification done for convenience in order to demonstrate the
concepts developed in the thesis [12,33-35,44,57,58]. A short discussion of the assumption
and the procedure to address the more practical scenario of three-dimensional (3-D) motion
is found in [44], where the 2-D simplification is achieved by fixing the altitude searched for
a potential target. The work can therefore be extended to a real scenario by accounting for
the altitude (or the elevation angle in a polar coordinate system) between different elements in
addition to the azimuth. If the altitude is discretised, the algorithms developed in this thesis
would be executed for each value in the parameter search space in addition to the other spatio-
temporal searches already performed. This would result in a higher computational complexity

when deployed in a real 3-D search scenario.
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In a bistatic STAP scenario the transmit antenna and the receiver ULA are individual elements
with different locations [8, pp.655-664]. Let the target velocity vector v in 2-D space be split

into its x-y-dimension individual Cartesian components
T
v = [Ug, vy (2.5)

Assuming the radar elements are stationary, the temporal (Doppler) frequency f; is the nor-
malised Doppler frequency shift that consecutive pulses in a CPI experience due to the move-
ment of the target. If the angle between the target and the transmitter is 6, (Figure 2.1), the

bistatic Doppler frequency is described in [12]

na T, . .
fa= U)\ (cos Oz + cos Or) + vi (sin Oy + sin Oy, (2.6)

where T is the pulse repetition interval (PRI) of the radar’s transmit waveform.

Legend
Moving Doppler
radar transmitter
Ground-based
receiver array
High-speed
airborne target

== Transmit probing signal

=== Reflected receive signal

T e

Figure 2.1: Geometric parameters in a bistatic radar setup with a mobile transmitter and

ground-based receive ULA

This work investigates clutter returns that arise in the case of a mobile radar installation. There-
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fore, the velocity of the radar elements also influences the Doppler frequency shift in the ob-
servation signal. As the frequency shift is dependent on the relative motion between the radar
installation and the target, it will be assumed for simplicity that the receiver ULA is stationary,
and only the transmitter is mobile. If the receiver is moving at a constant velocity, its physical
location can be fixed as a reference point for the velocity-position coordinate system; the tar-
get and transmitter relative velocities to the system can thus be used, degenerating to the static

receiver case investigated here. A new parameter can be defined from (2.6)

T |cosbBi + cosf
k= : " @.7)
Ao | sin O + sin b,
that represents the Doppler response of a bistatic radar pair of a transmitter and a receiver to the

relative motion of a target with a certain velocity v. If the 2-D velocity of the transmitter is vy,

the normalised bistatic Doppler frequency shift that is observed at the receiver is
fa=@w—-v)"k (2.8)

In STAP, a CPI is associated with a 3-D set of observations and is sometimes referred to as
a datacube. The standard form of the STAP datacube is shown in Figure 2.2. The receiver
divides the PRI into N, consecutive delays at which it listens for target waveform returns.
This dimension is known as fast-time, and the delay of receiving a target signal determines
the distance to the target. Thus the [V, fast-time observations are referred to as range gates.
Each range gate consists of the temporal returns from the expected K pulses referred to as

slow-time observations as well as the Pr spatial observations at the individual ULA elements.

Signal processing in STAP is performed on a single range gate at a time. The range gate con-
tains CP7* K7 samples: the K temporal observations from the Pr elements of each ULA are
arranged as the columns of the range gate data matrix. The standard STAP signal model from
a single range gate stacks the spatial snapshots on top of each other to produce the observation
vector £€CETPrx1 (Figure 2.2). If the clutter is represented by the vector n. and the noise by

T, both of the same size as x, then the STAP observation model is described in [49, pp.12-17]

Tr = aSs(fs) ®5t(fd) +ne+ ny (2.9

where « is the complex amplitude of the reflected target signal seen at the receiver, and ®

10
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Figure 2.2: STAP observations datacube in a CPI

signifies the Kronecker product operator. Additional terms can be added to (2.9) to account for
other forms of interference and jamming, but these will not be of interest to the work conducted

in this thesis.

Figure 2.3 shows an example physical configuration of two STAP bistatic paths. The transmitter
and target are airborne, while the receiver ULAs are ground-based. The range gate that contains
the target signal in each bistatic pair also contains clutter returns from any reflectors with bistatic
ranges equal to that of the target. These generally lie on a 3-D ellipsoid with the transmitter and
receiver positioned at its foci [4]. The ground clutter returns on which this thesis focuses thus
come from the iso-range contours where the ground plane slices the ellipsoid. If perfectly flat
ground is assumed, these contours are standard 2-D ellipses (Figure 2.3). In monostatic radar

the ellipses degenerate to circles.

An example of the spectral returns from the clutter in an iso-range that contains a target is
shown in Figure 2.4. To simulate a continuous spatio-temporal clutter spectrum, a large number
of ground patches are generated that are evenly-spaced along the elliptical iso-range contour
for one of the bistatic pairs of Figure 2.3. The respective spatio-temporal frequencies of the
patches are plotted in Figure 2.4. Half of the clutter spectrum originates from the receiver

ULA frontal direction, while the other half represents the backlobe returns. An example of a

11
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Figure 2.3: Sources of STAP clutter returns in a multistatic configuration

jamming signal is also included in the spectrum. Jammers typically come from one direction
and aim to interfere with a large portion of the frequency spectrum. Thus they are wideband in
their Doppler and narrowband in their spatial frequency [49, p.3]. Figure 2.4 demonstrates the
main advantage of STAP and the principle it utilises to enhance target detection. If the target
signal is outside of the clutter ridge, it is possible through different detection approaches to
reject the clutter while preserving the useful signal. This essentially leads to target detection in

an environment where the effective signal-to-noise ratio (SNR) is drastically increased.

The signal models used in this thesis for the observed STAP interference sources are described
as follows. The clutter in the system is assumed to be zero-mean complex coloured Gaussian
(2.10) with power o2 and covariance matrix R,; the noise is considered zero-mean complex

additive white Gaussian noise (AWGN) with power va (2.11).

n. ~CNg,p(0,02R,.) (2.10)
Ny ~ CNppp (0,02 1) (2.11)

The vector O represents the zero vector, and I is the identity matrix, both of relevant size to
the equation. The normalised covariance matrix of STAP clutter is discussed in detail with
the introduction of the general clutter model (GCM) in [49, pp.20-24]. The GCM approxi-

mates the continuous field of clutter depicted in Figure 2.3 with a large number of N, evenly-

12
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Figure 2.4: Spatio-temporal spectrum of clutter and jamming returns at a single receiver in a
bistatic STAP range gate

distributed (in azimuth) clutter sources in each bistatic iso-range. It also accounts for intrinsic
clutter motion (ICM) which causes slight fluctuations in the clutter statistics between consecu-
tive pulses in a CPI. The autocorrelation of these temporal fluctuations at a time difference m

takes the following Gaussian form [49, p.45]
2T2
Ye(m) = exp {—Hch} (2.12)

where k. is the spectral standard deviation of clutter normally expressed in terms of the velocity

standard deviation
AoKe

e (2.13)

Oy =

Typical measured values for the velocity standard deviation in different environments and un-
der different weather conditions can be found in textbooks (e.g. [3, pp.2.25-2.27]). The auto-
correlation values (2.12) are arranged in the autocorrelation matrix I' for the temporal clutter

fluctuations

I' = Toeplitz (7.(0), ... ,v.(Kr — 1)) (2.14)

The GCM for the STAP clutter covariance matrix with ICM is the combination of all the space-

13
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time contributions coming from the N, independent clutter patches. Assuming that there are
no range ambiguities in the radar scenario, the covariance matrix normalised in power takes the
following form [49, pp.23-24]
Ne
R.=) (Ty 0 byb}') @ araf! (2.15)
k=1
where ® represents the Hadamard product operator, and the superscript (-) signifies the Her-
mitian transpose. Similar to a moving target, each clutter patch has a spatial steering vector ay,
and a temporal steering vector bg. They take the same Vandermonde form as (2.1) and (2.2)
where each patch is associated with its own spatial and temporal frequency. These parame-
ters arise from the relative motion between the ground and the bistatic transmitter-receiver pair
and can be obtained from (2.4) and (2.8). The dependencies are omitted in the formulas for

convenience.

The signal model used throughout this thesis is based on extracting K independent and identi-
cally distributed (iid) spatio-temporal snapshots of size P from the STAP observation data. One
method for obtaining a set of snapshots that fulfils this criterion is through passing a sliding win-
dow over the STAP observations (2.9) from the CUT [14,19,21]. A graphical representation
of the procedure is provided in Figure 2.5. The samples inside each window form a spatio-
temporal local low-dimensional snapshot from the observation data. This windowed data is
then vectorised, and the K different vectors are arranged as the columns of the newly-formed
observation matrix X. If the sliding window approach cannot be applied to a specific setting,
multiple iid samples of the full CUT can be used as the K temporal snapshots, and the problem

reduces to the one discussed in this thesis.

The observation matrix X thus contains K iid columns, each column representing a snapshot

of size P. The matrix thus takes the following form
X =ast’ + N.+ Ny, (2.16)

The terms IN . and IN,, contain in their columns the iid snapshots of the clutter and the AWGN
respectively. The process of obtaining the spatial steering vector s and the temporal steering
vector t associated with the target signal in the matrix X is depicted in Figure 2.6. The spatial
steering vector s is no longer simply linked to the receiver ULA characteristics but rather de-

scribes the template of the rearranged target signal in each of the K snapshots of (2.16). Each

14
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extracted spatio-temporal window of observations is associated with its own spatial and tem-
poral steering vectors that are partitions of the ones associated with the full STAP range gate.
Their Kronecker product gives the template s of the snapshot, which is now dependent on both

the spatial frequency f5 and the temporal frequency fy.
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Figure 2.5: Extracting iid snapshots by passing a sliding window over the STAP range gate

observations

The temporal steering vector ¢ represents the phase relations between the different snapshots.
Each window of data is related to the other ones by a phase shift. This phase shift usually
depends on both the spatial frequency f, and the temporal frequency f;. The spatio-temporal

shifts form the snapshot relation, and thus the temporal steering vector . The dependence
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of both s and t on the spatial and temporal frequency is omitted in the representations and

derivations in this thesis for convenience.
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Figure 2.6: Relationship between the spatio-temporal steering vectors in the iid snapshots ob-
tained from the STAP range gate observations

If the iid observation snapshots represented by the columns of (2.16) all come from one range
gate, the signal model can be seen as a form of reduced-dimension STAP [49, pp.81-93]. If
coly(-) signifies the k™ column of a matrix, then the clutter and noise in each temporally-iid

snapshot has the following spatial distribution

coly(N.) ~ CN'p(0,02R;) (2.17)
coly(Ny) ~ CNp(0,02 1) (2.18)
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where R, will be referred to as the spatial covariance matrix (SPCM) of the STAP clutter with
respect to the adopted model (2.16). The work in this thesis will focus on spatially-adaptive
methods for estimating the reduced-rank covariance matrix R that is usually much smaller

than the full STAP clutter covariance matrix R,..

2.3 Traditional covariance-based two data set detectors

A radar detection algorithm receives a data set of observations and must decide whether a target
is present in these observations. From a signal processing standpoint this translates to selecting
one of two hypotheses for the model from which the incoming samples originate: Hy when
the data consists of noise and clutter, or H; when a target signal is present as well. With the

adopted observation signal model (2.16), the two hypotheses are expressed as

Hy: X =N.+ N,
(2.19)
Hi: X =ast! + N.+ N,

In conventional STAP, the detector is applied to the single snapshot that encompasses the whole
range gate (2.9). In the model (2.19) the detection process is performed on the individual snap-
shots col,(X) and then the results are combined in the post-detection stage. Since the clutter
and noise are independent in each of the coly(X) by design, the snapshots can be combined
before the detection process. The latter is a much more cost-efficient approach and will be

assumed in this thesis.

Define the reduced-rank STAP coherent sample mean vector that combines the iid snapshots in
the pre-detection phase as
1

g= Xt (2.20)

where the superscript (-)* indicates the complex conjugate operator. The normalising constant

here assumes that the Euclidean norm | - |2 of the temporal steering vector is

it =K 2.21)

which will be used in the derivations throughout this thesis. In (2.20) the target signals in the
STAP snapshots are aligned and added coherently, while the temporally-uncorrelated clutter

and interference add incoherently.
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Traditional target detection algorithms are based on estimating the covariance matrix of the
background interference processes and inverting that matrix to whiten and reduce the corruption
of the target signal. Let the total SPCM for the noise and clutter in the assumed STAP model
be

R=0’R, +021 (2.22)

The optimal covariance-based target detector is the matched filter (MF) detector developed
in [11] SHR-gP

TR T, 50 y (2.23)
where -y is the detection threshold for selecting one of the two hypotheses. In the derivation the
MF has been normalised to exhibit the constant false alarm rate (CFAR) property which makes
the false alarm rate of a detector independent from the power and structure of the background
noise and interference. This is very desirable since the threshold ~ can be fixed at the design
stage to provide a certain false alarm rate, and the detection probability would vary depending

on the SNR in the system.

While optimal in the ML sense, the MF is impractical as it requires knowledge of the clairvoyant
covariance matrix R. In practical scenarios the matrix is usually estimated from the data, a
method known as sample matrix inversion (SMI). Most traditional covariance-based detectors
assume the availability of K; target-free training data snapshots of the background noise and
interference. If these snapshots are arranged as the columns of the training data matrix Z, an

ML estimate to the interference spatial covariance matrix (SPCM) can be constructed.

~ 1
R= EZZH (2.24)
The training data in Z usually comes from range gates neighbouring the CUT [9, 10]. If the
interference is homogeneous across range and the distribution of targets in the search area is
relatively sparse, the statistics of the secondary data is likely to reflect that of the clutter in the
primary observations. As this is not universally the case, different methods that aid the selection
of the viable training data have been proposed. If the shape and structure of the surrounding
terrain is available, a knowledge-aided selection process for the range gates containing homo-
geneous clutter can be implemented [59]. In general a non-homogeneity detector [60] can be

added to STAP in order to discard training data that does not conform to the statistics of the

clutter in the CUT. Figure 2.7 depicts graphically the general sources of secondary data in the
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STAP datacube. They are usually taken outside a range region around the CUT isolated by

guard gates to prevent angle-Doppler spreading of the target signal into the training data.

Training data set

Cell under test
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-~ Element

Training data set
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Figure 2.7: Range gates for secondary training data in STAP TDS detectors

Due to the requirement of two sets of observations, the algorithms discussed here are referred
to as two data set (TDS) detectors. One of the most well-known such detector is the adaptive
matched filter (AMF) proposed in [10]. It is a direct derivation from the MF detector in (2.23)
where the clairvoyant SPCM R has been replaced by its ML estimate from (2.24).

s"R g

>
—— 2 (2.25)
siR 1s Ho

The AMF is a relatively simple test in terms of computational power, effectively requiring the
inversion of one matrix constructed from the training data set. It preserves the CFAR property

of its source algorithm.

Similar to the AMF is Kelly’s generalised likelihood ratio test (GLRT) detector proposed in [9].

Hp L 12
s"R Hy
| il >y (2.26)

sHR 's (Kt + gHﬁ_lg) Ho

In the derivation of the GLRT the covariance matrix R is treated as an unknown random pa-

rameter and is included in the maximisation process, while in the AMF it is simply replaced by
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its ML estimate. Moreover the GLRT includes the observations from the primary data set as
well which is reflected in the additional scaling parameter in the denominator of (2.26). Thus
it provides a slightly better estimate and is more robust to small variations in statistics between

the CUT and its neighbouring range gates [9].

2.4 Covariance-based single data set detection

The AMF and the GLRT described in Section 2.3 have been used predominately in target de-
tection for decades after their introduction; however, they both suffer from one drawback - the
need for training data. The training data traditionally comes from range gates neighbouring the
CUT outside of a chosen guard region (Figure 2.7). However, the statistics of the interference
across different ranges may not always be the same. Some environments are prone to produc-
ing non-stationary or non-homogeneous clutter returns. In addition, a target-rich scenario will
make it more difficult to select range gates that contain only interference. Such challenges could
significantly degrade the performance of TDS algorithms such as the AMF and the GLRT. This
justifies the need for reliable SDS algorithms to be developed that perform both detection and
estimation on the primary observation data set and require no training samples. It is clear from
Figure 2.7 that a SDS detector will have a lot less data than traditional TDS detectors to perform
clutter estimation and cancellation since all processing is done only on the CUT. However, irre-
spective of the background conditions and the environment, SDS detection eliminates the issue
of clutter homogeneity and range-stationarity since all information comes from the same range

and time.

SDS covariance estimation has been discussed in detail in the development of the amplitude and
phase estimation (APES) filter in [61]. The problem solved by APES can easily be transferred to
the STAP framework. It is the spatial filter h, that minimises the Euclidean distance between
a given temporally-iid data set X and a phasor of known structure ¢ and unknown complex
amplitude a.

min (hZ X — at”) (RE X — at™)"

st. hils=1 (2.27)
hq,a

The variables in (2.27) and the ones in the STAP model adopted in this thesis (2.16) are the

same since the problems can be made practically identical. The APES filter forms the ML
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estimate of the complex amplitude of the phasor ¢ inside the observation signal.

HpNH—1
a=59 9 (2.28)
sHQ s
The matrix @ is defined as
1
Q= EXXH —gg'? (2.29)

and is a sample estimate to the covariance of the leftover signal in the observations X once the
complex phasor t is removed from them. It characterises the statistics of the estimation error of

the APES filter.

In the radar detection problem a search over a range of normalised Doppler frequencies is per-
formed. If a moving target is present in the search space, the phasor £ will match the slow-time
pulses of the reflected radar waveform at the target Doppler frequency. Once the amplitude of
this phasor is estimated and it is projected out of the observation signal X, the remaining com-
ponents provide a natural estimate to the noise and clutter in the received samples. Therefore
the APES filter can be directly applied to the radar detection problem to produce the matrix Q
as the SDS estimate to the interference covariance matrix. The MLED algorithm utilising this
application is proposed in [17] (for a detailed analysis see [18]); it performs both covariance
estimation and detection on the same primary observation data set.
s"Q'g|*

2.30
SHQ_ls I?() ry ( )

It is clear that the MLED has the same structure as the AMF detector. It is normalised in the
same manner to achieve the CFAR property. Similar to the MLED, the GMLED [18, 19] is
defined as 1 1o Y
sHQ“lz (?Jr 51’{62‘19) 5:7 @30

where the structural similarity to Kelly’s GLRT is evident. In both the MLED and the GMLED

the SPCM estimate comes from the primary data set. Thus only the data from the CUT is
used. This removes the inherent limitations of TDS algorithms when dealing with environments
that are inhomogeneous or non-stationary outside of one CPI. Performance is also greatly
enhanced in a target-rich environment where no target-free secondary data can be obtained.
The implementation of the discussed SDS detectors when the limitation of one target per range
gate still holds is trivial. If this assumption is violated, an itterative approach of finding multiple

target in the same primary data set can be undertaken, and the MLED and GMLED can still be
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applied.

Despite the benefits of SDS, in a homogeneous environment it would be wasteful to discard
the observations from range gates neighbouring the CUT as they still hold valuable information
about the background interference statistics. Using those samples alongside the primary obser-
vations can increase the accuracy of the estimate to the SPCM. The idea of combining the SDS
and TDS covariance estimators has been described in [19] where a hybrid target detector is
proposed. While the AMF and the GLRT perform estimation on the training data and detection
on the primary, the proposed hybrid approaches include both observation sets in the estimation

process by applying the APES filter approach.

Alternative ways to perform SDS detection that are not based on covariance estimation have
been developed in the past. One major such area of research investigates subspace projection
(SP) approaches to detection. With some additional prior knowledge of the clutter structure and
location in Doppler, its subspace can be isolated and projected out of the STAP observations

[12,14]. In the bistatic case the detector takes a form similar to the AMF and the MLED

s P g|* ™
=T > 2.32
SHPJ_S I?o Y ( )

where P is described in [12] and signifies the matrix that projects to the subspace orthogonal

to the one spanned by the clutter in the system
P, -1-H.(H'H,) " HY (2.33)

where H . is the matrix whose columns describe the clutter subspace. Taking the familiar form
that is normalised to exhibit the CFAR property, the SP detector requires no SMI and is thus
computationally much simpler than the covariance methods described above. However, the de-
tector (2.32) requires prior knowledge of the frequency subspace where clutter may be located.
An enhancement to the approach is described in [13] that adaptively estimates the order of the
clutter subspace in the observations, although a set of frequencies in the spectrum where the
interference may occur is still required. An SP approach that incorporates the SDS covariance
estimation of the MLED has been proposed in [20,21]. The formulation is practically identical
to (2.32). The difference is that no prior knowledge of the clutter subspace location is required
in this method. Instead the subspace is obtained through the eigencanceller approach [62] from

the SDS estimate @ of the SPCM.
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2.5 Multiple-input multiple-output radar

MIMO radar is a research topic that has gained an increasing popularity over the past decade.
The advantages of using multiple transmitters and receivers are numerous: higher accuracy
of target localisation, higher detection rate under a certain false alarm probability, increased
spatial and angular diversity, increased resolution [27-34, 63]. It is a natural way of boosting
performance once the theoretical limits of the effectiveness that monostatic or bistatic radars
can achieve have been approached. Clearly the physical cost of a MIMO installation is higher
than traditional radar. However, the real limiting factor to its practical implementation is the
complexity of the required time synchronisation and logistics in a widely-spaced installation
[34]. As the number of transmitters and receivers in a given scenario increases, so does the data
that must be processed, propagated, temporally-aligned, and combined to produce the final
detection result. As discussed in [33,34], employing a distributed detection algorithm instead

of a centralised one drastically reduces this complexity but does not completely solve the issue.

Two different types of MIMO radar implementations can be identified depending on the relative
location between receivers: coherent and statistical. The former aims to maximise the coherent
processing gain between the multiple transmit signals at the receiver side. Examples of this are
beamforming and STAP discussed in Section 2.2. The receiver is a closely-spaced array that
allows for direction estimation of the incoming target signal as well as electronic steering to be
performed [27,28]. In statistical MIMO radar detection, the angular diversity of different inco-
herent snapshots of the target is utilised [28—34]. The transmitters and the receivers are widely-
spaced so that they obtain multiple independent reflections coming from a moving object. This
alleviates the problem of target scintillations that can result in fast fading of the reflected signal
in the order of 10-25 dB [2, 64]. Through the usage of multiple statistically-independent snap-
shots of the target, the average SNR in the system remains relatively constant, which makes the
detection process more reliable. With the implementation and advances in stealth technology
for airborne targets, multistatic radar can potentially be deployed as a countermeasure [42].
One of the principles of stealth is the scattering of transmitted scanning waveform in directions
where a radar receiver is unlikely to be. This is usually done by minimising the radar cross-
section (RCS) of the target through its shape and structure. Statistical MIMO radar is more
likely to pick up a transmitted waveform that is scattered by a stealthed target, thus increasing

the chances for detection [43].

It is possible to utilise the benefits of both closely-spaced and widely-spaced MIMO radar in the
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same system. In [28] a setup is considered where the transmitters are sufficiently-separated in
position to provide angular diversity of detection; the receiving elements are part of a standard
ULA that performs coherent detection. The receiver ULA is thus treated as a single unit, and the
arrangement is described as multiple-input single-output (MISO). In [44] a similar concept is
explored with multiple widely-separated transmitters and receive ULAs. A detailed description
of the physical process of combining the results from the different transmit-receive pairs in a
fixed earth-centred Cartesian coordinate system is included. The example depicted in Figure 2.3
of this thesis describes a similar hypothetical scenario with one transmitter and two receivers.
In the same MIMO radar scenario where each receiver is a standard ULA that performs STAP

detection, the multistatic AMF filter is derived in [65-67].

~—1
‘S%,an,ngm,n 2 Iil 734
E I ~—1 = ( 3 )
m,n 'Sm an nsmn Ho

The subscript (+),», is used to signify that a certain parameter or variable is associated with the
bistatic pair formed by the m™ transmitter and the n™ receive ULA. Note that the parameter y
written without a subscript will always refer to the total decision threshold in a MIMO detection
scenario. Because the radar elements are widely-separated, it is assumed that the clutter obser-
vations at the receivers are independent for the different transmit waveforms. This explains
why (2.34) is a linear combination of the individual bistatic AMF results that are obtained in
the radar scenario. In a similar manner and under the same assumptions [65—67] derive the

multistatic extension to Kelly’s GLRT detector.

~1

H
K + gmmRm,ngm,n <
11 e -2 (2.35)
H
m,n H ~—1 |Sm,an,ngm,n| 0
Kt + gm,an,ngm,n - I ~_—1
Sm,an,nSmm

Each individual term in the product (2.35) is practically equivalent to the original GLRT from
(2.26) as a threshold ratio detector. Thus the multistatic result is once again separable into its
bistatic components. This is in line with the assumption that the interference in the transmit-

receive radar pairs is independent.
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2.6 Radar ambiguity limitations

Many algorithms have been proposed in the past that in theory provide very promising per-
formance gains for larger MIMO radar networks [27, 30, 44, 56, 65—67]. It has been shown
in theory [45] and practice [46] that these algorithms often ignore the limiting factor of the
MIMO ambiguity function. These effects can degrade the performance of a radar setup that
uses a number of orthogonal waveforms in fast time. In a MIMO scenario, the maximum area
in the ambiguity function that can be cleared of sidelobes gets proportionally smaller as the
number of such waveforms increases [45,46]. That lowers the effective SNR which in turn
degrades the overall detection performance. A short overview of the problem will be given

here.

Woodward’s ambiguity function of a continuous narrowband signal u(¢) is defined as [68-70]

alt, f) = / u (T - ;t> u* <T + ;t> e I ITqr (2.36)

The ambiguity function is a measure of the distortion that a reflected radar pulse u(t) experi-
ences in both time and frequency (due to a Doppler shift) when passed through the receiver filter
matched to the pulse’s shape [71]. Any such distortion outside of the immediate region of the
ambiguity space origin (0,0) reduces the radar performance in a practical scenario since all re-
flections at that Doppler and/or delay will experience the distortion. At f=0 the integral (2.36)
reduces to the standard time-domain autocorrelation function of the pulse u(¢). A derivation
of the theoretical limitations on this factor for mono/bistatic radar can be found in [72]. The
analysis is performed for an arbitrary region A around the ambiguity space origin that satisfies
two criteria: A is convex, and A is symmetric around the origin. Let C'(A) signify the area
if the region A, and V' (A) the volume of the ambiguity in that region. The ambiguity bound

derived in [72] takes the following form

V(A) = -C(A)V (2.37)

=

where Vj is the volume of the ambiguity at the origin (0,0). It is evident from (2.37) that if the
region A expands beyond an area of 4, then the ambiguity in that region will contain volume
outside of the one concentrated around the origin. This is a universal limitation that any radar

system will have despite the chosen waveform used for target detection.
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The theoretical limitations (2.37) imposed by the ambiguity function have been extended to
a MIMO scenario in [45,46]. Consider a radar system with M transmitters, each of them
associated with their own unique waveform u;(t). The M different waveforms are considered
orthogonal in fast time. The cross-ambiguity between two waveforms u; () and uy(t) is defined

as a direct extension of (2.36)

[e.9]

1 1 .
xjk(t, f) = / u; (r — 2t> up (r + 2t> e 127 IT qr (2.38)

—0o0

Different definitions of the MIMO ambiguity function exist. The one proposed in [45, 46]
and adopted here is represented by the sum of the Euclidean norms of all auto- and cross-

ambiguities of the M orthogonal waveforms in the radar system.

M M
X (t, ) ZZ et P (2.39)
=1 k=1

It has been derived in [45] and demonstrated in a practical scenario in [46] that the bound on the
volume of the ambiguity function V};(A) in a region A for a MIMO scenario of M orthogonal
waveforms is the following

Var(A) > iG(A)MVMo (2.40)

where V) is the MIMO ambiguity volume around the origin (0,0). A comparison between
(2.37) and (2.40) indicates that the area of the region A that can be completely clear of sidelobes

is M times smaller in the MIMO scenario compared to the mono/bistatic case.

In a practical scenario, ideal waveform orthogonality cannot be achieved. Although the term or-
thogonal waveforms is used, it almost always implies that the signals have low cross-correlation
between them. Different strategies for achieving this exist that are based on some of the
basic principles of communications for shared medium networks [73]: frequency division
multiple access (FDMA), time division multiple access (TDMA), and code division multiple
access (CDMA). In radar design, CDMA waveforms come from a set of codes that are or-
thogonal in fast time and share the same resources in time and frequency [74]. At the receiver
side a bank of matched filters is implemented to identify and isolate the signals coming from
the different transmitters. These waveforms suffer from the limitation imposed by the MIMO

ambiguity bound on the region clear of sidelobes (2.40). As the radar network size increases,
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the drawbacks from this limitation also increase, which imposes diminishing returns on the

performance of large MIMO installations.

This MIMO ambiguity issue could be avoided if the multiple waveforms in the radar scenario
occupy different time slots (as in TDMA) or frequency regions (as in FDMA) [47]. However,
the cost in terms of delay or spectrum that is required for operation grows linearly with the
number of transmitters. A discussion on the multistatic ambiguity function of an FDMA or
TDMA waveform radar system is provided in Chapter 5. This thesis will assume that the prac-
tical implementation of the proposed multistatic algorithms involves a frequency orthogonality

between the different waveforms used for target detection.

2.7 Problem formulation

Consider a MIMO radar setup with M single-element transmitters and IV receiver ULAs. In
this thesis an ULA is treated as a single unit, and the term MIMO will be strictly reserved for
a scenario where more than one array is present to receive the reflections of the transmitted
waveforms. All of the radar elements are widely-separated in space, and thus the scenario
focuses on multistatic statistical detection. Geolocations and motion are assumed to occur in a
2-D plane. All transmitters are moving at constant velocities, while all receivers are stationary.
It is assumed that all elements in the radar installation know of each other’s relative position
and velocity at all times through a reliable system of data exchange. A single moving target
of unknown location and velocity is in the area scanned by the MIMO radar installation. It is
always assumed to be in the far-field region for all listening elements. Thus the point-source
model for the target is used. The waveforms coming from each transmitter are assumed to be
ideally separable at the receiver side. The signals are also narrowband, so the propagation time
across each receiver ULA is negligible. An example mock scenario of 3 transmitters and 3

receivers is depicted in Figure 2.8.

The observation model from (2.16) is adapted to the multistatic scenario. Each STAP range

gate has been windowed and rearranged into the observation matrix X, ,, of size Px K
Xm,n = Oém,nsm,ntg%n + Nm,n (2.41)

where N, , is the combined term for all clutter and noise in the transmit-receive pair (- ), p.
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Figure 2.8: An example multistatic radar setup with 3 mobile transmitters and 3 receive ULAs

The arrangement is such that the columns of each of the matrices IN,, ,, are assumed to be
iid. Each transmit-receive pair in the MIMO system forms a standard bistatic path that will
be referred to as “channel” in this thesis. The clutter and noise across the different channels
are assumed to be independent but do not have to be identically distributed. Clutter returns are
generated through the GCM described in [49] with a certain intrinsic clutter motion (ICM) cor-
responding to a wooded hills area [3]. This setup was chosen without loss of generality since
it naturally provides lower temporal correlation between slow-time pulses; this allows for more
efficient simulations to be conducted since the number of temporal observations K; to produce
a certain number K of iid snapshots is kept relatively low. The noise is always spatio-temporal
AWGN with power 20 dB below that of clutter. Some parameters related to the operation of
the radar installations as well as the target and clutter models will remain fixed throughout this
thesis. They are listed in Table 2.1 for convenience. Most physical operation characteristics
are selected to directly reflect the ones used in [12] so that an unbiased comparison between

the algorithms could be made. While this does not necessarily reflect a realistic choice of pa-
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rameters (e.g. the selected velocity is equivalent to 130km/h, which is too slow for an airborne
target), the selection is done without loss of generality and does not influence the validity or the

performance of the algorithms derived in this thesis.

Parameter | Value Description

Ao 0.3 m carrier frequency

Oy 0.2 m/s clutter velocity standard deviation
o2 20 dB below 2 | AWGN power

d 0.15m ULA element spacing

N, 1000 clutter contributing patches

P 10 spatial dimension of observations
T 2 ms PRI

Vg 25 m/s target velocity in x-direction

Vy -25 m/s target velocity in y-direction

Table 2.1: Fixed radar scenario parameters

Given the setup described here, this thesis will focus on implementing SDS sample matrix

inversion (SMI)-based solutions to the multistatic radar detection problem

Hy: X ={Xpmn|Xmn=Npnm=1...Mmn=1...N}
(2.42)
Hy X ={X .,

X = CmnSmntimn + Nmp,m=1...M,n=1...N}

where X = {X,,,/m = 1...M,n = 1...N} is the notation for the set of all observation

matrices X, , in a multistatic scenario that correspond to the same physical point in space.

The physical implementations of the multistatic threshold detection solutions proposed in this
work all follow the same framework similar to the one described in [44]. The procedure is

given in Table 2.2.

For a radar receiver the natural physical search space is range-angle-Doppler (RAD). Here
the translation into x-y-Doppler space is performed after the bistatic search in each channel
since it is much easier to synchronise and fuse the multistatic results given a common Cartesian
coordinate system. For each grid space in the physical search area, a bistatic radar pair forms
the detection likelihood function with respect to all N; normalised Doppler frequencies which
the algorithm probes for a moving target. Once the likelihoods are transmitted throughout
the radar network, the corresponding Doppler likelihoods in each x-y coordinate of the search
space can be synchronised and compounded to produce the multistatic likelihood function for

that physical patch in the grid. The multistatic threshold detection process is then performed in
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Require:
Require:
Require:
Require:
Require:

Set up the radar parameters

Set up an earth-centred Cartesian coordinate system shared by all radar elements
Set up a normalised Doppler search space of size Ny

Set up an angle search space of size N,

Set up a range search space of size NV,

for all bistatic channels (-),, ,, do
for ranges between 1 and N, do
for angles between 1 and N, do

for Doppler frequencies between 1 and N, do
Run bistatic detector.
end for
Translate point in angle-Doppler space to Cartesian coordinate in x-y space.
Form detection likelihood function for all Doppler frequencies.
end for
end for

Obtain transmitter velocities and positions
Synchronise and exchange Doppler likelihoods for all x-y grids
Synchronise Doppler frequencies from individual bistatic likelihoods

end for

Combine bistatic results into multistatic likelihood
return Multistatic threshold detection decision

Table 2.2 Physical implementation of the multistatic radar detection procedure

order to produce the final decision.

2.8 Summary

This chapter provides a brief overview of the concepts on which the work in this thesis is built.
An overview of STAP radar detection and the relevant target and interference signal models
is included in Section 2.2. Some of the traditional TDS detectors are provided in Section
2.3. These methods and their shortcomings give rise to the development of the SDS detectors
described in Section 2.4 on which a large portion of the work in this thesis is based. Section
2.5 provides a brief overview of MIMO radar. Section 2.6 discusses the practical limitations

imposed on MIMO radar by the waveform ambiguity function. The problem investigated in

this thesis along with the assumptions made in the formulation are described in Section 2.7.
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Chapter 3

The multistatic maximum likelihood
and generalised maximum likelihood
estimation detectors

3.1 Introduction

This chapter provides an in-depth derivation of the multistatic MLED/GMLED solution [56,75]
to the radar detection problem posed in Section 2.7. The algorithms presented here form the
core of the detection process described in Table 2.2 inside the innermost iteration loop of the
target search sequence. Thus, the focus is on the multistatic fusion of the results instead of the
RAD synchronisation between the different channels. It is assumed that such synchronisation
is in place and that it is ideal; thus, when the MIMO radar system illuminates an airborne target
the ranges, the spatial frequencies f(,, »}, and the Doppler frequencies fq(,, ) of that target

are all precisely-known parameters. This condition will be relaxed in Chapter 4.

The statistical properties of the multistatic MLED/GMLED are derived and analysed, and it
is shown that both target detection schemes possess the CFAR property. The usual challenges
associated with the theoretical analysis of mono/bistatic STAP detectors (e.g. [17, 18, 20, 76,
77]) are compounded in the multistatic scenario. Even when the individual bistatic channels
are mutually independent, MIMO detectors are typically summations or products of bistatic
detectors (e.g. [12,14,66,67]). While expression for the probability of false alarm and detection
are available for bistatic radar, it is unlikely that the corresponding multistatic solutions exist in
closed form [14,65,66]. Thus, a methodology is proposed at the end of this chapter for deriving
approximate expressions for probability of false alarm and detection for widely-spaced MIMO
systems. The methodology is illustrated in detail for the proposed SDS algorithms. The key
to obtaining the approximations is the application of the CLT, or more precisely Lindeberg’s
condition [78, p.307], to the summation of bistatic detectors. This approximation enables the
link between the algorithm parameters and the probabilities of detection and false alarm to be

made.

31



The multistatic maximum likelihood and generalised maximum likelihood estimation
detectors

This chapter closely follows the original work published in [75]. The rest of the chapter is
structured as follows. Section 3.2 provides a mathematical background on the distribution of
the bistatic MLED and GMLED observations. Section 3.3 and Section 3.4 contain the first
contribution of the chapter and provide the derivations of the multistatic MLED and GMLED
respectively. Section 3.5 contains the second contribution in the form of the statistical analysis
of the algorithms and proposes the CLT approximation for relatively large radar networks.
Section 3.6 demonstrates the performance of the proposed detectors and the viability of the
derived approximations to their statistics through a number of numerical simulations. Section

3.7 contains a summary of the work presented in this chapter.

3.2 Background

Consider a single bistatic channel from the multistatic observation signal model (2.41). The
vectors 8, , and ¢, ,, correspond to the described bistatic spactial and temporal steering vec-
tors in Section 2.2. The clutter and noise in each column of the channel-specific observation
matrix X, , is assumed to be iid and complex multivariate Gaussian. The probability den-
sity function (pdf) of the kM column of X m,n conditioned on the amplitude of the reflected
probing signal o, ,, is thus described by the (p-dimensional) multivariate Gaussian distribu-

tion [18, p.121]
f(colp(X)|a) = 7TPl|R’exp {—(coli(X) — ast(k))" R~ (colp(X) — ast(k))}  (3.1)

where the channel-specific subscripts (-), , have been omitted in (3.1) as it focuses on a single
channel. Thus the spatial and temporal steering vectors s and ¢ are equivalent to s,, ,, and £, 5,
from the observations model (2.41), and t(k) signifies the k™ element of the vector ¢. The
notation | - | is used here to signify the determinant of a matrix, and exp(-) is the exponential of
a number. The interference in the different snapshots colg(X) has been assumed to be iid by

construction; thus the pdf of the full observation matrix X conditioned on the amplitude « is
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given by the product of the pdfs (3.1) of the individual snapshots [18, p.121]

1 K K
= (Wp, R\) exp {— > (ol (X) — arst (k)" R~ (ol (X) — ast(k))}
k=1

1 K
= (WP|R\> etr { =R (coly(X) — ast(k))(col,(X) — ast(k))H}

1 \" .
_ (mm) etr { R M") (3.2)

Here etr(+) is the exponential of the trace of a matrix; the trace itself will be defined as Tr(-).
The following identity
vl Mv = Tr(Moov™) (3.3)

which stems from the basic properties of the trace and valid for any matrix M and vector v is
applied in (3.2) and will be used throughout the derivations in this chapter. In addition, in the
last line of (3.2) the following matrix is defined
K
M* = (coly(X) — ast(k))(coly(X) — ast(k))" (3.4)
k=1
which is the ML sample estimate of the snapshot covariance matrix up to a power normalising

constant K.

3.3 Derivation of the multistatic MLED

An in-depth derivation of the multistatic MLED algorithm described in [56,75] is given in this
section. The resulting detector is similar to the multistatic AMF presented in [65—-67] but does
not use independent training data sets for covariance estimation and SMI. The derivation di-
rectly follows the background presented in the previous section. From this point onward a full
multistatic system is considered, and thus the channel-specific subscripts (- ), , will be used in
the equations where relevant. It is assumed that the covariance matrices of the background in-
terference R, ;, are known for the time being in order to derive the optimal multistatic detector.
In a multistatic scenario with sufficient separation between antennas, the background clutter and

noise processes IV, , are uncorrelated to one another. Let s={c, n|m=1...M,n=1...N}
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denote the set of all the complex amplitudes «, ,, across the channels of the multistatic radar.
The joint pdf of the set of observations X given the set of amplitudes o can be represented by
the product of the individual pdfs given in (3.2) because all target and interference signals from
the different channels are assumed uncorrelated. With M transmitters and N receivers the joint

multistatic pdf takes the following form

J(X|o) = H J( X nlowmn)

K

1 . .
MNP ] Ry etr {— ; Rm,anm} (3.5

m,n

Let ov=0 signify the case when every element of the set o is equal to zero. This reflects the sit-
uation when no target is present in the search area of the radar installation, and the observations
picked up by each receiver consist purely of clutter and noise. Therefore, the joint pdf of the

set of observation signals X under the null hypothesis from (2.42) is given by

fo(X) = f(X|ec = 0)

K
1 o
NPT (R etr{—%Rm,an} (3.6)
where
K
M?n,n = Zcolk(Xm,n)colk(van)H 37
k=1

represents the ML sample estimate of the STAP snapshot covariance similar to (3.4) when
no target signal is present in the observations. Under hypothesis H; from (2.42), the joint
pdf f1(X) is simply given by f(X|x) from equation (3.5). To obtain the ML estimate of the
unknown parameters in the set x, the natural logarithm log(-) of (3.5) is taken to transform the
product of exponentials into a summation. The partial derivative J(-) of the expression with

respect to each unknown complex amplitude a, , is then individually formed; the expression is
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solved for zero to find the maximum of the likelihood function of the specific channel (-), 4

0 0
- log (f(X’@)) = * Tr {_ Rr_n}nM?n,n}
aam 8ap7q mzm
= Tr{-R, ;M }
8ap q P4
K
fqt; Jk) R, (COIk(Xp»q) — QpgSp,qtp,q(k))
k=1

= quRz:é Z coly(Xp,q)t, 4 (k) — oy, QK'SP By g8 ;

= Ks!! R~

p.q pquq Koy gsh! Ry 1spq (3.3)

P9~ "Pq

Some trivial steps in the derivation of (3.8) have been omitted. Equation (3.3) has been used to
transition from the trace to the summation term, and the 2-norm (2.21) of the temporal steering
vector has been replaced. Clearly under the logarithm the problem becomes linearly separable
and thus the sum over all the bistatic channels has vanished. The complex amplitude estimate
is only dependent on the parameters of its own channel; thus the solution when the derivative

(3.8) is zero is identical to the bistatic one presented in [18] for all channels (-), »

~ STHn,nR;n%ngm,n (39)

Am,n =

H 1
Sm,an,nSm»n

Note that (3.9) is also identical to the amplitude estimate of the APES filter derived in [61]. The
Neyman-Pearson (NP) lemma [79] states that the optimal threshold detector is formed by the
ratio of the likelihood functions under the two hypotheses (3.5) and (3.6).

_ ~1 pq@
max fy etr { g;l Rm,an,n}

fo
etr{ — > R;I}nM%W
m,n

= etr {— S R, (Mfm - M?,W) } (3.10)
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The likelihood under the hypothesis H; has been maximised by plugging in the estimates for

the amplitudes v, ,, from (3.9). Thus the matrix

K

M, =Y (olt(Xman) = Gmnmatmn (k) (ol (Xmn) = GmnSmatmna(k) (3.11)
k=1

has been used in (3.10), which is the sample covariance from (3.4) with the ML amplitudes
plugged in. The relationship between M %n and M 9,1,” becomes evident when the former is

expanded as

& 0 H ~ H ~ 2 H
My, =M, — Ko Smn — KOmnSmnGmn + K |G| SmnSmn  (3.12)

mngmn m,n

Plugging the relation (3.12) in (3.10), the NP ratio becomes

max f1

f

~ H
- etr{KZR mngm nsgn —|—Oém nSm ngmn ‘Ozm7n|28m7n8g,n)
(3.13)
Since the logarithm is a linear operator, applying it to (3.13) does not change the detection

capabilities of the NP ratio. Using the identity (3.3) to remove the trace from the equation, the

natural logarithm of the ratio becomes

max f1

log = KZ mn m n mlngm nt OmnGm nR;@}nsm,n — |@mn 2sﬁ’nR;:nsm7n)

(3.14)
If the ML estimates (3.9) are plugged into (3.14), the multistatic threshold detector for the case
when the covariance matrices of the background noise and interference R,, ,, for all different

channels are known.

2 o0 e (3.15)

The normalising K -factor here has been absorbed in the total decision threshold . Note that
(3.15) is essentially the multistatic extension to the MF given in (2.23) under the assumption
that all the bistatic channels in the radar scenario are independent. The multistatic MLED
threshold detector is obtained when the unknown clairvoyant matrices R,, ,, are replaced by

the SDS sample matrices @, ,, in (2.29) coming from the APES filter.

’SanmngmnP 1
> >y (3.16)

H -1
m,n Sm,n Qm,nsmﬂl Hy
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The ML SDS solution (3.16) to the MIMO case investigated in this work is a summation of
the individual single-channel solutions (2.30) for each path (-),, in the system. The linear
separability of the multistatic detector in the sum of the bistatic ones is in accordance with the

prior assumption that the individual transmit-receive channels are independent.

3.4 Derivation of the multistatic GMLED

In this section the multistatic GMLED threshold test algorithm for SDS detection is derived.
The derivation is a more in-depth extension of [56,75]. The resulting detector is similar to
the multistatic GLRT presented in [65-67] but does not require independent training data sets.
While in the derivation of the MLED the covariance matrices of the noise and interference sig-
nals R, , were assumed to be known, in the GMLED they are unknown parameters from the
start. The expression for the pdf of each individual observation signal set X, ,,, now condi-
tional on both the amplitude o, , and covariance matrix RR,, ,,, is identical to the respective

MLED case (3.2) derived in Section 3.2.

f(Xm,n

1 K _
Omps Rnn) = | 55— | e {-R,' M .} (3.17)
T | Ry, B
Therefore, the joint pdf of the multistatic observations also remains the same as (3.5), this time
conditional on the set of unknown covariance matrices Rs={ R, ,|m=1...M,n=1.. .N}.

K

1
X]at, Rg) = tri{—> R-! M® 3.18
POl i) = | TP T TRl { 2 Fo ’“} o

This is also the expression that provides the relevant likelihood function under the H; hypoth-
esis from (2.42). Under the alternative hypothesis, the likelihood function, now conditional on

the parameter set Rs, is given by

K

1
fX|oe = 0,Rs) = etr{ — Y R 1 M (3.19)
S 7.[.MNP nll_[n‘R/m,n‘ mzm m,n m,n

The logarithm of (3.19) is taken, similar to the maximisation approach in Section 3.3 of this
chapter, before taking the derivative and solving it for zero. Since the unknown in this case is

a matrix, the Jacobian of the natural logarithm of (3.19) is examined in a particular channel of
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interest (-)p 4:

d 9
1 X|Rs)) = —K1 MNP | | ol v — T § .Y i
8Rp,q o (fO( ’ )) aRp,q { o8 {W |R ’ |} r{mm Rm,n mm}}

= a — _ —1 0

_aRp,q{ K;log{’R’”vn’} ;Tf{Rm,an,n}}
0

= op— {~Klog{|Ry |} — Tr{R, M} }} (3.20)
P,q

It is clear from the last line of (3.20) that the problem has become linearly separable in the
logarithm once again. To obtain the ML, a few useful properties of the Jacobian are taken from

literature [80, pp.193-203] and used to follow up on the derivation

Olog| R, | -1
—= =R 3.21
ORy4 - G:2D
8Tr{R;éng} —1ag0 -1
=-R, M, R, (3.22)
ORy 4

where a few Hermitian transpose operators have been omitted since both R, ;, and M 2’(1 are
self-adjoint. Plugging in (3.21) and (3.22) into (3.20) and solving for zero, the ML estimate of
the unknown covariance matrix for all individual channels (-),, ,, is formed [81]

1

Ry = =M, (3.23)

The maximised likelihood function under the hypothesis Hg for the multistatic GMLED detec-
tor is thus obtained after plugging in (3.23) into the likelihood (3.19)

K

1
max o) =\ Geem iV 1 (20

(3.24)

m,n‘

The process of deriving the ML under the alternative hypothesis H; is identical to the one for

Hy. The solution for the covariance matrices I, ,, takes the more general form
R,,=—M: (3.25)

which now depends on the unknown amplitudes o, ,. Note that when no target is present,

(3.25) reduces to (3.23) since the amplitudes are all zero. When the solutions (3.25) are plugged

38



The multistatic maximum likelihood and generalised maximum likelihood estimation
detectors

into (3.18), the maximised likelihood expression for the multistatic GMLED is obtained

K
1
(Kem)MNP T |M%

m,n|
m,n

(3.26)

max fi(X|er) =

To maximise the likelihood (3.26) with respect to the unknown complex amplitudes «, 5, once
again it is useful to render the expression linearly separable through taking the natural logarithm

before forming the partial derivatives.

%) o)
1 X|o) = —K 1 Kem)MNPTT | pe
Dy og f1(X|m) dacs, Og{( em) Wl:y m,n!}
9 a

P4 mon

.

=-K log {|M% |} (327

0
das
To obtain a more suitable expression for the determinants, first equation (3.12) should be mod-

ified to take the following form

a 0o _ * H H 2 H
M, =M, — Ko 9,50 — Koapgspe9p, + Klapgl"spesy,
_ H - % H H 2 H
=KQ,,+K3y,9pq — Kap 9,450 — KpgSpadpg + Klopgl spesy,
H
=KQ,,+ K (gp,q - ap,qsp,q) (gp,q - O‘pvqsp,q) (3.28)

where the fact that M %qu p.qX gq from (3.7) has been utilised. Using the generalisation of

Sylvester’s identity for matrix determinants [82] it can be shown that, following from (3.28)

H _
’M;q| = KP‘Qp7q| (1 + (gp,q - ap,qsp,q) Qp,é (gp,q - ap,qsp,q)) (3.29)

Plugging (3.29) back into (3.27), the likelihood maximisation process can be completed

0 H _
—logfi(X|a) = —K Do log (1 + (gp,q - ap,qSP»Q) Qp,; (gp,q - ap,q*"’pﬂ))
X X

_ —Ks/1,Qp4 (999 — a5pa) (3.30)
VS )
L+ (gp,q - ap,qsp,q) Qp,c11 (gp,q - ap,qsp,q)

oo

When the numerator of (3.30) is solved for zero, the estimates to the unknown amplitudes o, p,

in all channels (-),,,, are obtained. This solution will not be made explicit here since it is
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identical to (3.9) derived for the multistatic MLED in Section 3.3. When these estimates are

plugged back into (3.29), the minimum of the determinant [ M7, , | is obtained

H -1 2

: P H -1 |Sm, n9mnl
min [M7, | = K7 1Qual | 1+ 90 nQunmm — — 5 At 3.31)

m,n Sm,n m,nvan

From (3.29), the determinant of the matrix M ?mn for the hypothesis Hy can also be expressed

in a similar manner by simply putting v, 5, to zero.

M), | = K°1Qu .l (1+ gl Q0 gm.0) (3.32)

Forming the ratio of the maximised likelihoods (3.26) and (3.24) in accordance with the NP

criterion, the multistatic threshold detector expression can be obtained

K
m&x f1 H |M2’L,n|
o, Rs m,n
= 3.33
max f [ min |M | (3-33)
Rs m,n Am,n ’

Plugging in the relevant expressions for the determinants (3.31) and (3.32) into (3.33) and

taking the K" root of the likelihood ratio, the expression for the multistatic GMLED is obtained

1 + H —1 H,
H gm,an,ngm,n 2 U (334)
H -1 2 H
m,n _ ’Sm,an,ngm,n| 0
1 + grlian%ngm,n - H —1

m,n m’nsm,n

If the equation for the standard GMLED detector (2.31) is reworked it becomes evident that the
multistatic version (3.34) is a product of the bistatic solutions for each path (), ,, in the system.
The property is somewhat similar to the relation between the bistatic and multistatic MLED and
comes as no surprise. Because the radar waveforms are orthogonal, and the interference in the

different channels is assumed to be independent, the detector is once again linearly separable.

3.5 Analysis

This section provides a statistical analysis of the derived multistatic versions of the MLED
and GMLED algorithms. A brief discussion on the theoretical forms of the resulting MIMO
detector distributions is included. Based on this discussion and some of the existing analysis of

similar multistatic detectors [65-67], it can be concluded that a closed-form expression for the
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pdfs of the MLED and GMLED extensions derived here may be impractical to compute or may
not even exist. To obtain an expression for the probability of false alarm Py, and the probability
of detection P, the CLT is employed to obtain a Gaussian approximation to both threshold
detectors’ pdfs for a large number M x N of bistatic channels. These approximations are useful
in the design and implementation of the proposed multistatic SDS methods; they provide a
quick and computationally inexpensive way of predicting the performance of a practical MIMO

radar installation.

3.5.1 Statistical properties of the multistatic MLED

The statistical properties of the bistatic MLED detector are described in [18, pp.63-65] and are
also derived in Appendix A.1 for convenience. The detection test for a single bistatic channel

shown in (2.30) is equivalent to the following combination of random variables

Smn S (3.35)
Limn Hy 7

The variable L signifies the degrees of freedom (DOF) available to the detector for performing

clutter cancellation. For the SDS detectors examined in this work the value is equal to
L=K-P (3.36)

Note that the DOF (3.36) in this case are one less than in the case of the traditional TDS
algorithms like the AMF and the GLRT [9, 10]. This has been explored in detail in [19] where
it has been shown that the lost degree goes into estimating the complex amplitude o, ,, in a

bistatic channel.

The random variables (;,, , and 7, , that compose the MLED statistics (3.35) are mutually
independent. The variable 7,, ,, follows the type I beta distribution with L+1 and P—1 DOF.
The variable ¢, 5, is distributed according to the non-central F distribution with 2 and 2L DOF

and a non-centrality parameter \,, ,, given by
)\m,n = 2KP77m,npm,n (3.37)

The variable p,, ,, signifies the SNR per observed temporal snapshot in the adopted signal
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model (2.41). Its value is derived in [18, p.17] as
1 2_.H p-1
Pmmn = F|am,n sm,anm,sm,n (3.38)

where once again the norm of the temporal steering vector has been assumed to be K (2.21). In
the case where no target is present in the set of observations X, ,,, the non-centrality parameter
Am,n becomes zero, and the random variable ¢, ,, assumes the standard F distribution with 2

and 2L DOF. Using (3.16), the multistatic MLED test statistics are distributed as

Cm n H1
Z ann (3.39)

The test statistics consist of a sum of random terms shown in [17, 18] to be independent of
the underlying noise and interference. The covariance matrix of the clutter and noise R,,
for a certain bistatic channel has no influence on either of the random variables in the test
statistics (3.35) under the H( hypothesis. Under the H; hypothesis the matrix only plays a role
in determining the value of the operational SNR of the system (3.38). Naturally, it is the SNR
that determines performance. The same argument applies to the statistics of the multistatic sum
(3.39). It is independent of any of the clutter and noise matrices R, ,,. Therefore the inherent

CFAR property of the bistatic MLED is preserved in the multistatic extension of the algorithm.

Due to the complex nature of the random variables involved, obtaining a closed form expression
for the pdf of the multistatic MLED would be difficult and impractical. Similar conclusions
have been reached in [65-67] where analogical TDS MIMO algorithms for target detection
have been proposed. None of the mentioned works offer a theoretical closed-form solution for

the detection and false alarm probabilities of the multistatic AMF.

In the bistatic case [18, pp.62-64], the approach is to assume that the random variable 7, ,, is
known, which leads to the detection variable having the non-central F distribution. This pdf can
then be integrated to obtain an expression for the probability of detection and the probability of

false alarm.

1 [e)
Pd(')’m,n) = /0 ( fC(Cm,n)dC> fn(nm,n)dnm,n (3.40)

LT]m,n'Ym,n
The approach from (3.40) cannot be extended to the multistatic sum of random variables (3.39).
The marginalisation of the beta-distributed random variables 7, ,, is no longer trivial because

they cannot be isolated from the sum of the ratios in (3.39). Moreover, even if the variables
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Nm,n are assumed to be known, the resulting statistics become a sum of M x /N independent
non-identically and non-centrally F-distributed random variables. The pdf of such random vari-
able has no known closed form formulation which makes analysis of the proposed multistatic

algorithm difficult.

In the case that the sum (3.39) consists of a sufficiently large number of terms, it can be ap-
proximated by a Gaussian distribution through the application of the CLT. This enables the
derivation of approximate and relatively accurate expressions for the probability of false alarm
Py, () and the probability of detection Py(~) for a given detection threshold . The proposed

Gaussian approximation to the multistatic MLED statistics is derived in Section 3.5.2.

3.5.2 Gaussian approximation of the multistatic MLED

The multistatic MLED threshold detector consists of a sum of M x /N independent random
terms as shown in (3.39). The CLT dictates that the statistics of the decision variable with mean
wyr and variance 012\/[ can be closely approximated by a Gaussian distribution N (g, 012\/[)
provided that M x N is sufficiently large [66]. Because the terms are not identically distributed,
Lindeberg’s condition [78, p.307] has to be satisfied which is shown in Appendix B.1. Let the
mean and variance of the bistatic MLED detectors in each of the individual channels (-),

distributed as (3.35) be defined as

Cm,n
UM (mm) = E [an n] (3.41)
2 = var S (3.42)
G]V[(m,n) - Ly :

Here F [-] signifies the expectation and var(-) the variance of the random variable or vector. The
multistatic detector is the sum of the M x IV independent random variables in those channels.
This fact, combined with the linearity of the expectation operator, leads to the conclusion that all
the moments of the multistatic MLED random variable (3.39) are the sum of the same moments
in the individual bistatic channels (-),, . Therefore the mean y 5 and variance o3, of the total

MIMO MLED are given by the linear combinations

A= Y () (3.43)
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Because the pairs of random variables ¢, ,, and 7,, ,, are independent, the central moments of

their ratios factorise in the following manner [83]

Tm,n

2 2
( ! > ] —‘EﬁE[an] [ ! } (3.40)
Nm,n Tim,n

Provided that L>2, which should always be the case in practice so that the clutter covariance

1 1
1

O-%/[(m,n) = L2E [Cm 71] E

estimation is reliable, the first two central moments of the F-distributed random variable (,, ,

are given in statistics literature [84, p.221]

L24 M\
E Km,n] = 5 2__717 (3.47)
L2 24 Mun)? +4(1 + An)(L — 1
sr(Gu) = S A (349

The expectation of 7, ,, is obtained by solving the integral with respect to the reciprocal beta-

distributed random Varlable with L+1 and P—1 DOF

1 L
E[ } :/0 7fn(77m,n)d77m,n

Nm,n Nm,n
. 77mn L (1~ 1im n>P72d
_/0 B(L+1,P—1) “mn
_ B(L,P-1)
~ B(L+1,P-1)
K-1

== (3.49)

where B(z,y) is the beta function. Similarly the second central moment of 77771,171 can be ob-

tained by solving the second moment integral and subtracting the squared first moment

1 1 \? 172
we () =2 G) |2
Tim,n TIim,n Tm.,n
. nmn(l_nmn)P_Q_K_l
-~ Jo B(L+1,P-1) L

_ B(L-1,P-1) K-1
" B(L+1,P-1) L
_(E-1)(P-1)

- L2(L-1)

(3.50)
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Using the fact that E [(-)2] =var(-)+E []%, (3.47), (3.48), (3.49), and (3.50) can be plugged in
(3.45) and (3.46) to obtain an expression for the mean and variance of the random variable that

signifies the bistatic MLED threshold detector

K =124 XAmn

/’LM(m,n) = 27, I —1 (351)
, (K -D)(E+P =22+ Ann)? | (K= 1)K —2)(1+ Apn) (3.52)
TM(mn) = AL2(L —1)2(L — 2) L(L —1)*(L - 2) '

The non-centrality parameters ), ,, are themselves of random nature since they are dependent
on 7y, ». In the case of the multistatic MLED it is easy to marginalise them out of the equations
for the mean (3.51) and variance (3.52) to produce a closed-form solution. However, in the case
of the multistatic GMLED approximation that is described in Section 3.5.4 the marginalisation
process is not trivial. Therefore, for consistency, a first-order approximation to A, ,, is done for

both algorithms where they are replaced by their expected values an given by [85, p.11]

Xmm =F {QKPpm,nnm,n]
= 2P(L+ 1)pmn (3.53)

It should be noted that (3.53) is an additional approximation that is performed for convenience.
The CLT holds without replacing the variables A, ,, with their first order estimates proposed
here. In the case of the multistatic MLED, it has been determined numerically that using the
first-order estimator (3.53) instead of taking the standard marginalisation approach makes little

difference to the final results.

Label Relermt Description
equations

Monte Carlo simulation of the multistatic MLED de-
tector, histogram approximation to pdf

Monte Carlo simulation of random variables com-
Theoretical (3.39) posing the theoretical distribution of the multistatic
MLED, histogram approximation to pdf

(3.51) (3.52) | Gaussian approximation to the multistatic MLED,
(3.56) (3.57) | normal pdf with relevant parameters (3.51) (3.52)

Simulated (3.16)

Approximation

Table 3.1: Guide to MLED pdf simulations labelling and terminology
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Figure 3.1: Probability density function of the multistatic MLED detection variable
K=20, M=N=10, SN R=—26dB
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Figure 3.2: Probability density function of the multistatic MLED detection variable
K=60, M=N=20, SN R=—36dB
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Figure 3.1 and Figure 3.2 depict the pdfs of the multistatic MLED detection variable and its
Gaussian approximation. Three sets of results are provided in the graphs, “simulated,” “theo-
retical,” and “approximation.” A short description of the labeling is summarised in Table 3.1
along with the relevant equations. A more detailed explanation is given in the Simulations
section (Section 3.6) of this chapter. Figure 3.1 shows the respective pdfs for a network of
10 transmitters and 10 receivers which observes K =20 temporal iid snapshots per range gate.
Since there are a total of 100 bistatic channels in the multistatic scenario, it is expected that
the Gaussian approximation model will have a reasonable convergence to the actual pdf of the
MLED random variable. The values of the SNR for the simulations under the H; hypothesis
are chosen so that the Hy and H; pdfs are relatively close to each other. It was also aimed
that Figure 3.1 and Figure 3.2 look relatively similar to each other for ease of comparison.
This is done for convenience of the visual representation and without loss of generality. The
simulated and theoretical results are obtained from the histogram approximation to the pdf. A
million sample points were generated for each run and placed in 100 histogram bins in order to

produce relatively smooth pdf curves.

In the second set of pdf simulations shown in Figure 3.2, a larger radar network of 20 trans-
mitters and receivers is simulated. A larger number K =60 of temporal snapshots is also used.
The number of terms that take part in the process of applying the CLT has now risen from 100
to 400, which evidently reduces the error of approximation. The approximating Gaussian pdfs
now better match the distribution of the multistatic detection variable. Since the resulting simu-
lated and theoretical pdfs are now produced by a convolution of 400 terms, all central moments

above the second are negligible.

To obtain the probability of false alarm Py, for a given threshold ~, it is noted that in the
absence of target the multistatic MLED threshold detector is approximately distributed as
N(p MO,UJQVIO) where the two relevant moments of the approximation follow directly from

(3.51) and (3.52)

1310 =Y fmn(Amn = 0) (3.54)
oo = 02 ,(mn =0) (3.55)

Therefore the false alarm probability Py, of the multistatic MLED for a given detection thresh-
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old v is approximately

Pra(7) ~ Q (7_‘““) (3.56)

oMo
where () is the Q-function associated with the tail probability Pr[X >z| of the standard
Gaussian distribution. The probability of detection P, is obtained in the case where a target
is present in the observations. The multistatic MLED detector variable is then approximately
distributed as N (par1,03%,,), where ppn and o3, are the same sums as (3.43) and (3.44)
respectively with the Xm,n parameters given by (3.53). Thus the probability of detection for the

given decision threshold ~ is approximately

Pi(y) = Q (7 ;]\ZlMl) (3.57)

Note that the Gaussian approximation to the multistatic MLED proposed here can be easily
extended to the multistatic AMF proposed in [65] and [67]. The approach is the same as the
one presented in this work and thus the results provided here are valid for the TDS algorithm

with a slight modification of the added degree of freedom.

3.5.3 Statistical properties of the multistatic GMLED

The analysis of the GMLED in [18, pp.54-63] has been performed for the threshold detector
expressed in the form given in (2.31). If expressed in this manner, the statistics of the bistatic

GMLED are distributed as

Cm,n M
—— Z Tmn (3.58)
L @,

where (,, », is the same F-distributed random variable from the MLED statistics with the same
non-centrality parameter and DOF, and 7 = 7/(1 — «y). The derivation of this expression has
been provided in Appendix A.2 of this thesis for convenience. The multistatic expression (3.34)

requires the return of the bistatic GMLED likelihood ratio to its original form given by

1 H,y
" ; ; 2 Umpn (3.59)

1_ ‘Sm,nQr_n,ngm,n‘ Ho

ngQ%}nSm,n(l + gg,nQ;&ngm,n)
where
1
Vi = ————— (3.60)
1-— TYm,n
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is the relation between the transformations of the threshold in the bistatic case. It can be easily

shown that the relation between the two manipulated thresholds v, ,, and 7, 5, is the following

Vmmn = Tmmn + 1 (3.61)

Therefore, the statistical equivalence of the left-hand side of (3.59) takes the following simpli-

fied form
bman 412 62
L + I§ Vm,n (3 )
0

The multistatic GMLED threshold detector in (3.34) consists of the product of its bistatic com-

ponents. It is therefore distributed as

Cmn Hl
H( T +1> > v (3.63)

m,n Ho

The test statistics thus consist of a product of random terms that were shown in [18, p.61] to be
independent of the underlying noise and clutter distributions. Is is evident that the covariance
matrices of the clutter R, ,, do not directly influence the test statistics (3.63) apart from deter-
mining the operational SNR. Therefore, the multistatic GMLED threshold detector is, in turn,
independent of the statistics of the noise, preserving the CFAR property in the MIMO extension

of the algorithm.

Similar to the multistatic MLED detector, its generalised extension is difficult to analyse in
the statistical sense. A closed-form solution for the probability of false alarm of the MIMO
GLRT has been proposed in [86]. However, the approach cannot be taken when the non-
centrality parameters A, ,, are introduced and the probability of detection has to be derived
instead. Therefore, deriving a Gaussian approximation to the multistatic GMLED similar to
the one presented in Section 3.5.2 for the MLED can once again provide a useful guideline to
the overall performance of the algorithm. Section 3.5.4 proposes such an approximation to the
multistatic detector statistics (3.63) given that a large number of terms take part in the product.
As a result it is possible to derive approximate expressions for the probability of false alarm

Pt4(v) and the probability of detection P;(v) for a given detection threshold v.
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3.5.4 Log-normal approximation of the multistatic GMLED

The multistatic GMLED threshold detector consists of a product of M x N random terms as
shown in (3.63). It would be convenient to take the logarithm of this product to transform it

into a sum of random variables.

log {H <<an + 1) } = Zlog (Cni’n + 1> }g log v (3.64)

Hop

The CLT dictates that the statistics of the logarithm of the decision variable given in (3.64) can
be closely approximated by a Gaussian distribution N (u¢, aé) provided that the number of
signal paths M x IV in the system is sufficiently large [66]. Once again the random variables in
the sum are not identically distributed so a proof of the validity of Lindeberg’s condition for the
detector is given in Appendix B.2. Because the exponential of a normally-distributed random
variable follows the log-normal distribution with the same parameters, it can be concluded that
in a large network the multistatic GMLED pdf can be approximated by In NV (i, Ué). To ob-
tain expressions for the parameters of this distribution, the first two moments of the multistatic
GMLED random variable have to be obtained. The expectation of the individual terms in the
product (3.34) can be obtained from (3.62) by using the expectation of an F-distributed random

variable given in (3.47) and the linearity of the expectation operator.

E [Cm” 1} — M (3.65)

L 2(L — 1)

Because it is assumed that the random variables coming from the different channels (-),, ,, are
independent, all the (non-central) moments of their product will factorise into the product of
their individual (non-central) moments. Therefore, the first moment of the multistatic GMLED

random variable is given by

E H<Can+1>

m,n

2L + A
_ nll P (3.66)

The second moment of the individual product terms (3.62) is obtained from the variance of the
F-distributed random variable given in (3.48) and the derived first moment (3.65).

Conom 2
(5 1)

_ (Ampn +2L)*—4L
T AL -D(L-2) G671

E
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The second moment of the multistatic GMLED detection variable is the product of the second

moments of the statistically independent individual terms from the different channels (), .

E

2 _
-11 (Amn +2L)° — 4L (3.68)

AL-1)(L-2)

()

m,n

From the statistics literature, the first and second moments of a random variable following the

log-normal distribution In A/ (p¢, aé) with parameters g and aé are given by [85, p.8]

E [N (ug, 0%)] = erctoa/? (3.69)
B[N (ua,08))’] = e +27% (3.70)

The derived expectations (3.66) and (3.68) and the parametric expressions (3.69) and (3.70)

form a system of two equations.

o2 2L + Amon

2 _
(A + 2L) 4L> 3.7

2 202 =Y 1
Ho + 208 = °g< WL —1)(L—2)
m,n

Solving the system (3.71), (3.72) for the parameters ug and O’% results in

1 Nmn 4+ 20)4(L — 2
p022210g< _ O, ) ) ) (3.73)

A((Am,n +2L)* —4L)(L — 1)

2 _ N1 [ +20)° — L)L — 1)

where once again the random variables )\, ,, have been replaced with their expected val-
ues an given by (3.53). In the absence of target the threshold detector is distributed as
In NV (1co, aéo) where pgo and Ué‘o no longer need to be approximated. Their exact values
can be computed due to the fact that for A, ,,=0 the non-central F distribution becomes a
standard F distribution with 2 and 2L DOF. The pdf of the distribution takes the following

closed-form simple form that can be easily integrated.

1
fC(Cm,n) = I+1 (3.75)

Cmn
L

1+
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Thus, the integral expression for the first and second central moments of the logarithm of the
bistatic GMLED random variable becomes solvable and yields the following results for the

exact statistical parameters of the multistatic GMLED log-normal approximation

MN
UGo = - (3.76)
MN
Uéo =Tz 3.77)
Label Relevant | 1, - cription
equations
Monte Carlo simulation of the logarithm of the mul-
Simulated (3.34) tistatic GMLED detector, histogram approximation
to pdf
Monte Carlo simulation of random variables com-
. posing the theoretical distribution of the logarithm
Theoretical (3.63) of the multistatic GMLED, histogram approxima-
tion to pdf
Gaussian approximation to the logarithm of the mul-
. (3.73) 3.74) | . . .
Approximation (3.78) (3.79) tistatic GMLED, normal pdf with relevant parame-
' ' ters (3.73) (3.74)

Table 3.2: Guide to GMLED pdf simulations labelling and terminology

Figure 3.3 and Figure 3.4 depict the pdfs of the logarithm of the GMLED and the appropriate
Gaussian approximations to the detection variables. The simulation labeling is consistent with
the one used in Section 3.5.2 and is provided for convenience along with the relevant equations
in Table 3.2. Figure 3.3 shows the respective pdfs for a smaller 10-transmitters and 10-receivers
network. The number of temporal iid snapshots observed by the system is K =20 per range
gate. The values of the SNR for the simulations under the H; hypothesis are the same as in the
MLED pdf analysis in Section 3.5.2. The simulated and theoretical results are obtained from
the histogram approximation to the pdf. A million sample points were generated for each run

and placed in 100 histogram bins in order to produce relatively smooth pdf curves.
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Figure 3.3: Probability density function of the multistatic GMLED detection variable
K=20, M=N=10, SN R=—26dB
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Figure 3.4: Probability density function of the multistatic GMLED detection variable
K=60, M=N=20, SN R=—36dB
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The results demonstrate a relatively good match between the simulated and theoretical pdfs.
However, the mismatch between approximating Gaussians and the Monte Carlo simulated his-
tograms observed for the MLED are even more pronounced here. The theoretical and simulated
distributions evidently differ from the approximating ones not only in skewness but also in ex-
cess kurtosis. The approximating error is not large but it is likely to have a slight influence on

the process of estimating the probability of detection and false alarm.

In the second set of pdf simulations shown in Figure 3.4, a larger radar network of 20 trans-
mitters and 20 receivers has been used. A larger number K=60 of temporal iid snapshots is
also used. Similar conclusions can be drawn for the GMLED pdfs shown here as the ones
for the MLED. The resulting distributions consist of 400 convolutions of independent but not
identically distributed components. Thus the approximating Gaussian pdf now better matches
the distribution of the multistatic GMLED detection variable. Once again this is linked to the
fact that all central moments above the second are negligible for a larger number of convolved

terms.

The probability of false alarm of the multistatic GMLED for a certain threshold v follows from

the log-normal approximation

1 _
Pro(v) ~ Q <Og’;GO“G0> (3.78)

When a target is present the detector statistics are distributed as In N (g1, aél) where ug; and

O'él are given by (3.73) and (3.74) respectively. The probability of detection is thus

Pi(v) ~Q <log — Gl) (3.79)

oGl

Note that the log-normal approximation to the multistatic GMLED proposed here can be easily
extended to the multistatic GLRT proposed in [65, 67]. The approach is the same as the one
presented in this work and thus the results provided here are valid for the TDS algorithm with

a slight modification of the added degree of freedom.
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3.6 Simulations

This section contains the simulations of the multistatic MLED and GMLED derived in the
chapter as well as the proposed Gaussian approximations to their statistics. Similar to Section
3.5.2 and Section 3.5.4, in all the conducted simulations, three data sets are presented for the
purpose of analysing the performance of the derived detectors: “simulated,” “theoretical,” and
“approximation.” A short summary of these terms and the associated relevant equations is

provided in Table 3.1 for the MLED and Table 3.2 for the GMLED.

The results labelled as “simulated” are related to the multistatic MLED and GMLED threshold
detectors derived in Section 3.3 and Section 3.4. This set of data involves simulating an actual
multistatic radar network similar to the toy example depicted in Figure 2.3 of Chapter 2 with a
much larger number of transmit-receive pairs. A Monte Carlo simulation of a million runs of

the MLED (3.16) and the GMLED (3.34) is then used to obtain the results.

The results labelled as “theoretical” are related to the theoretical model for the distribution of
the multistatic MLED and GMLED threshold detectors derived in Section 3.5.1 and Section
3.5.3. The challenge here is that a closed-form expression for the pdf of the test statistics of the
two SDS detectors was never obtained. However, the viability of the combinations of random
variables that describe the distributions of the MLED and GMLED can still be tested. The theo-
retical simulation results provided here are obtained through drawing samples from the random
variables (3.39) and (3.63) in a second set of Monte Carlo simulations. These results are useful
not only because they confirm the viability of the derived detection statistics components, but
also because they utilise the approximation of the non-centrality parameters ), , proposed in
equation (3.53). The set of theoretical simulations purposefully uses an instead of numer-
ically simulating the values of A, 5, in order to show the viability of the proposed first-order

approximation.

The results labelled as “approximation” are related to the normal and log-normal approxima-
tions to the multistatic MLED and GMLED derived in Section 3.5.2 and Section 3.5.4. The
parameters of the approximating Gaussian distributions (3.51), (3.52), (3.73) and (3.74) have
been calculated and used throughout this set of simulations. The derived approximate probabil-
ities of detection and false alarm (3.56), (3.57), (3.78) and (3.79) have been obtained, and the

results have been compared to the numerical ones.
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Figure 3.5: Radar setup of randomly-placed 10 mobile transmitters and 10 receiver ULAs
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Figure 3.6: Radar setup of randomly-placed 20 mobile transmitters and 20 receiver ULAs
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A basic multistatic radar scenario has been created in order to produce the numerical simu-
lations. Two network sizes have been considered for the simulations: a smaller setup of 10
transmitters and 10 receivers (Figure 3.5), and a larger one of 20 transmitters and 20 receivers
(Figure 3.6). The radar components have been placed at randomly-chosen locations around an
existing airborne target. The minimum distance between any two radar components is 20km,
and the search area is a 2-D square with a side of 400km. The target is in the centre of the

Cartesian coordinate system.

Most of the operational parameters of the transmitted pilots are the same as the ones in [12].
The values that remain unchanged throughout all sets of simulations are provided for conve-
nience in Table 2.1 of Section 2.7. The amplitudes of the returned pilots «,, are random
and drawn from a standard zero-mean complex normal distribution CA/ (0, 1). The size of the
observation snapshots remains constant P=10, but simulations involving a different number of

iid snapshots K'=20 and K =60 have been conducted.

The clutter in the radar scenario is generated in accordance with the GCM [49, pp.20-24] de-
scribed in Section 2.2. Each transmitter and receiver in the radar setup forms an individual
bistatic channel. The elliptical iso-range where the target is located in that channel provides
N.=1000 discrete clutter contribution returns that form the clutter covariance matrix. This en-
sures a relatively good approximation to the continuous clutter ridge observed in a practical
radar scenario [49, p.22]. The matrix is then used to colour AWGN of power af, which re-
sults in a coloured Gaussian clutter model for the interfering ground returns of the transmitted

waveforms.

The overall performance of the multistatic threshold detectors presented in this chapter has
been simulated. The probability of false alarm in all cases has been fixed to 0.02. As the
average SNR that the radar system observes is varied, the resulting probability of detection is
investigated. Figure 3.7 shows the obtained results for the smaller network of 10 transmitters
and 10 receivers and K =20 observed temporal snapshots. As expected from the SDS results
for the bistatic case [18, pp.74-78], the GMLED algorithm performs slightly better than the
MLED one for a small K, exhibiting the same probability of detection at approximately 1
dB less SNR. The results show that the simulated detector curves based on (3.16) and (3.34)
match the theoretical models describing their statistics shown in (3.39) and (3.63) respectively.
Moreover, the fact that the approximation to the A, , variables was used in the theoretical

curves proves the viability and justifies the usage of (3.53). The Gaussian approximations to
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the multistatic detectors given in (3.56), (3.57), (3.78) and (3.79) are also close to the simulated
and theoretical curves. The small difference comes from the fact that approximation based
on the first two moments of the multistatic MLED and GMLED threshold detector random
variables is performed. This phenomenon has also been observed in the discussion of the
relevant pdfs. Moreover, it should be noted that according to the Berry-Esséen theorem the
convergence of sums of non-identically distributed random variables to the CLT is slower than

the iid counterparts [87].

Figure 3.8 shows the simulation results for the same radar network with the number of ob-
served temporal snapshots per range gate increased to K=60. It can be seen that both the
multistatic MLED and GMLED are significantly affected by the temporal frame size, having
the same detection rate at approximately 6 dB lower SNR value. This can be explained by
the improvement in the SDS covariance matrix estimate (2.29) through the addition of more
data samples. It should be noted that as the temporary frame size increases, the multistatic
MLED and GMLED algorithms’ performance becomes almost identical. This is evident in the
simulations as well and reflects the behaviour of the MLED and GMLED bistatic algorithms
presented in [17] and [18]. The difference comes from the fact that the MLED uses the K iid
snapshots for covariance estimation, while the GMLED uses additional information from the
coherent sample means g,,, ,, for normalisation. As the number of snapshots K grows large,
the relative contribution of the additional information to the estimation and detection process
becomes insignificant. Similar behaviour is observed in the comparison of the AMF and the

GLRT threshold detection algorithms [9, 10].
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Figure 3.7: Probability of Detection vs SNR of the multistatic MLED and GMLED detectors
for Py =0.02, K =20, M =N =10
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Figure 3.8: Probability of Detection vs SNR of the multistatic MLED and GMLED detectors
for Pr, = 0.02, K =60, M = N =10
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Figure 3.9: Probability of Detection vs SNR of the multistatic MLED and GMLED detectors
for Py =0.02, K =20, M =N =20
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Figure 3.10: Probability of Detection vs SNR of the multistatic MLED and GMLED detectors
for Pry, =0.02, K =60, M = N =20
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Figure 3.9 and Figure 3.10 aim to simulate the performance of the larger radar network for
20 and 60 temporal observations respectively. The number of transmitters and receivers now
doubles to 20. Compared to Figure 3.7 and Figure 3.8, the curves of the probability of detection
shift by a further 3 dB to the left. This reflects the improvement in the performance of the
multistatic MLED and GMLED detectors due to the increased spatial diversity in the system.
The accuracies of the proposed Gaussian and log-normal approximations to the multistatic
MLED and GMLED respectively are also greatly enhanced. This is because the number of
terms in the summations (3.39) and (3.64) increases which, according to the CLT, brings the
distribution of the sums closer to the Gaussian curve. As more and more pdfs are involved in
the convolution to obtain the final distributions of the multistatic variables, the moments higher
than second asymptotically converge to zero. In a hypothetical radar network of infinite size

this approximation will become exact.

It can be seen in Figure 3.8 and Figure 3.10 that the number of iid temporal snapshots K
available for estimation is a very important factor for the performance of the multistatic MLED
and GMLED threshold detectors. The way these snapshots are generated from the CUT is
described in Section 2.2 where the signal model assumed in this thesis was discussed. This
model has been adopted in other STAP applications in the past [14, 19, 21] since it provides a
number of benefits. In the presence of K iid snapshots, the analysis and derivation of a target
detection algorithm are facilitated or greatly simplified. Previous analysis of a practical radar
scenario [55] performed on the MCARM data set [88] demonstrates that the model can be
applied on the observations in a single range gate. Similar conclusions can be drawn from the
model proposed in [76] where the simulations are performed on the KASSPER data set [89].
If a sufficient number of iid snapshots cannot be drawn from one range gate, the data from
concurrent STAP observations from the same range could be used in some cases to provide
more samples. The main drawback of the iid model adopted in this thesis is that in a real radar
scenario the independence assumption is rarely perfectly satisfied. A discussion of this has been
provided in the derivation of the APES algorithm in [61] along with the implications. The term
“approximate ML” has been proposed there to describe the APES filter in the case of snapshot
correlation. The algorithm still functions as a ML derivation, but suffers a performance loss
proportional to the degree of correlation. This drawback applies directly to the multistatic
MLED and GMLED threshold detectors derived here. In a scenario where K perfectly iid
snapshots cannot be extracted, the temporal correlation will result in an effective reduction of

the opreational performance. However, the algorithms will still function and provide a relatively
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reliable process of SDS detection in a scenario where secondary data cannot be acquired.

3.7 Summary

In this chapter two SDS multistatic STAP algorithms have been derived for the detection of
signals of known template in coloured Gaussian interference. The performance of the algo-
rithms in a MIMO radar target detection scheme has been analysed. It has been shown that the
algorithms exhibit the CFAR property. To facilitate the analysis and provide a basic guidance
for predicting the detection performance of the proposed algorithms, two simplified Gaussian
approximation models for the statistics of the detectors have been proposed. Through these
models the theoretical probabilities of detection and false alarm have been derived. The va-
lidity of the theoretical models as well as the simplified Gaussian approximations has been
verified through numerical simulations. It has been demonstrated that the performance of both
algorithms increases as the number of temporal snapshots in the system is also increased. Fur-
thermore, the performance gains of the multistatic detectors over their bistatic counterparts have
been shown. With an increased number of bistatic channels both the performance as well as the

approximation model get better.

The theory and results in this chapter are valid under the assumption of ideal synchronisation
of the Doppler frequencies that a target would produce in the different bistatic channels. That
assumption is necessary to derive the optimal multistatic maximum likelihood detectors in the
considered scenario. However, ideal Doppler synchronisation is unlikely to exist in a real target
detection scenario. Chapter 4 relaxes this assumption and provides a practical solution to the

synchronisation problem in the case of the multistatic MLED algorithm developed here.

62



Chapter 4

Multistatic maximum likelihood
estimation detector: data compression
and velocity space target detection

4.1 Introduction

This chapter discusses the practical implementation of the multistatic MLED and proposes the
modified multistatic MLED algorithm for enhanced target detection in velocity space. While
the multistatic MLED derived in Chapter 3 offers great performance advantages over the ex-
isting bistatic detectors, the practicality of its implementation in a real radar scenario may be
limited by a number of factors. In a MIMO radar scenario, the amount of data that has to be
shared through the network is very significant. This issue is discussed in Section 4.2 where
a method for compressing the MLED likelihood function before transmission is proposed to
alleviate the problem. Section 4.3 discusses the difficulties that arise in synchronising the cor-
responding Doppler frequencies from the multiple radar channels. A solution is proposed that
projects the channel-specific relative Doppler frequencies upwards into a fixed absolute velocity
space where the multistatic likelihood fusion is performed. Section 4.4 explores the structure of
the the velocity likelihood function produced by a moving target and proposes a modification to
the multistatic MLED detector based on this structure. The modified multistatic MLED utilises
prior knowledge to provide enhanced target detection. Section 4.5 provides theoretical analysis
of the proposed enhanced algorithm based on the findings in Chapter 3. Section 4.6 demon-
strates the performance of the modified MLED through numerical simulations and verifies the

theoretical analysis. Section 4.7 contains a brief summary of the work presented in this chapter.

4.2 Subspace compression for the MLED Doppler likelihood

The multistatic solution to the MLED target detection problem shown in (3.16) is optimal in the

ML sense under the assumptions made in this thesis. An overall practical implementation of the
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detector in a MIMO scenario has been roughly outlined in Table 2.2 of Chapter 2 and is similar
to the process proposed in [44]. One of the major challenges of this practical implementation is
the amount of data that has to be shared between the multiple receiver elements in the widely-

spaced radar setup.

In Chapter 3 it has been assumed that the ranges to target, the spatial frequencies f,,, ), and
the Doppler frequencies fq(,, ) are known parameters (composing what this thesis will refer
to as RAD space), and the focus was on deriving the ML combination of the bistatic solutions
in the different channels (-),, . This represents the outermost loop of the process outlined
in Table 2.2. In a practical MIMO scenario, a full search in RAD space has to be performed
in all bistatic channels to cover the physical area in range of the radar installation and the
potential Doppler frequencies produced by moving airborne targets. The RAD contributions
from different channels have to be transmitted through the network, and the results have to be
synchronised before being compounded in the multistatic ML target detection decision variable.
This section focuses on the data transmission between nodes in the radar network, while Section

4.3 deals with the synchronisation.

In a practical implementation of a multistatic STAP algorithm such as the MLED, the amount
of data that has to be shared between the computational nodes in a radar network can become
overwhelmingly large; this can limit the possibility of real-time processing and detection. It is
natural to assume that the processing of observations in a bistatic radar channel is performed
locally by the receiver. The amount of data handled in a CPI is proportional to the number of
range gates IV, in the CPI and the number of angles N,, and Doppler frequencies /N4 searched
for a target in a specific channel. In a multistatic scenario each of the N receivers locally
processes the observations from the M transmitters. This can be done in parallel, and due to
the linear nature of the multistatic MLED with respect to its bistatic components, the results can
also be fused locally to produce a MISO target detection result. A hard decision can be made
based on that result and propagate through the radar network, but to achieve a true distributed
ML result, each receiver has to share its complete RAD likelihood estimates either with a central

fusion node or with the other /N—1 computational nodes.

To reduce the amount of data propagated through the MIMO radar network, an adaptive com-

pression of the bistatic MLED Doppler likelihood is proposed here. The method extracts the
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subspace of significant components from the /N4-point MLED likelihood given by

Ty = [Tu(far), - Tu(fan,)] 4.1)

where T ( f) signifies the detection variable that the standard bistatic MLED algorithm (2.30)
produces when probing a certain Doppler frequency f; for potential targets. References to
the channel (-),, , will be omitted for the time being for simplicity. The normalised Doppler
frequencies fy are selected to be equally distributed and span the whole range from -1/2 to 12.
The subspace extracted from (4.1) denoted as T M 1s sparse and consists only of the significant
contributions of T"'5;. This idea has been explored in the field of distributed detection in the
past and has often been referred to as “sensor censoring” [90-93]. The definition of significant
contributions can be arbitrary and application-specific if additional information about the target
and clutter are available; e.g. if a target is known to be moving away from a given bistatic
radar pair, the information from half of the Doppler frequencies in the search space can be
discarded. If the normalised Doppler frequency of a target is known to be in a certain range,
the subspace T M can contain only the likelihood contributions from that range. Other existing
methods rely on the knowledge of the set or range of frequencies where clutter contributions
may occur [12, 13]. Here this knowledge can be used to eliminate these contributions in the
process of extracting the relevant subspace T m of potential target contributions. Other data
compression schemes for detection and localisation perform a similar task by ordering the sig-
nificant contributions according to their weight before transmission [94, 95]; thus the exchange
of data can be stopped once the network reaches a decision. This can easily be adapted to the

multistatic radar detection scenario and the compression scheme proposed in this section.

No prior interference or target knowledge is assumed in the current problem; thus here a simple
approach of extracting the subspace of local peaks T 1 of the MLED likelihood T'p; will be
employed for data compression in the pre-transmission stage. A brief description of the process
of compression is given in Table 4.1. A small threshold ¢ is introduced for selecting the local
maxima that contribute to the compressed subspace. It helps to remove some of the insignificant
components and artefacts from the likelihood function, and it provides direct control over the

compression rate at the expense of performance.

The ideal MLED likelihood function in a hypothetical scenario of infinite SNR has a sharp peak
at the target’s Doppler frequency and is zero elsewhere. As the SNR gets lower, other peaks

appear resulting from noise and clutter. This is demonstrated in Figure 4.1 which shows an ex-
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for Doppler frequencies f; between 1 and Ny do
if TM(fd) is a local maximum then
if Tp/(fg) > € then
Tr(fa) =Tu(fa)
end if
else
Tru(fa) =0
end if
end for

Table 4.1 Subspace compression

ample likelihood function of the bistatic MLED at a relatively low SNR of -30dB per temporal
snapshot with 60 such snapshots in total. The extracted likelihood subspace is also depicted
in the figure. The particular SNR and snapshot number have been chosen without loss of gen-
erality in order to provide a suitable visual example and demonstrate the concepts discussed
in this section; the target contribution is still identifiable but also practically undetectable in a
single bistatic scenario due to the higher likelihood peaks produced by the noise and clutter in

the channel.

The justification for using the proposed likelihood compression method described in Table 4.1
lies in the linearity of the multistatic MLED detection variable (3.16) with respect to its bistatic
components (2.30). Since the former is an unweighed sum of the individual components, the
main contributions to the multistatic detection variables will always come from the peaks of the
bistatic likelihoods. This is true for a collection of channels that have a relatively uniform SNR.
If one or more channels have a very low SNR compared to the others, the subspace compression
method may completely discard the contribution from the target Doppler frequency bin, but
this is unlikely to influence the overall multistatic threshold detector decision. If one or more
channels have a dominantly high SNR compared to the others, it is likely that the extracted
likelihood will contain only the subspace of the target Doppler frequency bin which provides

an excellent compression rate with no loss of performance.

It is clear that the transmitted signal T M 1s a sparse subset of T'y;. While this method provides
vast reduction in the amount of data that is transmitted between the computational nodes of the
radar system, it also degrades the sensitivity of the MLED to mismatches between the actual
and the estimated target Doppler frequency. If in a bistatic channel the MLED likelihood func-
tion does not peak exactly at the target Doppler, all information from this channel is lost after

the compression. The issue can be mitigated by running the received subspace T M through a
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Figure 4.1: Likelihood function of the standard bistatic MLED and proposed subspace com-
pression, K=60, SNR= — 30dB

smoothing filter operator. This can be done after the compressed likelihoods have been trans-

mitted throughout the radar network and thus provides no additional data to be exchanged.

4.3 Velocity synchronisation of detection likelihood

One of the major tasks in a practical implementation of the multistatic MLED algorithm is
the synchronisation of the data coming from the different bistatic channels before forming
the multistatic decision variable. Since the physical implementation of widely-spaced MIMO
radar is still relatively underdeveloped, litle literature exists at the moment that specialises
on the issues of data exchange and synchonisation. However, extensive work has been done
on analysing and solving those problems for general sensor netowors that could be adapted
to MIMO radar. For a relatively exhaustive analysis on the transmission, delay, and energy
limitations of data exchange and synrhonisation in sensor networks, refer to [40,41,58,93] and

references within.

In the considered MIMO radar scenario and developed multistatic algorithms, every channel

operates and forms its detection likelihood in its own unique RAD space. The RAD spaces then
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have to be aligned in order to properly combine the corresponding likelihoods for the multistatic
decision. This can be divided into two distinct steps: synchronising between the different
geolocations in the physical search space (range and angle synchronisation) and synchronising

the different Doppler frequency bins from the bistatic channels.

A method for geolocation synchronisation has been proposed in [44] and is part of the mul-
tistatic radar implementation procedure outlined in Table 2.2 of Chapter 2. Range and angle
form the basis of a polar 2-D coordinate system and are the natural parameters that a radar em-
ploys to locate a target. To facilitate channel synchronisation, [44] proposes the translation of
these two parameters into a standard Earth-Centred Earth-Fixed Cartesian coordinate system.
Depending on the range-angle resolution of the radar scenario, the system can be discretised
into different physical patches that are individually searched for a target. It is assumed that all
the radar elements know of each other’s relative positions and velocities. Because the Cartesian
coordinates are shared and synchronised in the radar network, combining the results from the

same geolocation becomes trivial.

Doppler frequency synchronisation between the different channels is a challenging task due
to the non-linear nature of the parameters involved. The generic form of the bistatic Doppler
frequency produced by a target is given in (2.8). In a multistatic scenario the Doppler frequency

is channel-specific for every transmit-receive pair (-)m, »

fd{mﬂ} = UHkm,n — ’Uf{rm}k:m,n (42)

where k,, ,, is given by (2.7) and is the response of the bistatic channel to a target at a certain ge-
olocation. It is assumed that the radar network can have full knowledge of all bistatic responses
km,n as well as the velocities of the mobile transmitters vy,,;. However, since the Doppler
frequency fi(,,n) is not mapped to a unique target velocity v, no trivial mapping between
the Doppler frequencies of the different channels exists. Thus combination of the detection

likelihood variables cannot be directly performed in Doppler space.

This section proposes the transition from Doppler frequency space (D-space) to velocity space
(v-space) to facilitate the multistatic MLED likelihood combination of its bistatic components
[32-36]. As evident from (4.2), Doppler frequencies are unique to their bistatic channels, but
the target velocity is absolute. The transition from D-space to v-space involves the upward

projection of the one-dimensional (1-D) variable fy(,, ) into the space of the 2-D variable v.
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The projection can be obtained from transforming (4.2) into the linear equation

o — fd{m,n} + vgm}km,n - U;L’km,n(l)
v Ko, (2)

4.3)

where the target velocity v is split into its x-y components as shown in (2.5). In practice the
velocity map produced by (4.3) will be discrete. Both the v, and v, components will consist
of N, possible values. While (4.3) can provide a real-time link between the Nz Doppler fre-
quency bins and the N, x N, velocity bins searched by the system, the mapping can also be
pre-computed for the different physical areas searched by the radar system; thus the upward
projection of D-space into v-space does not present any major additional burden on the com-
putational nodes. In Figure 4.1 the likelihood function of the bistatic MLED in D-space was
shown. Figure 4.2 shows the same likelihood function projected upwards into v-space through
the mapping (4.3). The target velocity is in the middle, and the search space is taken as a small

region around the target value.

vy [m/s]

5 10 15 20 25 30 35 40 45
vx [m/s]

Figure 4.2: Likelihood function of the standard bistatic MLED in velocity space, K=60,
SNR= — 30dB, v=[25, —25]m/s

Once the individual bistatic MLED likelihood functions are projected from D-space into v-

space, the multistatic combination becomes trivial. This method of translation can be used
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in the practical implementation of any other multistatic algorithm based on either covariance
estimation [56,65,67], subspace projections [12,13,21], or other models for estimation (e.g. au-
toregressive [14]). There are other advantages to the method proposed in this section. Velocity
estimation has always been an integral part of target radiolocation. In v-space, the multistatic
MLED will be able to directly provide an estimate to the velocity if the average SNR of the
channels is sufficiently high. Moreover, identifying a target’s position and velocity can predict
its movement. Usually an additional tracking algorithm is required post-detection to perform

this task. If the detection process is done in v-space, the result can aid the tracking algorithm.

The v-space syncronisation method proposed here clearly depends on the accuracy of the tar-
get’s Doppler and subsequent velocity estimation. Under normal mode of operation this is
fulfilled by the fact that the APES filter on which the MLED is based is sharp and accurate at
the frequency it estimates [21]. However, the drawback of this precision is the oversampling of
the observations required to support such filter sharpness. This issue and some of its potential

solutions involving the utilisation of the stop-band APES filter are discussed in [96].

The projection into v-space proposed here can be combined with the proposed likelihood com-
pression model from Section 4.2. This completes all the steps of the multistatic target detection
method outlined in Table 2.2 and provides a potential practical implementation guideline for
MIMO radar detection. When an airborne target is present, it will produce a distinct likelihood
pattern in v-space when the compressed multistatic MLED is used for detection. In Section 4.4
this pattern is examined, and based on the findings an enhancement to the multistatic MLED is

proposed that would increase the performance of the algorithm.

4.4 Modified MLED

This section proposes a modification of the multistatic MLED algorithm based on the expected
structure of the target velocity likelihood. The idea extends from the general multistatic radar
binomial analysis presented in [37] and applies the principle to the multistatic STAP scenario
discussed in this thesis. It is assumed that the MLED likelihood function compression proposed
in Section 4.2 is employed and that the target signal, if present, always lies in the subspace T
As previously discussed, in an ideal environment of infinite SNR (no noise or interference)
the D-space likelihood function of the bistatic MLED algorithm consists only of a sharp peak

at the correct target Doppler frequency. Thus the compressed likelihood subspace has only
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one component. Based on the v-space translation given in (4.3), the ideal bistatic likelihood
function is a line that passes through the target velocity. Therefore in a multistatic scenario
of ideal channels with infinite SNR, all bistatic contributions will pass through and cross over
at the target velocity. Figure 4.3 demonstrates this concept visually in a multistatic 9-channel
scenario (M =N=3) with very low noise and clutter returns. The figure shows the combined
multistatic MLED detection variable T/ (v) for all velocities v in the search space. Each of the
9 lines in the figure represents the Doppler reflection projected into v-space from the moving
target in a single bistatic channel of the radar system. All lines pass through the correct target

velocity, which is their intersection point.

Since the algorithms in this chapter generate likelihood values in the whole v-space range, the
physical space for saving the results becomes a consideration. Thus the number of simulated
channels will be kept relatively low. In a practical scenario this issue is alleviated by the fact

that computations and storage are distributed and local for each receiver.

vy [m/s]

5 10 15 20 25 30 35 40 45
vx [m/s]

Figure 4.3: Likelihood function of the multistatic MLED in velocity space
K =60, SNR=10dB, v=[25, —25|m/s

The structure shown in Figure 4.3 is only characteristic for target returns because the target
velocity remains fixed across all channels. The bistatic clutter contributions are considered to

be independent, and thus they don’t share a common velocity. The only ground patch whose
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clutter returns are observed across all channels is the one under the target. However, since the
transmitter velocities vy(,,) are not the same, the relative velocities of the ground patch with
respect to the bistatic channels —v ) also differ. Thus the clutter returns will not produce a

well-defined likelihood structure such as the one from the target shown in Figure 4.3.

If the bistatic MLED likelihood is sparse, the knowledge that target and clutter would produce
different patterns can be utilised to aid the detection process. The subspace compression method
described in Section 4.2 naturally fulfils the sparsity criterion. The subspace T M consists of the
target component and the components of the strongest clutter returns. The multistatic MLED
weighs all contributions according to their likelihood before adding them up in v-space as
suggested in Section 4.3.

1 (0) Qi (V)G (V)7 1

|Sm,
; S (0@ (0)sma®) i) (4.4)

The likelihood structure discussed here suggests that the number of contributions at a given
point can also be used in order to distinguish between a potential target and a strong clutter

return. Define the following bistatic likelihood contribution function:

~ 1
BM{m,n} (fd{m,n}) = TM{m,n} (fd{m,n}) % Em,n 4.5)

The threshold ¢, 5, is used to determine the non-zero components of T M{mn}- BY design
these components are all larger than €,,, as shown in the subspace extraction procedure in
Table 4.1. Therefore, B () is a signal subspace that equally weighs (with a weight of
one) all MLED likelihood frequency contributions that are local maxima and surpass a certain
threshold. This process is theoretically equivalent to performing threshold detection in each
bistatic MLED channel individually before combining the results. Such distributed detectors
based on the combination of the individual bistatic hard decisions have been proposed and
analysed in the past [37—41].The difference here is that in the detection process, the thresholds
Ym,n are selected to provide a relatively low probability of false alarm; here the thresholds
€m,n Need to be small enough to prevent the target contribution from being excluded from the

analysis in low SNR scenarios.

To successfully perform target detection, it should be assumed that the target is sufficiently far
from the clutter ridge in the individual bistatic channels. In that case, provided that the returned

power is high enough to surpass the thresholds &, 5, it can be assumed that the target will
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produce a local peak in the MLED likelihood function. Thus the proposed modified multistatic
MLED algorithm can be described by the following equation

- Hi
> Tn(®)+ 5> Barfmny (v) 27 (4.6)

m,n 0

where the dependence of the variables on the target velocity v has been included to underline the
fact that the detection process is performed in v-space. The second term on the left hand side
of (4.6) represents the additional information that exploits the structure of the target signal’s
likelihood in v-space. It is not a ML term in the direct sense, so it is simply added to the
existing detection variable to enhance the algorithm’s performance. A constant « is applied to
the likelihood contribution terms B 7, ) (v) before adding them to the multistatic decision
variable in (4.6). This constant is a positive small weight that ensures that the modified MLED

is not dominated by the newly added parameters. This keeps the detector approximately ML.

Run bistatic MLED in all channels to obtain likelihoods 1"y, ) ( fd{mm})
Compress likelihoods into subspaces T M{m,n} ( fd{m’n})

Share compressed likelihoods across network

Form the sets of subspace contributions B y/{m, n} (fa{m,n})

Filter and project likelihoods onto v-space

Combine likelihood subspaces T M{m,n} (v) with contributions £ B yf{, 5} (V)
Join bistatic results into multistatic likelihood

AR o e

Table 4.2: Modified multistatic MLED procedure

An overview of the procedure of applying the modified multistatic MLED is given in Table 4.2.

Section 4.5 discusses some models and statistical analysis of the proposed modification.

4.5 Analysis

This section provides a statistical analysis of the proposed modified multistatic MLED thresh-
old detector. As mentioned in Section 4.4, the proposed algorithm is not derived as a ML
solution but rather a knowledge-based one. However, the modified detector (4.6) is dominated
(through the weight k) by the standard multistatic MLED term (3.16) which is ML. Thus the
modification can be labelled as “approximately maximum likelihood,” a term first introduced in
the derivation of the APES filter [61] on which the original MLED algorithm is based [17]. The
statistical properties of the proposed modified algorithm are discussed in Section 4.5.1. The

pdf, the false alarm and the detection probabilities are discussed in Section 4.5.2. Section 4.5.3
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provides a brief discussion of the influence of the scaling parameter « on the performance of

the proposed modified multistatic MLED.

4.5.1 Statistical properties of the modified multistatic MLED

The statistical analysis of the multistatic MLED is provided in Section 3.5.1. A closed-form
solution for the pdf was never reached, but the combination of random variables that make up
the statistics of the detector is provided in (3.39). Using this information, the statistics of the

additional term in the modified multistatic MLED proposed in this chapter are distributed as

6 = ng,n ~ Z <I§m,n % 6m,n> (47)

o Thmn 0O

Each of the channels contributes a 1 or a 0 to the total term (4.7). It is clear that this term
is directly derived from the multistatic MLED (3.39) which is a CFAR detector. Thus (4.7)
inherits the property of independence from the clutter and noise covariance matrices R, ;,,
which means that the modified multistatic MLED is also CFAR. Therefore, for a given SNR,
the probability of each of the individual components of (4.7) to be either O or 1 is constant
and independent of the background noise and clutter. It can thus be concluded that the indi-
vidual components of (4.7) follow the Bernoulli distribution, or more generally, the single-trial
binomial distribution

§m,n ~ B(me,n) (4.8)

where p,, , is the channel-specific success rate of the e-thresholded compressed likelihood
being a 1. It may be desirable to design the system such that the success rate in each channel
is the same. This idea was first discussed in [37] where an extensive analysis of multistatic
binomial detection can be found. The assumption that the channel SNR is constant was made
in [37]. Here this assumption will be relaxed. A constant channel-specific success rate p will
be achieved through scaling the selection thresholds €, ,, with the SNR p,;, ,, in each channel.
Thus the total additional term £ is the sum of M x IV iid Bernoulli distributed variables, which

is equivalent to the binomial distribution

HO:gNB(M]\LPO) (49)
Hl £NB(MN7p1)
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where the success rate pg under hypothesis Hy can never surpass the rate p; under the alternative
hypothesis by design. The amended multistatic MLED is then distributed as the following

combination of random variables

G e Lo
Z T, z 3 (4.10)

where 7 is the threshold associated with the modified multistatic detector. This is a linear
combination of the distributions of the standard multistatic MLED and a scaled version of the

multistatic binomial detector [37].

4.5.2 Probability density, detection and false alarm probability

The statistics of the modified multistatic MLED (4.10) consist of the sum of the multistatic
MLED random variable and the newly-added binomial term. As such, the latter is discrete and

has the following probability mass function (pmf)

Pr(q|M,N,p) = <MqN>pq(1 — p)MN—a (4.11)

which can be represented by the continuous pdf

N
B(x, MN,p) = <MqN>pq(1 —p)"N5(x - g) (4.12)
q=0

through the use of the continuous Dirac delta function §(z). Scaling (4.12) by the coefficient x

can be done through the standard transformation of random variable

B(kz, MN,p) = Ai b(q, MN, p)s (%_q)

MN
= Z (¢, MN, p)é (z — Kq) (4.13)

where the scaling factor in front of (4.13) disappears because the Dirac delta is a homogeneous

and even function of degree —1, giving it the property [97, p.24]

0 (ke) = ——= (4.14)
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The values of the binomial distribution (4.13) are the combined €, ,,-thresholded values of
the channel-specific MLED random variables T}y, ). Therefore the newly added parameter
distributed as £ is jointly conditional on the MLED detection variable and the thresholds &, ;.
The individual channel-specific components of £ are formed in a process that is no different

than standard threshold detection, thus the success rate parameters in (4.9) are simply given by

Po = Prafmm} (Emmn) (4.15)
P1 = Pd{m,n} (5m,n) (4.16)

where Prq i n) and Py, ) here represent the standard bistatic MLED false alarm and detec-
tion probabilities derived in [18, pp.62-64]. Previously it was assumed that each threshold ¢, ,
is adaptively scaled to its respective channel SNR so that the binomial success rates (4.15) and
(4.16) remain constant across the different channels. This greatly simplifies the analysis and
allows for a certain value of pg to be chosen during the design stage of the detection algorithm
implementation. Since pg is now fixed, the value of p; can be obtained through the detection-
false alarm relation of the standard bistatic MLED explored in the results of [18, pp.74-79].
When the success rates pg and p; are fixed, the dependence of the added binomial parameter £
on the MLED random variables Ty, ,,} is relaxed, i.e. they become conditionally independent

given p [98].

Let the pdf of the standard multistatic MLED be labelled as fr,,(z). It is described by the
sum of random ratios of the F-distributed (,, ,, and the beta-distributed 7,, ,, featured in (4.10).
Because this sum is conditionally independent from the additional scaled binomial distributed

as &, the pdf of the modified multistatic MLED labelled here as fTM (x) is given by

]?TM(QT) = fT]M(x) *B(ﬁvaNap)

MN
= fry(x) * Z b(q, MN,p)d (x — kq)
q=0

MN
= blg, MN,p) fr,, (x — rq) 4.17)

q=0
where * is the symbol used to denote linear convolution. The pdf of the modified multi-
static MLED algorithm consists of the summation of copies of the pdf of the standard mul-
tistatic MLED shifted at the locations xq and scaled by the standard binomial pmf coefficients

b(q, M N,p) given by (4.11). To obtain the detection and false alarm of the newly proposed
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modified algorithm, the linearity of the integral operator is exploited in the following probabil-

ity measure given a detection threshold ¥

o MN

| Fra@ide = [ ba MNp)fr (o ) o
8l T ¢=0
M

N e

= Zb(‘IaMNJ?)/A fry (x — Kkq) dzx
q=0 Y
MN 0

- Z b(q’ MN, p) /A fTM (x)dx 4.18)
q=0 Y—kq

The integrals on the left and right hand side of (4.18) can directly give the relation between the
probability of false alarm and detection of the standard multistatic MLED labelled as Py, and
P,; and the ones of the proposed modified algorithm labelled as ﬁfa and ﬁd-

MN

Pra(3) = b(g, MN,po)Pra (3 — rq) (4.19)
q=0

Py(3) = b(q, MN,p1) P4 (7 — rq) (4.20)
q=0

While not explicitly stated, it is clear that both the probability of false alarm (4.19) and detection
(4.20) are dependent on the value of the scaling parameter . A brief discussion on the relation

is provided in Section 4.5.3.

4.5.3 Performance effects of the scaling parameter ~

It is clear that the value of the scaling parameter  plays a very important role on the perfor-
mance of the modified multistatic MLED proposed here. It controls the degree of influence that
the additional binomial term has on the detection algorithm. As expected, for k=0 the probabil-
ity of false alarm (4.19) and the probability of detection (4.20) reduce to those of the standard
multistatic MLED. If the value of x becomes large, the modified MLED becomes dominated
by the binomial detector and its performance is comparable to the one discussed in [37]. The
binomial detector is based on the combination of hard decisions from multiple radar channels,
while the multistatic MLED is the ML combination of the respective soft decisions. As such,
the isolated performance of the former is expected to be worse than that of the latter, a concept

that is widely applied in communications and decoding [73]. This claim cannot be verified the-
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Figure 4.4: Probability density function of the modified multistatic MLED detection variable,
K=60, M=N=3, SNR=—-30dB, k=60

oretically since closed-form expressions for the false alarm and detection probabilities of the
multistatic MLED are not available. However, a comparison between the numerical results [37]
associated with the binomial detector and the results for a multistatic radar network of the same

size presented in Chapter 3 of this thesis confirms the expectations.

The standard deviation of the multistatic MLED (3.44) (3.52) (3.55) derived in the approxima-
tions from Section 3.5.2 could serve as an indicator of the expected influence of a large value of
 on the modified algorithm. Since the multistatic MLED can roughly be described by a Gaus-
sian pdf (Section 3.5.2), most of its weight is within 3 standard deviations oy of its mean. Thus
a k of 60y provides an almost ideal separation between the different components of the modi-
fied multistatic pdf (4.17). Figure 4.4 shows the pdf for a multistatic scenario of 3 transmitters
and 3 receivers and an arbitrarily chosen SNR of -30 dB. The labelling of the different data sets
follows the one described in Table 3.1 and 3.2. The shape of the pdf demonstrates that for this
value of x the performance of the multistatic detection algorithm is dominated by the scaled
binomial term x&. Thus, if the modified multistatic MLED does offer an enhanced performance
as expected, this should come for a value of « that roughly lies somewhere between 0 and 6o

where neither of the two components of (4.10) is heavily dominating the signal statistics.
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Figure 4.5: Probability of detection of the modified multistatic MLED detection variable
K=60, M=N=3, SN R=-30dB, Py,=0.02
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Figure 4.6: Probability density function of the modified multistatic MLED detection variable,
K=60, M=N=3, SN R=—-30dB, optimal value of k=0.04
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At this stage deriving an optimal value for « is difficult because the modified probability of
false alarm (4.19) and probability of detection (4.20) involve a sum of terms with no associated
closed form expressions. Both probabilities are dependent on the threshold 7 and the scaling &,
so fixing Py, to obtain the maximum of Py with respect to  is not feasible. The two parameters
have to be considered jointly. Plugging in the Gaussian approximations (3.56) (3.57) derived in
Section 3.5.2 into (4.19) and (4.20) does not alleviate the issue. No trivial method of inverting
a sum of Q-functions can be found, and according to Galois theory, a solution in terms of
traditional arithmetic may not exist depending on the approximating Gaussian parameters [99,

pp.92-105].

Obtaining the value of the scaling parameter « that maximises the modified probability of de-
tection (4.20) for a fixed probability of false alarm (4.19) can be done numerically. The rela-
tionship is depicted in Figure 4.5 for the same radar system as the one used for plotting Figure
4.4 and a fixed probability of false alarm. The simulation is for a fixed set of parameters but de-
scribes well the behaviour of the detection probability with respect to x observed over multiple
tests of variable radar characteristics. There are two important observations evident in Figure
4.5: the modified multistatic MLED performs better than its isolated individual components,
and there is a value of x that maximises the performance curve. The numerically-found optimal
value of the scaling parameter is used to depict the pdf of the modified multistatic MLED ran-
dom variable in Figure 4.6. The shape of the distribution is no longer dominated by the scaled

binomial term k&.

4.6 Simulations

This section contains the numerical and theoretical simulations of the modified multistatic
MLED detector proposed in this chapter. Two data sets, “simulated” and “theoretical,” are
depicted in the results; the labelling corresponds to the one described in Table 3.1 and 3.2. A
relatively small multistatic radar network similar to the toy example depicted in Figure 2.3 of
Chapter 2 is used in the simulations. There are a total of 3 mobile transmitters and 3 stationary
ULA receivers placed around a moving airborne target. The number of bistatic channels in this
set of simulations is kept low since the algorithm requires significant physical storage space.
In a practical scenario this storage space will be distributed between the different receivers and
will become less of a problem. The physical radar parameters from Table 2.1 are also employed

in this set of simulations.
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Unlike in Chapter 3 where only a single Doppler frequency was considered, here the full bistatic
likelihood functions of the MLED in D-space is calculated for all Monte Carlo runs of every
channel. The range of normalised Doppler frequencies has been divided into Ny=101 equidis-
tant bins that are scanned for potential targets. A compressed subspace from each of the bistatic
likelihoods is extracted according to the procedure described in Table 4.1. The values of &, ,
are chosen to allow local likelihood maxima that are within 99% of the global maximum in

order to remove any insignificant contributions caused by thermal noise or other phenomena.

After being shared throughout the radar network, the bistatic likelihoods are passed through a
3-point smoothing Gaussian filter; this reduces the effects of potential frequency mismatches
between the target Doppler and the corresponding bin component of the likelihood. The results
are then projected into a v-space of N, =21 equidistant points 0.5m/s apart centred at the correct
target velocity. The bistatic likelihoods are then compounded to form the multistatic MLED

likelihood in v-space.

The added binomial term associated with the bistatic hard decisions is formed from the unfil-
tered bistatic MLED likelihoods. The set of binary decisions is then projected from D-space
into v-space. In every simulation run the scaling parameter x that would produce the optimal
result is obtained numerically. In practice a table of the optimal values of x for certain SNR
levels and radar parameters could be calculated in advance and used as a reference. The op-
timal scaling here is applied to the binomial detection likelihoods before adding them to the
multistatic MLED results. This forms the modified multistatic MLED likelihood function with

subspace compression in v-space.

The receiver operating characteristics (ROC) curves have been plotted for a scenario where
K =20 iid temporal snapshots are available in every channel. Figure 4.7 shows the results for
an SNR value of -30dB. It is clear from the graph that the detection rate in this scenario is very
poor and almost equal to the probability of false alarm. The benefit that the modified MLED
provides in this case is insignificant. A better performance is seen on Figure 4.8 where the
SNR has been increased to -25dB. The separation between the curves of the original multistatic
MLED and its proposed modification can be observed. Figure 4.9 and Figure 4.10 repeat the
previous simulations for a scenario of K =60 iid temporal snapshots. Naturally, as more data
is available for SDS covariance estimation, the performance of the multistatic MLED becomes
better. It must be noted that the advantages of the proposed modified algorithm also become

more apparent here, as the detection rate gains can clearly be seen on both graphs.
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The ROC curves shown so far demonstrate the range of viability of the detector proposed in
this chapter. The binomial term in the modified MLED represents a combination of scaled hard
decisions linked to the performance of the soft-decision standard MLED. In a low SNR scenario
the false alarm and detection probabilities of the MLED are very similar. Thus there is almost
no difference in the additional binomial term under the Hy and H; detection hypotheses, and as
a result the success rates pg and p; are almost the same. This simply offsets the false alarm and
detection probabilities by the same amount and provides no relative increase in performance in

the lower SNR region, as can be observed in Figure 4.7.

In the very high SNR region the detection rate based on the standard MLED is nearly ideal even
for a very low probability of false alarm. Thus the multistatic decisions from the MLED and
the binomial detector will be nearly identical. Since the performance is already very high, the
additional term is of little effect for such very high levels of SNR. The results can be observed in
Figure 4.10 where the performance boost of the modified MLED is relatively smaller compared
to Figure 4.9. These observations suggest that the algorithm enhancement proposed in this
chapter operates best in the mid-to-high SNR region where the detection rate can benefit the

most from the difference in structure between the target and the clutter likelihood.
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Figure 4.11: Probability of detection of compressed multistatic MLED vs compression ratio
K=20, Py,=0.02
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It must be noted that the benefits of the proposed modified multistatic MLED algorithm, even
when minimal, are accompanied by a reduction of the data shared throughout the network based
on the compression proposed in Section 4.2. The influence of the level of compression on the
algorithm performance has been shown for K'=20 in Figure 4.11. The standard form of the

compression ratio of algorithms is employed as a measure here [100].

Uncompressed Size

Compression Ratio = 4.21)

Compressed Size

The results are averaged over all Monte Carlo runs for a few SNR levels. The lowest compres-
sion ratio is always shown for the thresholds €, ,, set to 0, which means that all local maxima
are included in the compressed subspace. An interesting phenomenon observed in the results is
the robustness of the algorithm performance for high SNR with respect to the measure in Fig-
ure 4.11. A higher SNR means a higher target likelihood. Therefore, raising the compression
ratio (up to a certain point) mainly removes the subspace contributions of the clutter since a lot
of them come with a relatively lower likelihood than the target one. That explains the relative
flatness at the start of the highest SNR curve plotted in the graph. In a hypothetical scenario of
infinite SNR the ideal maximum compression rate can be achieved; the full likelihood function

in this scenario can be described by the single point where the target contribution is located.

Clearly from Figure 4.11 there is a tradeoff between the compression ratio and the maximum
performance that a system can be expected to achieve. The simulations demonstrate that if
the tolerance for the performance loss is set to 10% of the uncompressed one, the maximum
compression ratio that the algorithm can support and thus the reduction in the data exchange

between receivers is approximately 30 times.

4.7 Summary

This chapter describes the steps necessary to realise the practical implementation of the multi-
static MLED threshold detector and proposes an enhanced version of the algorithm. A method
for compression of the Doppler detection likelihood function has been proposed and analysed
that would greatly reduce the data shared between the computational nodes of the radar net-
work. To synchronise the bistatic contributions coming from the multiple radar channels, the
method of projecting the detection likelihood function from the channel-specific D-space into

the universal v-space has been suggested. Based on the compressed likelihood structure of
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a potential target in v-space, the modified multistatic MLED algorithm has been proposed; it
utilises a combination of the soft and hard decisions coming from the different bistatic chan-
nels into the multistatic decision variable to provide a better detection rate in the mid-to-high
SNR region of operation. It is shown that the newly proposed modified algorithm retains the
CFAR property. An analysis of the performance of the enhanced target detector is provided
and demonstrated in a series of numerical simulations. It is shown that the enhanced detec-
tor performs better than the standard multistatic MLED derived in Chapter 3 in the mid-SNR
region. This benefit is obtained in addition to the reduction of the likelihood data exchanged
between the different receivers in the radar setup. The simulations also demonstrate the tradeoff
between the compression ratio and the system performance. It is shown that compressions of
up to 30 times still yield a reasonable detection probability as compared to the uncompressed

transmission scenario.

While this chapter has focused on some of the practical issues of implementing and deploying
the multistatic MLED threshold detector, the waveforms transmitted in the radar system have
still been assumed ideally-orthogonal. This is an unrealistic scenario, and the effects of non-
ideal waveform orthogonality can impose some additional limitations on the performance of
MIMO radar and its respective MIMO ambiguity function. Chapter 5 addresses this issue
by demonstrating that realistic low-correlation waveforms separated in time and/or frequency

experience negligible effects in their multistatic ambiguity function as the MIMO system grows.
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Chapter 5

Practical limitations on growing
multiple-input multiple-output radar
networks

5.1 Introduction

This chapter investigates the practical limitations of waveform orthogonality and residual in-
terference experienced by growing MIMO radar networks that have not been considered so far.
The main focus is on the overall reduction of the MIMO ambiguity function region that can
be clear of sidelobes [45, 46] that is briefly described in Section 2.6. This is a well-known
phenomenon that occurs in a scenario where multiple waveforms occupying the same time and

bandwidth are designed to be nearly ideally-orthogonal in fast-time.

It will be shown here that in a multistatic radar system the ambiguity function limiting factors
can be alleviated if the transmitted waveforms are designed to be orthogonal in time and/or fre-
quency [101]. The concept is identical to FDMA and TDMA in wireless communication [73].
To evaluate the relative interference effects between channels, the ratio of the cross-to-auto-
ambiguity function has been proposed as a measure of waveform orthogonality and influence
on the performance of the MIMO radar system. It is shown in this chapter that the ratio becomes
negligible if the radar pulses are band-limited to sufficiently separated bands. The ambiguity
bound then reduces to the familiar mono/bistatic form (2.37) and is independent of the radar
network size. The work in this chapter utilises a specific waveform, namely the Gaussian pulse
train (GPT), for convenience and ease of analysis. However, the conclusions drawn here can be
generalised to a variety of other waveforms that conform to certain requirements specified in

the discussion later on in the chapter.

The rest of this chapter is organised as follows. Section 5.2 contains the background derivations
of the well-known ambiguity of an infinite train of Dirac delta functions as well as the ambi-
guity of a single Gaussian pulse (GP). These results are combined to provide the ambiguity

of a theoretical GPT waveform of ininite number of pulses. The original work in the chapter
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begins at Section 5.3, which contains the more practical derivation of the autoambiguity of a
GPT waveform with a finite number of pulses K. Section 5.4 defines and derives the re-
spective cross-ambiguity between two finite GPT waveforms that are separated in time and/or
frequency. Section 5.5 derives the respective ambiguity volumes as well as their ratio in a given
region of interest around the origin. The major contribution of the chapter, which consists of an
approximation to that ratio, has been derived in the same section for the practical case of finite
GPT waveforms. Section 5.6 provides a numerical simulation that demonstrates the feasibility
of the volume ratio approximation as well as demonstrates that the expected values for this ratio
are negligible compared to the autoambiguity volumes in the multistatic system. This allevi-
ates the compounding negative effect on the MIMO ambiguity function of a multistatic radar
with the addition of more channels in the system. The benefits of the investigated orthogonal-
ity methods come at the price of an increased bandwidth or delay in the MIMO radar system.
While the derivations are performed for GPTs for convenience, guidelines for extending the
approach to a wider variety of waveforms are discussed. This chapter closely follows the work

published in [47].

5.2 Infinite Gaussian pulse train autoambiguity

In this section, the autoambiguity of the theoretical GPT waveform that consists of an infinite
number of consecutive pulses is derived. An assumption made throughout this whole chapter is
that the considered waveforms experience no fast-time delays and small Doppler shifts. If this
assumption is not fulfilled, the narrowband form of Woodward’s ambiguity function (2.36) is

no longer applicable.

To analyse the GPT waveform, a single GP is first considered.

1
2a)\ 1
ug(t) = (a) exp {—atQ} (5.1)
7T
where the parameter a is related to the standard deviation o and thus the width of the GP.
a=—= (5.2)

The ambiguity of the GP is a two-dimensional Gaussian function extending in time and fre-
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quency [68,70]

2 2
ag(t, f) = exp (—;atQ) exp (—F2£ ) (5.3)

A radar waveform consists of multiple pulses. To obtain the ambiguity function of a GPT,
the following property can be used: if two waveforms are convolved in time, their ambiguity
functions are also convolved along the time axis [68]. An infinite GPT is the convolution of a

GP and a train of Dirac delta functions

us(t) = > 8(t—kT) (5.4)

k=—o00

where the spacing between pulses is the radar’s PRI, and k€Z. The ambiguity function of (5.4)
takes the well-known “bed of nails” form [68, pp.6-8]

as(t, f) =SS 8(t - nT)s (f . %) (5.5)

where m,n€Z. An approximation to this function is shown in Figure 5.1 for a 100-pulse

Kronecker delta train waveform.
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Figure 5.1: Autoambiguity of a 100-pulse delta train waveform
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Figure 5.2: Autoambiguity of a 1000-pulse GPT waveform

The ambiguity function of an infinite GPT will be the convolution of (5.3) and (5.5) along the
time axis. The spacing 7T is equal to the length of each GP, which will be defined here as 6

times its standard deviation o. Plugging this into (5.2) results in

18

T2 (5.6)

a =

The ambiguity function of the infinite GPT consists of shifted copies of (5.3) in time at t=nT

sampled along frequency at f=mT~!.

2 m
ags(t, f) = Zexp <—1at—nT )Zexp( 5 Tz)é(f—T> 5.7)

The waveform is reminiscent of a “bed of razors” which take the shape of Gaussian functions
along the time axis and are infinitesimally thin along the frequency axis. An approximation to

this function is shown in Figure 5.2 for a 1000-pulse GPT waveform.

The derivation of the autoambiguity of the infinite GPT waveform is a necessary step but reflects
only a theoretical scenario. In practice a radar waveform will consist of a finite number of

pulses. The respective autoambiguity derivation for this case is shown in the following section.
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5.3 Finite Gaussian pulse train autoambiguity

A pulse Doppler radar’s waveform consists of multiple consecutive pulses. Consider a GPT
constructed by transmitting K7 consecutive GPs. This waveform is the time-domain convolu-

tion of (5.1) and a train of K7 equally-spaced Dirac delta functions.

Kp—1
1 T

Ugeps(t) = T > 6t —kT) (5.8)

k=0

In order to ensure that the energy of the waveform remains constant (chosen as unity here), a
normalising factor is applied to (5.8). The ambiguity function of (5.8) can be calculated through
direct evaluation of Woodward’s narrowband ambiguity integral given by (2.36). The result is

a symmetric sum of Dirac delta functions along the time axis and a sum of exponentials along

frequency
KTer 1 1 KT 1 KTfl
agps(t, f) = Z o(t—pT) Z eI fRT Z o(t—pT) Ze‘ﬂﬂfkT (5.9
—Kp+1 Kr = k=p
Define the following function
Dy () = SimnT) (5.10)
sin(7x)

which is a special case of the Dirichlet kernel function [102, pp.89-92]. The formula for a
geometric series of exponentials can be written in terms of the Dirichlet kernel as
Kr—1
Z e—j?ﬂfkT — DKT (fT)e—ij(KT—l)T (511)
k=0
The normalised square norm of the ambiguity of the finite GPT is obtained after convolving

(5.3) and (5.9) along the time axis and through using the geometric series representation (5.11)

Kr—1
1
lasrg(t, )l = o= D aglt = kT, ) Dey g (F7) (5.12)
k=—Kr+1

As the number of pulses K7 approaches infinity, the Dirichlet kernel (5.10) becomes an ar-
bitrarily close approximation to an infinite Dirac delta train in frequency, and the ambiguity

function takes the form (5.7).

The volume of the Eucledian norm of the ambiguity function «(, f) in an arbitrary region A is
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defined as the following integral
v = [[ late. s P (5.1
A

To obtain the Eucledian norm of the GPT ambiguity, (5.12) is squared, which involves multiple
cross-terms on the right hand side of the equation. Here the shape of the terms oy (¢, f) is Gaus-
sian, and the distance 7" between the different copies of ay(t, f) along the time axis is chosen
as 60. Thus the weight of the tail of the Gaussian shape oy (t, f) outside the chosen width
is negligibly small. Since the cross-terms when squaring the right hand side of (5.12) involve
multiplications with those tails, they can be neglected. Thus the following approximation for

the Eucledian norm of the GPT ambiguity can be made

Kpr—1
1
osery (6 PP % oz D Nl = KT, ) Ficppy (FT) (5.14)
k=—Kpr+1

Here F,,(z) is the Fejér kernel function [103, pp.17-19] that can be defined as the square of the
Dirichlet kernel expressed as (5.10).

sin(mnx)?

F,(z) = . (5.15)

sin(7x)

Using the approximation for the Eucledian norm (5.14), the volume for a GPT in an area A

around the origin takes the following form
1
V2 o(A) = el Z// ag(t — KT, ) Frep— i (fT)df dt (5.16)
T k A

The limits of the sum in (5.16) have been omitted. Usually the aim is to make the volume as
close to the ideal case V (A)=Vj as possible (where V} is the volume at the origin), and thus
small regions A around the origin are considered. The contribution to such a region will come

from no more than the set k € {—1,0, 1} in (5.16).

In the next section, the respective cross-ambiguity between two foreign waveforms carried on

orthogonal frequencies or received at orthogonal times is derived.
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5.4 Waveform cross-ambiguity in multiple access MIMO

Consider the MIMO radar scenario where waveform orthogonality has been ahcieved through
time and/or frequency separation in an FDMA/TDMA transmission scheme. Let the main
waveform of interest be the single GP u,(t) given in (5.1). Consider a foreign interfering

waveform u;(t) of the same shape but separated in frequency by an offset fa and in time by ¢

1
ui(t) = <2a> b gmalt=ta)? =g2miat (5.17)

™

The duration and bandwidth of (5.1) and (5.17) are the same. The cross-ambiguity between the
two waveforms can be obtained by plugging their expressions in the integral (2.38). Instead of
solving this integral, the shifting properties of Woodward’s ambiguity function can be used [68].
The pulse (5.17) can be represented as (5.1) convolved in time with §(¢ — tA) and in frequency
with 6(f — fa). This convolution translates to ambiguity space to obtain the following cross-
ambiguity between the GP of interest and its interferer

xg(t, f) = e JP exp <a(t_2tA)2> exp <7T2(f;afA>2> (5.18)

up to a time-frequency phase term ¢ due to the symmetric form of Woodward’s ambiguity
integral considered in this thesis. As expected, (5.18) is a shifted version of (5.3) in time and

frequency. The phase term disappears when the ambiguity norm is taken into account.

Ixg(t, )l = lag(t —ta, f— fa)l (5.19)

For simplicity it is assumed that the different waveforms in the MIMO radar are all of equal
length for a CPI and contain K7 pulses each. Following the approach in Section 5.3, the square

Euclidean norm of the cross-ambiguity of two GPTs offset in time and frequency is

Kp-1
‘XKTg(ta f)‘ = };lT Z ‘Xg(t_kTa f)DKT*|k|<(f_fA)T)‘ (5.20)
k=—Kp+1

The approximation to the Eucledian norm in (5.14) based on ignoring the Gaussian tail terms
is once again employed to produce the following expression

Kp—1

> Ixglt = kT, )P Frepo iy (= fa)T) (5.21)

XKrg(t P~ —
T g=—Kr+1
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The formula for the volume of (5.21) is the same as (5.16) with the area A centred around
(ta, fa) instead of (0, 0). The Fejér kernel is 1/T-periodic. Thus most of the volume of (5.21)
is contained around the points (kT'—ta,n/T—fa) where n€Z and k is within the limits given

in the sums above.

The following section combines the results obtained here and in Section 5.3 in order to define

a measure of relative ambiguity interference in a MIMO radar scenario.

5.5 Ambiguity volume ratio in multiple access MIMO

The definition of the MIMO radar ambiguity function (2.39) leads to the bound on the volume
that can be clear of sidelobes given in (2.40). It is discussed in [45] that in the ideal case, orthog-
onal waveform design aims to simultaneously reduce the volume of the cross-ambiguitiesin the

region of interest A while maintaining autoambiguities that are concentrated at the origin

/ lagg(t, £)12dfdt =V (5.22)
A
[ [ e pRara=o 5.23)
A

where it is assumed that all channels have the same volume Vj at (0,0). If both (5.22) and (5.23)
can be satisfied at the same time for all channels, then the total MIMO ambiguity function (2.39)
would reduce to the sum of the autoambiguities in the system, and the bound would be relaxed
to the mono/bistatic one (2.37). While it is shown in [45] that for CDMA orthogonal waveforms
that occupy the same time and bandwidth, both (5.22) and (5.23) cannot be simultaneously
satisfied, frequency and/or time orthogonality will be evaluated here. The conditions (5.22)
and (5.23) will also be relaxed. The proposed measure of relative waveform orthogonality here
is the ratio between the cross-to-autoambiguity between any two orthogonal waveforms. As
long as this ratio is small, the cross-ambiguity terms can be ignored from the MIMO ambiguity

function, and the criterion for relaxing the bound (2.40) is fulfilled.

5.5.1 Volume ratio in an TDMA scenario

The cross-to-auto-ambiguity volume ratio of two foreign GPT waveforms orthogonal in time

will be derived in this subsection. This corresponds to a TDMA scenario where each transmitter
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is given a unique time slot in which its waveform is transmitted and received throughout the
network. Thus time-orthogonality between waveforms is achieved. Since the GPT considered
here consists of K7 consecutive GPs spaced at a distance 7, the total waveform duration for
one CPl is

Tw =TKrp (5.24)

This time is also the theoretical minimum delay that has to occur between two waveforms at
the receiver side in order for them to be considered orthogonal. Therefore it can be assumed
that tA>Tyy. Since the narrowband signal model is adopted, it is assumed that the Doppler
shifts between the pulses in the waveform contribute no additional fast-time delay or sigificant

frequency shift relative to the carrier.

Consider the volume of the cross-ambiguity of the finite GPT (5.21) around the origin. Since
this subsection focuses on TDMA, fa=0 here. The cross-ambiguity volume is highest when
the foreign waveforms are offset by a multiple of the duration 7" in time. Theoretically the
worst-case scenario that still achieves time orthogonality is tA=Tyy, since Ty is already a
multiple of 1" (5.24), and since the cross-ambiguity volume (5.21) decays when moving away

from the origin.

The volume ratio proposed here as a measure of relative waveform orthogonality is investigated
in a small rectangular region A around the origin. Therefore this region satisfies both properties

imposed in [72] since it is convex and symmetric about the origin of ambiguity space (0,0).

Because the region A is small, only the £=0 term contributes significantly to the autoambiguity
volume (5.16). To evaluate the cross-ambiguity contribution, note that the volume of the cross-
ambiguity can be expressed through the volume of the shifted autoambiguity using the shifting

property in (5.19)
1
Vii,ghi(A) = 7 Z / / ag(t — kT —ta, f)*Frpo ) (fT)df dt (5.25)
T i oy

Since the time shift ¢ is already larger than the limit of the sum in (5.25), only the first term
k=—K+1 in the sum contributes any significant amount to the volume. The rest of the contri-

butions come from negligibly small Gaussian tails. Thus the volume ratio in the case of TDMA
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reduces to
/exp (—a(t+ (K - 1)T - tA)Q) dt

K2/exp (—at2) dt

The integral with respect to frequency has disappeared since it is the same in the numerator

V. = (5.26)

and denominator for the assumed frequency offset fAo=0. The extra scaling parameter is nec-
essary since the peak of the The Fejér kernel (5.15) varies with the kernel order. The result in
(5.26) is valid for any region A that satisfies the properties imposed in [72]. To obtain a prac-
tical value and solve the integral, consider a rectangular symmetric region around the origin
{It|<ts, | fI<fo}. For fr<Bw /2, where By is the frequency 60 width of the GP ambiguity,
only the term around £=0 is considered since the other contributions are negligible Gaussian
tail terms. The solution to the volume ratio integral (5.26), dependent on the temporal size %,

of the considered region, for a purely TDMA system is

. erf <\/§(tb + (K - 1T + m)) — erf <—\/§(tb +(K-1)T - m))
e okver (f20)

Utilising a purely TDMA scheme may not be the most applicable option in a large multistatic

(5.27)

radar system. Since the target is usually a fast-moving airborne object, implementing artificial
delays between the waveform transmissions in the different bistatic channels can disrupt the
ability of the network to obtain multiple independent snapshots of the target at a fixed point in
space and time. However, the volume ratio (5.27) derived here can be applied to the analysis
and characterisation of non-TDMA systems. Time synchronisation and data fusion is an im-
portant and difficult step in the practical implementation of multistatic radar. Each receiver can
simultaneosly observe up to M incoming waveforms from the M transmitters in the system.
Since the waveforms are observed at an arbitrary and varying delay of ¢, the additive effects

of this on the MIMO ambiguity can be described by the derived volume ratio (5.27).

The next subsection derives the respective volume ratio of a multistatic radar that employes a

purely FDMA transmission scenario.
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5.5.2 Volume ratio in an FDMA scenario

The cross-to-auto-ambiguity volume ratio of two foreign GPT waveforms orthogonal in fre-
quency will be derived in this subsection. This corresponds to an FDMA scenario where each
transmitter is given a unique frequency band in which its waveform is transmitted and received

throughout the network. Thus frequency-orthogonality between waveforms is achieved.

The bandwidth of a GP (5.1) can be obtained through its Fourier transform

1 2,272
Uy(f) = (2:> exp{—f TST } (5.28)

If the 60 width rule is also applied to (5.28), the double-sided width of the spectrum of a GP is

18 6
By = — ~ — 5.29
w=_5 R 5 (5.29)
This is 6 times the usual rule of thumb for the bandwidth that states By ~1/T'; however, under
this assumption, the spectrum of the GP can be considered practically band-limited since the
weight of the frequency tails outside the 6o region are negligible. The width of the spectrum of

a GPT will not exceed (5.29) since by design the GPT has a duration longer than a GP.

In an FDMA system the distance between channels will usually be at least equal to the channel
width so that no overlap of the bands occurs. Therefore it can be assumed that fa>Byy.
Also it will be assumed that the Doppler shifts of the waveforms are small relative to their
bandwidths to eliminate interchannel interference. The 60 width of the ambiguity |a,(f,t)|?
in frequency is also Byy. The cross-ambiguity volume is highest when the foreign waveforms
are offset by a multiple of the inverse duration 1/7 in time. The theoretical worst-case scenario

for the interfering volume of the cross-ambiguity at the origin that still achieves frequency

orthogonality occurs for fAo=6/T', where also the Fejér kernel peaks.

Since a purely FDMA system is assumed here, there is no time delay between the interfering
waveforms, so tA=0. Mirroring the derivation in the previous subsection, a small rectangular
region A around the ambiguity origin will be considered in this analysis. Since the region A is

small, only the k=0 terms contribute significantly to its volume. The rest of the contributions
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come from negligibly small Gaussian tails. Thus the volume ratio reduces to

T2 F_ £0)2
oo (TR me-ram

V, = (5.30)
2 £2

Jewo [ -5 ) Pratenar

The integral with respect to time has disappeared since it is the same in the numerator and
denominator for the assumed time delay tA=0. The frequency bounds on the region A will
not be defined for the time being. The integration of multiplications of Gaussian and sinusoid
functions in (5.30) can only be done numerically. A theoretical result could be obtained if the
Fejér kernel is approximated by a Gaussian function. This approximation and the subsequent

theoretical form of the volume ratio (5.30) is described in Section 5.5.3.

5.5.3 Fejér kernel Gaussian approximation

The Fejér kernel in (5.15) is a 1 /T -periodic non-negative function. One period of (5.15) centred
around the origin is considered in the following analysis. It takes the form of a rapidly decay-
ing oscillation with a mainlobe centred around the origin, and the first zero-crossing occurs at
f==£1/n. Therefore, a rough approximation to the mainlobe of the Fejér kernel can be done
with a Gaussian function with a 60 width of 2/n. Consider the Fejér kernel from the numerator
of the volume ratio (5.30). The function a version of the standard form (5.15) where the argu-
ment is scaled by 7" and shifted by fa. The periodicity of the kernel will be represented in the
approximation as an infinite sum over n€Z. The Gaussian approximation to the full periodic
Fejér kernel takes the following form

Fiep((F=fa)T) = K. ) exp (—gK% (f—fA—;)2T2> (5.31)

n

Plugging (5.31) in (5.30), the expression inside the integral is a sum of products of two Gaussian

functions. The product of two Gaussian functions is also a Gaussian with parameters described

2

in [104]. Therefore, for a given value of n, the resulting mean z;(n) and variance o7

are given
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by the following expressions

pa(n) = fa + pa(n) (5.32)
pa(n) = 9K2To’n (5.33)
= 0 (5.34)

T T?((3K7)? + 72)

where i, (n) are the means in the denominator of (5.30) associated with the approximation for

the autoambiguity case.

Consider a rectangular symmetric region around the origin {|t|<ts, | f|<fs}. For t,<1'/2 only
the ambiguity around k=0 is considered since the other contributions are negligible Gaussian

tail terms. The volume ratio approximation is

T

Vo(fy) = _fb -
S
ZGXP< ™ p 2(”)) [e <fb‘|‘,Ux > < fo—piz(n >]

(5.35)

ZeXp < ™ 2(”)) [erf <fb+::(n)> orf <_ fb—(/;;z(n))]

where each contributing factor along the frequency axis is scaled accordingly. The sum over
the integer n in (5.35) represents the contributions of the different Gaussian shapes along the
frequency axis to the volume in the area A. As usually this area of interest is small, only a few

of the contributors around n=0 are enough to represent the whole sum.

5.6 Simulations

A small MIMO radar system with two orthogonal GPT waveforms has been simulated. Both
TDMA and FDMA have been separately considered for the simulations. The PRI (and thus
the length of each individual GP) is the same as the value from Table 2.1, T'=2ms; the result-
ing channel bandwidth is approximately By=3kHz. The worst-case scenarios of A =2Kms

fa=3kHz is investigated. Figure 5.3 shows the temporal crosssection of a GPT ambiguity
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(5.12) at t=0; the result is compared to its approximation (5.14) that ignores the tail term con-

tributions and also features the Gaussian model (5.31) for the Fejér kernel. The fitting described
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Figure 5.3: Autoambiguity of a 5-pulse waveform at t=0 with Gaussian approximation to the
Fejér kernel

in Section 5.5.3 has been done for the periodic mainlobes of the Fejér kernel. All sidelobes out-
side the mainlobes, however, are ignored by the model. Thus it is expected for the approximate
model of the volume ratio (5.35) to also best match the theoretical values around the peaks of
the Fejér kernel. This can be seen in the results in Figure 5.4 where the theoretical and numeri-
cal volume ratios in the FDMA case are shown for relatively short GPTs of Kr+=4 and K+=40
pulses. The simulated volume ratio in the FDMA scenario (5.30) is calculated through numeric
integration in a rectangular area A. The bound on the region along the time axis is t,=1ms.
The bound in frequency f3 is varied along the x-axis of Figure 5.4. As predicted, the theoretical
model closely approximates the volume ratio (5.30) around the points n /T where the Fejér ker-
nel peaks. Between the mainlobes the theoretical model underestimates the volume ratio since
it ignores the ambiguity sidelobes. The general behaviour of the volume ratio is relatively well
predicted through the proposed estimator (5.35) which is very computationally cheap and does

not involve numeric integration.

Similar to the FDMA case, the TDMA volume ratio (5.26) is calculated through numeric inte-
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Figure 5.4: Volume ratio of cross-to-auto-ambiguity in a rectangular region A for FDMA-
orthogonal radar waveforms of Kt pulses

gration in a rectangular area A. The bound on the region along the frequency axis is f,=1.5kHz.
The bound in time ¢}, is varied along the x-axis of Figure 5.5. The theoretical results in 5.5 come
from the direct application of the derived volume ratio (5.26), while the simulated ones come
from the numeric integration of the fully-generated autoambiguity (5.12) and cross-ambiguity
(5.20) without any approximations performed. The results are almost an exact match since the

only difference comes from truncated tails of Gaussian distributions.

The results in Figure 5.4 and Figure 5.5 show that the volume of the cross-ambiguity function
in a rectangular region centred at the origin of ambiguity space is at least 40dB lower than
the volume of the autoambiguity in the same region. Therefore, in a MIMO system with M
FDMA- or TDMA-orthogonal waveforms, the total ambiguity (2.39) can be approximated as

strictly the sum of the autoambiguities

M

e (8 HIP &Y X (8 )] (5.36)

m=1

This reflects the waveform orthogonality achieved through TDMA/FDMA and relaxes the

bound on the MIMO ambiguity function given in (2.40) to the original mono/bistatic case
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Figure 5.5: Volume ratio of cross-to-auto-ambiguity in a rectangular region A for TDMA-
orthogonal radar waveforms of Kt pulses

(2.37). The tradeoff is the increased bandwidth and/or of the system used by the additional
channels or time slots for transmission. A MIMO system of A/ FDMA-orthogonal waveforms
requires a bandwidth of M By,. A MIMO system of M TDMA-orthogonal waveforms has
a total decision delay of M K7T'. This limits the FDMA- and TDMA-orthogonal waveform

design investigated here to radar networks with a relatively small number of transmitters.

The analysis in this chapter is performed on GPTs for convenience. Note that the approxima-
tions (5.14) and (5.21) hold for any pulse with ambiguity a(t, f) that can be neglected outside
of a region 7" along the time axis. However, one must ensure the spacing between pulses in
(5.8) is also greater than 7'. If the pulses forming a waveform meet these conditions, the au-
toambiguity at the origin and around fa as well as the Fejér kernel weights at those points
can be used as a rough estimate of the behaviour of the waveform volume ratio. Note that the

Gaussian approximation to the Fejér kernel (5.31) is independent of the shape of the transmitted

waveforms.
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5.7 Summary

This chapter discusses the method of frequency and/or time separation between different wave-
forms in a multistatic radar to achieve waveform orthogonality and alleviate the well-known
ambiguity issue that arises in such a scenario. To aid the discussion, a practical waveform of
a finite number of consecutive Gaussian pulses is considered. It is shown that the additional
reduction in the ambiguity region that is clear of sidelobes in a multistatic scenario is a result of
the cross-ambiguity contributions between waveforms that are assumed to be orthogonal. The
cross-to-autoambiguity ratio is introduced as a measure of the relative weight of these contri-
bution. An approximate model is derived for this ratio in the case of GPTs and simulated to
demonstrate its feasibility. It is also shown through these simulations that in practice, if the
frequency and/or time separation between waveforms is sufficient, the relative cross-ambiguity
contributions to the multistatic ambiguity are negligible. While the work focuses on pulses
of Gaussian form, a short discussion is provided in the end of the chapter that generalises the

results to other pulse shapes that conform to certain conditions.
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Chapter 6
Conclusion

This thesis presents a detailed development, analysis, and practical implementation solutions
for different SDS detection methods based on covariance estimation in a scenario involving a
widely-spaced MIMO radar. The proposed algorithms can operate blindly in any environment
that involves coloured Gaussian interference and clutter. No additional knowledge of the clutter
spectrum of structure is assumed, and no homogeneous secondary training data is required to

perform estimation and detection.

The algorithms developed here are primarily based on the MLED and GMLED bistatic SDS
methods. The thesis derives and analyses these algorithms in a multistatic scenario where mul-
tiple independent bistatic channels cooperate to detect an airborne target in coloured Gaussian
interference. Tools for quick and reliable approximation of the performance of the proposed
algorithms are proposed that can estimate the radar network size required to provide a certain
desired detection rate. To facilitate the practical implementation of the developed multistatic
detectors, a method of compression and synchronisation of the individual bistatic results is
proposed prior to their transmission accross the radar network. A method of enhanced de-
tection based on the expected target signal structure is proposed that is directly linked to the
compression and synchronisation scheme. In order to minimise interference between the dif-
ferent bistatic channels, frequency orthogonality between the individual probing waveforms
in the radar system is used. The work in this thesis demonstrates through a developed theo-
retical model that this method for achieving orthogonality does not introduce any additional

constraints on the multistatic radar ambiguity function.

A more detailed summary of this thesis follows in Section 6.1. It expands on the achievements
and contributions of the different chapters of this work. Section 6.2 provides some potential

directions for future research that can build upon the contributions of this thesis.
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6.1 Summary

Chapter 1 presents a brief introduction to the challenges and improvements that radar has seen
throughout the years. This provides the setting and motivation for the problems solved in this
thesis. A brief summary of the contributions and outline of the work is given in the end of the

chapter.

Chapter 2 contains the background materials upon which the research of this thesis is built. It
introduces the concept of STAP used in all algoritms developed throughout the rest of the work.
It also provides a mathematical description of the evolution of covariance-based SDS detection
algorithms from their related TDS counterparts. The different types of MIMO radar, coher-
ent and widely-spaced, are introduced, and some of the most significant challenges associated
with them are discussed. Finally, the problem setting and assumptions made in the thesis are

described in the end of the chapter.

Chapter 3 is the first technical chapter of the thesis and presents the first major contribution: the
derivation and approximate analysis of the multistatic MLED and GMLED threshold detectors.
Ideal data exchange and synchronisation between multiple ideally-orthogonal and statistically
independent radar channels is assumed. The optimal (in the ML-sense) fusion of the bistatic
MLED and GMLED results from those channels into a multistatic variable is derived. It is
demonstrated that this variable has the CFAR property which makes its statistics independent
from the background interference structure and power. To facilitate the analysis of the proposed
multistatic algorithms, a Gaussian model is developed that reliably approximates their statistical
behaviour and performance under given SNR conditions. A number of numerical simulations
have been developed in order to demonstrate the viability of the approximation models. The
performance gains of adding more channels and iid temporal observation snapshots to the mul-

tistatic radar system have also been shown.

Chapter 4 is the second technical chapter of the thesis and provides a number of contributions
towards the practical implementation of the proposed multistatic MLED detector. An adaptive
subspace compression method for the bistatic likelihood functions of the detection variables
in the individual channels is developed. The compression transmits only the significant com-
ponents from each channel rather than the full Doppler spectrum of decisions, and thus the
amount of data exchanged within the radar network is reduced. A method of projecting the

MLED likelihood function from D-space into v-space is also proposed. This allows for the
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easy synchronisation and fusion of the search spaces of the different bistatic channels into the
multistatic result. Based on the subspace compression of the likelihood and the subsequent
search space projection, a modified multistatic MLED detection procedure is proposed that
exploits the structure of the reflected target signal in v-space. This results in an enhanced algo-
rithm performance for mid-to-high SNR levels. A number of numerical simulations have been
conducted that demonstrate the performance increase of the proposed modification over the
standard multistatic MLED developed in Chapter 3. It is also shown that through the developed
compression scheme, compression ratios of up to 30 times can be achieved while keeping the

algorithm performance within 10% of the uncompressed one.

Chapter 5 is the third and final technical chapter of the thesis and develops a theoretical model
for the MIMO ambiguity function if frequency orthogonality between the different transmitted
waveforms is assumed. It is shown through this theoretical model that if the frequency sep-
aration between the waveforms is sufficient, adding more transmitters to the multistatic radar
system presents no additional burden to the total ambiguity. Through numerical simulations it
has been demonstrated that the cross-ambiguity contributions of additional waveforms are neg-
ligible compared to the existing autoambiguities. While the work in the chapter is built around
Gaussian pulse train waveforms, the results are extended to other pulse shapes that conform to

certain specified requirements.

6.2 Possible directions for future work

The overall derivation and procedure developed in this thesis is relatively exhaustive in terms
of the assumptions made and the problem undertaken. However, it may be of interest to relax
or alter some of the assumptions and see how that affects the target detection solution. The
work in this thesis focuses on coloured Gaussian clutter. The case of non-Gaussian interference
is a complex one and comes with its own set of challenges. Deriving the MLED and GMLED
as well as their multistatic versions under this assumption can be a direction with significant

research potential.

Another potentially important derivation is the multitarget solution for the MLED and GMLED
algorithms. In this thesis a single target was assumed to be buried in the background interfer-
ence. Searching for two targets at the same time involves the ML search and estimation over

multiple pairs of spatio-temporal steering vectors. This can be computationally expensive but

106



Conclusion

adds more flexibility to the algorithms.

There is still potential for additional work on the enhanced detector proposed in Chapter 4. A
theoretical or approximate method for selecting the optimal scaling parameter « can be inves-
tigated. It may be worthwhile to attempt to combine the proposed multistatic algorithm with
the hybrid SDS-TDS detection procedure from [19]. Before any final conclusions are drawn, it
will be interesting to test the performance of the detectors proposed in this thesis on real STAP

data collected by multiple radar receiver ULAs.
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Appendix A

Derivation of the bistatic MLED and
GMLED statistics

This appendix provides the derivation of the statistical distribution of the bistatic MLED and
GMLED threshold detectors. The derivations are included here only for convenience and are
not original contributions. The original source of the derivations is found in [17], while a much

more detailed version is reproduced in [18, pp.55-58].

A.1 Derivation of the bistatic MLED statistics

The original form of the bistatic MLED threshold detector given in eq. (2.30) of Chapter 2 is
reproduced here for convenience:
s"Q " 'g|* 1

>
= Z
sHQ s p,

To facilitate the analysis, a spatial whitening operation is applied to the steering vector and the

observation samples of the bistatic MLED to produce the following whitened versions

D=

s (A.1)

R-
X =R

S
X (A2)

=

After the whitening process, a unitary transformation is applied that rotates the steering vec-
tor into the first elementary vector e=[1,0,...,0]”. The unitary matrix U having # as its
first column and the rest of the columns forming an orthonormal basis is used to perform this

operation:

e=U"3 (A.3)
X =U"X (A.4)
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Note that the unitary transformation does not affect the statistical properties of the random
vectors it is applied to. Therefore, in eq. (A.4) the symbol for the random variable after rotation
is preserved for convenience since the focus here is on the statistical analysis. The respective

whitened and rotated variables g and é have been spatially decorrelated and are distributed as

g~ Np(ae, I) (A.5)
Q~CWp(K —1) (A.6)

where CWp (K — 1) is the complex Wishart distribution with ' —1 DOF and the identity as
the scale matrix. The whitened and rotated quantities can be substituted back into the origi-
nal MLED threshold detector equation without altering its statistics. The equation takes the
following form: )
IeHQHZJ\? 2 (A7)
elQ e Ho

The whitened and rotated matrix X as well as the variables g and (,NQ are now partitioned in the

following manner:

-~ |2} ga| = Gaa  dna
xX=|" g=|"" =" % (A.8)
Xp g dpa Qpp

Define the following K x K matrix
H=1-tt" (A.9)

which is clearly idempotent with rank K —1. The matrix represents the projection onto a sub-
space orthogonal to the target’s temporal steering vector. Then the partitions from eq. (A.8)

can be related to each other through the following equations

ga =2t (A.10a)
Gy = Xnt* (A.10b)
Gan = T4 HT (A.10¢)
Gpa = XpH%, (A.10d)
Opp = XpHX 1 (A.10¢)
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. .= ~ ~—1 . . .. .
Let the inverse of the matrix @ be denoted as P=() . Using the blockwise matrix inversion

theorem [105, p.459] the following matrix partitions can be defined

~_1 -1
DAA = (CIAA_QBAQBBQBA> (A.11a)
~_1
Ppa = —DPaadnaQrp (A.11b)
~ 1
Ppp = paadasQpp (A.11¢)

Since e is the first elementary vector, it is easy to show that the left-hand side of (A.7) is

equivalent to

Qg _ Al 2
——~—1  —pbaa ‘QA - QBAQBBQB‘
elQ e
~_1 2
‘QA QBAQBBQB‘
o (A.12)
Gaa — G3aQppdpa
Define the following support random variable n through the following expression
~H~1 o -1
n= (1 +93 QBBQB) (A.13)
Note the fact that
1 ~H ~—1 H " —~H ~—1 _
no= ( HXBQBBQB) (t - HXBQBBQB) (A.14)
Thus the numerator of (A.12) takes the form %IZ Az 41~ " where
* vH -1 . % ~H ~-1 _ \H
A= (t _HXBQBBQB> (t —HXBQBBQB) (A.15)
Similarly the denominator of the left-hand side of (A.23) can be expressed as
~—1
Gaa — GpAQppdpa = T4 (H HXBQBBXB) TA
=zl Bz, (A.16)

Thus the equivalent and simplified form of the MLED statistics takes the following form:

2 (A.17)



Derivation of the bistatic MLED and GMLED statistics

Because A B=0, the numerator and denominator of the left-hand side of (A.17) are statistically
independent [105, Theorem 3.4.5]. The matrix A has been normalised to a form that is clearly
idempotent and of rank 1. Thus the numerator of the left-hand side of (A.17) has a non-central
complex ~ Cx7? distribution with 1 DOF and a non-centrality parameter 2A=K Pnp, where p is
the SNR defined in eq. (3.38). Similarly, B is idempotent of rank L=K — P since §I§ @]_3}35 B
is of rank P—1 [105, Corollary 3.4.8.1] and H is idempotent with rank K —1. Thus the de-
nominator of (A.17) has the complex chi-squared distribution with L DOF denoted as ~ Cx%.

Therefore, equivalent distribution of the MLED statistics is the following

—— 2 M (A.18)
H,

Since the ratio of two independent variables that hold the chi-squared distribution is equivalent
to an F-distribution, the equivalent statistics of the bistatic MLED random variable (3.35) used
in the thesis follow directly from (A.18).

A.2 Derivation of the bistatic GMLED statistics

The original form of the bistatic GMLED threshold detector given in eq. (2.31) of Chapter 2 is
reproduced here for convenience:
s"Q'g|? L

>
sHQ s (1+g"Q 7 'g) m, 7

The analysis steps of the GMLED statistics mirror those of the MLED ones presented in Section
A.1 of this appendix. After a whitening operation and a unitary rotation has been performed,
the equivalent GMLED threshold detector expression is the following

HQ G m s

oI5 (1+5"Q g) (A19)

elQ e Ho

The left-hand side expression of (A.19) is the same as the one in (A.7). Thus the analysis
remains the same. On the right-hand side of the same equation, the following manipulation can

be performed:

~HA 1~ ~ s |~ ~HAL ~H ~H A1 ~H ~H$ -~
g'Q g=paa (gAgﬁx +9495QBBABA — EZQBAQBBQB) —9gpPBgp  (A20)
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where the inverse partition relations (A.11) have been substituted in (A.20). Completing the
square for the term in the parentheses in (A.20) and once again using the inverse partition

relations (A.11) results in the following manipulation:

<9A9A+9AQBQBBQBA QAQBA BBY )
~ g A laH]? ~ 9 H~ ~H ~
:’L(JA_QBAQBBQB _pA,quBpBApBAgB (A.21)

The final manipulation that can be peformed through the inverse partition relations (A.11) is

the following:
o o~1
GRPpEgs — D1 \dnPeaPaAds = 98 Qppds (A.22)

By using (A.12), (A.20), (A.21), and (A.22), the GMLED statistics can be written as

~ g ~-1. |2
9a —qpAQppIp| m T

— 2
Gaa — QuaQppdpa Mo 1

(A.23)

where
Y

= > (A.24)

Following the analysis of the left-hand side expression of (A.23) shown in Section A.1, the

equivalent and simplified form of the GMLED statistics is:

i e - X (A.25)

AL z T (A.26)

which is once again equivalent to a non-central F-distribution as used in eq. (3.62) of this thesis.
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Appendix B
Lindeberg’s condition

B.1 Proof of Lindeberg’s condition for the multistatic MLED ap-

proximation

In this appendix the following notation will be used to denote the MLED threshold detector in

a single bistatic channel (-),, 5,

sE QG

H -1
Sm,an,nSm»n

T]V[(m,n) - (B.1)

The multistatic MLED detection variable consists of the sum of (B.1) across all channels as

derived in (3.16). Thus Lindeberg’s condition for the CLT takes the following form

M N
. 1 2
e >0 / (Tvmm) = Bar(mmy)” S (Tormm)) AT 0smmy =0 (B.2)
N_)(Sg oM =1 n=1 7 1T0(mn) =M (m,mn)|>€T M

where fiy7(m,n) 18 the channel variable mean given by (3.51) and a§4 is the total MIMO detec-
tor variance given by the sum (3.44) of (3.52). The pdf fr,,(x) is associated with the bistatic
MLED random variable (3.35). For any constant e>0 Lindeberg’s condition (B.2) is sufficient
(and necessary in this case according to the Feller-Lévy Condition [106]) to claim that the mul-
tistatic MLED random variable (3.39) will converge to a Gaussian distribution as the number
of transmit-receive pairs M x N goes to infinity. Chebyshev’s inequality for the variance of the
bistatic MLED detector states that

O M (mom)

’ (B.3)

P(|Ty(mn) — BM(mm)| = €om) < —
€ O'M

Note that the mean pip7 () (3.51) and the variance 0%4 (mn) (3.52) both exist and are finite if
a realistic system with finite number of independent temporal samples K and spatial samples
P is considered. This is due to the assumption that A, ,, is finite as well because the SNR p,,, ,,

will always be limited by the thermal noise in the transmission medium. The term 0%, (3.44)
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is the sum of the individual variances 0]2\4(m n) (3.52) across all channels. It takes the form of a
second degree polynomial with respect to the non-centrality parameters A, 5, (or their proposed

estimates Xmm) and can thus be written as

T3 = GmnAn + Y bmnAmm + cMN (B.4)

m,n m,n
where @y, n, by n, cER are the arbitraty polynomial coefficients. Since realistically the DOF
L>2, the coefficient ¢ is positive and the sum in (B.4) diverges to infinity as M x N —oc.

Therefore, the right hand side of Chebyshev’s inequality (B.3) goes to 0 since €>0 is a constant.

2
I M(m,n)
2
M

lim
M—oo €20
N—oo

=0 (B.5)

Therefore the left hand side probability in the inequality is bounded by 0, which translates to

lim I3 (Tt (mn)) AT 0y = 0 (B.6)
%Zﬁg‘;’ I 70 (myn) =B (mon) > €0 M

Combined with the fact that the mean fips(,, ) 1s finite, this proves that each term in the sum
(B.2) converges to 0 in the limit. Therefore the whole sum converges to 0 and Lindeberg’s con-
dition is satisfied, which justifies the Gaussian approximation of the multistatic MLED thresh-

old detector.

B.2 Proof of Lindeberg’s condition for the multistatic GMLED ap-

proximation

In this appendix the following notation will be used to denote the GMLED threshold detector

in a single bistatic channel (-), »

1+gl Q. Gmn

TG(m,n) = = _ ) (B.7)
‘ SmnSmnImmn ’

I+ g7Hn,nQ7_n}ngm,n - sH
m

—1
,an,nSm:n
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Lindeberg’s condition for the multistatic GMLED must be considered in the natural logarithm

since the approximation is log-normal.

M
lim Z Z/ﬂ 1OgTG(m n) — MG (m,n) )2 flogTG (lOgTG(m,n))dlogTG(m,n) =0 (B.3)

M::gg U m= OgTG(m n) “HG(m, n)‘>EUG

The expectation (3.65) and second moment (3.67) of the bistatic GMLED (B.7) are both finite
due to the assumptions that the system parameters K, P, and A, , are practically finite (see

B.1). In this proof the following logarithmic inequality will be used
loge <z —1 (B.9)

which is a basic property valid for any >0. From (B.9) an upper bound for the expectation of

the logarithm of the bistatic GMLED threshold detector can be obtained
E [log Te(mm | < E [Temn) — 1] (B.10)

where the right hand side of (B.10) is finite. Moreover, due to the nature of the random variables
involved, it can be concluded that the expectation in the same equation is bounded from below

by the case when the non-centrality parameter of the F-distribution becomes zero, or A, ,,=0
1
I < E [1og Ty (m.m)] (B.11)
where the left hand side of (B.10) is obtained from the mean (3.76) taken in a single bistatic
channel. In a similar manner boundaries for the second moment of the logarithm of the bistatic
GMLED threshold detector can be derived:

1
73 < E [(log Tgmn))?] < E [(Tamm — 1)°] (B.12)

The upper boundary in (B.12) comes from applying the logarithmic property (B.9); the lower
boundary is derived from the fact that £ [x2] >F [ac]2 where the bound on the variance aé( mon)
comes from (3.77). Combining (B.11),(B.10), and (B.12), it can be concluded that the variance
of the logarithm of the bistatic GMLED detector is also bounded from below and above by

certain finite bounds. The exact values of these bounds are not essential for the current proof
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and will therefore not be calculated
Ulzb < Ué‘(m,n) < U’?Lb (B.13)

The bounds in (B.13) are enough to conclude that for any arbitrary constant ¢>0

=0 (B.14)

since the lower bounds on the total multistatic variance O'é tends to infinity as the number of
transmitter-receiver pairs in the system tends to infinity. At this point the Chebyshev bound for

the variance of the natural logarithm of the bistatic GMLED

2
UG(m,n)

252
EO'G

P(“OgTG(m,n) - IUJG(m,n)’ = EUM) < (B.15)

becomes zero. This, combined with the fact that 11 (y,, ) is finite, proves the validity of Linde-

berg’s condition (B.8) for the natural logarithm of the multistatic GMLED.
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Multistatic Single Data Set Target Detection in
Unknown Coloured Gaussian Interference

Bogomil Shtarkalev
Institute for Digital Communications
School of Engineering and Electronics
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Abstract—This paper proposes a solution to the problem of
searching for a moving airborne target in unknown coloured
Gaussian interference. Traditional space-time adaptive processing
(STAP) approaches to this problem rely on the existence of a
training data set that helps build an estimate to the covari-
ance matrix of the background noise and interference. These
algorithms are thus labelled as two data set (TDS). In contrast,
the work in this paper focuses on single data set (SDS) STAP
detection that forms an estimate to the noise covariance matrix
without access to training data and without any assumptions
on the shape of the noise spectrum. Two such algorithms for
target detection are presented that operate in a multiple-input
multiple-output (MIMO) system of widely-spaced transmit and
receive antennas. These algorithms are proven to possess the
highly desirable constant false alarm rate (CFAR) property. It is
shown through simulations that the proposed SDS solutions are
comparable in their performance to the existing TDS solutions
to the same problem.

I. INTRODUCTION

Moving target detection in unknown correlated Gaussian
interference is a problem that has seen a number of improving
solutions over the years (see [1]-[8]). Traditional detection
algorithms require the aid of a target-free secondary training
data set and can thus be classified as two data set (TDS)
detectors [1], [2]. In recent years single data set (SDS)
algorithms that require no training data have been proposed as
improvements over the TDS methods (see [3]-[5]). A different
way of enhancing target detection that has gained popularity
is the use of multiple-input multiple-output (MIMO) systems
[6]. Its advantages are numerous: higher accuracy of target
localisation, higher detection rate, increased spatial and an-
gular diversity, increased resolution. Distributed TDS target
localisation methods have been proposed that combine the
benefits of traditional detectors with the availability of modern
MIMO radar systems ([7], [8]). These methods however still
suffer from the requirement of a target-free training data set.

In this paper two methods that combine the benefits of
widely-spaced MIMO radar systems and SDS moving target
detection in unknown coloured Gaussian noise are proposed.
The focus of the work is on the space-time adaptive pro-
cessing (STAP) technique which boosts radar performance
when dealing with ground clutter returns [9]. The relations
between the proposed multistatic SDS algorithms and the
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978-1-4673-5794-4/13/$31.00 ©2013 IEEE
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bistatic ones presented in [4], [5] are derived. It is shown
that the developed target detectors possess the constant false
alarm rate (CFAR) property. The behaviours of the proposed
methods is studied through numerical simulations in a scenario
involving a mixture of multiple transmit antennas and multiple
receive phased arrays. It is shown that the presented SDS
algorithms are comparable in performance to the existing mul-
tistatic TDS solutions to the same problem [7], [8]. Scenarios
involving different numbers of antennas are explored in order
to demonstrate the benefits of using a MIMO system.

The rest of this paper is organised as follows. Section II
formulates the problem and provides a background on some
of the existing target detection schemes. Sections III and IV
provide the derivations of the two multistatic radar algorithms
proposed in this paper. Section V contains the results of
the numerical simulations and a discussion of these results.
Section VI presents the conclusions drawn from the work.

II. BACKGROUND

Consider a MIMO array with M transmitters and N re-
ceivers that probe an area for the presence of a moving target.
Each receiver is subdivided into P sensors that collect K
observation snapshots &, i, k=1...K. The index {m,n}
signifies the path between the m™ transmitter and the n™
receiver. In this work these paths will be referred to as
“channels.” The observations in each channel are arranged
as columns in the matrix X, ,€CP*¥ . This work assumes
that pulse compression has been performed on the reflected
probing waveforms and focuses on slow-time processing. In
the context of STAP, the system searches for a reflection of a
probing signal with a spatial steering vector s,,,,_,,,e(CP><1 and
a temporal steering vector ¢, , €C**! in each channel. A de-
tection algorithm will decide between two possible hypotheses
for the origin of the observations

Ho: Xmn=Npn

Hy: X o = GmnSmatin + N
where o, , are complex magnitudes. The superscripts T,
%, and H used throughout this work indicate the transpose,

conjugate, and Hermitian transpose operators respectively. The
matrix N, , € C”*X is a combined term for the background

[€))
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noise and interference. It is assumed to be zero-mean circular
Gaussian with independent and identically distributed (iid)
columns 7y, ~ CNp(0,C,,p). The optimum STAP
CFAR threshold detector derived in [10] is given by
H -1 2
[$m.n ComnGmnl” B
— 2 Ymn @
Sip 7 CrinSmmn  Ho
and is known as the matched filter (MF). The term g,,, ,, is
the STAP coherent sample mean of the observation data
I = Xmntin (3)
where c is a normalising constant. Usually the noise covariance
matrix Cp, ,, is unknown. Traditional detection algorithms use
a secondary data set Z,,, with K, target-free observation
vectors to form a sample correlation matrix estimate:
N 1
Crin=—
mn = T
Using (4) in (2) to replace the covariance matrix gives the

adaptive matched filter (AMF) threshold detector [1]:
-1

Znn 2l @

m,n

H A 2
im0 CmnGmanl” 5
1 < Ymmn 5)

2 CrnSmn Ho
A slightly modified version of (5) is the well-known gener-
alised likelihood ratio test (GLRT) derived by Kelly [2]:
Hy

fony 2

o Cmndmall 2 n ©
Sg,ncnlmsmv" (1 + 97Hn.ncm,n9m,n) Ho
Assuming a non-homogeneous or non-stationary environment,
the training data Z,,, required by (5) and (6) has to be
constantly re-estimated to match the changes in the back-
ground interference. This creates a large data overhead and
may be difficult in a target-rich environment. These challenges
justify the rise in popularity of SDS algorithms that use data
only from the primary observations. One of the pioneering
algorithms in the field is the direct data domain (D?) approach
adapted to STAP in [3]. The D? is a deterministic algorithm
that utilises the knowledge of the spatio-temporal steering
vectors S,, , and t,, , for a given Doppler frequency fp to
perform target detection in a non-homogeneous environment.
Combining the same apriori knowledge of the shape of the
STAP received target signal with the idea of approximating
the optimal MF has lead to the development of statistical
SDS algorithms for target detection and estimation. These
approaches can form a sample correlation estimate as (4) only
through the observation data set X, , [4], [5], [11]. Such an
estimate was first derived in the development of the amplitude
and phase estimation (APES) filter in [12]

1

Quin = 7 Xmn X = G Binon ™

where g,,, , is the same as (3) with c=K 1. Through the usage

of (7), the maximum likelihood estimation detector (MLED)
was presented in [4] as the SDS counterpart of the AMF:

|8t QG

T -1 2 Ymn @®)
S Qi nSmn  Ho

s

m,n

It has been shown in the same reference that (7) is an unbiased
estimator of the noise and interference covariance matrix
C,.n. This explains the evident link between the form of
the TDS detector (5) and the SDS one (8). In a similar man-
ner the generalised maximum likelihood estimation detector
(GMLED) was derived as the SDS equivalent of (6) [11]:
fhn @uinGmn|” o, ©

$H Qs (14 95.,.Q ) 9) 0"
In addition to requiring no training data, the MLED and
GMLED algorithms have the benefit of being able to operate
in any environment without prior knowledge on the structure
of the background noise and interference. All they require is
prior information on the structure of the target signal which
in radar detection can easily be extrapolated from the form of
the transmitted probing waveform.

|s

III. MULTISTATIC MAXIMUM LIKELIHOOD ESTIMATION
DETECTOR

In this section the maximum likelihood (ML) multistatic so-
lution to the target detection problem is derived. The resulting
algorithm is similar to the one presented in [7] and [8] but does
not use training data. The channel-specific probability density
function (pdf) of each observed data matrix X, ,, conditioned
on the complex magnitude of the returned waveform a;y, , is
given by [5, p.121]

FXmnlomn) = (17 |Conl) e {C; MY

m,n=Ym,n

(10)

where M, , = S @k — Qi St (K) (@ —
QmonSmantmn (k). The dependence of the pdf on the
incoming Doppler frequency is omitted. This work assumes
that the geolocation-Doppler search space is discretised (e.g.
[13]) and focuses on the incoming data from a single bin
where the presence of a target is tested for. It is also assumed
that the covariance matrices of the interference C,,, are
known. Furthermore, the probing signals sent from each of the
transmit antennas are assumed to be ideally separable at the
receiver end, thus eliminating interference between transmit-
ters. This can be achieved by using additional modulation on
the transmitted pulses from the different probing antennas or
by keeping these pulses orthogonal in the frequency domain.
In this work | e | is the determinant, etr(e)=c™(*), and Tr(e)
is the trace of the matrix (e). In a MIMO system, assuming
that the background noise processes IN,, , are uncorrelated
to one another, the joint pdf of the complete set of obser-
vations X={X,, ,|m=1...M,n=1...N} given the set of
complex amplitudes a={a, ,/m=1...M,n=1...N} can be
represented by the product of the individual pdfs in (10). Let
the joint pdf of the observation signals under hypothesis Hy
from (1) be denoted as fo(X) and under Hy as f1(X). Then

—-K
fo(X)= (r“m’ﬂwcm,no etr {72 C;,an?,,,.,,} ()

m,n m,n

—-K
f(X)= <7rW’H\C,,,,.,,,\> etr {—Z C;ﬁnM‘;.n} 12)

m,n m,n
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where M?,m: Zf;l mrmn,kmﬁ,n.k The dependence of (12)
on the set « has been omitted for convenience. Equation
(12) is linearly separable in the logarithm. Therefore, taking
the derivative and minimising with respect to each individual
unknown parameter o, ,, will produce M x N ML solutions
for the complex amplitudes that are identical to the isolated
bistatic case in [4]

s clg

by gy = S mndmn (13)

$Ht.nCrnSm.n
This outcome is not unexpected and follows directly from
the assumptions made in this work that render the M xN
individual bistatic channels virtually independent. Note that
(13) is the amplitude estimate of the APES filter derived in
[12]. Forming the ML ratio of (12) and (11), the multistatic
MLED threshold detector is derived

max f1(X)

S T {7 ; ol (Mg, - M, ) } (14)

where M3, =51 (€, — G St (K)) (e —
(1,,L_,nsy,,,’,,,t,,m,,(k))H. The following relation from [5, p. 122]

M3, =My, ~ K gy 0

mn = m,n
N N H

K (G = GmnSmn) (Gmn = GmnSma)  (15)
is plugged in (14). Using the identity v Mv=Tr(Muvv')
for a vector v and matrix M, the ML multistatic threshold
detector is obtained for the case when the covariance matrices
of the background noise and interference C,, , are known

1 .

o Conin Gl 1

|s

m,n

Tup =) Gt 2
SmanCmnSmmn  Ho

(16)

mn

where 7 is the multistatic decision threshold. The T/ in (16)

is the multistatic MF detector analogous to the bistatic one in

(2). To obtain the multistatic MLED, the covariance matrices
C.n are replaced with their SDS estimates @Q,, ,, from (7)

SH —1 2 g

Ty = Z ‘ 7Y;InQ7riILgmn‘ 25

mn&mnSmmn  Ho

an

m.n
Note that the ML SDS solution (17) to the MIMO case
investigated in this work is a summation of the individual
single-antenna solutions for each path {m,n} in the system.
The linear separability of the multistatic detector in the sum
of the bistatic ones is in accordance with the prior assumption
that the individual transmit-receive channels are independent.
Because (17) is a sum of M x N bistatic detectors that have
the CFAR property (see [4]), it can be concluded that the
multistatic MLED detector also inherits this property. A benefit
of the form of the multistatic MLED detector derived here
is the fact that each individual receiver can perform target
estimation independently of its neighbours. The multistatic es-
timation is thus asynchronous which reduces the complexity of
implementing the algorithm. To make the detection decision,
the results from receivers can either be sent to a designated
fusion centre, or the decision variable can be transmitted and
updated between nodes in a round-robin fashion.

IV. MULTISTATIC GENERALISED MAXIMUM LIKELIHOOD
ESTIMATION DETECTOR

In this section the multistatic GMLED algorithm for SDS
detection is derived. The resulting solution is similar to the one
from [7] and [8] but does not require training data. The pdf
expressions for the set of observations X under hypotheses
Hy and H,; are the same as (11) and (12) respectively. In
the GMLED case, however, they are conditional on the set of
covariance matrices C={C, n,|m=1...M,n=1...N}. These
matrices are now considered to be unknown parameters which
will be estimated in a ML fashion from the expression of the
multistatic variable’s pdf. Because these expressions are once
again linearly separable (in the logarithm), the ML solution of
(11) and (12) with respect to all C', ,, parameters is equivalent
to the ML solutions for the individual likelihoods in (10). As
the bistatic case has been solved in [5, p.122], the maximised
multistatic pdfs take the following forms

—-K
max fo(X) = <(e7r>’”“"P II \M?,,,,,,\> (18)

K
max f1(X|a) = <<cﬂ>””” II \MM) (19)
m.n

Noting that once again the conditioned likelihood (19) can
be made linearly separable through taking the logarithm, the
maximisation of the expression can be achieved when each
of the individual terms | My, , | is minimised with respect to
the unknown complex amplitude «,, ,,. Once again due to the
channel independence assumption, the solution is the same as
the one provided in the bistatic GMLED derivation [5, p.122]:

. H -1
min [M5, ] = 1Q (1 + G QumnImon

B \85,,,Q;?1,,ym,nl2) 0
S8 Qi Smn

M, = 1Qunl 1+ 901 Q0Gmn) @D

Forming the ratio of the maximised likelihood functions (19)

and (18), the expression for the multistatic threshold detector

can be obtained
K

max f1(X) IT ‘M?n,n‘
a,C _ min 22)
max fo(X) [1 min |[M7, |

mon
Plugging in the relevant expressions for the determinants (20)
and (21) into (22) and forming the K™ root of the likelihood
ratio, the expression for the multistatic GMLED is obtained

L+g8 ,Qning g
R TP v @
sH Qulnsmn
where v is the multistatic decision threshold. The multistatic
GMLED (23) is a product of the bistatic solutions for each
path {m, n} in the system. Each of these bistatic detectors has
the CFAR property (see [5, p.61]). Therefore, the multistatic
GMLED threshold detector also possesses the CFAR property.

Ta= -
ma 14+gH QG —
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V. SIMULATION RESULTS

The multistatic MLED and GMLED algorithms were sim-
ulated and compared to their existing TDS counterparts,
the multistatic AMF and GLRT respectively [7], [8]. As a
benchmark, the multistatic MF from (16) was also simulated
to provide an upper bound for the performance of the other
four MIMO algorithms. Three antenna configurations were
simulated: (i) M =N=2 for a small network; (i) M =N=4 for
a medium-sized network; (iii) M =N=8 for a large network.
All transmit antennas and receive phased arrays are placed
around the target at a random angle. The magnitudes of the
returned pilots vy, ,, are also chosen at random from a complex
normal distribution CA/(0,1). The formula for obtaining the
Doppler frequencies of the returned pilots in the sense of
MIMO radar can be found in [14, p.194]. The size of the
receiver phased arrays is P=10 sensors, which is also the size
of the spatial steering vector in the STAP sense. To generate
the clutter in each channel, a filter is used to spatially colour
the columns of an additive white Gaussian noise (AWGN) term
of size Px K. The spectrum of the clutter exhibits low-pass
behaviour and is roughly shaped in accordance to the realistic
model discussed in [14, pp.293-322]. The simulations consist
of 10° Monte Carlo runs of each system for different signal-
to-noise ratio (SNR) values and depict the average probability
of detection P, for each case when the probability of false
alarm has been fixed to Py=10"2.

Probatiity of Detection Vs SNR, K=20, Kt=20

——MF ”
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—— GMLED
—AMF
GLRT

Probabilty of Detection

.
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30 25 20 -15
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Fig. 1. Probability of Detection vs SNR for Pf:lO’Q, K=K;=20

The results of the first set of simulations are found in fig.
1. The case when M =N =4 has not been shown on the figure
for clarity. The performance of the different transmit-receive
setups is studied for K'=K,;=2P. This case is often considered
marginal in terms of the samples available for obtaining a
sensible covariance matrix estimate of order P. The estimate,
however, is relatively poor. Therefore the fact that the MF
greatly outperforms all other algorithms in fig. 1 is anticipated.
As described in [5, pp 54-66] for the bistatic SDS detection
algorithms, for a low number of temporal samples K the
GMLED slightly outperforms the MLED. As K increases, the

performance of the two detectors becomes virtually identical.
This behaviour can also be observed in the multistatic MLED
and GMLED. It can also be seen on fig. 1 that the multistatic
MLED and GMLED algorithms perform slightly worse than
the multistatic AMF and GLRT respectively. The reason for
this is the fact that all threshold detectors intrinsically form
an estimate to the system SNR and then compare this number
to a predefined decision variable. The TDS algorithms use
K more observations than the SDS ones, and as a result the
SNR estimate of the former is more accurate. In the current
simulation the performance of the SDS algorithms is less than
0.5dB worse than that of their TDS counterparts which use
twice the observations. This proves that the performance of
the detection methods developed in this paper is comparable
to existing algorithms at the benefit of using less data that is
also much easier to obtain.

Probabilty of Detection Vs SNR, K=0, Kt=d0

o

—o—MF
MLED

——GMLED
AF
GLRT
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SNR [dB]

Fig. 2. Probability of Detection vs SNR for P/:lﬂ’z, K=K;=40

The results of the second set of simulations are found in
fig. 2. The STAP signal time frame as well as the number
of training data vectors are increased to K=K;=4P. This
causes an improvement in the covariance matrix estimation
in both the SDS (7) and the TDS (4) case. Therefore the
curves for the covariance estimation algorithms are much
closer to their theoretical MF upper bounds. In addition all
detectors on fig. 2 perform better than their counterparts in
fig. 1 which further reflects the improvement in performance as
the number of observations increases. As expected, the curves
for the multistatic MLED and GMLED algorithms become
almost identical as K increases. In addition, the difference in
performance between the TDS and SDS detectors becomes
marginally small in this case. This goes to show that the
AMF and GLRT do not use all the observation data that is
available to them in an optimal manner. The training data
is used solely for covariance estimation, while the primary
observations are used for obtaining estimates to the amplitudes
of the reflected pilot signals &y, . The MLED and GMLED
use a single observation data set to do both of these tasks,
which proves that the primary K vectors can aid the secondary
K ones when it comes to TDS covariance estimation. Such
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a hybrid SDS/TDS detector has been proposed in [15] in the
bistatic case. A more in-depth mathematical discussion on the
performance of the bistatic SDS and TDS algorithms for large
observation data sets is provided in [5, pp 66] and can be
extended to the multistatic case examined in this paper.

Probability of Detection Vs Network Size, K=40 SNR=-33cB

Probability of Detection

002 L I i L i L
10 20 30 40 50 B0

Metwork Size

Fig. 3. Probability of Detection vs Network Size for szl[)’z. K=40,
SNR=-33dB

In addition to the previous analysis, a simulation inves-
tigating in more detail the benefits of MIMO radar has
been conducted. The results are shown in fig. 3 and depict
the performance gain of the detection system as additional
antennas are introduced. The network size is represented by the
total numbers of independent bistatic channels M XV between
the individual transmitters and receivers. At a fixed SNR of
—33dB and probability of false alarm P;=102, the detection
probability of the radar network is shown. The results are
averaged over 64 networks with randomly placed transmit-
receive pairs. As it can be seen on fig. 3, the performance gains
have a roughly logarithmic behaviour with the increased net-
work size. This phenomenon could be explain by the fact that
the benefits from the diversity that an additional independent
bistatic channel provides are relative to the diversity provided
by the number of already existing channels. This result is
important in a real-life implementation of the system where a
smaller network may be more cost-effective and thus preferred
over a larger antenna array. It also shows that choosing the
slightly more complex GMLED detection algorithm over the
MLED one may be a more desirable solution than adding extra
antennas in the system when certain performance is targeted.

VI. CONCLUSION

In this paper two SDS multistatic STAP algorithms for
moving target detection in coloured Gaussian noise have been
proposed. The detectors use a ML covariance estimation to op-
timally combine the results from a number of transmit-receive
pairs of devices in a widely-spaced MIMO radar system and
decide on the presence of a target. It has been shown that the
proposed algorithms possess the highly desirable CFAR prop-
erty. Numerical simulations have been conducted in order to

demonstrate how the choice of the different system parameters
influences the operation of the detectors. Furthermore, through
these simulations it has been shown that the proposed multi-
static SDS algorithms have a comparable performance to the
existing multistatic TDS detectors while requiring significantly
less observations. The practical difficulty of obtaining target-
free training data from the nowadays target-rich environment
has also been eliminated.
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Effects of FDMA/TDMA Orthogonality on the
Gaussian Pulse Train MIMO Ambiguity Function

Bogomil Shtarkalev and Bernard Mulgrew, Fellow, IEEE

Abstract—As multiple-input multiple-output (MIMO) radar
gains popularity, more efficient and better-performing detection
algorithms are developed to exploit the benefits of having more
transmitters and receivers. Many of these algorithms are based
on the assumption that the multiple waveforms used for target
scanning are orthogonal to each other in fast time. It has been
shown that this assumption can limit the practical detector per-
formance due to the reduction of the area that is clear of sidelobes
in the MIMO radar ambiguity function. In this work it is shown
that using the same waveform with a different carrier frequency
and/or delay across different transmitters ensures relative wave-
form orthogonality while alleviating the negative effects on the
ambiguity function. This is demonstrated in a practical scenario
where the probing waveforms consist of Gaussian pulse trains
(GPTs) separated in frequency. An approximate theoretical model
of the ambiguity is proposed and it is shown that the effects of
cross-ambiguity in the MIMO system are negligible compared to
the waveform autoambiguities.

Index Terms—Ambiguity function, Gaussian approximation,
Gaussian pulse waveforms, MIMO radar.

I. INTRODUCTION

ULTIPLE-INPUT MULTIPLE-OUTPUT (MIMO)

radar with widely-separated antennas is a widespread
research area that has gained an increasing popularity over the
past decade. The advantages of using multiple transmitters and
receivers are numerous: higher accuracy of target localisation,
higher detection rate, increased spatial and angular diversity,
increased resolution [1]-[6]. Many algorithms have been
proposed in the past that in theory provide very promising per-
formance gains for larger MIMO radar networks [1]-[6]. It has
been shown in theory [7] and practice [8] that these algorithms
often ignore the limiting factor of the MIMO ambiguity func-
tion. These effects can degrade the performance of a radar setup
that uses a number of orthogonal waveforms in fast time. In a
MIMO scenario, the maximum area in the ambiguity function
that can be cleared of sidelobes gets proportionally smaller as
the number of such waveforms increases [7], [8]. That lowers
the effective signal-to-interference and noise ratio (SINR)
which in turn degrades the overall detection performance.
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In this work it will be shown that in a widely-spaced MIMO
radar system the limiting factors of the ambiguity function can
be alleviated if the transmitted waveforms are separated in time
and/or frequency. The concept is identical to frequency-divi-
sion multiple access (FDMA) and time-division multiple ac-
cess (TDMA) in wireless communication [9]. If the radar pulses
are band-limited to sufficiently separated bands, the cross-ambi-
guity contributions to the total MIMO ambiguity are negligible.
The effects have been demonstrated for a Gaussian pulse train
(GPT) waveform with no delays and small Doppler shifts. An
approximation to the ratio of cross-to-auto-ambiguity has been
derived and simulated for the case investigated in this work. The
benefits of the proposed methods come at the price of an in-
creased bandwidth or delay in the MIMO radar system. While
the derivations are performed for GPTs for convenience, guide-
lines for extending the approach to a wider variety of waveforms
are discussed.

The rest of this paper is organized as follows. Section II pro-
vides a description of the ambiguity function and introduces the
ambiguity of an infinite GPT. Section III derives the autoambi-
guity of a finite GPT, and Section IV derives the cross-ambiguity
between two FDMA-orthogonal GPTs. In Section V the volume
ratio of cross-to-autoambiguity is introduced as a metric for in-
terference between waveforms. A Gaussian approximation to
the Fejér kernel is proposed in order to derive a theoretical ex-
pression for the volume ratio of the GPT. Section VI demon-
strates the viability of the proposed approximation and shows
that the cross-ambiguity terms in the MIMO ambiguity func-
tion can be effectively ignored.

II. BACKGROUND

Woodward’s ambiguity function of a continuous narrowband
signal u(t) is defined as [10], [11]

alt, f) = / U (T - %1‘) u’ (T+ %1‘) e 2 T dr (1)

o0
where the subscript * denotes the complex conjugate. At f =0
the integral (1) reduces to the standard time-domain autocorre-
lation function of «(#). A waveform with a well-known ambi-
guity function is the Gaussian pulse (GP)

1
20\ * 2
<?> exp {7at }

where the parameter « is related to the standard deviation o and
thus the width of the GP.

uy(t) = @

1
T 9202

(€)]
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The ambiguity of the GP is a two-dimensional Gaussian func-
tion extending in time and frequency [10], [11]

ay(t, f) =exp <7%at2> exp (77r;{2> “)

A radar waveform consists of multiple pulses. To obtain the am-
biguity function of a GPT, the following property can be used: if
two waveforms are convolved in time, their ambiguity functions
are convolved in time [10]. An infinite GPT is the convolution
of a GP and a train of Dirac delta functions

oc

us(ty=  6(t—kR) ®)
k=—o00
spaced at a distance R. The ambiguity function of (5) takes the
well-known “bed of nails” form [10, pp.6-8]

as(t, f) = ZZ §(t — nRYS(f — m/R) ©6)
The ambiguity function of an infinite GPT will be the convolu-
tion of (4) and (6) along the time axis. The spacing I? is equal
to the length of each GP, which this work defines as 6 times its
standard deviation . Plugging this into (3) results in
18
= ™

The ambiguity function of the infinite GPT consists of shifted
copies of (4) in time at ¥ = nl? sampled along frequency at
J/ = mR~!. The waveform is reminiscent of a “bed of razors”
which are infinitely long and infinitesimally wide.

43

III. FINITE GAUSSIAN PULSE TRAIN AMBIGUITY

In a real scenario a radar transmits a finite number of pulses.
Consider a GPT of K consecutive GPs. It is the convolution of
(2) and a train of K equally-spaced Dirac delta functions.

K-1

ugs(t) = % Z 6t — kR) ®
b=0

The normalising constant in (8) ensures that the energy in the
waveform remains unity. The ambiguity function of (8) can be
calculated through direct evaluation of the integral in (1). The
result is a symmetric sum of Dirac delta functions along the time
axis and a sum of exponentials along frequency

1 0 K4p—1 ]
ags(t, f) = % Z 8(t — pR) Z R
p=-K+1 k=0
1 K-1 K-1
+4 > 6(t—pR) Y e TR ©9)
p=1 k=p

To facilitate the analysis, define the following expression

sin(mnz)

Dy (x) = (10)

sin(w)

which is a special case of the Dirichlet kernel function. The
formula for a geometric series of exponentials is

K-1
Z ¢ P2TIRR — Dy (fR)e Jnf(K-1R (11)
k=0
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The volume of the ambiguity function in a given area is used
as a measure of waveform orthogonality in MIMO radar detec-
tion [7]. Thus it can limit the performance of MIMO radar. The
normalized ambiguity of the finite GPT is obtained after con-
volving (4) and (9) in time and through using (11)

p el

oyt D=2 2
h=—K+1

(yg(t — kR, f)‘DKf\k\(fR)‘

(12)
As the number of pulses K approaches infinity, the Dirichlet
kernel (10) becomes an arbitrarily close approximation to an in-
finite Dirac delta train in frequency, and the ambiguity function
takes the form described at the end of Section II. The volume of
the ambiguity function cx(#, f) in a region A is

v = [late Pt (13)
%

Due to the shape of «,(#, f) and since the distance It is equal
to 60, the cross-terms when squaring the right hand side of (12)
involve Gaussian tails and can be ignored. Thus the following
approximation can be made

K-1
oy (t, )P = e Z gt — kR [V Fg ([ 1)
E=—K+1
. . (14)
F, () is the Fejér kernel defined here as (10) squared.
. 2
s (wnx
F(e) = o) (15)
sin ()

Essentially (14) ignores the tail contributions from neigh-
bouring GPs to the peaks centred around ¢ = £R. The volume
of the ambiguity of the GPT in an area A around the origin is

R = 2 3 [entt— bR D2 E (SR (16
L

The limits of the sum in (16) have been omitted. Usually the
aim is to make the volume as close to the ideal case V(A4) =
§(t)8( f) as possible, and thus small regions A around the origin
are considered. The contribution to such a region will come from
no more than the set & € {—1,0,1} in (16).

IV. WAVEFORM CROSS-AMBIGUITY IN A MULTIPLE
ACCESS MIMO SCENARIO

The waveforms in a MIMO radar scenario are usually con-
sidered orthogonal and ideally separable [1]-[5]. In reality this
is not achievable; however, there are transmission schemes sim-
ilar to FDMA and TDMA which result in low cross-correlation
waveforms. Thus the waveforms are “orthogonal” in frequency
or time. Consider the GP (2) and an interferer separated in fre-
quency by an offset /A and in time by (A

1
U (7‘) = (@> ! (:’”’(t’M)z e 2T fat

T

a7

The duration and bandwidth of (2) and (17) are the same. The
cross-ambiguity between the two waveforms is defined as

T 1 Ty
xs(4, )= / thy (7 - ;/) ul (TO + 5/) e PETar (18)
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One can either solve the integral (18) or use the fact that the
pulse (17) is (2) convolved in time with §(f — /A ) and in fre-
quency with 6(f — fa) to obtain the cross-ambiguity

2 ;N2
aaltfl=e # o <%> oo (—w)
19)

2a
where ¢ is a time-frequency phase term. As expected, (19) is
simply a shifted version of (4) in time and frequency.

[xg(t, £) = lag(t — ta. f = fa)l

For simplicity it is assumed that each GPT contains A pulses.
Following the approach in Section III, the normalized cross-
ambiguity of two GPTs offset in time and frequency is

(20

K-1

1
:FZ

k=—K+1

|XT\"!;(t: )l ‘X!/(f - kR, f)DA'—Uv ((f = fa)0)|

21)

The approximation to the squared magnitude is once again
K-

> Ixelt— kR DP Fro (S~ JaR)

=K1
(22)
The formula for the volume of (22) is the same as (16) with
the area A centred around (¢a, fa) instead of (0,0). The Fejér
kernel is 1/ R-periodic. Thus most of the volume of (22) is con-
tained around the points (kR — ta,n/R — [A) where n is an
integer and 4 is within the limits given in the sums above.

\Xlw(f-/')\zng

V. AMBIGUITY VOLUME RATION IN A MULTIPLE
ACCESS MIMO SCENARIO

A. Volume Ratio in an FDMA Scenario

The aim of orthogonal waveform design is to reduce the
volume of the cross-ambiguity (22) around the origin. The
worst-case scenario is when the waveforms are offset by a
multiple of R in time and 1/R in frequency. The bandwidth of
the GP (2) can be obtained through its Fourier transform

’2F2H2 }

0= (2) e {175

If the 6 width rule is also applied to (23), the double-sided
width of the spectrum of a GP is
18 - 6
" 7R R
This is 6 times the rule of thumb By ~ 1/R but renders
the spectrum of the GP practically band-limited. Under this as-
sumption, the width of the spectrum of a GPT will not exceed
(24). In an FDMA system the channel separation will usually be
at least equal to the channel width. Therefore one can assume
fa > DBw. Also assume that the Doppler shifts of the wave-
forms are small relative to their bandwidths to eliminate inter-
channel interference. The 6¢ width of the ambiguity |a,(f. £)|?
in frequency is also /3. The worst-case scenario is fa = 6/R,
where also the Fejér kernel peaks.
An FDMA system is considered here, but the results can be
extended to TDMA. Thus it is assumed that no time delays be-
tween waveforms occur (fa = 0). In a MIMO system with M

(23)

Bw (24)
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transmitters and N receivers the total ambiguity is defined as
the sum of all channel cross- and auto-ambiguities [7], [12]

M N
Ixarn(t, I = Z Z X (. £

m=1n=1

(25)

The aim to reduce cross-ambiguities means that (25) can reduce
to the sum of autoambiguities. Thus in this work the volume
ratio between the cross- and auto-ambiguity of waveforms is
introduced as a measure of self-interference in MIMO radar.
The volume ratio is investigated in a small rectangular region
A around the origin where only the £ = 0 terms contribute
significantly. The volume ratio reduces to

 Jew (SR Fe((f - £ R

T Jee(-RE) Uy

since the integral with respect to time is the same in the nu-
merator and denominator. The integration of multiplications of
Gaussian and sinusoid functions in (26) can only be done nu-
merically. A theoretical result could be obtained if the Fejér
kernel is approximated by a Gaussian function.

B. Fejér Kernel Gaussian Approximation

The Fejér kernel in (15) is a 1/ R-periodic non-negative func-
tion. Consider one period of (15) centred around the origin. It
takes the form of a rapidly decaying oscillation where the first
zero-crossing is at f = £1/n. The mainlobe of the Fejér kernel
can thus be approximated by a Gaussian with a 60 width of
2/n. Consider the Fejér kernel from (26). The signal is scaled
by I? and shifted by fa. The periodicity of the kernel will be
represented in the approximation as an infinite sum of Gaussian
functions. The approximation is therefore

27
Plugging (27) in (26), the expression inside the integral is a gunz
of products of two Gaussian functions. Each of these products
is Gaussian with mean y.(n) and variance o2[13]

He(n) = fa + 1y(n)(28)
tip(n) = 9K Ro2n(29)

- 9

¢ RY(3K)2 + m2)
where f¢,(n) are the means in the denominator of (26). Con-
sider a rectangular symmetric region around the origin {|{| <
ty. | f| < fo}. Forty, < R/2 only the ambiguity around & = 0
is considered. The volume ratio approximation is shown in

5 f o (FU )y (7)o

vit= " Z
w2 p (n
v df

2 J o (o (-
Sexp ( ”2“5<n)) [er[ (fw;i(n)) erl (7 " 75‘;(")”

(30)

n—fy
N > exp ( “2"3(")) [er[ (f”(’r'f(")) —erl ( & ’:"’("))]
' (1)
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where each contributing factor along the frequency axis is
scaled accordingly. The sum over the integer » in (31) repre-
sents the contributions of the different Gaussian shapes along
the frequency axis to the volume in the area A. As usually this
area of interest is small, only a few of the contributors around
n = (} are enough to represent the whole sum.

VI. SIMULATIONS

A small MIMO radar system with two FDMA-orthogonal
GPT waveforms has been simulated. The length of each indi-
vidual GP is R = 2ms, and the bandwidth is By = 3kHz.
The worst-case scenario of fa = 3kHz is investigated. Fig. 1
shows an example of a GPT ambiguity (12) at ¢ = 0 along-
side its approximation (14) with the Gaussian model (27) for
the Fejér kernel. Due to the nature of the fitting described in
Section V-B, the model predicts the behaviour of the ambiguity
well at the mainlobes of the Fejér kernel. All sidelobes outside
the mainlobes, however, are ignored by the model. Thus it is
expected for the approximate model of the volume ratio (31)
to also best match the theoretical values around the peaks of
the Fejér kernel. This can be seen in the results in Fig. 2 where
the theoretical and actual volume ratios are shown for GPTs of
K = 4 and K = 40 pulses. The simulated volume ratio (26)
is calculated through numeric integration in a rectangular area
A bounded by %, = 1ms. The bound in frequency f; is varied
along the x-axis in Fig. 2. As predicted, the theoretical model
closely approximates the volume ratio (26) around the points
n/ R where the Fejér kernel peaks. Between the mainlobes the
theoretical model underestimates the volume ratio since it ig-
nores the sidelobes. The general behaviour of the volume ratio
is relatively well predicted through the proposed estimator (31)
which does not involve numeric integration. The results in Fig. 2
show that the volume of the cross-ambiguity function in a rect-
angular area centred at the origin of the range-Doppler space is
at least 40d B lower than the volume of the autoambiguity in the
same area. Therefore in the system (25) with M transmitters and
N receivers, the total ambiguity can be approximated as strictly
the sum of the autoambiguities

M

[xarn(t, f)lz ~ Z [Xrmm (t, f)‘z

m=1

(32)

This reflects the waveform orthogonality achieved through
FDMA. The tradeoff is the increased bandwidth of the system
used by the additional channels. A MIMO system of M orthog-
onal waveforms requires a bandwidth of M Byy . This limits the
FDMA waveform design to small radar networks.

The analysis in this work is performed on GPTs for conve-
nience. Note that the approximations (14) and (22) hold for any
pulse with ambiguity «(¢, ) that can be neglected outside of
a region R along the time axis. However, one must ensure the
spacing between pulses in (8) is also greater than R. If the pulses
forming a waveform meet these conditions, the autoambiguity
at the origin and around fa as well as the Fejér kernel weights
at those points can be used as a rough estimate of the behaviour
of the waveform volume ratio. Note that the Gaussian approx-
imation to the Fejér kernel (27) is independent of the shape of
the transmitted waveforms.

IEEE SIGNAL PROCESSING LETTERS, VOL. 22, NO. 2, FEBRUARY 2015

Fig. 1. Autoambiguity of a 5-pulse waveform at t = 0 with Gaussian approx-
imation to the Fejér kernel.

Fig. 2. Volume ratio of cross-ambiguity to autoambiguity in a rectangular re-
gion A for FDMA-orthogonal radar waveforms.

VII. CONCLUSION

In this work the volume of the ambiguity and cross-ambiguity
function of GPT waveforms separated in frequency has been
analyzed. The waveforms could be but are not limited to pilots
in an FDMA MIMO radar scenario where through increase of
bandwidth, interference between different transmitters is min-
imized. A theoretical model for the volume ratio of the cross-
and auto-ambiguity functions is proposed that is inexpensive in
terms of processing power and can predict the amount of in-
terference between waveforms in the Doppler-range ambiguity
space. Through this model it is demonstrated that if channels
in an FDMA MIMO radar scenario are sufficiently separated in
frequency, virtually no interference between transmitters occurs
in the MIMO ambiguity function.
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One of the main interferers for a Doppler radar has always been the radar's own signal
being reflected off the surroundings. This creates the problem of searching for a target in a
coloured noise and interference environment. Traditional space-time adaptive processing
(STAP) deals with the problem by using target-free training data to study this environ-
ment and build its characteristic covariance matrix. The maximum likelihood estimation
detector (MLED) and its generalised counterpart (GMLED) are two reduced-rank STAP
algorithms that eliminate the need for training data when mapping the statistics of the
background interference. In this work the MLED and GMLED solutions to a multistatic
scenario are derived. A hybrid multiple-input multiple-output (MIMO) system where each
receiver is a coherent STAP radar has been employed. The focus of the work is the spatial
diversity provided by the wide separation of the individual transmitter and receiver
platforms. It is proven that this configuration does not affect the constant false alarm rate
(CFAR) property of the bistatic radar case. A Gaussian approximation to the statistics of the
multistatic algorithms is derived in order to provide a more in-depth analysis. The
viability of the theoretical models and their approximations are tested against a numerical
simulation.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

the strongest interferers for Doppler radar. In the MIMO
case this is likely to cause an even more significant

Multiple-input multiple-output (MIMO) radar with
widely separated antennas has gained an increasing popu-
larity over the past decade. The advantages of using
multiple transmitters and receivers are numerous: higher
accuracy of target localisation, higher detection rate under
a certain false alarm probability, increased spatial and
angular diversity, increased resolution [1-8]. All the ben-
efits come at the cost of the additional elements in the
system and the higher processing power that is required to
obtain and utilise their observations. Apart from deliberate
jamming techniques, ground clutter reflections are usually

* Corresponding author. Tel.: +44 131 6505655.
E-mail addresses: b.shtarkalev@ed.ac.uk (B. Shtarkalev),
b.mulgrew@ed.ac.uk (B. Mulgrew).
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0165-1684/© 2015 Elsevier B.V. All rights reserved.

128

problem due to the additional probing signals and their
reflections present in the system. A well-known limitation
of MIMO radar with fast-time orthogonal waveforms is the
reduction of the region clear of sidelobes in the total
ambiguity function [9,10]. This phenomenon has the
potential to degrade the expected theoretical performance
of a MIMO detector.

In this paper two single data set (SDS) [11-22,8] MIMO
algorithms for target detection in coloured Gaussian clut-
ter are presented. The strength of the algorithms is that
they require neither prior knowledge of the spectral
support or power of the background interference as in
[18] nor access to secondary data as in [23-26] and thus
can operate blindly in any environment. Moreover, in a
heterogeneous environment there is no secondary data for
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covariance estimation, thus leaving SDS detection as the
only viable option.

Each receiver platform in the proposed algorithms
operates coherently using the space-time adaptive proces-
sing (STAP) technique which boosts radar performance
when dealing with ground clutter returns [27]. However,
the main focus of this work is not on the coherent
processing at each unit but rather on the cooperation
between multiple widely spaced transmitters and STAP
receivers as in [5]. Thus the maximum likelihood (ML)
estimation and detection of a single target in such a
multistatic scenario is derived where the whole radar
network reaches a joint detection decision.

The proposed algorithms draw multiple low-rank snap-
shots from the observations of each STAP range gate. This
greatly reduces the computational load associated with
estimating and inverting the full STAP interference corre-
lation matrix. Further rank-reduction of the algorithm can
be achieved through the subspace projection methods
proposed in [21,22].

The main contribution of this paper is the derivation of
an approximate model for the statistics of the proposed
MIMO detection algorithms. Extensive statistical analysis
of the bistatic case has been derived and presented in
[14,12,15]. As discussed in [23-26], the challenges asso-
ciated with the theoretical analysis of mono/bistatic target
detectors are compounded in multistatic widely spaced
MIMO. Even when the individual bistatic paths (or chan-
nels) are mutually independent, it is unlikely that the
corresponding general multistatic solutions exist in closed
form [23-26,20]. In [24,26] a specific closed-form expres-
sion is provided for the pdf of a multistatic detector when
no target is present in the system, and thus the multistatic
probability of false alarm is derived. However, the corre-
sponding derivation for the pdf and detection probability
in the presence of targets is a problem of higher complex-
ity that has not been solved. In this paper a methodology is
proposed for deriving approximate expressions for prob-
ability of false alarm and detection for widely spaced
MIMO systems. The methodology is illustrated in detail
for the proposed SDS algorithms and could easily Fbe
extended to the theoretical analysis of other multistatic
target detectors such as [23-26]. The key to obtaining the
approximations is the application of the central limit
theorem (CLT), or more precisely Lindeberg's condition
[28, p. 307], to the summation of bistatic detectors. This
approximation enables the link between the radar opera-
tional parameters and the probabilities of detection and
false alarm to be made.

The performance of the proposed detectors and the
validity of the approximate statistical analysis are tested. It
has been shown that the proposed detectors exhibit the
highly desirable constant false alarm rate (CFAR) property.
The two target detection algorithms have been simulated
in a scenario involving a mixture of multiple transmit
antennas and multiple receive phased arrays. A number of
numerical tests have been performed that validate the
approximate statistical analysis of the algorithms pro-
posed in this paper. The advantages of the MIMO system
with the increasing number of antennas in terms of
detection probabilities are shown in the results.

Section 2 of this paper states the problem and assump-
tions of this work and provides a brief background on the
most widely used target detection schemes currently
available. Sections 3 and 4 provide the derivations of the
two multistatic SDS radar detection algorithms proposed
in this paper. Section 5 contains the statistical analysis of
the detectors, the proposed Gaussian approximations.
Section 6 contains the results of the numerical simulations
and a discussion of these results. Section 7 presents the
conclusions drawn from the work.

2. Problem formulation and background

This work focuses on widely separated (multistatic)
radar detection, sometimes referred to as statistical MIMO
radar. Consider a setup consisting of M transmit antennas
and N receive arrays that probe an area for the presence of
a moving target. Each array consists of Pr closely spaced
elements that can perform coherent processing and STAP
detection. However, as coherent processing is not the main
focus of this work, each array is considered as a single unit,
and the aim is to combine the detection capabilities of
multiple widely separated such units. For simplicity and
without loss of generality the receivers are assumed to be
uniform linear arrays (ULA). Therefore each transmit—
receive pair here forms a standard bistatic STAP system;
this setup is often referred to as a single-input multiple-
output (SIMO) coherent radar [29,30]. The term MIMO
here is reserved for a multistatic setup (Fig. 1) and refers to
non-coherent processing of a number of widely spaced
STAP phased array receivers. Each of the ULA units collects
Kr slow-time pulses per STAP range gate. A sliding window
over the observation samples is used to produce K snap-
shots containing independent clutter observations, each
one consisting of a total of P spatio-temporal samples
(Fig. 2 top). The values of K and P can be arbitrary and
chosen to suit a specific radar setup and clutter conditions,
e.g. in clutter with heavy correlation, the sliding window
can skip over samples and trade available data for estima-
tion accuracy, the window can contain more than once
slow-time pulse or only a part of a slow time pulse, etc.

Once obtained from the sliding window, the snapshots
are vectorised by stacking their columns on top of each
other and labelled as Xy, k=1...K. The index {m,n}
signifies the path between the mth transmitter and the nth
receiver. Throughout this work these different bistatic
paths will be referred to as “channels.” Let the observation
vectors be arranged as the columns of the observation
matrix Xpm, (Fig. 2 bottom). If the complex amplitude of
the returned signal in a channel is ap,, the signal model
for the observations in each individual bistatic STAP
channel is the following:

Xnn= am‘nsm,nt;)n +Nmn (1)

The superscript T indicates the transpose operator. The
vectors Sy, and tr,, ; will be referred to as the spatial steering
and the temporal steering vector respectively, and the matrix
Ny, is a combined term for the noise and interference in
each channel. The spatial steering vector sy, € C™! is the
template that the returned signal produces in each observa-
tion snapshot. It depends on the Doppler frequency of the
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Fig. 1. Example of a 2-transmitter 2-receiver MIMO system.
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Fig. 2. Extracting snapshots containing iid clutter contributions with a sliding window over the STAP range gate (top) and vectorising them to produce the
observation matrix Xp, (bottom).
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incoming signal as well as the receiver ULA geometry and
orientation. The temporal steering vector tpm, € cf1 indi-
cates the complex phase relations between the K individual
observation snapshots [12-16].

As already mentioned, the observation snapshots in (1)
are obtained from windowing and rearranging the STAP
samples of the cell under test (CUT) such that their clutter
contributions are independent. This can be achieved through
the choice of snapshots size P and snapshot number K
parameters. It is likely that in reality some residual correla-
tion between snapshot clutter will remain, but this will be
neglected for the purpose of derivation in this work. There-
fore the columns of the noise and interference matrix are
assumed to be independent and identically distributed (iid)
complex zero-mean Gaussian M, ~ CNp(0,Cp ), each
with a different autocorrelation matrix Cp, . The interference
from channel to channel is also assumed to be independent.
Because the snapshots size P is significantly smaller than the
total number of observations in the CUT, the STAP signal
model used here reduces the size of the correlation matrix
that is estimated [31].

In addition to the interference, the pulses coming from the
different transmitters in the system are also assumed to be
nearly orthogonal to each other (low cross-correlation). A
well-documented problem that arises from the simultaneous
transmission of M ideal orthogonal waveforms at the same
time and on the same bandwidth is the reduction of the clear
region in the range-Doppler MIMO ambiguity function by a
factor of M [9,10]. At the expense of additional bandwidth or
delay, this problem can be alleviated by utilising time division
multiple access (TDMA) or a frequency division multiple
access (FDMA) methods for providing low cross-correlation
between different transmit waveforms. As demonstrated in
[32], such schemes result in negligible inter-channel inter-
ference between the different waveforms in the multistatic
radar scenario. These additional resources are traded for the
spatial diversity that MIMO radar provides in target detection.
Finally, this paper assumes that the range-Doppler search
space has been discretised (e.g. [33]), and the proposed
detectors operate on each separate bin of the grid. Thus in
the derivations that follow the Doppler frequencies f?n_" and
the array spatial response frequencies f; 5"‘1",, are assumed to be
known as they come from a specific range-Doppler CUT.

For the time being consider the signal model in (1) and
only a single channel. Thus the index {m,n} will be
dropped for convenience for now. A bistatic STAP detec-
tion algorithm receives the observations X and decides
between two hypotheses for their origin

Ho:X=N
Hy:X =ast’ +N 2)
The optimum STAP pre-detection filter derived in [34] and
normalised to exhibit the CFAR property is
_C's
“sHe s
which is also known as the matched filter (MF). The
superscript H indicates the Hermitian transpose. In a STAP
system this filter is applied to the K individual observation

snapshots, and the results are combined in the post-
processing phase. A more efficient method is to combine

3

the observations in the pre-detection stage in the case of
iid data. The amplitude and phase estimation (APES) filter
presented in [35] proposes the STAP coherent sample
mean vector for the observation data that can perform
this task given the current observation model (1)

g= X @

It is assumed that the 2-norm of the temporal steering vector
is |t|>=K, and the superscript #* signifies the complex
conjugate operator. Eq. (4) can also be seen as a narrow
filtering operation that maximises the response to a certain
space-time steering vector t . The weighted output w''g is
then used in a power threshold-comparison scheme in order
to choose the more viable hypothesis from which the
observations originated:
isHC g2 H
SHC s m’ ©)
Usually the covariance matrix C of the noise and interference
is not known. Traditional sample matrix inversion (SMI)
detection algorithms have assumed the availability of a
secondary data set Z consisting of K; target-free observation
vectors of size C™! from which the sample covariance
matrix estimate can be built:
c=lzz ©6)
K¢
Using (6) in (3) to replace the covariance matrix gives the
adaptive matched filter (AMF) threshold detector [36]:

1
s"C g H

——1 <Y
sHC s Ho

Assuming that the covariance matrix C is unknown from the

start and minimising over it in the process, Kelly derived his
generalised likelihood ratio test (GLRT) [37]:

7

~-1
Is"C g’ th

~1 . -1 < 8)
sHC 's(1+gHC g)Ho

Because these algorithms rely on the availability of a second-
ary training data set, they are commonly known as two-data
set (TDS) detectors [37,36]. In recent years SDS detection
algorithms have gained an increasing popularity [11-22]. The
reason for that is the fact that in a non-homogeneous or non-
stationary environment the observation-free training data Z
required by traditional algorithms needs to be constantly re-
estimated to match the changes in the background noise and
interference. This creates a large data overhead, and given the
ever-increasing air traffic nowadays, continuously obtaining
target-free training observations may become difficult. With
an SDS of observations X, a system can construct a sample
correlation estimate of the data in the same manner as (6):

R= %xx” €
Under Hy the matrix (9) is an estimate to the central noise
covariance matrix € similar to (6), while under H; it is a non-
central estimate of C offset by the additional contribution
|a>ss" from the target. The APES filter [35] shown in (10) can
be used to derive an SDS estimate to the central noise
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covariance matrix from (9)

—1

wies - QS 10)
sHQ 's

Q=R-gg" an

The sample covariance estimate (11) was utilised in the
development of the maximum likelihood estimation detector
(MLED) in [12], which is the SDS counterpart of the AMF
detector:

HO g2 H
Is HQ _ 1g\ 2,
sHQ ™ 's H,
The generalised maximum likelihood estimation detector
(GMLED) is also derived as the natural SDS counterpart to

Kelly's GLRT [14, pp. 54-57, 12,15]:

Is"Q g
$'Q 's(1+g"Q g
Both (12) and (13) are SDS threshold detection algorithms that
are based on statistical modelling of the noise and interfer-
ence through covariance estimation. A different algorithm that
combines SDS and TDS detection is proposed in [16]. It
exploits the benefits of both detection methods but still relies
on forming an estimate to the statistics of the background
noise and interference. A different approach of dealing with
target detection in non-homogeneous environment is pre-
sented in [18]. It derives an SDS projection-based MIMO
solution to the problem while avoiding the need to do any
statistical analysis of the environment. The shortcoming of
these methods is that prior information about the structure
and spectral range of the clutter has to exist. The MLED and
GMLED algorithms operate without any such prior knowl-
edge. A comparison of the hybrid SMI, the TDS SMI, and the
projections approaches has been conducted in [38]. The
subspace approach has been further developed to incorporate
the autoregressive clutter model from [17] in a MIMO
projection-based scenario [20].

12)

Hy
>

(13)

3. Multistatic maximum likelihood estimation detector

In this section the ML multistatic solution to the target
detection problem in unknown coloured background noise
is derived. The derivation is a more in-depth extension of
[8]. The resulting detector is similar to the ones presented
in [23,25] but does not use an independent training data
set. The derivation mirrors that of its respective TDS
counterpart and is included here for convenience. The
setup described in Section 2 and the signal model (2) are
adopted (note that the signal model is now channel-
specific and applies to each channel). The channel-
specific probability density function (pdf) of each observed
data matrix X,, conditioned on the amplitude of the
reflected probing signal am,, is given by [14, p. 121]

1\ 1
f(xm.n|¢lm.n) = (m) etr{ 7Cm.r11Mm,n) (14)

a
where M7, , =

EE: 1 @k —amnSmatmn (k))(xm,n,k —amnSm,
ntma(k). It is assumed that the covariance matrices of the

background interference Cp,, are known for the time being
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in order to derive the optimal multistatic detector. Here
the notation that |e| is the determinant, etr(e) = e™®), and
Tr(e) is the trace of the matrix (e) has been adopted. In a
MIMO system with sufficient separation between anten-
nas, the background noise processes N, , are uncorrelated
to one another. The joint pdf of the complete set of
observations X = {X,,/m=1...M,n=1...N} given the set
of amplitudes @ = {am/m=1...M,n=1...N} can be repre-
sented by the product of the individual pdfs given in (14)

fXlon = r!:[nf(xm.n}wm.n)

K
= ( ) etr{ —ZC,;},M;,,} 15)

Let x = 0 signify the case when every element of the set ¢x
is equal to zero. Therefore, the joint pdf of the set of
observation signals X under the null hypothesis from (2) is
given by

Fo) =f(X|ot=0)
- 1
B (”MNPHm,n|Cm,n|

1
”MNPHm,n |Cm.n |

K
) etr{—zcnj);M?n)n} (16)
mn
where MY, = S _ ; XmniXf] - Under hypothesis Hy from
(2), the joint pdf f;(X) is simply given by f(X|a) from Eq.
(15). To obtain the ML estimate of the unknown para-
meters in the set «, the logarithm of (15) is taken and then
the partial derivative of the expression with respect to
each unknown complex amplitude ap, individually is
formed. The problem thus becomes linearly separable,
and the solution is identical to the single channel case
presented in [12]

H -1
sm.n Cm.ngm.n
H -1
SinCrmnSman

Amnp = a7
Note that (17) is identical to the amplitude estimate of the
APES filter derived in [35]. Forming the ML ratio of (15)
and (16), the multistatic MLED threshold detector for a
MIMO system is derived

max Cpga
W1 et Gt
fo etr{ =%, CoiMp, )
= etr{ =3 Crn(M;,, —M?n,n)} (18)
mn

where My, = Zf: 1@k — EmaSmntmn(K)Xmnk — AmnSm,
Ntma(k), with @, being the ML estimate given by (17).
The relationship between My, , and M?,m is derived in [14,
p. 122] and is provided in Appendix A for convenience

er’n,n = M?n.n 7Kgm.ng’r1n,n

+K(&mn—AmnSmn)&mn _El\m.nsm.n)H (19)

Plugging the relation (19) in (18), taking the logarithm of the
expression, and using the identity vI/Mv = Tr(Mw") for an
arbitrary vector v and matrix M, we obtain the ML multi-
static threshold detector for the case when the covariance
matrices of the background noise and interference Cp,, for
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all different channels are known

H -1 2
‘smﬁcnmgm,n | li

- 2
mn Sﬂ‘" CrunSmn Ho

Tvr = (20)

where y is the decision threshold associated with the
combined ML term from all channels. In the current problem,
note that Ty in (20) represents the multistatic matched
filter-based detector which is an extension to the single-
channel one described by (3) and (5). To obtain the multi-
static MLED detector, the noise data covariance matrices C
are replaced with their SDS APES estimates Q,, , (11)

-1 2
‘s’ﬂ.’l an ngm,nl Hy
Ty=) o 2y @
mn sm,an.nsm.n Ho

The ML SDS solution (21) to the MIMO case investigated in
this work is a summation of the individual single-channel
solutions (12) for each path {m,n} in the system. The linear
separability of the multistatic detector in the sum of the
bistatic ones is in accordance with our prior assumption that
the individual transmit-receive channels are independent.

4. Multistatic generalised maximum likelihood
estimation detector

In this section the multistatic GMLED threshold test
algorithm for SDS detection is derived. The derivation is a
more in-depth extension of [8]. The resulting detector is
similar to the multistatic generalised likelihood ratio test
presented in [23-26] but does not require an independent
training data set. The derivation is similar to that of its
respective TDS counterpart and is included here for con-
venience. While in the derivation of the MLED the covar-
iance matrices of the noise and interference signals Cpp
were assumed to be known, in the GMLED they are kept as
unknown parameters from the start. The expression for
the pdf of each individual observation signal set X;,, ,, now
conditional on both the amplitude a;, and covariance
matrix Cpmp, is identical to the respective MLED case given
by (14). Therefore, the joint pdf in the multistatic exten-
sion also remains the same as the one given in (15), this
time conditional on the complete set of unknown covar-
iance matrices C, = {Cn/m=1...M,n=1...N}. This is also
the expression that provides the relevant likelihood func-
tion under the H; hypothesis from (2). Under the alter-
native hypothesis, the likelihood function, now conditional
on the parameter set C,, is the same as (16). If the
logarithm of this expression is taken, the problem is once
again linearly separable. Therefore, the maximum of (16)
with respect to all C,, parameters is equivalent to max-
imising all the individual likelihoods in (14). As described
in [14, p. 122, 12,15] this happens when the matrices Cy,
are replaced by their ML estimates fm :K’]Mgm, and
the maximised likelihood function is thus

1 K
) (22)

NN R S
maxfo(x) ((t’nK YINP T IMO, |

From the same source, the maximisation of the pdf under
the alternative hypothesis occurs when Cp,, are replaced

by Con =K~ 'M"

. resulting in the following expression:

; K
) (23)

maxf;(X =\ L MNP nga
1 (f 1(X|0X) <(e”K)MNPl—[m.n|M;Ln|

Noting that once again the conditioned likelihood (23) can
be made linearly separable through taking the logarithm,
the maximisation of the expression can be achieved when
each of the individual terms |My,,| is minimised with
respect to amn. The solution is thus the same as the one
provided in the single-channel GMLED derivation and is
detailed in Appendix B:

I B I8, Qo &imnl?
miniMg, ;| = K*Qu1 (1 +8nn Qi —
@mn sm.n vansmv"
4
M}, 1 = K" 1Quy | (148111 Qe 18mn) 25)

Forming the ratio of the maximised likelihoods (23) and
(22), the multistatic threshold detector expression can be
obtained

maxj K
t]}{.f;xf] ( HmAn\M?n,n\ >

= A 26
maxe fo  \ [Tmamin|My, | @0

Plugging in the relevant expressions for the determinants
(24) and (25) into (26) and forming the Kth root of the
likelihood ratio, the expression for the multistatic GMLED
is obtained

1+g Qi H
Te=T1 gm,nQr‘,:;gm&]g ’ 2, @7
m.n 1 ! o
1 +g#1.an,ngm.n 711;;r|rr|7;nlrml
Sm.n m,nsm»"

where v is the decision threshold associated with the
combined ML threshold detector. The multistatic GMLED
(27) is a product of the bistatic solutions (13) for each path
{m,n} in the system expressed in their original form.

5. Analysis

This section provides a statistical analysis of the derived
multistatic versions of the MLED and GMLED algorithms.
To derive an expression for the probability of false alarm
P, and the probability of detection P, the CLT is employed
to obtain a Gaussian approximation to both threshold
detectors' pdfs for a large number M x N of transmit-
receive pairs.

5.1. Statistical properties of the multistatic MLED

The statistical properties of the bistatic MLED detector
are described in [14, pp. 63-65, 12,15]. The detection test
for a single bistatic channel shown in (12) is thus equiva-
lent to
Smn @
T2 m, (28)
L, ™
where L=K—P. The random variables ¢,,, and #,,, are
mutually independent. The random variable 7, , follows
the type I beta distribution with L+1 and P—1 degrees of
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freedom. The random variable ¢, , is distributed according
to the non-central F distribution with 2 and 2L degrees of
freedom and a non-centrality parameter A, given by

Amn = 2KPny npimn (29)

The signal-to-noise ratio (SNR) p,,, for each antenna
element and pulse in a single channel is derived in [14,
p. 17, 12,15]

Amn zs#lan,;},sm.n (30)

1
Pmn = P

In the case where no target is present in the set of
observations X, the non-centrality parameter Amp
becomes zero, and the random variable ¢, , has a central
F-distribution with 2 and 2L degrees of freedom. Using
(21), the multistatic MLED detection test statistics are
distributed as

3D

The test statistics consists of a sum of random terms
shown in [12] to be independent of the underlying noise
and interference. Therefore, the multistatic MLED is also
independent of the statistics of the noise, preserving the
CFAR property in the MIMO extension of the algorithm.
Due to the complex nature of the random variables
involved, obtaining a closed form expression for the pdf
of the multistatic MLED detector would be difficult and
impractical. Similar conclusions have been reached in both
[23,25] where analogical TDS MIMO algorithms for target
detection have been proposed. The bistatic approach to the
test statistics in (31) is to assume that the random variable
n is known, which results in the detection variable having
the non-central F-distribution. This pdf can then be inte-
grated to obtain an expression for the probability of
detection and the probability of false alarm. In the multi-
static case assuming that all variables #,, are known
results in the detection variable being a sum of M x N
independent non-identically distributed non-central
F-distributed random variables. The pdf of such random
variable is not trivial to obtain which makes analysis of the
proposed multistatic algorithm difficult. However, if the
sum in (31) consists of enough terms, it can be approxi-
mated by a normal distribution. This enables the deriva-
tion of approximate expressions for the probability of false
alarm Py(y) and the probability of detection Pyq(y) for a
given detection threshold y. The approach and solution can
be easily extended to existing TDS detectors [23,25] by
using the appropriate parameters and degrees of freedom
for those algorithms.

5.2. Gaussian approximation of the multistatic MLED

The multistatic MLED threshold detector consists of a
sum of M x N independent random terms as shown in
(31). The CLT dictates that the statistics of the decision
variable can be closely approximated by a Gaussian dis-
tribution, i.e. Ty~ N(uy,o%;), provided that M x N is
sufficiently large. Because the terms are not identically
distributed, Lindeberg's condition has to be satisfied which
is shown in Appendix C. The mean ), and variance o are
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given by the sum of the means and variances of the
individual terms in the detector

= Hmamm 32)
mn
0%/1 = ZUZM(m.ni (33)
m.n
_E[fmn (34)
M =5\
or —var(£mn. 35)
Moy = Litmn

Here E[e] signifies the expectation and var(e) the variance
of the random variable or vector e. Because the random
variables ¢,,, and 7, are independent, the central
moments of their ratios factorise in the following manner
[39]:

1 1

HMmn) = ZE [Cm,n}E Lm n] (36)
1 1\?] 1 17?

Fonn :FE[C?n,n]E[(a) } - PELL o)

Provided that L > 2, which can be ensured by collecting
enough slow-time samples K at each node, the first two
central moments of the F-distributed random variable ¢, ,
are given in statistics literature [40]

£2+lm,n
2 L-1

E[¢mn] = (38)
L? 2+ Amn)” +4(0 +dma)(L—1)
4 L-1’L-2)

The first two central moments of 5,,} are obtained by
solving the expectation integral of the reciprocal beta-
distributed random variable with L+ 1 and P—1 degrees of
freedom

1]_1(—1

E
[Wm.n L
var<i>:(K’21)(P’l)
Nm,n LY(L—-1)
Using the fact that E[e?] = var(e)+ E[e]?, (38)~(41) can be
plugged in (34) and (35) to obtain an expression for the
mean and variance of the random variable that signifies
the bistatic MLED threshold detector

K=12+7nn
2L L1

(39)

var (C m.n) =

(40)

(41)

HM(m.n) = (42)
_(K=D(K+P=2)2+Amn)*  (K=1)(K=2)(1+Imn)
A2 (L—1)2(L-2) T LL-121-2)
(43)
where it has been accounted for the fact that 4,, is a

random variable dependent on 7,,, by replacing it with its
expected value 1, given by

Jmn = E[2KPpyy i ]
=2P(L+ 1ppp

2
OM(m,n) =

(44)
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It should be noted that (44) is an additional approximation
that is performed for convenience. The CLT holds without
replacing the variables 1, with their first order estimates
proposed here. Without this approximation however both
the mean (34) and the variance (35) of the normal
distribution used to describe the detector statistics are
random variables. Integrating over all the #,, , variables in
the Gaussian pdf is the approach that would be taken in
the bistatic detector case, but once again in the multistatic
version this is impractical and has no trivial solution which
justifies the usage of (44). To obtain the probability of false
alarm for a given threshold y, it is noted that in the absence
of target the multistatic MLED threshold detector is
approximately distributed as N (uyy, 6%19) Where

Hmo = Z#m,n(zm,n =0) (45)
o
ot = _0mnCimn=0) (46)

mn

Therefore the false alarm probability Py is approximately

Pyt = (71 @)
oMO

where Q(x) is the Q-function associated with the tail
probability Pr[X > x] of the standard normal distribution.
The probability of detection is obtained in the case where a
target is present in the observations. The multistatic MLED
detector variable is then approximately distributed as
N(uyn.oyy), where uyy and o2y, are the same sums as
(32) and (33) respectively with the i,,, parameters given
by (44). Thus

Py = Q (710 8)
OoM1
Note that the Gaussian approximation to the multistatic
MLED proposed here can be easily extended to the multi-
static AMF proposed in [23,25]. The approach closely
follows the one presented in this work and is thus not
provided.

5.3. Statistical properties of the multistatic GMLED

The analysis of the GMLED in [14, pp. 54-63, 12,15] has
been performed for the threshold detector expressed in
the form given in (13). The multistatic expression (27)
requires the return to the original GMLED likelihood ratio
expressed as

1 ’i (49)
- < Umn
B |si,an,},gm.n|2 Ho
sl"{n,nQr;.axsm-ﬂ(l +glr-'n.nQrH,:lgm,n)
-1

Teamm =

where vmn=1—=7py) is the relation between the

transformations of the threshold in the bistatic case. The

statistical distribution of (49) is thus equivalent to

S, M
o

"1 2 v (50)
H

where ¢, is the same random variable from the MLED
statistics. The multistatic GMLED threshold detector in

(27) is therefore distributed as

()}
I +1)2v (51)
m.n L o
The test statistics thus consist of a product of random
terms that were shown in [14, p. 61, 12,15] to be inde-
pendent of the underlying noise and clutter distributions.
Therefore, the multistatic GMLED threshold detector is, in
turn, independent of the statistics of the noise, preserving
the CFAR property in the MIMO extension of the algo-
rithm. Similar to the multistatic MLED detector, its gen-
eralised extension is difficult to analyse in the statistical
sense. In [24,26] statistical analysis of the multistatic TDS
detector derived from Kelly's GLRT is provided. However,
closed-form expressions for the detection variable pdf
exist only for the case when no target is present (hypoth-
esis Hy here), and thus only the probability of false alarm is
derived. A general closed-form expression for the multi-
static detector's pdf has not been reached. Therefore, in the
next section an approximation to the statistics of the
detector in (51) is provided given that a large number of
terms take part in the product. As a result it is possible to
derive approximate expressions for the probability of false
alarm Pgf(v) and the probability of detection Pgy(v) for a
given detection threshold v. The approach and solution can
be easily extended to existing TDS detectors [23-26] by
using the appropriate parameters and degrees of freedom
for those algorithms.

5.4. Log-normal approximation of the multistatic GMLED

The multistatic GMLED threshold detector consists of a
product of M x N random terms as shown in (51). It would
be convenient to take the logarithm of this product to
transform it into a sum of random variables

H;
log Te = _l0g Tgumn 2 logv (52)
mn Ho

The CLT dictates that the statistics of the logarithm of the
decision variable given in (52) can be closely approximated
by a Gaussian distribution, i.e. log T¢ ~ N (ug. 62), provided
that the number of signal paths M x N in the system is
sufficiently large. Once again the random variables in the
sum are not identically distributed so a proof of the
validity of Lindeberg's condition for the detector is given
in Appendix D. Because the exponential of a normally
distributed random variable follows the log-normal dis-
tribution with the same parameters, it can be concluded
that in a large network T ~ InN (u¢, 62). To obtain expres-
sions for the parameters of this distribution, the first two
moments of the multistatic GMLED random variable have
to be obtained. The expectation of the individual terms in
the product (27) can be obtained from (50) by using the
expectation of an F-distributed random variable given
in (38)

ElTaimn] = 5722 53)
Because it is assumed that the random variables coming
from the different channels T¢np,) are independent, the
expectation of their product factorises into a product of
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their expectations. Therefore, the first moment of the
multistatic GMLED random variable is given by
2L+ Amn
2(L-1)

ElTcl=I1 (54
m.n
The second moment of the individual product terms T¢n.n
is obtained from the variance of the F-distributed random
variable given in (39) and the derived first moment (53).
G +20)* — 4L

}= AL—T1)(L-2)

The second moment of the multistatic GMLED detection
variable is the product of the second moments of the
statistically independent individual terms T¢gmnn

21y Gma+20)° —4L
E[T‘?} o AL-1)(L-2)

E[Temn) (55)

(56)

From statistics literature, the first and second moments of
arandom variable T following the log-normal distribution
with parameters u¢ and o¢ are given by

E[T] = ets+¢/2 (57)

E[T2] = e%a+2% (58)

The derived expectations (54) and (56) and the parametric
expressions (57) and (58) form a system of two equations.
Solving the system for the parameters of the approximat-
ing distribution y¢ and og results in

1 Gma+20)*1L-2)
== |t - 59
re=22 °g(4«Am‘n+2L)274L><L71>3> o9
) ((Aman+2L)° —4L)(L—1)
"G_mz.nlog< CGmnt2D2(L—2) ©0

where once again the random variables 4,, have been
replaced with their expected values 1, given by (44). In
the absence of target the threshold detector is distributed
as In N (ugo, 02y) Where gy and 2, no longer need to be
approximated. Their exact values can be computed due to
the fact that for 1,,=0 the non-central F distribution
becomes a central F distribution with 2 and 2L degrees of
freedom, and the pdf of the distribution simplifies to

(1 +2

I+1
N

Thus the integral expression for the first and second
central moments of the logarithm of the bistatic GMLED
random variable becomes solvable and yields the follow-
ing results for the multistatic one which are no longer
approximations:

MN

fau®) = (61)

Heo =~ (62)
MN
oG = N (63)

The probability of false alarm for a certain threshold v is

Perv) = Q(M)

[el]

(64)
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When a target is present the detector statistics are
distributed as In AV(ug;, 0%;) where u¢; and o2, are given
by (59) and (60) respectively. The probability of detection
is thus

Pca(v) =Q (710g e
oGl
Note that the log-normal approximation to the multi-
static GMLED proposed here can be easily extended to the
multistatic GLRT proposed in [23-26]. The approach clo-
sely follows the one presented in this work and is thus not
provided.

(65)

6. Simulations

The multistatic MLED and GMLED algorithms were simu-
lated in order to show the viability of the theoretical models
and approximations presented in this work. Three approaches
to the performance analysis of the models have been used.
The first approach is a numerical Monte Carlo simulation of
the proposed algorithms in (21) and (27). The results from
these runs are labelled as “simulated” in the presented figures.
The second simulation approach that is undertaken is based
on the theoretical analysis of the multistatic MLED and
GMLED algorithms. A closed-form expression for the test
statistics of the detectors was never obtained. Therefore, the
theoretical simulation results have been obtained through
drawing samples from the random variables (31) and (51)
presented in the analysis of the two algorithms. Instead of
doing a Monte Carlo simulation to generate the 4, random
variables, the first order approximation in (44) was used.
These sets of results are labelled as “theoretical” in the
provided figures. The third implemented approach aims to
show the viability of the normal and log-normal approxima-
tions developed in this paper. These results are labelled as
“approximation” on the figures.

The operational parameters of the transmitted pilots
are the same as the ones in [18]. A pulse repetition
frequency of 500 Hz, carrier frequency of 1 GHz, and target
velocity of 30 m/s are set. It is also assumed that the
direction of movement of the target is known which
means that the exact velocity v=[vy,vy]" in the (xy)-
direction is known given 2-dimensional motion. A number
of experiments have been done with a smaller setup of
M = N = 10 transmitters and receivers and a larger one of
M =N = 20. The geometry of the MIMO setup consists of
random placement of transmitters and receive ULAs. The
amplitudes of the returned pilots am, are also chosen at
random from a complex normal distribution CA/(0, 1). The
exact formula for obtaining the Doppler frequencies of the
returned pilots in the sense of MIMO radar can be found in
[18,41]. The receiver ULA has Pr =5 elements that collect
Kr=40 and Kr =120 pulses per CPlL. These slow-time
observations have been rearranged into data snapshots
of size P=10, where the number of snapshots is K =20
and K =60. To generate the clutter in each channel, the
general clutter model presented in [31] has been used. The
spectrum of the clutter exhibits low-pass behaviour and is
also roughly shaped in accordance to the realistic model
discussed in [42, pp. 293-322]. The simulations consist of
10° Monte Carlo runs of each system for different SNR
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values and depict the average probability of detection for
each case when the probability of false alarm has been
fixed to 2 x 1072, The SNR follows the definition in (30)
and is assumed to be the same for all channels in the
system.

Fig. 3 shows the obtained results for the smaller net-
work of 10 transmitters and 10 receivers and K =20
snapshots. As expected, the GMLED algorithm performs
slightly better than the MLED one for a small K, exhibiting
the same probability of detection at approximately 1 dB
less SNR. The results show that the simulated detector
curves based on (21) and (27) match the theoretical
models describing their statistics shown in (31) and (51)
respectively. Moreover, the fact that the approximation to
the 4m, variables was used in the theoretical curves proves
the viability and justifies the usage of (44). The Gaussian
approximations to the multistatic detectors given in (47),
(48), (64) and (65) are also close to the simulated and
theoretical curves. The small offset comes from the fact
that approximation based on the first two moments of the
multistatic MLED and GMLED threshold detector random
variables is performed. Moreover, the convergence of sums
of non-identically distributed random variables to the CLT
is usually slower than the iid counterparts. As it will be
show, the approximations become much better as the
number of transmitters and receivers in the system
increases.

Fig. 4 shows the simulation results under the same
conditions as Fig. 3 except the number of snapshots is now
K =60. It can be seen that both the multistatic MLED and
GMLED are significantly affected by the temporal frame
size, having the same detection rate at approximately 6 dB
lower SNR value. This can be explained by the improve-
ment of the SDS covariance matrix estimate (11) through
the addition of more data samples. It should be noted that
as the temporary frame size increases, the multistatic
MLED and GMLED algorithms' performance becomes
almost identical. This is evident in the simulations as well
and reflects the behaviour of the MLED and GMLED
bistatic algorithms presented in [12,14,15].

—— MLED, Simulated
— % —MLED, Theoretical
O MLED, Approximation
—— GMLED, Simulated
— % — GMLED, Theoretical
O  GMLED, imati

Probability of Detection

-45 -40 -35 -30 -25 -20
SNR [dB]

Fig. 3. Probability of detection vs SNR of the multistatic MLED and GMLED
detectors for Py =2 x 1072 and Py =2 x 102, K=20, M=N = 10.

Fig. 5 aims to simulate the performance of a larger
radar network. The number of transmitters and receivers
doubles. Compared to Fig. 4, the curve of the probability of
detection shifts by a further 3 dB to the left. This reflects
the improvement in the performance of the multistatic
MLED and GMLED detectors due to the increased spatial
diversity in the system. The accuracies of the proposed
Gaussian and log-normal approximations to the multi-
static MLED and GMLED respectively are also greatly
enhanced. This is because the number of terms in the
summations (31) and (52) increases which, according to
the CLT, brings the distribution of the sums closer to the
Gaussian curve. In a hypothetical radar network of infinite
size this approximation will become exact.

Fig. 6 presents an investigation into the relative approx-
imation error of the detection probability provided by the
Gaussian models proposed in this work. As expected, the
approximation is poor for a small number of channels in
the multistatic system. This is due to the fact that there are
not enough random variables coming from the different

Lo T— MLED, Simulated

— % - MLED, Theoretical
O MLED, Approximation
—— GMLED, Simulated
— % - GMLED, Theoretical
O  GMLED, Approximation

Probability of Detection

SNR [dB]

Fig. 4. Probability of detection vs SNR of the multistatic MLED and GMLED
detectors for Pyy =2 x 1072 and Ps =2 x 1072, K=60, M = N = 10.

—— MLED, Simulated
— % —MLED, Theoretical
O MLED, Approximation

—— GMLED, Simulated
— % — GMLED, Theoretical
O GMLED, Approximation

Probability of Detection

SNR [dB]

Fig. 5. Probability of detection vs SNR of the multistatic MLED and GMLED
detectors for Py =2 x 1072 and P¢y =2 x 1072, K=60, M =N = 20.
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Fig. 6. Relative error of estimation of Pyg and Pgq for Py =2 x 102 and
Por =2 x 1072, K=20.
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Fig. 7. Relative error of estimation of Pysq and Pgq for Pyp=2x 1072 and
Pgr =2 x 1072, K=60.

channels to provide reliable convergence of the CLT. As
more channels are added to the system, the approximation
continues to get asymptotically closer to the real value of
the detection probability.

Another factor that influences the approximation error
is the number of iid snapshots in the system K. Fig. 7
shows the relative approximation error of the detection
probability as a function of the number of channels for
K =60 snapshots. It is clear that the convergence of the
combination of bistatic random variables to the CLT is
much quicker. The reason for this phenomenon is found in
the higher moments of the underlying central and non-
central F distributions present in the statistical analysis of
the MLED and GMLED algorithms. As K increases, the
higher moments of these distributions get smaller [40].
Thus the distributions become more and more Gaussian-
like, which inherently speeds up the convergence rate to
an actual bell-shaped curve after multiple convolutions.
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7. Conclusion

This work proposes two SDS multistatic STAP algo-
rithms for the detection of signals of known template in
coloured Gaussian interference. The performance of the
multistatic algorithms in a MIMO radar target detection
scheme has been analysed. It has been shown that the
algorithms exhibit the CFAR property. In order to analyse
the system, simplified Gaussian approximation models for
the statistics of the detectors have been proposed. Through
these models the theoretical probabilities of detection and
false alarm have been derived. The validity of the theore-
tical models as well as the simplified Gaussian approxima-
tions has been verified through numerical simulations. The
performance gains of the multistatic detectors over their
bistatic counterparts have been shown.
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Appendix A. Detailed derivation of Eq. (19)

This appendix contains a detailed description of the
steps required to obtain Eq. (19). The steps are originally
found in [14, p. 122] and are provided here for conveni-
ence. All references to the index {m, n} indicating the path
between the mth transmitter and the nth receiver are
omitted in this proof. The matrices M® and M” introduced
earlier are defined as

K
M°= 3" xaff (A1)
k=1
. K
M* =" (% —ast(k)x, — ast(k)" (A2)

k=1

Expanding (A.2), the connection with (A.1) can be made

K K
M =" xx = > @ xtt st

k=1 k=1

K K
= D ast’doxy + Y @PiedoPss”
k=1 k=1

=M —Ka*gs" — Kasg" + K|a|*ss" (A.3)

where the substitution for g from (4) has been made, and
the fact that in this work |t|> =K has been used. Adding
and subtracting the term Kgg" to (A.3) and grouping the
factors, the desired results in (19) are obtained. The factor
K comes from the normalisation of the power of the
temporary steering vector which is arbitrary. In some
works it is set to unity and is therefore omitted. In this
work the factor is simply included into the threshold y of
the target detector.
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Appendix B. Detailed derivation of Eqgs. (24) and (25)

This appendix contains a detailed description of the
steps required to obtain Egs. (24) and (25). Some of the
steps are originally found in [14, p. 123] and are provided
here for convenience. All references to the index {m,n}
indicating the path between the mth transmitter and the
nth receiver are omitted in this proof.

Note that (19) can be written in terms of the SDS
covariance estimation matrix Q that directly follows from
its definition in (11) and the fact that R is defined as a
scaled version of M°

M* =KQ +K(g—as)(g —as)" (B.1)

Using the generalisation of Sylvester's identity for matrix
determinants [43] it can be shown that, following from
(B.1)

IM*| =K"1Q|(1+(g—as)"Q (g —as) (B2)

Eq. (24) is obtained after minimising (B.2) with respect to
the unknown return amplitude « by solving the partial
derivative

9 ngay _ 9 b oHO -1
M =2K"1QI (1+(g—as/'Q ' g —as)
=-K"IQs"Q '(g—as)
=ak'1QIs"Q " 's-K"IQIs"Q g (B3)
It is clear that the solution to (B.3) for « is the same as the

one for the MLED case in (17) but directly adapted to the
SDS detection scenario

siQ'g
sHQ s
When this solution (B.4) is plugged into (B.2), the resulting
equation is the same as (24). When there is no target in the
radar detection scenario, the amplitude of the returned
waveform is a=0. Plugging this into (B.2) results in
Eq. (25).

(B4)

a=

Appendix C. Proof of Lindeberg's condition for the
multistatic MLED approximation

In terms of the notation used in this paper, Lindeberg's
condition takes the following form:

MN
lim > /
MN =00y (=0 Ty — sy > com

where the subscript (m,n) indicating the path between the
mth transmitter and the nth receiver has been replaced
with the generic subscript k for convenience. The term
Tw represents the kth component in the sum (21). The
probability density function f;(Ty,) is associated with the
bistatic MLED random variable (28). If (C.1) holds for any
constant e > 0, then the condition is sufficient to claim that
the multistatic MLED random variable (31) will converge
to a Gaussian distribution as the number of transmit—
receive pairs M x N goes to infinity. Chebyshev's inequality
for the variance of the bistatic MLED detector states that

{

(Twito =) Fie(Tuo) dTwgy =0 (C.1)

T —
(k) — MMk 2,2
€ oM

Thnik
>eoy | < My (C2)

Note that the mean sy, given in (42) and the variance
”lzvnk) from (43), considering a realistic system with finite
time samples K and receive sensors P, both exist and are
finite. This is due to the assumption that Ay, is finite
because the SNR p,, , is practically finite. The term o), can
be written in the form

o= Amulmn+ D _bmpdmn+CcMN (€3)

mn mn

where ayn, bmn, ¢ € R. The sum in (C.3) goes to infinity as
M x N —oo. Therefore, the right-hand side of Chebyshev's
inequality (C.2) goes to O since ¢ # 0 is a constant. There-
fore the left-hand side probability in the inequality is
bounded by 0, which translates to

o Jim Fi(Tyaay) dTpgy =0 (C4)
XN =00 Ty — g | > eom

Combined with the fact that the mean sy, is finite, this
proves that each term in the sum (C.1) converges to 0 in
the limit. Therefore the whole sum converges to 0 and
Lindeberg's condition is satisfied, which justifies the
Gaussian approximation of the multistatic MLED threshold
detector.

Appendix D. Proof of Lindeberg's condition for the
multistatic GMLED approximation

The expectation and second moment of the bistatic
GMLED threshold detector given in (53) and (55) respec-
tively are finite due to the assumptions that the para-
meters K, P, and 4, are practically finite (see Appendix C).
In this proof the following logarithmic inequality will be
used:

logx <x—1 (D.1)

From (D.1) an upper bound for the expectation of the
logarithm of the bistatic GMLED threshold detector can be
obtained

Eflog Tounm] < ETgamm — 1] (D.2)

where the right-hand side of (D.2) is finite. Moreover, due
to the nature of the random variables involved, it can be
concluded that the expectation in the same equation is
bounded from below by the case when the non-centrality
parameter of the F-distribution becomes zero, or i, =0

1
I <E [log Tc(mm] ®

where the left-hand side of (D.2) is obtained from the
expectation in (62). In a similar manner boundaries for the
second moment of the logarithm of the bistatic GMLED
threshold detector can be derived:

1
[ <E[0g Temn ] < E[(Toimm —17 (D-4)

The upper boundary in (D.4) comes from (D.1), while the
lower one is derived from the fact that E[x?]> E[x]*.
Combining (D.3), (D.2), and (D.4), it can be concluded that
the variance of the logarithm of the bistatic GMLED
detector is also bounded from below and above by certain
finite bounds. The exact values of these bounds are not
essential for the current proof and will therefore not be
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calculated

(D.5)

2 2 2
Oib = 0Gann) = Oub

The bounds in (D.5) are enough to conclude that for any
arbitrary constant ¢ > 0

lim % -0 (D.6)
MxN=oo €262 :

since the lower bounds on the total multistatic variance aé
tend to infinity as the number of transmitter-receiver
pairs in the system tends to infinity. At this point the
analogical Chebyshev bound to (C.2) for the GMLED
becomes zero which, similar to Appendix C, proves the
validity of Lindeberg's condition.

Appendix E. Supplementary data

Supplementary data associated with this paper can be
found in the online version at http://dx.doi.org/10.1016/j.
sigpro.2015.04.001.
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