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Abstract

The recent increase in the demand for higher data transmission rates in wireless communications
has entailed many implementation issues that can only be resolved by going through a full paradigm
shift. Making use of the millimetric spectrum bands is a very attractive solution to the shortage of
radio resources but, to garner all their potential, new techniques must be developed. Most of them are
contained in the Massive Multiple Input Multiple Output (M-MIMO) framework: the idea of using
very large antenna arrays for cellular communications. In this thesis, we propose the usage of Lens
Antenna Arrays (LAA) to avoid the unbearable power and infrastructure costs posed by traditional
M-MIMO architectures. This novel communication system exploits the angular-dependent power
focusing capabilities of an electromagnetic lens to discern between waves with different angles of arrival
and departure, without explicit signal processing. The work presented in this document motivates the
use of LAAs in mmWave communications, studies some of their mathematical properties and proposes
their application in noncoherent schemes. Numerical results validate the performance of this novel kind
of systems and confirm their strengths in both multi-user and block fading settings. LAAs that use
noncoherent methods appear to be very suitable for vehicular communications and densely populated
cellular networks.
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Resum

En els darrers temps, l’increment en la demanda de major velocitat de transmissió de dades en
xarxes de comunicació inalàmbriques ha comportat diversos problemes d’implementació que tan sols
es podran resoldre a través d’un canvi total de paradigma. Utilitzar les bandes mil·limètriques de
l’espectre és una solució molt atractiva a l’escassetat de recursos de ràdio però, per tal d’extreure’n
tot el seu potencial, és necessari desenvolupar noves tècniques. La majoria d’aquestes passa per la
infraestructura Massive Multiple Input Multiple Output (M-MIMO): la idea d’utilitzar matrius d’antenes
molt grans per a comunicacions cel·lulars. En aquesta tesi, proposem l’ús de matrius d’antenes amb
lent, o Lens Antenna Arrays (LAA), per tal d’evitar els inassumibles costos energètics i d’instal·lació
propis d’arquitectures M-MIMO tradicionals. Aquest innovador sistema de comunicacions explota les
capacitats de concentració d’energia amb dependència angular de les lents electromagnètiques per tal
de distingir entre ones amb diferents direccions d’arribada i de sortida, sense processament de senyal
explícit. El treball presentat en aquest document motiva l’ús dels LAAs per comunicacions en bandes
mil·limètriques (mmWave), n’estudia diverses propietats matemàtiques i proposa la seva aplicació en
esquemes no coherents. Resultats numèrics en validen l’execució i confirmen les seves fortaleses en
entorns multi-usuari i amb esvaïment en bloc. Els LAAs que utilitzen mètodes no coherents semblen
ser idonis per a comunicacions vehiculars i per a xarxes cel·lulars altament poblades.
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Resumen

En los últimos tiempos, el incremento en la demanda de mayor velocidad de transmisión de datos
en redes de comunicación inalámbricas ha conllevado varios problemas de implementación que solo se
podrán resolver a través de un cambio total de paradigma. Utilizar bandas milimétricas del espectro
es una solución muy atractiva a la escasez de recursos de radio pero, para poder extraer todo su
potencial, es necesario desarrollar nuevas técnicas. La mayor parte de éstas pasa por la infraestructura
Massive Multiple Input Multiple Output (M-MIMO): la idea de usar matrices de antenas muy grandes
para comunicaciones celulares. En esta tesis, proponemos el uso de matrices de antenas con lente, o
Lens Antenna Arrays (LAA), para evitar los inasumibles costes energéticos y de instalación propios
de las arquitecturas M-MIMO tradicionales. Este novedoso sistema de comunicaciones explota las
capacidades de concentración de energía con dependencia angular de las lentes electromagnéticas
para distinguir entre ondas con distintas direcciones de llegada y de salida, sin procesado de la señal
explícito. El trabajo presentado en este documento motiva el uso de los LAAs en comunicaciones
en bandas milimétricas (mmWave), estudia varias propiedades matemáticas y propone su aplicación
en esquemas no coherentes. Resultados numéricos validan su ejecución y confirman sus fortalezas en
entornos multiusuario y con desvanecimiento en bloque. Los LAAs que utilizan métodos no coherentes
parecen ser idóneos para comunicaciones vehiculares y para redes celulares altamente pobladas.

iv



Acknowledgements

Writing this thesis has been the effort of four intense months. It has required copious amounts of
dedication and persistence. This would not have been possible without the support of a number of
people. In this section, I would like to thank my close friends and my parents, who have given me
moral support during this period of time.

Special thanks, as well, to my adviser Jaume Riba, who has presented me valuable guidelines that
have contributed to enhance the quality of the project.

v



Contents

List of Figures viii

List of Tables ix

Notation and symbols x

Acronyms and abbreviations xii

1 Introduction 1
1.1 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Objectives and contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Signal processing and communications preliminaries 7
2.1 Channel estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Antenna Selection (AS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Conventional Differential Detection (CDD) . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Overview on Beamspace MIMO 13

4 The Lens Antenna Array System 16
4.1 Array response derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Energy focusing and the power leakage issue . . . . . . . . . . . . . . . . . . . . . . . . 22

5 The Lens Antenna Array Channel 24
5.1 Symmetric channel: LAA-MIMO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.1.1 Capacity characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.1.2 Capacity degradation factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6 Point to Point Communications with Lens Antenna Arrays 30
6.1 Full CSIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.2 Full CSIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.3 Noncoherent schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.3.1 Multiple Symbol Differential Detection (MSDD) . . . . . . . . . . . . . . . . . 35
6.3.2 Differential Orthogonal Space-Time Block Coding (D-OSTBC) . . . . . . . . . 41

7 Multi-user Communications with Lens Antenna Arrays 45
7.1 Uplink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7.1.1 Antenna Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.1.2 Channel covariance estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.1.3 Decision-Feedback Differential Detection (DFDD) . . . . . . . . . . . . . . . . 51
7.1.4 Noncoherent Decision-Feedback Equalization (nDFE) . . . . . . . . . . . . . . 53
7.1.5 Some remarks on joint DFDD + nDFE . . . . . . . . . . . . . . . . . . . . . . 57

7.2 Downlink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.2.1 D-OSTBC with Power Loading (D-OSTBC-PL) . . . . . . . . . . . . . . . . . 58

7.3 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
7.3.1 Ideal scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
7.3.2 Path overlap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

vi



CONTENTS

7.3.3 Block fading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

8 Conclusions and future research 68

Bibliography 71

A Matlab Code 75

vii



List of Figures

1.1 Outline of the thesis. The green boxes contain our explicit contributions. . . . . . . . 6

3.1 Comparison between conventional and lens-aided beamspace MIMO systems. . . . . . 15

4.1 2D section schematic of a LAA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Various power leakage scenarios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.1 Achievable rate for various antenna selection constraints. . . . . . . . . . . . . . . . . . 28
5.2 Condition number of the channel matrix at high-SNR regime. . . . . . . . . . . . . . . 29

6.1 Comparison between MSDD weighting approaches. . . . . . . . . . . . . . . . . . . . . 40
6.2 SER comparison between optimized and truly noncoherent MSDD methods for various

values of SNR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

7.1 Four illustrative steps of the AS algorithm. . . . . . . . . . . . . . . . . . . . . . . . . 48
7.2 Example of antenna selection and assignment. The colored lines represent the supports

for each user. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.3 Graphical representation of DFDD+nDFE on a signal block Y. . . . . . . . . . . . . . 57
7.4 UL and DL performance results in an ideal scenario. . . . . . . . . . . . . . . . . . . . 63
7.5 UL and DL performance results for a scenario in which users 1 and 2 have high IUI

(dotted line, hollow circles), while users 3, 4 and 5 have low IUI (dashed line, crosses). 65
7.6 UL and DL performance results for a block fading scenario (phase and power gain change). 66

viii



List of Tables

6.1 Alamouti’s code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

7.1 Configuration of the communication equipment. . . . . . . . . . . . . . . . . . . . . . . 60
7.2 Channel characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.3 UL configuration parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.4 DL configuration parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

ix



Notation and symbols

The next list describes several symbols that will be later used within the body of the document:

x ≜ y x is defined as y.

x ≡ y x is equivalent to y.

{x} The set of x.

x ∈ S x is an element of S.

x[k] Signal that takes the value x[k] at time k.

X ∩ Y Intersection of X and Y

>> Much larger than.

<< Much smaller than.

j Imaginary unit.

Re{·} Real part.

Im{·} Imaginary part.

mods2π Symmetrical modulo operation in the interval (−π,+π].

sinc(x) sin(πx)
πx .

δ(x− a) Kronecker delta function centered at x = a.

⌊·⌋ Floor function.

⌈·⌋ Rounding function.

argminx∈S f(x) Value of x that minimizes f(x) in the set S.

argmaxx∈S f(x) Value of x that maximizes f(x) in the set S.

O (f(n)) Big-O of f(n).

⊕ Logical OR operator.

a Vector named a.

A Matrix named A.

[a1, . . .aN ] Matrix made with columns a1, . . . , aN .

[A]m,n Element (m,n) of A.

IN Identity matrix of size N ×N .

0M×N Matrix of zeroes of size M ×N .

1N×M Matrix of ones of size M ×N .

·∗ Complex conjugate.

·T Transpose.

·H Conjugate transpose.
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NOTATION AND SYMBOLS

A−1 Inverse of matrix A.

Tr [·] Trace.

|A|, det(A) Determinant of matrix A.

|·| Absolute value.

∥·∥ Euclidean norm.

∥·∥F Frobenius norm.

⊗ Kronecker product.

⊙ Hadamard product.

vec(·) Vectorized form.

diag(a1, . . . , aN ) Diagonal matrix with elements a1, . . . , aN .

diag(A) Diagonal elements of matrix A.

E[·] Expected value.

x ∼ N (µ, σ2) Real Gaussian variable x with mean µ and variance σ2.

x ∼ CN (µ, σ2) Complex Gaussian variable x with mean µ and variance σ2.

X ∼ MCN (M,U,V) Matrix complex normal distribution, such that vec(X) ∼ CN (vec(M),V⊗V).

x ∼ U(a, b) Uniformly distributed variable between a and b.

x ∼ Exp(α) Exponentially distributed variable with mean 1
α .

erf(x) Gaussian Error Function defined as erf (x) ≜ 2√
π

∫ x
0 exp

(
−t2

)
dx.

|S| Size of set S.
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Chapter 1

Introduction

In recent times, wireless communications have been experiencing a very important paradigm shift
that will become more and more apparent over the next decade. Many new applications are emerging,
such as vehicular connectivity and pervasive health monitoring, and the usage of already well-known
ones, like high definition video streaming and Internet of Things (IoT), is dramatically increasing.
All these applications require the connection of a massive amount of new devices to exchange more
data. The global mobile traffic is expected to grow by 30% annually up until 2024 [1]. This nonstop
demand for data traffic is starting to become unbearable for the already scarce radio resources at
sub-6GHz spectral bands. While a lot of research is being conducted to better exploit those frequencies
by densifying the network, these efforts seem to lead to a dead-end road [2].

Fifth generation (5G) wireless communications promise higher data rates and connectivity, and
reduced latency, financial cost and power consumption. Achieving these goals with the current available
resources and technology is virtually unattainable. The most promising and direct solution to this
dilemma is the exploitation of additional frequency bands. In particular, the millimeter-wave (mmWave)
spectrum, which comprises between 30GHz - 300GHz1, is really attractive, as it has traditionally been
practically unused for wireless communications. The size of these bands will allow for an enormous
increase in network capacity, a much needed enhancement in view of the 5G (and beyond) demands.

It is unquestionable that the deployment of mmWave cellular wireless networks will be key in
enabling the compliance of 5G promises. The attractiveness of new bands raises the question on why
have they not been explored before, and the answer is very clear: mmWave propagation poses a set
of challenges that implementable technology has not been able to overcome until recently. The main
drawback against the usage of millimetric wavelengths is the high free-space path-loss they suffer
[3]. According to Friis’ Law, omnidirectional waves experiment an attenuation proportional to the
square of their wavelength, causing mmWaves to be especially dwindled by this phenomenon, compared
to sub-6GHz ones. Atmospheric absorption is also of important concern at high frequencies. Low
directivity antennas would require very high transmission power to be useful in regular outdoor cells,
making them noncompliant with wireless communication regulations. They would only have a place in
close range scenarios, such as indoor Wireless Personal Area Networks (WPAN) and picocells, but for
general-purpose mobile communications, a more nuanced approach is required.

In mid-range outdoor mmWave applications, the most suitable systems are those that employ
high-directional antennas. In a mobile environment, terminals must be able to steer narrow beams,
resulting in high directional gains only in the wanted communication directions2. Antenna arrays
with signal processing techniques, such as beamforming, can provide enough gain as to fully mitigate
the highly limiting free-space loss of high frequencies, making mmWave bands viable for conventional
cellular mobile communications. The amount of elements required in a mmWave array is usually rather
large, hence Massive Multiple Input Multiple Output (M-MIMO) systems are of particular interest in
5G applications.

For previously exploited spectrum bands, mobile terminals (MT) and base stations (BS) were
usually limited to few antennas per array, due to size constraints. This is not the case for mmWave.

1This roughly translates into wavelengths of 10mm to 1mm, hence its name.
2A derivative of communicating through narrower beams is higher robustness against eavesdropping and interference

[1].
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CHAPTER 1. INTRODUCTION

The small working wavelengths facilitate the use of very compact antennas, allowing the incorporation
of reasonably sized arrays in mobile terminals. Under these circumstances, BSs show virtually no
spatial limitation for massive antenna arrays. Nonetheless, there is another implementation aspect
that must be pointed out which forbids direct application of traditional transceiver architectures. In
conventional sub-6GHz fully-digital systems, each antenna is allocated a Radio Frequency (RF) chain
in order to perform baseband processing. Translating this approach to M-MIMO arrays would be
prohibitive in terms of infrastructure cost. Besides, having all the RF circuits active for full array
processing would entail an unbearable power consumption, both from a financial and an ecological
perspective. The environmental impact of 5G networks cannot be neglected, in particular because the
Internet and Communication Technology (ICT) sector is already an immense contributor toward the
global carbon footprint [4]. In this regard, energy efficiency is, more than ever, a very important design
criterion for 5G systems.

While millimetric bands entail propagation issues, they can also provide desirable and potentially
exploitable characteristics [5]. The small wavelength size relative to most elements in the communication
environment produces a severe penetration loss. This implies that most power will either be: transmitted
through a Line-Of-Sight (LoS) path, reflected onto a few single bounce Non-Line-Of-Sight (NLoS)
components, or blocked. This sparse nature of the mmWave scattering opens the door to a reduced
channel representation: the beamspace channel [6]. In a setting without rich scattering, the amount of
dominant beams is very low compared to the number of antennas utilized. It then seems reasonable
that only a set of RF chains of the order of the independent signal paths is required to garner the full
channel potential for communication. This idea of working in the beamspace domain is one of the key
concepts to enable the deployment of functional mmWave systems with acceptable infrastructure and
energy costs. Alternatively, many other proposals have been developed over the last few years, such as
analog beamforming, hybrid analog/digital precoding and few-bit Analog to Digital Converters (ADC),
but they all present their fair share of performance issues [1]. Certainly, working within the beamspace
framework seems like the most promising approach.

How is it possible to transform a signal from the spatial domain to the beamspace one? The
most straightforward way to achieve it is by means of pure digital signal processing over an antenna
array. This approach, however, does not solve the power constraint problem at all, since the full set of
array elements must be processed to transform a signal between domains. In order to overcome this
limitation, we still need to introduce an additional component on the antenna array: an electromagnetic
(EM) lens. This is a passive device analogous to its optical counterpart that has radiation focusing
properties. For small angles, the effect of an EM lens can approximate a Discrete Fourier Transform
(DFT), which is the processing we would have to explicitly perform in regular Multiple Input Multiple
Output (MIMO) systems to transform the spatial domain into the beamspace domain. After this analog
approximation of a Fourier transform, the dimension of the received signal is remarkably reduced.
Thanks to the power focusing capability of the lens, we can apply Antenna Selection (AS) on a few
sets of elements of the array and allocate very few RF chains to process them without eroding the
system performance. This is in sharp contrast to antenna selection in regular MIMO, which usually
compromises the communication [7].

The use of an EM lens in conjunction with an antenna array has been coined Lens Antenna Array
(LAA). It is a very powerful idea with a lot of potential implications for 5G. In this thesis, we have
intended to study LAA-based systems in-depth in the context of mmWave wireless communications:
from the properties of their mathematical model to particular practical applications. The unique
characteristics of these new kinds of transceivers make them remarkably attractive for BS architectures,
in which space and power constraints are loose enough to deploy extremely large arrays that can
allocate plenty of antenna elements per user connected.

2



1.1. STATE OF THE ART

LAAs are a very broad topic of interest and substantial amounts of research are actively being
conducted. A good deal of literature has been published proposing all sorts of uses for this exciting
new technology: from regular communication schemes, to applications in user localization and radar.
Notwithstanding, very few works have established the potential link between LAAs and noncoherent
communications [8–10]. Systems of this type, which bypass the explicit acquisition of full Channel State
Information (CSI) to communicate, have traditionally been overshadowed by coherent schemes. While
this paradigm entails some issues that must be overcome for a successful implementation, the amount
of desirable properties it delivers make it worthwhile. Not having to rely on the small-scale effects
knowledge about the channel greatly simplifies the transmission of data in high mobility environments,
such as vehicular communications, and within architectures that employ very large arrays, as in the
case of M-MIMO. Furthermore, avoiding the use of orthogonal pilot sequences enables BSs to provide
reliable service to a higher number of users simultaneously, as well as reducing their training overhead
and thus increasing the achievable network transmission rate.

The noncoherent schemes proposed in the literature have mostly been conceived within a very
agnostic approach on statistical CSI. One of the main motivations to study noncoherent communications
under the LAA framework is the clear structure of the resulting channel [11]. The angle-dependent
power focusing capabilities of the EM lens seem like a very natural complement for noncoherent
communications. Angles of arrival (AoA) and angles of departure (AoD) in the beamspace domain are
large scale effects (i.e. they vary much slower than the coherence time of the channel), which make
them a relatively easy to acquire piece of CSI. We believe that carefully incorporating this knowledge
in partially noncoherent schemes specifically tailored for LAAs can greatly improve their performance
in front of fully noncoherent ones.

With this thesis, we want to broaden the fields of study of LAAs and noncoherent communications.
By combining ideas taken from both, we want to display the full range of possibilities they can offer in
unison.

1.1 State of the art

EM lenses are not a new topic of research, and a proof of that is the well established literature, such
as [12]. Nonetheless, their joint application with antenna arrays of similar size is rather novel, especially
for mmWave communications, although they are rapidly gaining attention due to the opportunities
they offer [1, 3]. In [6] and [13], the authors study the Continuous Aperture MIMO (CAP-MIMO),
built upon the framework of beamspace MIMO. They depart from traditional hybrid analog-digital
architectures by proposing the use of a Discrete Lens Array (DLA) to remarkably reduce the transceiver
complexity and power consumption. The modeling they use for the EM lens, however, is that of a
spatial DFT, which is a useful enough approximation, but far from a real system implementation.

The line of research conducted in [7] and [11] introduces a change in perspective in the analysis of
LAA systems. Instead of systematically using the DFT model, as other works on the topic have done
[14–16], the authors introduce an alternative study framework that treats the LAA as an integrated
component. By establishing its physical properties, they derive an array response vector that is
faithful to real implementations without sacrificing mathematical simplicity and usefulness. This new
perspective has lead to a plethora of results by other authors, like [17–19].

A notable work that stemmed from this new line of research is [20]. In it, the authors go a step
further by realizing that, at millimetric bands and with very large arrays, the plane wave models for
EM signals are not, in general, accurate approximations. Instead, they follow an analysis similar to [7]
but on the basis of a more general spherical wave model. The new array response vector derived allows
for potential localization applications.
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CHAPTER 1. INTRODUCTION

As for the noncoherent communications content, we have been inspired by the line of research
from [21, 22]. The authors have developed a very convenient framework for differential detection
in Multi-User Multiple Input Multiple Output (MU-MIMO) Uplink (UL). A variety of works have
followed this approach and studied aspects and modifications of the basic scheme [23–25]. Of special
interest, are [8] and [9], in which the introduction of LAAs in noncoherent UL systems is contemplated,
although more physics-focused models of the EM lenses are employed. The noncoherent Downlink
(DL) has also been researched, and a good example of relevant literature on the topic is [26]. In that
article, the authors introduce a method to incorporate second order statistical CSI on a noncoherent
Space Time Block Coding (STBC) scheme. Nevertheless, to the best of our knowledge, no works have
been published that incorporate a LAA in a noncoherent DL setting.

1.2 Objectives and contributions

With this thesis we have determined to fulfill the following concrete objectives:

• Precisely motivate the use for LAAs in mmWave M-MIMO communications from the beamspace
channel framework.

• Study an analytic mathematical model for the array response vector of the LAA and justify its
use in practical applications.

• Examine the power leakage problem inherent to LAA systems.

• Analyze the symmetric LAA-MIMO channel.

• Characterize the capacity of the LAA-MIMO channel and understand its degradation factors.

• Compile a variety of coherent Point-To-Point (P2P) communication schemes, represent them in a
consistent framework and particularize them for LAAs.

• Research two noncoherent P2P communications schemes presented in previous works, one for the
UL and one for the DL, and generalize them to better leverage the strengths of LAAs.

• Study the multi-user extensions of the previous noncoherent schemes and propose new modifica-
tions.

• Design a full UL-DL multi-user communication system based on the previously discussed schemes.
Provide solutions for AS, statistical CSI acquisition and other nontrivial aspects of the communi-
cation setting.

• Test the designed system on various simulated scenarios and compare it with well-known coherent
alternatives.

1.3 Thesis outline

The content of this thesis has been organized in 6 chapters that progressively build upon each other.
The common thread that serves as the backbone of the whole work can be split in three clear main
subjects:

• Preliminaries and motivation: The first two chapters are focused on providing the mathe-
matical foundations of the thesis and motivate the need for LAAs in mmWave communications.
Chapter 2 introduces the minimum mathematical tools required to understand the rest of the
contents. We summarize some ideas on channel estimation, antenna selection and differential cod-
ification that will be revisited afterwards, so that individuals with different academic backgrounds
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can easily follow all the other topics based on them. After this introductory chapter, Chapter 3
presents the concept of beamspace and its applications in modeling wireless communications over
millimetric bands. This framework evinces the need for a reduced channel model that can be
obtained by means of array processing. LAAs come into play to avoid this demanding task by
performing it analogically, effectively reducing the power consumption and infrastructure cost of
the system.

• General study of the LAA channel: The next two chapters deal with various physical aspects
of a LAA system. In Chapter 4, we comment on the physical implementation of an EM lens
an derive a closed form solution for its array response vector. We start from a general spherical
wave model and rigorously obtain an expression that encapsulates many real world scenarios.
Afterwards, we particularize a simplified form that will serve as the basis for the signal processing
and communications applications we are concerned with in this thesis. We also investigate the
power leakage problem. With all these results, in Chapter 5 we obtain the LAA channel matrix
and study its main features. We then characterize its capacity and the factors that affect it.

• Communication schemes over the LAA channel: The last two content chapters of the thesis
are devoted to proposing and studying data transmission schemes based on LAAs. Chapter
6 is centered around the P2P communication problem between a BS and a MT. Firstly, some
conventional coherent schemes are presented to illustrate the range of possibilities offered by LAAs.
After that, two noncoherent schemes are explored, which will lay the foundations for Chapter
7. This final chapter recovers all the concepts and tools that have been developed throughout
the thesis and builds a complete communication scheme upon them: from its general data
transmission aspects to more nuanced details that play an important role in its implementation.
Lastly, we subject our proposal to various simulated tests and compare its performance to other
coherent schemes.

The following diagram (Figure 1.1) contains the previous outline in a synthesized form. We have
indicated our explicit contributions in green. The ones which are marked with a red asterisk are
relatively novel and have a clear potential for publication.
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Figure 1.1: Outline of the thesis. The green boxes contain our explicit contributions.
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Chapter 2

Signal processing and communications
preliminaries

Before dealing with the main ideas of the thesis, we present in this chapter some preliminary results
and methods that will be useful to develop various concepts afterwards. The purpose of having these
sections in the body of the thesis is to make this document as self-contained as possible and allow
readers with varied backgrounds to follow its line of reasoning. We have selected and summarized the
topics we believe will be the most useful for such an intent. Additionally, we have presented them in a
notation that will be consistent throughout the thesis.

Section 2.1 deals with the problem of channel estimation and the issues it entails in very large
MIMO and multi-user environments. Section 2.2 presents the technique of antenna selection, a crucial
aspect of any system that employs antenna arrays with many elements. Both these topics will be
retaken in Chapter 7 to motivate the need for noncoherent schemes and illustrate the suitability of
LAA in their implementation. Finally, Section 2.3 introduces the concepts of differential coding,
upon which we will generalize various ideas in Chapters 6 and 7.

2.1 Channel estimation

Channel estimation is an essential aspect of coherent wireless communications systems, since it
is the main source of CSI at the transmitter and/or the receiver. It is a broad and classical topic in
signal processing and a plethora of techniques have been developed over the years [1]. They have been
specifically tailored for various scenarios and can incorporate many desirable characteristics (adaptive
estimation, low complexity, etc.). In this introductory section, we will only provide some general
notions on the topic.

To illustrate channel estimation we will employ it in a MIMO P2P context. Both the Transmitter
(Tx) and the Receiver (Rx) are equipped with a multiantenna array, containing NT and NR elements,
respectively. The Tx sends a stream of complex data symbols x[k] ∈ CNT×1 for a duration of K time
instants. The model of the signal at the Rx is then:

y[k] = Hx[k] + z[k] ∈ CNR×1 , k = 0, . . . ,K − 1. (2.1)

H ∈ CNR×NT is the channel coefficients matrix. Each one of its entries [H]m,n characterizes the
propagation between an element m of the Rx and an element n of the Tx. For simplicity, we assume
slow Rayleigh fading, i.e. [H]m,n ∼ CN (0, 1) and they remain constant for the whole duration K.
z[k] ∈ CNR×1 contains any noise and interference that may add uncertainty to the estimation of H.

Broadly speaking, traditional channel estimation techniques can be divided into 2 general categories:

• Training-based channel estimation: Methods in this group are widely used in practical
communication systems. They rely on the usage of pilot sequence signals known to the Rx
that the Tx emits before starting the transmission of data. They serve as a probe to the
Rx to estimate the channel coefficients. We denote the transmitted training block of size Kt,
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CHAPTER 2. SIGNAL PROCESSING AND COMMUNICATIONS PRELIMINARIES

Xt ≜ [xt[0], . . .xt[Kt − 1]]. Then, the received training block takes the form

Yt = HXt + Z ∈ CNR×Kt (2.2)
[yt[0], . . . ,yt[Kt − 1]] = H [xt[0], . . . ,xt[Kt − 1]] + [z[0], . . . , z[Kt − 1]] .

Notice that the rows of Xt and Yt represent different Tx and Rx antennas, respectively, and their
columns correspond to different time instants. Hence, this notation is referred to as space-time.

The Maximum Likelihood (ML) estimation of the channel consists in maximizing the likelihood
function of the received block with respect to the channel matrix and for a known training
sequence, i.e.

ĤML = argmax
H

fYt (Yt|Xt) . (2.3)

Under the Additive White Gaussian Noise (AWGN) assumption (z[k] ∼ CN (0NR×1, PzINR)),
this maximization reduces to

ĤML = argmin
H

∥Yt −HXt∥2F

= YtX+
t , (2.4)

where X+
t ≜ XH

t

(
XtXH

t

)−1 is the right Moore-Penrose Pseudoinverse of Xt, and has the property
that XtX+

t ≡ INR . Then, the estimated channel matrix has the form

ĤML = YtXH
t

(
XtXH

t

)−1
= HXtXH

t

(
XtXH

t

)−1
+ ZX+

t = H+ ZX+
t = H+ Z̃. (2.5)

The resulting estimation is the real channel matrix plus some residual uncertainty Z̃.

To perform this type of channel estimation, the Gramian matrix XtXH
t must be invertible, and

thus, full rank. This requires the length of the training sequence Xt to be Kt ≥ NT and each
pilot vector xt[k] to be orthogonal to the rest.

• Blind channel estimation: The usage of training-based channel estimation techniques is
widespread, since it provides very accurate estimates. Nonetheless, it presents a fair amount of
drawbacks [27]. For instance, as the number of Tx antennas increases, the length of the training
sequences must grow proportionally to it. This creates a large overhead before data transmission
is possible, reducing the achievable rate of the system. Furthermore, the number of orthogonal
pilot sequences for a given training period and bandwidth is limited, which severely restricts the
amount of Txs that can communicate with the same Rx at once. Using non-orthogonal pilots
for different estimations will produce less accurate results, since the obtained coefficients will be
correlated with the channel matrices of other Txs1. This effect is known as pilot contamination
[2, 27, 28].

Blind methods are a remarkable alternative to explicit training-based channel estimation, although
their use has not been popular in practical schemes [29]. They require no pilot sequences, hence
the adjective blind. Instead, they are based on second-order statistics of the channel taken
directly from the received data signals. They operate in the following manner [30]. Consider a
transmitted signal block X ∈ CNR×K , such that XXH ≡ INR . For a received block Y = HX+Z
under AWGN, its covariance matrix can be obtained as

CY = E
[
YYH

]
= E

[
(HX+ Z) (HX+ Z)H

]
= E

[
HXXHHH

]
+ E

[
ZZH

]
= E

[
HHH

]
+ PzINR = CH + PzINR , (2.6)

1These Txs may not necessarily be trying to communicate with the same Rx.
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assuming that E
[
HXZH

]
≡ 0NR×NR (the noise is uncorrelated with the signals). We denote

the channel covariance matrix as CH ≜ E
[
HHH

]
. In the zero-mean channel and noise case, an

estimate of CH from a single transmitted block2 can be

ĈH ≜
1
K

YYH − PzINR . (2.7)

We can represent the channel matrix as H ≜ UΛVH , its Singular Value Decomposition (SVD).
U ∈ CNR×NR and V ∈ CNT×NT are unitary matrices3, and Λ ∈ RNR×NT is a rectangular diagonal
matrix. Its diagonal elements are known as the singular values of H, which are non-negative
and ordered as λ1 ≥ · · · ≥ λnmin > 0. nmin is the rank of H, which, in general, is the minimum
between NT and NR.

With the SVD of the channel in mind, ĈH can be eigendecomposed as

ĈH ≜ ÛΛ̂2ÛH , (2.8)

such that Û and Λ̂ are estimates of U and Λ, respectively. Then, the matrix H̃ ≜ Û
√
Λ̂2 will

approximately span the same subspace as H. This is the reason why this approach is also known
as subspace partitioning [27]. The phase ambiguity introduced by the blind estimation is caused
by the loss of the information in V, which is a common trade-off in methods based in second
order statistics.

While blind channel estimation avoids the pilot contamination problem and requires no training
overhead, it comes with its fair share of issues. For instance, if the channel phase ambiguity
is not resolved with further training, only special types of modulations and codifications can
make use of it, such as differential coding, explored in Section 2.3. The rigid structure of the
transmitted signal blocks, so that XXH ≡ INT (semi-unitary matrix), is also a limiting factor in
the system designs.

Besides these two main groups, there are channel estimation methods that rely on a mix of the
two philosophies, referred to as semi-blind methods [29, 31]. They bring to the table an adjustable
trade-off between estimation accuracy and complexity/overhead. By appending few training blocks
next to or onto the data blocks, they help improve the results obtained with simple blind methods at a
reasonable added cost.

2.2 Antenna Selection (AS)

It is a well-known fact in modern day wireless communications that equipping transmitters and
receivers of MIMO systems with more antennas results in an increase of Degrees of Freedom (DoF)
in the propagation channel, thus enabling higher data rates and reliability [28]. Even more notable
benefits of this tendency can be found in multi-user environments, in which having more antennas at
the BS allows it to provide service to a larger number of MTs at once.

Despite all the benefits that come with very large MIMO, there is an important price to pay for
using very large antenna arrays: increased hardware complexity (RF chains), increased signal processing
complexity (acquiring CSI, beamforming, etc.) and higher energy consumption. Under space and cost
constraints, directly deploying Massive MIMO systems becomes unfeasible.

2It can be improved by averaging over various blocks, provided that the channel remains constant.
3Square matrices such that UHU = UUH = I. They act as rotation matrices.
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CHAPTER 2. SIGNAL PROCESSING AND COMMUNICATIONS PRELIMINARIES

A promising technique to alleviate these costs without sacrificing the advantages of MIMO is
AS [32]. At every time instant, each end of the MIMO system only employs the antennas with the
associated channel coefficients that are the most beneficial for communication. Due to the sparse
nature of the mmWave channel [1], the number of active antennas at every time can be much lower
than the total size of the array, translating in a reduced number of active RF chains. The addition
of a switching network (or alternative hardware) and the small overhead to account for an antenna
selection phase in the communication are paid off by the amount of energy and resources spared.

We provide an example of AS in a P2P MIMO UL scenario based on the energy received by each
antenna of the BS [11]. Consider the BS has NBS antennas and NRF < NBS available RF chains. The
MT has NMT antennas. Before data transmission, the system completes an antenna selection phase.
Assuming no Channel State Information at the Transmitter (CSIT), the MT isotropically transmits
identical training symbols ssel for a duration Ksel and with power Psel:

xsel[k] ≜
√

Psel

NMT
ssel1NMT , k = 0, . . . ,Ksel − 1. (2.9)

Then, the signal received at the BS is

ysel[k] = Hxsel[k] + z[k] , k = 0, . . . ,Ksel − 1, (2.10)

where H is the discrete-time channel (assumed constant during this training phase) and z ∼
CN (0NBS×1, PzINBS ) is AWGN. Since the BS has only NRF RF chains available, not every sig-
nal {ysel[k]}Ksel−1

k=0 will be received by its antennas. Instead, the RF chains will need to sequentially
scan over all the array elements. As a result, each one of them will only be connected to an RF chain
for an effective time

Tsel ≜
⌊
KselNRF

NBS

⌋
. (2.11)

After the AS training pilots have been transmitted, the BS combines the corresponding Tsel received
symbols into a single vector

ȳsel =
1√
Tsel

Tsel−1∑
k′=0

ysel[k′] =
1√
Tsel

Tsel−1∑
k′=0

Hxsel[k′] +
1√
Tsel

Tsel−1∑
k′=0

z[k′]

=
√
TselPsel

NMT
sselH1NMT + 1√

Tsel

Tsel−1∑
k′=0

z[k′]

=
√
TselPsel

NMT
ssel

NMT∑
n=1

hn + 1√
Tsel

Tsel−1∑
k′=0

z[k′], (2.12)

where hn is the nth column of H.

The components of ȳsel, ȳsel,m, are then sorted in descending order in terms of their associated
energy as ∣∣∣ȳsel,[1]∣∣∣2 ≥ · · · ≥

∣∣∣ȳsel,[NRF ]

∣∣∣2 ≥ · · · ≥
∣∣∣ȳsel,[NBS ]

∣∣∣2 , (2.13)

where the subindex [·] represents the permutation that fulfills such ordering. Let ∆sel be an energy
threshold below which the energy received at an antenna can be regarded as noise and N∆ be
the largest index for which

∣∣∣ȳsel,[N∆]

∣∣∣2 ≥ ∆sel, i.e. the number of antennas with non-negligible
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received power. The indexes of the selected antennas form the set Msel = {[1], . . . , [Nsel]}, where
|Msel| = Nsel ≜ min {N∆, NRF }.

The results of the AS are usually gathered in a selection matrix Σ such that

[Σ]m,m =
{

1 if m ∈ Msel

0 otherwise , (2.14)

which is appended to received/transmitted signal vectors to mathematically model the fact that only a
subset of antennas at the BS are active.

All in all, antenna selection is one of the most important enabling techniques for M-MIMO systems,
which will greatly contribute to a more eco-friendly implementation [4]. As it will be made clear in
the next chapters, while the application of AS on traditional M-MIMO transceivers always results in
some sort of performance trade-off, this is not the case in LAAs. The rate degradation produced by
employing just a fraction of the full array elements becomes almost negligible.

2.3 Conventional Differential Detection (CDD)

In most wireless communications systems, the Rx or the Tx (or both) utilizes some kind of CSI in
order to compensate for the effect of the channel and obtain a reliable detection of the transmitted
data. For slow fading channels, this task is simple to carry out using training sequences and similar
techniques (as commented in Section 2.1). However, there are scenarios in which this is not possible;
in M-MIMO communications, very large multi-user environments or smaller systems with a fast fading
channel, the CSI becomes very hard to estimate accurately. Furthermore, the transmission of pilot
symbols effectively reduces the achievable data rate.

A well-known solution to this issue is Differential Modulation (DM), which can be applied in all
sorts of single antenna and multiantenna systems. To illustrate its main concepts, we will present a
Differential Phase Shift Keying (DPSK) scheme. Consider a typical Single Input Single Output (SISO)
system

y = hx+ z, (2.15)

where x is the transmitted scalar symbol taken from a complex alphabet S, h ∈ C is the channel
and z ∼ CN (0, Pz) is AWGN. Under these circumstances, if the channel is known at the Rx, the ML
detection of x given y is reduced to

x̂ML ≜ argmin
x∈S

|y − hx|2 , (2.16)

which is a trivial scalar detection problem [31]. However, if h is unknown, differential encoding and
detection can be used to effectively transmit data. The core idea of DM is to encode information in
the difference in phase between two consecutive symbols, s[k] and s[k − 1], and apply detection on
them as a block. s[k] are drawn from a unitary M-ary Phase Shift Keying (M-PSK) constellation
S ≜

{
exp

(
j 2πiM

)
|i = 0, . . . ,M − 1

}
, such that |s[k]| = 1 ∀s[k] ∈ S. Then, instead of transmitting

s[k] directly, we define a set of symbols {x[k]} as:

x[k] = x[k − 1]s[k] , k > 0 (2.17)
x[0] ≡ 1.

This codification ensures that |x[k]| = 1 ∀k. The first sent symbol is set to 1 at both ends of the
communication. We will refer to it as reference symbol.
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At Rx, the received symbols are:

y[k] = hx[k] + w[k] (2.18)
= hx[k − 1]s[k] + w[k]

y[k − 1] = hx[k − 1] + w[k − 1],

given that h remains constant for two channel uses. In this scenario, the ML detection of s[k] given
y[k] and y[k − 1] reduces to [31]

ŝML = argmin
s[k]∈S

|y[k − 1]− hx[k − 1]|2 + |y[k]− hx[k]|2

= argmin
s[k]∈S

|y[k − 1]− hx[k − 1]|2 + |y[k]− hx[k − 1]s[k]|2

= argmin
s[k]∈S

|y[k − 1]− hx[k − 1]|2 + |y[k]s∗[k]− hx[k − 1]s[k]s∗[k]|2

= argmin
s[k]∈S

|y[k − 1]− hx[k − 1]|2 + |y[k]s∗[k]− hx[k − 1]|2 . (2.19)

Since neither h nor x[k − 1] are known, we can treat them as a single entity q ≜ hx[k − 1]. The value
of q that minimizes (2.19) is

qopt ≜
y[k − 1] + y[k]s∗[k]

2 . (2.20)

Then, the minimization simplifies to

ŝML = argmin
s[k]∈S

|y[k − 1]− y[k]s∗[k]|2 (2.21)

= argmin
s[k]∈S

(
−y∗[k − 1]y[k]s∗[k]− y[k − 1]y∗[k]s[k] + |y[k − 1]|2 + |y[k]|2 |s[k]|2

)
= argmax

s[k]∈S
(y∗[k − 1]y[k]s∗[k] + y[k − 1]y∗[k]s[k])

= argmax
s[k]∈S

Re {y[k − 1]y∗[k]s[k]} , (2.22)

which is a trivial scalar detection problem.

With differential detection we have effectively solved the issue of requiring CSI for detection, as it
utilizes the reference of y[k − 1] instead of h. It is an insightful observation on the core principle of
Conventional Differential Detection (CDD) to view y[k − 1] as an effective channel estimate during
the detection of s[k] from y[k]. However, the price we must pay to accomplish it is a 3dB loss in
performance. In the coherent case, the Signal to Noise Ratio (SNR) is SNR = |h|2

Pz
, for noise power Pz,

while in the noncoherent one it is half of that value. This can be seen from (2.22), since this detector
has to deal with twice the noise power than (2.16) [31].

DPSK has been extended to multiantenna systems in a variety of forms of DM [33]. The fundamental
3dB performance penalty has been extensively studied, and many schemes capable of arbitrarily reducing
it (in slow fading channels) have been proposed [33]. Most of them are based on jointly detecting a
sequence of symbols rather than individual ones.
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Chapter 3

Overview on Beamspace MIMO

Before diving into LAA systems, we will motivate their application by studying a very closely
related scenario presented in [6]: Beamspace MIMO.

Consider a MIMO wireless link with a 1D Uniform Linear Array (ULA) of length LT at the
transmitter and one of length LR at the receiver. The two terminals are separated by a link distance
of R >> LT , LR and operate at carrier frequency fc (wavelength λc). The antennas of each array are
spaced equally by following the critical spacing1 criterion (d = λc/2), thus the number of elements on
the transmitter and the receiver are, respectively,

NT ≜
⌊
LT

λc/2

⌋
, NR ≜

⌊
LR

λc/2

⌋
. (3.1)

In this setting we represent the link in the aperture domain with the expression introduced in Section
2.1:

y = Hx+ z, (3.2)

where x ≜ [x1, . . . , xNT ]
T is the transmitted signal vector, y ≜ [y1, . . . , yNR ]

T is the received signal
vector, H ∈ CNR×NT is the aperture domain channel matrix, which contains the propagation channel
between transmitter and receiver antennas, and z ∈ CNR×1 contains any noise and interference.

It is well-known [34] that a signal vector of dimension NT can equivalently be expressed in terms of
NT orthogonal basis waveforms. In the previous MIMO scheme, orthogonal spatial beams form an
optimal basis for the spatial dimension [6]. Let Ub,T ∈ CNT×NT be the transmit beamforming matrix,
that contains the transmit orthogonal beams and let Ub,R ∈ CNR×NR be the receive beamforming matrix,
with the receiver beams. We may define x ≜ Ub,Txb and yb ≜ UH

b,Ry, where xb = [xb,1, . . . , xb,NT
]T and

yb = [rb,1, . . . , rb,NR
]T are the transmitted and received signal vectors in the beamspace, respectively.

Then we can equivalently represent (3.2) in the beamspace domain as

yb = UH
b,Ry = UH

b,R (Hx+ z) = UH
b,RHUb,T︸ ︷︷ ︸

Hb

xb +UH
b,Rz︸ ︷︷ ︸
zb

= Hbxb + zb. (3.3)

Hb ∈ CNR×NT is the beamspace channel matrix that contains the coupling between spatial beams at
the receiver and transmitter. x can be rewritten in terms of the NT orthogonal beams that form Ub,T

as x = Ub,Txb ≜
∑NT

n=1 uT (θT,n)xb,n. This means that each transmitted beamspace signal, xb,n, is
mapped onto its corresponding orthogonal beam uT (θT,n), which is a column of Ub,T . The set of these
NT beams covers the full (one-sided) angular domain φT ∈

[
−π

2 ,
π
2
]
. Each uT (θT,n) is a steering vector

that represents an all-phase complex spatial sinusoid with frequency

θT,n ≜
d

λc
sin (φT,n)

d=λc
2= 1

2 sin (φT,n) ∈
[
−1
2 ,

1
2

]
. (3.4)

1According to [34], the optimal spacing of elements in a linear array of length L is λc/2, which is usually referred to as
critical spacing. It allows to capture the full angular resolution of 1/L with the least amount of antennas. Using a sparser
spacing would produce aliasing (grating lobes) and using a denser one would not improve the resolution beyond 1

L .
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The elements of uT (θT,n) are given by uT,m (θT,n) ≜ e−j2πθT,nm for

m ∈ M (NT ) ≜
{
m = −NT − 1

2 , . . . ,
NT − 1

2

}
. (3.5)

Critical spacing implies there is a one-to-one relationship between θT,n ∈
[
−1

2 ,
1
2

]
and φT,n ∈

[
−π

2 ,
π
2
]
.

Since the spatial frequencies for the NT beams, θT,n, are uniformly spaced with spacing

∆θo,T = 1
NT

= λc
2L ⇔ ∆φo,T ≈ λc

L
, (3.6)

then the basis beams uT (θT,n) are orthogonal to each other [6]. ∆θo,T and ∆φo,T are measures of the
spatial resolution (beamwidth) of the transmit array. The same reasoning up until this point can be
done with Ub,R and yb for the receiver array, by accordingly substituting the subindexes T ↔ R.

Notice that the construction of the orthogonal columns of Ub,T and Ub,R (we will refer to either of
them as simply Ub ∈ CN×N ) gives place to two unitary 2D DFT matrices:

Ub ≜ UDFT = 1√
N

[u (θn)]n∈M(N) . (3.7)

The physical angles φn ∈
[
−π

2 ,
π
2
]
are the spatial angles that cover the entire spatial horizon and

correspond to θn = n∆θo = n
N . The DFT matrix relates the antenna space and the beamspace

unambiguously.

In a P2P LoS link, the channel matrix in the aperture domain H is deterministic [35]. The aperture
domain signal on every antenna element of the Rx can be related to the signal from every element of
the Tx array with the steering vectors

HLoS = [uR (θch,n)]n∈M(NT ) , (3.8)

where θch,n is the spatial frequency corresponding to the angle of the nth transmit sample point with
respect to the broadside. Each one of them is defined as θch,n = n∆θch. The spacing between channel
frequencies, ∆θch ≜ λc

4R , is inversely proportional to the distance between Rx and Tx, and thus much
smaller than the orthogonal spacing ∆θo = 1

N = λc
2L , since L << R. This implies that the channel

vectors will be correlated and the channel matrix low rank. The rank can be approximated by the
number of beams that couple Tx and Rx elements strongly. Considering the spatial bandwidth of the
receive aperture is 2θmax = 2× 1

2 sin (φmax) ≈ 2× LR
4R , the number of strong orthogonal beams is

pLoS = 2θmax

∆θo
= sin (φmax)
λc/ (2LT )

≈ LR/ (2R)
λc/ (2LT )

= LRLT

λcR
. (3.9)

This is a fundamental quantity known as the Fresnel number in optics [6], which is typically much
smaller than NR or NT , for R >> LR, LT . pLoS also represents the amount of orthogonal transmit
beams that can be packed within the Rx aperture, each one occupying an approximately disjoint set of
sample points. The Rx is then capable of distinguishing between different data streams modulated
onto the orthogonal beams (i.e. spatial multiplexing for pLoS ≥ 2).

Wireless communications at mmWave frequencies are characterized by a very sparse nature (both
in the spatial and frequency domains) and directional propagation, as expound in Section 5. The LoS
propagation is expected to be the dominant mode, with few single-bounce multipath components. This
sparsity is reflected in the low rank of the beamspace channel matrix Hb. Beamspace representation
of MIMO mmWave systems then seems like a very suitable choice. Moreover, Hb is nearly diagonal,
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(a) Conventional beamspace MIMO Rx.

 

(b) Beamspace MIMO Rx with an EM lens.

Figure 3.1: Comparison between conventional and lens-aided beamspace MIMO systems.

which means that the orthogonal Fourier spatial basis vectors serve as a good approximation for the
eigenfunctions of the LoS channel.

Conventional MIMO systems rely on processing over all the antenna elements of the ULA in order
to capture the full spatial dimension of the channel. Then, they transform the aperture domain into
the beamspace domain through a digital DFT [6]. The main issue hindering the practical application
of this approach is that every antenna element requires an individual RF chain (see Figure 3.1a). The
infrastructure cost and energy consumption become prohibitive as the arrays grow larger (M-MIMO).
Solving this problem without further physical equipment is exceedingly challenging.

A promising alternative to circumvent this setback relies on replacing the digital DFT by a physical
device that approximates its analog counterpart. It is a well known fact in optics [36] that converging
lenses approximate the Fourier transform on waves with small incident angles (with respect to the
normal vector of the lens). Instead of explicitly having to process all the elements of the array, an
EM converging lens can be placed in front of the antennas to achieve a similar effect. It acts as a
virtual phase shifter which focuses beams from different directions onto few different sets of antennas,
producing an effective analog Fourier transform.

The main motivation behind this approach is the opportunity of reducing the complexity, infras-
tructure and energy consumption of the beamspace MIMO system. By placing a selection network
between the array elements and the RF processing components (Figure 3.1b), the required amount of
RF chains can be significantly reduced: only an amount of the order of the number of beams (i.e. the
rank of the channel) is needed. This will allow the operation of much larger arrays, which can fully
harness all the benefits of mmWave MIMO communications.
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Chapter 4

The Lens Antenna Array System

A Lens Antenna Array (LAA) is a proposed multiantenna system that uses a convergent RF lens
to focus impinging waves onto a focal region. In general, it is composed of two main elements:

• An EM lens: It is the mmWave analogous of an optical lens. It acts as a passive transmissive
device able to alter the propagation direction and phase of EM waves. More precisely, we are
interested in convergent lenses that can focus the energy of EM signals and collimate beams. In
general, EM lenses can be categorized in three groups depending on the techniques with which
they are implemented [17]:

– Dielectric lenses: They are made of dielectric materials. Their properties come from their
specifically designed surfaces.

– Planar lenses: They consist of arrays of antennas connected by transmission lines with
variable lengths. The design and distribution of the transmission lines is what defines their
properties.

– Compact planar lenses: They employ sub-wavelength spatial phase shifters.

While we will consider the dielectric design, a fundamental principle is common among the three:
to provide variable phase shifting of EM waves at different points on the lens aperture so as to
achieve angle-dependent energy focusing. This is the core property that allows to separate signals
coming from different directions and superpose them constructively onto different sections of the
antenna array.

• An array of antennas: The elements of the matching antenna array are placed behind the EM
lens. In the literature, various array configurations and geometries have been studied for the lens
antenna, but the most prominent ones are the planar configuration and the semispherical one.
While the former has been moderately studied [37], we will focus on the latter. The focal region
behind a circular convex lens is found at a constant distance (i.e. focal length) from its center,
hence it traces a semispherical surface. The most natural choice for array geometry is thus the
one that matches it, since equal impinging waves coming from different directions will be equally
focused on the antenna elements. Indeed, it is established in [19] and [20] that working with the
semispehrical configuration results in clearer and more intuitive expressions.

As stated in Chapter 3, a converging EM lens approximates an effective DFT for small incident
angles. Many works in the literature of LAAs [3, 6, 14, 15, 38] have adopted the small angle
approximation to systematically model the effect of the lens as a spatial DFT filter. Even though this
approach is useful to simplify signal processing solutions, it is far from the actual performance of a
real LAA. A more physics-based method can be found in [39, 40], where the authors derive an array
response vector from a Fourier optics perspective. The issue with this approach, however, is that the
obtained expressions are not easily tractable in communication applications.

In the following sections, we will derive the array response of a LAA by following a procedure
similar to the one presented in [20]. This technique is a generalization of the influential line of research
started with [7]. The appeal of this approach is its clear association with a physical model of a LAA
while providing a closed-form, easy to manipulate response vector expression that clearly emphasizes
the potential of these multiantenna systems in mmWave communications.
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4.1. ARRAY RESPONSE DERIVATION

x

y

array elements

focal arc

EM lens
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-Dy/2 b(Fcos(θ), -Fsin(θ))

F

θ b0(F, 0)

p(0,y)
u(-dcos(ϕ), dsin(ϕ))

d
ϕ

Figure 4.1: 2D section schematic of a LAA.

4.1 Array response derivation

Instead of dealing with a full-fledged 3D LAA, we will study its 2D section (i.e. linear array).
This simplification allows for clearer notation and provides all the insights required to understand the
working principles of a LAA system. The 3D model is investigated in [1, 17, 18, 41].

Consider a wireless system with a LAA acting as a receiver (see Figure 4.1). Its EM lens has a
physical length of Dy and negligible width. It is centered at the origin and oriented along the y-axis.
It is equipped with NR antenna elements placed on the focal arc of the lens, which is shaped as a
semicircle of radius F , the focal distance of the lens. There is a signal source located at a distance
d from the center of the EM lens and at an angle1 φ ∈

(
−π

2 ,
π
2
)
relative to the x-axis, at point

u ≜ [−d cos (φ) d sin (φ)]T . For generality, we assume the transmitter is a point source and uses an
omni-directional antenna. The signal reaches the EM lens at any point p ≜ [0 y]T , for y ∈

(
−Dy

2 ,
Dy

2

)
,

and takes the form

s (u,p) ≜ η (u,p) e−jκ∥u−p∥, (4.1)

where κ ≜ 2π
λ is the wave number corresponding to the wavelength λ, and η (a1,a2) ≜ λ

4π∥a1−a2∥ is
the free-space path loss between two points a1 and a2. The signal received by the array, r, is the
contribution of every point on the lens that receives radiation from the source and focuses it on the
focal arc:

r (θ, d, φ) ≜
Dy/2∫

−Dy/2

s (u,p) η (p,b) e−jϕ(p,b)dy. (4.2)

b ≜ [F cos (θ) − F sin (θ)]T is any point on the focal arc and θ ∈
(
−π

2 ,
π
2
)
is the angle between the

center of the lens and that point (defined as positive below the x-axis and negative above it). Hence, r
1We can realistically assume that the signal source is in front of the LAA as BSs typically apply sectorization of the

full angular range; each array usually serves ≤ 120◦.
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CHAPTER 4. THE LENS ANTENNA ARRAY SYSTEM

is the integral of the received signal over all the points p on the lens and displaced onto a point b on
the array with η (p,b). ϕ (p,b) ≜ ψ (p) + κ ∥p− b∥ is the total phase shift of the signal. The first
term is the contribution of the EM lens and the second term is the propagation delay between lens and
focal arc. Expanding the previous expression we obtain

r (θ, d, φ) =
Dy/2∫

−Dy/2

η (u (d, φ) ,p (y)) e−jκ∥u(d,φ)−p(y)∥η (p (y) ,b (θ)) e−jϕ(p(y),b(θ))dy

=
Dy/2∫

−Dy/2

λ2 exp
(
−j
(
κ ∥u (d, φ)− p (y)∥+ ϕ (p (y) ,b (θ))

))
16π2 ∥u (d, φ)− p (y)∥ ∥p (y)− b (θ)∥ dy. (4.3)

Convex EM lenses use similar principles as their optical counterparts to achieve energy focusing
of wave radiation. By carefully designing ψ (p), we can obtain the desired focal points. In general,
an incident spherical wave-front generated at point c0 ≜ [F0 0]T should converge at the focal point
b0 ≜ [F 0]T . The signal phase at that point is φ0 = κ ∥c0 − p∥+ψ (p)+κ ∥p− b0∥. The fixed phase
shift by the lens design is then

ψ (p) ≡ φ0 − κ (∥p− b0∥+ ∥c0 − p∥) , (4.4)

so the total phase shift between points p and b is given by

ϕ (p,b) = φ0 + κ (∥p− b∥ − ∥p− b0∥ − ∥c0 − p∥) . (4.5)

With the previous result, we may now develop the phase shift in (4.3) and expand its L2 norms:

r (θ, d, φ) =
Dy/2∫

−Dy/2

λ2e
−j

(
φ0+κ

(√
d2+y2−2dy sin(φ)+

√
F 2+y2+2yF sin(θ)−

√
F 2+y2−

√
F 2
0+y2

))
16π2

√
(d2 + y2 − 2dy sin (φ)) (F 2 + y2 + 2yF sin (θ))

dy. (4.6)

In order to obtain a tractable closed form of the previous expression, we will assume that the angle
of the source relative to the x-axis is small:

1. d >> y:

• 1√
d2+y2−2dy sin(φ)

≈ 1
d

• 2nd Order Taylor Approximation:√
d2 + y2 − 2dy sin (φ) ≈ d− y sin (φ) + y2 cos2 (φ)

2d (4.7)

2. F >> y:

• 1√
F 2+y2+2yF sin(θ)

≈ 1
F

• 2nd Order Taylor Approximation:√
F 2 + y2 + 2yF sin (θ)−

√
F 2 + y2 ≈

√
F 2 + y2

(
yF sin (θ)
F 2 + y2

− 1
2

(
yF sin (θ)
F 2 + y2

)2)

≈ y sin (θ)− y2 sin2 (θ)
2F (4.8)

18



4.1. ARRAY RESPONSE DERIVATION

3. F0 >> y:

• 2nd Order Taylor Approximation: √
F 2
0 + y2 ≈ F0 +

y2

2F0
(4.9)

Applying the previous approximations on (4.6), we obtain

r (θ, d, φ) ≈
Dy/2∫

−Dy/2

λ2e
−j

(
φ0+κ

(
d+y(sin(θ)−sin(φ))+y2

(
cos2(φ)

2d − sin2(θ)
2F − 1

2F0

)
−F0

))
16π2dF dy

= λ2e−j(κd+φ0−κF0)

16π2dF

Dy/2∫
−Dy/2

e
−j

(
κ

(
y(sin(θ)−sin(φ))+y2

(
cos2(φ)

2d − sin2(θ)
2F − 1

2F0

)))
dy (4.10)

Without loss of generality, we assume φ0 − κF0 ≡ 2π, since φ0 is common for all antenna elements
and the phase term before the integral can be removed. For notation purposes, we denote α ≜
π sin2(θ)

λF − π cos2(φ)
λd + π

λF0
and β ≜ sin(θ)−sin(φ)

λ . We can finally rewrite (4.10) and find a closed form
solution:

r (θ, d, φ) ≈ λ2e−jκd

16π2dF

Dy/2∫
−Dy/2

exp
(
j
(
αy2 − 2πβy

))
dy

= λ2e−jκd

16π2dF

[ √
π

2
√
α
e
−j

(
π2β2

α
− 5π

4

) (
erf
(
αDy + 2πβ

2
√
α

ej
3π
4

)
+ erf

(
αDy − 2πβ

2
√
α

ej
3π
4

))]
. (4.11)

We normalize the previous expression and define the effective LAA response on any point b on the
focal arc:

a (θ, d, φ) ≜ 16π2dF
λ2e−jκd

r (θ, d, φ)

≈
√
π

2
√
α
e
−j

(
π2β2

α
− 5π

4

) (
erf
(
αDy + 2πβ

2
√
α

ej
3π
4

)
+ erf

(
αDy − 2πβ

2
√
α

ej
3π
4

))
(4.12)

Recall that θ is a continuous variable that represents the angle of a point behind the lens with respect
to the x-axis, whose value must belong in the interval

[
−π

2 ,
π
2
]
. However, we are only interested in the

positions of antenna elements. We want them to sample the y-axis uniformly, i.e. if their associated
angles are denoted θn, then θ̃n ≜ sin (θn) must be equally spaced in the interval [−1, 1]:

θ̃n ≜
n

D̃
, n ∈ M ≜

{
−NR − 1

2 , . . . , 0, . . . , NR − 1
2

}
, 2 (4.13)

where D̃ ≜ Dy

λ denotes the normalized aperture of the lens. In a similar manner to the MIMO
transceivers from Section 3, we will employ critical spacing along the y-axis. Therefore, the number
of antennas the LAA should have is NR ≜ 1 + ⌊2D̃⌋, which means that larger lenses require more
antennas to be deployed but can provide a higher resolution. Since the antennas are not deployed in a
straight line but rather in an arc, notice they will be more densely packed at the center of the array
than on its edges.

2We assume NR to be odd for notational convenience.
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CHAPTER 4. THE LENS ANTENNA ARRAY SYSTEM

The n-th element of the LAA is located at point bn = [F cos (θn) − F sin (θn)] and its array
response is expressed as a (θn, d, φ) ≜ an (d, φ). Hence, the full array response vector is

a (d, φ) ≜



a−NR−1
2

(d, φ)
...

a0 (d, φ)
...

aNR−1
2

(d, φ)


∈ CNR×1. (4.14)

As stated in [20], (4.12) assumes spherical wave-fronts and is a well-suited approximation in near-field
scenarios, i.e. d ≤ R ≜

2D2
y

λ (Rayleigh distance). It is thus a generalization of the previous results
presented in [7]. It contains information regarding the distance between the LAA and the transmitter,
in the form of a windowing effect [20], which can be exploited to estimate its location. Working at
higher frequencies with larger lenses means the Rayleigh distance increases and far-field models become
less accurate. The generality and complexity of (4.12) cannot be omitted in real world applications,
even though few literature takes it into account [20].

Having said that, and for the purposes of this thesis, we will center its results around communications
with LAAs and leave localization for future research. When using the plane wave-front approximation,
while we lose information3about d, we will still keep the angular position of the transmitters. We can
thus sacrifice the precision provided by (4.12) in favor of simplicity.

The far-field approximation is achieved when d and F0 increase to infinity, making the spherical
wave-fronts reduce to planar ones:

lim
d,F0→∞

an (d, φ) = lim
d,F0→∞

√
π

2
√
α
e
−j

(
π2β2

α
− 5π

4

) (
erf
(
αDy + 2πβ

2
√
α

ej
3π
4

)
+ erf

(
αDy − 2πβ

2
√
α

ej
3π
4

))

= lim
d,F0→∞

−ej
π
4

∫ αDy+2πβ

2
√
α

ej
3π
4

0
e−t2dt+

∫ αDy−2πβ

2
√
α

ej
3π
4

0
e−t2dt


√
αej

π2β2
α

. (4.15)

Recall that α = π sin2(θ)
λF − π cos2(φ)

λd + π
λF0

and thus

lim
d,F0→∞

α = π sin2 (θ)
λF

. (4.16)

Since we previously set y << F , we can assume α→ 0 in the far-field. By letting z ≜
√
α we have

lim
d,F0→∞

an (d, φ) = lim
z→0

−ej
π
4

∫
(

zDy
2 +πβ

z

)
ej

3π
4

0
e−t2dt+

∫ ( zDy
2 −πβ

z

)
ej

3π
4

0
e−t2dt


zej

π2β2
z2

. (4.17)

3BSs located at a certain height that employ 2D and 3D LAAs can rely on the planar wave approximation without
losing information about d, since it is encoded in the elevation angle.
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4.1. ARRAY RESPONSE DERIVATION

Then, by L’Hopital’s rule,

lim
d,F0→∞

an (d, φ) = lim
z→0

−ej
π
4

e−
(

zDy
2 +πβ

z

)2
ej

3π
2
ej

3π
4
(
Dy

2 − πβ
z2

)
+ e

−
(

zDy
2 −πβ

z

)2
ej

3π
2
ej

3π
4
(
Dy

2 + πβ
z2

)
ej

π2β2
z2 − zej

π2β2
z2 j2π2β2

z3

= lim
z→0

−ejπ

ej
(

z2D2
y

4 +π2β2

z2
+Dyπβ

) (
Dy

2 − πβ
z2

)
+ e

j

(
z2D2

y
2 +π2β2

z2
−Dyπβ

) (
Dy

2 + πβ
z2

)
ej

π2β2
z2

(
1− j2π2β2

z2

)

= lim
z→0

−e
j

(
π+

z2D2
y

4

) (
ejDyπβ

(
Dyz2

2 − πβ
)
+ e−jDyπβ

(
Dyz2

2 + πβ
))

z2 − j2π2β2

= ejDyπβ − e−jDyπβ

j2πβ = sin (Dyπβ)
πβ

= Dy

Dy

sin (Dyπβ)
πβ

= Dy sinc (Dyβ) . (4.18)

Finally, we simply expand β:

an (φ) = Dy sinc
(
Dy

sin (θn)− sin (φ)
λ

)
= Dy sinc

(
D̃θ̃n − D̃ sin (φ)

)
. (4.19)

By defining φ̃ ≜ sin (φ) ∈ [−1, 1] (usually referred to as spatial frequency) and applying (4.13), we
finally obtain the array response for each element:

an (φ) = Dy sinc
(
n− D̃φ̃

)
(4.20)

This expression is almost identical to the one presented in [7], which is already well-known throughout
the literature [11, 17–19, 42]. The only difference is the factor D̃ instead of Dy. In the following sections
we will refer to this normalized, dimensionless version, since it is a more natural way of expressing an
array response vector:

an (φ) = D̃ sinc
(
n− D̃φ̃

)
. (4.21)

The interest of employing a LAA rather than a traditional ULA system can be clearly seen in
its response vector: the sinc function provides the AoA-dependent energy-focusing capability. In
practical terms, any received signal with a given AoA φi will be magnified D̃ times on a very small
set of antennas located close to the focal point, D̃φ̃i, while being almost negligible4 for those ones
far away from it (|n− D̃φ̃i| >> 1). The implications this has are very remarkable. Considering two
different signals with AoAs φ1 and φ2 received simultaneously at the LAA , if their angular separation
is sufficient (|φ1 − φ2| > 1

D̃
, the spatial frequency resolution or half the width of the main lobe of the

sinc), they will interfere one another quite lightly by simply selecting different sets of antennas.

4Specifically, the side lobes of a sinc function decrease with the distance to its center n0 as 1
|n−n0|

.
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Throughout this thesis we will use the following notation

a (φ) ≜



a−NR−1
2

(φ)
...

a0 (φ)
...

aNR−1
2

(φ)


= D̃



sinc
(
−NR−1

2 − D̃φ̃
)

...
sinc

(
−D̃φ̃

)
...

sinc
(
NR−1

2 − D̃φ̃
)


≜ D̃ sinc

(
n− D̃φ̃1

)
, (4.22)

where n ≜
[
−NR−1

2 . . . 0 . . . NR−1
2

]T
contains the indices of the array elements.

Since the EM lens is a passive device, it presents reciprocity between incoming and outgoing waves,
making the response vector (4.22) equivalent for both Tx and Rx systems [7].

4.2 Energy focusing and the power leakage issue
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(a) Perfect alignment.
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(b) Worst case.
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(c) General leakage.

Figure 4.2: Various power leakage scenarios.

Given that φ̃ ∈ [−1, 1], we may express it in terms of the array indices and the spatial frequency
resolution:

φ̃ = ň+ ϵ

D̃
, ň ≜

⌈
D̃φ̃

⌋
, (4.23)

where ň is the antenna index nearest to the focusing point and ϵ ∈
[
−1

2 ,
1
2

]
represents the misalignment

between the antenna and that exact point. With (4.23), we can rewrite (4.22) as

a (φ) = D̃ sinc (n− (ň+ ϵ)1) . (4.24)

Seeing that the number of antennas in the LAA is finite, it is usually not possible to perfectly
sample impinging waves with random AoAs, i.e. to obtain ϵ = 0, making their power spread across the
entire array. Therefore, the power leakage problem is unavoidable. We may find 3 leakage situations
(Figure 4.2):

(a) When an impinging wave is perfectly aligned with an array element all its associated power is
captured by a single antenna (no power leakage). This situation is optimal in multipath scattering
scenarios and multiple access schemes, since there is no interference between received signals.
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4.2. ENERGY FOCUSING AND THE POWER LEAKAGE ISSUE

(b) When a signal wave impinges right between two antenna elements (worst misalignment case) the
power leakage is maximum. No antenna can be assigned as the center of the received wave and
the interference between users or paths is the highest.

(c) In general, we may not find situation 4.2a nor 4.2b. Some amount of power will be lost unless
all antennas are employed for a single received signal, but a single antenna will clearly be the
nearest to the real center of the wave.

In [43], the authors propose a beam aligning precoding method to deal with the power leakage
problem in the beamspace domain. In the LAA system we are considering in this thesis, we may exploit
the power focusing capabilities of the EM lens to counter the power leakage in a simplified manner, by
using the antenna selection ideas introduced in Section 2.2.

For a given signal reaching a LAA with a random AoA, indexed l, the power leaking through the
array decays with the square of the distance from its focal point5. We can assume that the antennas
located at a distance from the focal point greater than a threshold ∆ > 0 receive negligible signal
power. We then define the support set of indices

Ml ≜
{
n ∈ M : |n− D̃Rφ̃l| < ∆

}
(4.25)

assigned to its corresponding path. The antennas that are not contained in this set are considered to
receive no signal power and can then be omitted from the processing. In particular, we may use an
energy-based criterion (as in Section 2.2) to define the placement of such sets, so that the selected
antennas will be the nearest one to the real AoA of the impinging wave (maximum received energy)
plus a small support around it. For sufficiently spread out AoAs, the subsets of antennas assigned to
different paths will be disjoint, reducing remarkably the task of (interpath) interference cancellation.

To illustrate and quantify the power leakage problem in a LAA multipath environment, we will define
a metric derived from the one presented in [43]. The ratio between the leaked (due to misalignment
and antenna selection) and total power received from a beam by the LAA is

η
(l)
leak ≜ 1−

∑
n∈Ml

aH (φn)a (φl)∑
i∈M

aH (φi)a (φl)
, (4.26)

where φn, φi are the AoAs corresponding to the antennas of the array and φl is the real AoA of the lth
path. Alternatively, (4.26) can be expressed as

η
(l)
leak = 1−

∑
n∈Ml

δ
(
n− D̃φ̃n

)
sinc2

(
n− D̃φ̃l

)
∑

i∈M
δ
(
i− D̃φ̃i

)
sinc2

(
i− D̃φ̃l

) = 1−

∑
n∈Ml

sinc2
(
n− D̃φ̃l

)
∑

i∈M
sinc2

(
i− D̃φ̃l

) . (4.27)

To give some numerical perspective, consider a LAA with D̃ = 100 (NR = 201) and an impinging
planar wave such that D̃φ̃ = 0.5 (it impinges between antennas 0 and 1). As we have seen, this is the
worst scenario in terms of power leakage since the misalignment with respect to the array elements is
maximum. In that situation, selecting a support of just 4 antennas centered around the focal point
results in η ≈ 9.7548%. In other words, we are able to capture more than 90% of the total power
reaching the array. The conclusion we can draw from this example is that, although the power leakage
issue must be thoroughly studied and considered (especially in multi-user environments), the power
focusing capabilities of the LAA notably reduce its impact if the signals reaching the lens are sufficiently
spread out along the angular dimension.

5This is caused by the decay of the sidelobes of |sinc (x)|2.
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Chapter 5

The Lens Antenna Array Channel

Wireless mmWave communications present various particularities due to the working wavelengths,
which are orders of magnitude smaller than most elements in the environment. For instance, Friis’ Law
[3] implies that simple non-directional antennas become useless at millimetric bands, since the isotropic
path loss increases with the inverse of the square of the wavelength (∝ 1

λ2 ). This effect, however, can
be mitigated with the introduction of directional gains, which also scale as ∝ λ−2, as more antenna
elements can fit into the same physical area. This way of compensating free-space path loss makes the
usage of very large (ideally massive) multi-antenna systems a must for mmWave communications.

Beyond free-space loss, general path loss is heavily influenced by the environment. There is a
plethora [44] of statistical models to describe the channel characteristics in different situations. The
one considered in this thesis is taken from [5]. The average path loss (large-scale effects) takes the form

PL (d) [dB] = A+ 10B log10 (d) + ξ, ξ ∼ N
(
0, σ2

)
, (5.1)

where d is the distance, A and B are linear parameters and ξ models the (lognormal) shadowing. For
B = 2, this expression generalizes Friis’ formula. It is worth mentioning that the free-space path
loss of a mmWave link is no worse than at regular frequencies once it has been compensated with
beamforming gain [3], making mmWave bands suitable for cellular systems.

Mathematically, the mmWave channel can be accurately described with well-known standard
multipath models. In particular, we will adhere to the Saleh-Valenzuela model [1]. Consider a MIMO
system in which the Tx has an array of NT antennas and the Rx has NR

1. Their response vectors
are aT (φT ) ∈ CNT×1 and aR (φR) ∈ CNR×1, respectively, which depend on the angular direction of
arriving and departing waves φR, φT ∈

[
−π

2 ,
π
2
]
. Under the general multipath environment, the channel

impulse response can be modeled as

H (t) ≜
L∑
l=1

αlaR (φR,l)aHT (φT,l) δ (t− τl) ∈ CNR×NT , (5.2)

which is a matrix whose elements [H(t)]m,q ≜ hm,q (t) denote the channel impulse response from
transmitting antenna q ∈ Q to receiving antenna m ∈ M, with Q and M being the sets of Tx and Rx
antenna indexes, respectively. L is the number of significant channel paths or beams, which is much
lower than NR and NT thanks to the multipath sparsity of mmWave communications [3]. Each path l
is determined by 4 parameters: its AoD φT,l, its AoA φR,l, its associated time delay τl and the complex
gain αl, which may be modeled [7] as

αl ≜
√
βγle

jωl , ωl ∼ U [0, 2π) . (5.3)

β is the linear form of (5.1), i.e. the large-scale attenuation including distance-dependent path-loss
and shadowing. κl represents the power fractional ratio of the lth path, such that ∑L

l=1 γl ≡ 1. Finally,
ωl denotes the phase shift of the lth path, which is a small-scale effect.

(5.2) is a general formulation2 for wideband systems. When the channel bandwidth BW is
sufficiently small, maxl ̸=l′ |τl − τl′ | << 1

BW , i.e. τl ≈ τl′ ≜ τ . If the system can compensate the delays
1Both arrays have critical spacing.
2It may also incorporate Doppler shifts for rapidly varying channels [3].
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5.1. SYMMETRIC CHANNEL: LAA-MIMO

perfectly (perfect time synchronization), we can omit them from the previous formulation and obtain
its narrowband form

H ≜
L∑
l=1

αlaR (φR,l)aHT (φT,l) . (5.4)

This is the version we will refer to throughout the thesis.

5.1 Symmetric channel: LAA-MIMO
Even though in later sections of the thesis we will focus on the single-sided LAA channels,

characterizing the symmetric case provides the richest insights. Indeed, most LAA channels are special
cases of the more general symmetric LAA-MIMO channel. In this model, both Tx and Rx are equipped
with a LAA, with NT and NR elements available, and normalized apertures D̃T and D̃R, respectively.
Their antenna indices are gathered in vectors

q ≜


−NT−1

2...
NT−1

2

 , m ≜


−NR−1

2...
NR−1

2

 , (5.5)

and thus according to (4.22), we may express the transmit and receive array response vectors as

aT (φT,l) = D̃T sinc
(
q − D̃T φ̃T,l1

)
(5.6)

aR (φR,l) = D̃R sinc
(
m− D̃Rφ̃R,l1

)
. (5.7)

The narrowband channel matrix (5.4) then takes the form

H =
L∑
l=1

αlaR (φR,l)aHT (φT,l)

= D̃RD̃T︸ ︷︷ ︸
D̃2

L∑
l=1

αl sinc
(
m− D̃Rφ̃R,l1

)
sinc

(
qH − D̃T φ̃T,l1H

)
, (5.8)

or, equivalently,

H = D̃2
L∑
l=1

αl sinc (m− (ml + ϵR,l1)) sinc
(
qH −

(
ql + ϵT,l1H

))
, (5.9)

in terms of the antennas nearest to the focus point of each lth path beam.

This channel model (and derived ones) allows for parallel data streams to be transmitted over
different propagation paths with independent processing. This interesting property is presented in [7]
and is named Path Division Multiplexing (PDM). It differs from conventional spatial multiplexing
since it can achieve higher spatial resolution without the need for complex array processing, just by
exploiting the path-sparsity and angular properties of the channel. Although general PDM cannot
avoid inter-path interference without more advanced techniques (due to the power leakage problem
mentioned in Section 4.2), the authors in [7] point out an ideal case that does not present this
issue. When the AoAs are perfectly aligned with the Rx antennas, the sinc pattern reduces to a
Kronecker delta and suppresses the inter-path interference completely (assuming that different antennas
are selected for different paths). This scheme is termed as Orthogonal Path Division Multiplexing
(OPDM).
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CHAPTER 5. THE LENS ANTENNA ARRAY CHANNEL

5.1.1 Capacity characterization

To study the capacity of the previous channel model, consider its optimal case. Every signal
beam l would align perfectly with its corresponding Tx and Rx antennas ml and ql, i.e. ϵR,l, ϵT,l =
0 ∀l = 1, . . . , L. Additionally, all L signal paths would have distinguishable AoDs and AoAs, such
that ml ̸= ml′ and ql ̸= ql′ for all l ̸= l′. Thus, (5.9) reduces to

Hopt(φR,l, φT,l) = D̃2
L∑
l=1

αl sinc (m−ml1) sinc
(
qH − ql1H

)

= D̃2
L∑
l=1

αlδ (m−ml1) δ
(
qH − ql1H

)
(5.10)

[Hopt]m,q =
{
D̃2αl, if m = ml and q = ql,
0, otherwise. (5.11)

Under these assumptions, the different signal paths can be perfectly resolved by L different antenna
elements (in general, L << NR, NT ) without interference. This situation allows for a simplified capacity
analysis and a multiplexing scheme with reduced complexity and infrastructure that achieves it: the
OPDM commented before.

According to [34], the capacity of a narrowband time-invariant wireless MIMO channel (like (5.10),
for the moment) can be computed by means of the SVD of the channel matrix:

Hopt = UΛVH . (5.12)

This representation decomposes the channel into a set of parallel, decoupled scalar Gaussian sub-
channels3, which are rotated by the unitary matrices U ∈ CNR×NR and V ∈ CNT×NT and scaled by the
rectangular diagonal matrix Λ ∈ RNR×NT . We assume the singular values in Λ are sorted in decreasing
order. As stated in Section 2.1, the number of singular values nmin is the rank of Hopt, which in
general MIMO channels, is min (NT , NR). However, in our ideal LAA case, Hopt is sparse, and its rank
is the number of different independent signal paths, i.e. nmin ≜ L (it is usually called rank-deficient).
Then, the columns of U and V with indexes greater than L are set to 0. This low-rank aspect of Hopt

can be better appreciated by rewriting (5.12) as

Hopt ≜
L∑
l=1

λlulvH
l , (5.13)

given that ul and vl are the columns of U and V, respectively.

Remember that, according to the general mmWave model (5.3), αl =
√
βγle

jωl . Notice that (5.10)
and (5.12) have the same formulation if we set

ul ≜ δ(m−ml1)ej
ωl
2 ⇒ U ≜

[
δ(m−m11)ej

ω1
2 , . . . , δ(m−mL1)ej

ωL
2
]

(5.14)

vl ≜ δ(q − ql1)e−j
ωl
2 ⇒ V ≜

[
δ(q − q11)e−j

ω1
2 , . . . , δ(q − qL1)e−j

ωL
2
]

(5.15)

λl ≜ D̃2√βγl ⇒ Λ ≜ D̃2√β diag(√γ1, . . . ,√γL). (5.16)

(5.13) is the sum of L rank-one matrices λlulvH
l . Each one of them defines a scalar eigenchannel with

an associated capacity that can support a data stream. The total capacity of the MIMO channel is the
sum of the ones from each independent sub-channel. Following the procedure in [34], we allocate an

3Under the typical MIMO signal model y = Hx+ z with AWGN z ∼ CN (0, PzI).
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5.1. SYMMETRIC CHANNEL: LAA-MIMO

optimal signal power Popt,l on the lth sub-channel with the waterfilling method, under the constraint
Ptot =

∑L
l=1 Popt,l. Then, for a noise power Pz, we can easily compute the total channel capacity:

C =
L∑
l=1

log
(
1 + Popt,l |λl|2

Pz

)
. (5.17)

|λl|2 = D̃4βγl are the eigenvalues of

HHH = UΛ

INT︷ ︸︸ ︷
VHVΛHUH = UΛΛUH = UΛ2UH . (5.18)

It is usually helpful to study (5.17) under the high and low SNR regimes separately. Their analysis
will allow us to obtain important insights on the characteristics of the LAA channel. When the SNR is
very high (SNR ≜ Ptot/Pz → ∞), the optimal waterfilling policy asymptotically allocates the same
amount of power (Phigh,l ≜ Ptot/L ≜ Phigh) to each eigenchannel. Hence

Chigh ≜ lim
SNR→∞

C = lim
SNR→∞

L∑
l=1

log
(
1 + Phigh |λl|2

Pz

)
= lim

SNR→∞

L∑
l=1

log
(
Ptot |λl|2

LPz

)

=
L∑
l=1

(
log

(
Ptot

Pz

)
+ log

(
|λl|2

L

))
= L log SNR+

L∑
l=1

log
(
|λl|2

L

)
. (5.19)

Also, by Jensen’s inequality

1
L

L∑
l=1

log
(
1 + Phigh|λl|2

LPz

)
≤ log

(
1 + Ptot

LPz

(
1
L

L∑
l=1

|λl|2
))

(5.20)

Chigh ≤ L log
(
1 + Ptot

LPz

(
1
L

L∑
l=1

|λl|2
))

= L log
(
1 + Ptot

LPz

( 1
L
Tr
[
HHH

]))
, (5.21)

since

Tr
[
HHH

]
= Tr

[
UΛ2UH

]
= Tr

Λ2

INR︷ ︸︸ ︷
UHU

 = Tr
[
Λ2
]
=

L∑
l=1

|λl|2. (5.22)

It is clear that, in this regime, the path-sparsity characteristic of mmWave communications is the main
limiting factor of the multiplexing capability of the channel. The rank of Hopt (i.e. the number of
spatial DoF) is dictated by the amount of reliable signal paths between Tx and Rx, L, which is usually
much lower than NT or NR. It is a known result [34] that, at high SNR, the MIMO channel with the
highest capacity is the one which has uniform singular values (i.e. well-conditioned). This is not the
case for the LAA-MIMO channel: under ideal path alignment, most singular values are 0, and even
when the power leakage is maximum, the condition number of Hopt, defined as

c (Hopt) ≜
maxl λl
minl λl

, (5.23)

is still very high.

Regarding the low SNR regime, the waterfilling policy will asymptotically allocate all the power to
the strongest eigenchannel (λMAX) as SNR → 0. Then, the capacity in that regime will be

Clow ≜ lim
SNR→0

C = lim
SNR→0

log
(
1 + Ptot |λMAX |2

Pz

)
= Ptot |λMAX |2

Pz
log2 e. (5.24)
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CHAPTER 5. THE LENS ANTENNA ARRAY CHANNEL

In this regime the condition number of Hopt becomes irrelevant, since the main limiting factor is
how much energy can be transferred from Tx to Rx through the strongest eigenchannel. The MIMO
channel provides a power gain of |λMAX |2 = D̃4βγMAX . The LAA proves to be well-suited for low
SNR environments, as it remarkably increases the power gain thanks to the energy focusing capacity
of the EM lens.

5.1.2 Capacity degradation factors

After the previous theoretical analysis of the symmetric LAA channel capacity, we will now present
some numerical examples. We want to experimentally characterize how different parameters of the
channel and transceivers affect its achievable rate. In particular, we will study the effect of antenna
selection and path overlap.

The experimental setting studied consists in a symmetric LAA link in which the Tx and the Rx
are equipped with an EM lens of aperture D̃ = 32 (NT = NR = 65). We will consider both high-SNR
(30dB) and low-SNR (-10dB) cases. For the first one, there are three paths between the transceivers
which can allocate reliable transmission of data (αl = 1, l = 1, 2, 3), while for the second one, only a
single path is available (α1 = 1).

In the first test, we will observe the impact of antenna selection on the (normalized) maximum
achievable rate in both regimes. The AoA of one of the paths will move around its assigned antenna to
see the effects of various misalignments, i.e. ϵ1 will vary between −0.5 and 0.5.
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(a) High-SNR regime.
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(b) Low-SNR regime.

Figure 5.1: Achievable rate for various antenna selection constraints.

It is clear from Figures 5.1a and 5.1b that path misalignment affects the achievable rate negligibly
if the full array can be processed, since it is able to capture all the energy. A noticeable drop is
experienced when only a single antenna can be allocated per path. In the high-SNR regime, the rate
reduction is < 2%, since there are still two remaining paths whose energy is perfectly captured by the
LAA. However, the degradation is very prominent (∼ 60%) in the low-SNR regime, as the full rate
depends on a single path and its energy is only received by a single antenna. Nonetheless, this issue
can be mitigated by allocating more antennas per beam. With just 4 antennas dedicated on each path,
the rate reduction can decrease to less than 10% in the low-SNR scenario and become insignificant in
the high-SNR one.
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5.1. SYMMETRIC CHANNEL: LAA-MIMO

The second test is similar to the first one but only the high-SNR regime will be considered. In this
case, the AoAs of paths 1 and 2 will lie on two consecutive array elements. The misalignment of one of
them will increase until both paths fully overlap. As commented in the previous section, channels with
similar singular values allow for larger achievable rates in the high-SNR regime. The condition number
of H (considering only the 3 non-negligible singular values) is a good indicator of the multiplexing
capabilities of the channel. When c (H) is close to 1, the channel is said to be well-conditioned and it
is well suited for multiple stream transmission in high-SNR. On the contrary, when its value is very
high, it implies that some of the virtual independent subchannels have become too mixed for reliable
multiplexing. This metric provides a more nuanced view of the channel than its rank.
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Figure 5.2: Condition number of the channel matrix at high-SNR regime.

In Figure 5.2, we have plotted the condition number of the LAA channel matrix as two paths
overlap. In general, when signal beams are well separated in the angular domain, the channel is
well-conditioned. Even for the maximum misalignment considered in the model (4.24), ϵ = 0.5, the
condition number does not surpass 5, which is a relatively low value. However, when beams are
separated by less than half the LAA resolution, the multiplexing capability of the channel for different
streams of data will dwindle, fully losing a spatial DoF when completely overlapping.
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Chapter 6

Point to Point Communications with
Lens Antenna Arrays

In the previous chapter, we have studied the symmetric LAA-MIMO channel, for P2P mmWave
communications. In that scenario, both the Tx and the Rx employ a multiantenna system with an EM
lens. Real world implementations of such systems could find application in vehicular communications,
in which space and energy constraints are reasonably soft and allow the deployment of moderately
sized equipment.

One of the goals of this thesis is to formulate transmission schemes based on LAA for regular
cellular mobile communications. The architecture of cellular networks and the devices they encompass
present requirements that may not be met under the symmetric LAA-MIMO paradigm. While BSs are
supported by static infrastructure and can allocate large equipment, MTs have very strict limitations.
On the one hand, MTs are usually battery-based, so they cannot afford arrays with many elements,
since the energy cost of activating and processing them is prohibitive. On the other hand, MTs must
meet mobility and encapsulation standards, discarding LAAs completely, especially the ones with
semispherical geometry.

The most suitable incorporation of LAAs in cellular mobile communications is the asymmetric
LAA-MIMO paradigm. Instead of deploying EM lenses on both sides of the link, only the BS will
have such equipment, while the MTs will rely on regular antenna arrays or single antennas. With
this philosophy, most signal processing will be carried out at the BS, removing the computational and
power load from the MTs.

The next sections are organized as follows. Firstly, we propose a variety of coherent data transmission
schemes for LAA systems. We have classified them in two groups: the ones that rely on full CSIT and
the ones that rely on full Channel State Information at the Receiver (CSIR). Since coherent schemes
are not the focus of this thesis, these two sections do not provide an in-depth study; they simply serve
to illustrate the range of possibilities that asymmetric LAA systems can offer. Afterwards, we introduce
two noncoherent frameworks: one for an UL scenario and one for a DL one. The general notions
derived from them will be the foundations for the multi-user schemes we will develop in Chapter 7.

For simplicity, all the schemes presented will consider single antenna MTs, which means that the
UL will be Single Input Multiple Output (SIMO) and the DL will be Multiple Input Single Output
(MISO).

6.1 Full CSIT

Let us consider a link between a LAA BS with NBS elements and a single antenna MT (NMT = 1).
Since CSIT can only be fully exploited by Txs with multiple antennas, we will just consider the DL
scenario (MISO). The signal received by the MT at time instant k takes the form:

y[k] = hHx[k] + z[k]. (6.1)
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6.1. FULL CSIT

h is the asymmetric LAA-MISO channel vector, whose expression is

h ≜ D̃
L∑
l=1

αl sinc
(
n− D̃φ̃l1

)
∈ CNBS×1. (6.2)

As expected, it is very similar to the symmetric case (see (5.8)) but with the LAA response vector on a
single side. z[k] ∼ CN (0, Pz) is AWGN and x[k] is the transmitted signal, constructed as x[k] ≜ Σws[k].
s[k] are unit-energy symbols and w is the beamforming vector, whose norm is constrained to the square
root of the total transmit power: ∥w∥ ≡

√
PBS . Σ is the antenna selection matrix, as defined in

Section 2.2.

It is well-known [34] that the optimal strategy (in terms of SNR) in a MISO channel with full CSIT
is aligning the data symbols along the direction of the channel vector, known as transmit beamforming.
This technique compensates the phases of each channel component, allocates more power to antennas
with better gain and converts the MISO channel into a scalar AWGN one. The beamforming vector
must then be

wB ≜
√
PBS

h̃∥∥∥h̃∥∥∥ . (6.3)

h̃ ≜ Σh is the equivalent channel vector under antenna selection. With this approach, the received
signal is

y[k] = hHΣwBs[k] + z[k]

=
√
PBS

hHΣh̃∥∥∥h̃∥∥∥ s[k] + z[k]

=
√
PBS

h̃H h̃∥∥∥h̃∥∥∥ s[k] + z[k] =
√
PBS

∥∥∥h̃∥∥∥ s[k] + z[k]. (6.4)

With transmit beamforming we have obtained a power gain of
∥∥∥h̃∥∥∥2. This gain is maximum when the

channel beams are perfectly aligned with the Rx (i.e. no power leakage) and the effect of antenna
selection is null:

max ∥h∥2 = D̃2
∥∥∥∥∥

L∑
l=1

αl sinc (n− nl1)
∥∥∥∥∥
2

= D̃2
∥∥∥∥∥

L∑
l=1

αlδ (n− nl1)
∥∥∥∥∥
2

= D̃2
L∑
l=1

|αl|2 . (6.5)

Then, the maximum achievable rate for this scheme is

R ≤ log

1 +
SNRmax︷ ︸︸ ︷

PBSD̃
2

Pz

L∑
l=1

|αl|2

 . (6.6)

This strategy is easily translated in the scenario in which the MT is multi-antenna (NMT > 1).
The advantage of transmit beamforming in the asymmetric MIMO channel compared to the MISO
one is that it possesses extra DoF (DoF = min (NBS , NMT , L)), which can be employed as power gain
under low-SNR regime or as multiplexing gain under high-SNR regime [34].
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6.2 Full CSIR
Since the UL channel is the reciprocal of the DL one, it is reasonable that the beamforming strategy

presented before can be inverted and applied to a full CSIR scenario. Indeed, in the UL channel, the
MT transmits the signal x[k] ≜

√
PMT s[k] to the BS. s[k] are unit energy symbols as in the previous

case and PMT is the MT transmit power. The signal received at the BS is then

y[k] = Σhx[k] + z[k] ∈ CNBS×1

= h̃x[k] + z[k], (6.7)

which has a similar structure to (6.1). z[k] is now CN (0, PzI). The Rx then applies the linear
combination (i.e. receive beamforming) that maximizes the SNR [45], the Maximum Ratio Combining
(MRC):

ỹ[k] = wH
My[k]. (6.8)

The weighting vector wM ≜ h̃
∥h̃∥ is defined the same way as wB in (6.3) because its working principle

is its natural reciprocal: to project the received signal onto h̃. The resulting received signal is

ỹ[k] = wH
M

(
h̃x[k] + z[k]

)
=
√
PMT

∥∥∥h̃∥∥∥ s[k] +
z̃[k]︷ ︸︸ ︷

wH
Mz[k] . (6.9)

Once again, we have converted the SIMO channel into a scalar AWGN one. The SNR and capacity
analysis is the same as in the CSIT case, since the Rx beamforming vector has unit norm and does not
affect the noise power.

Regarding the full CSIR DL scenario, that is, the MT has full information of the channel state, a
variety of schemes can be designed depending on the level of knowledge available at the BS. In general,
when CSIR is present and the Tx employs multiple antennas, STBC can bring significant diversity
gain: by transmitting special codes isotropically [34], the system can successfully garner the full DoFs
of the channel. This approach has been classically antagonistic to transmit beamforming. However, by
cleverly utilizing the CSI available in both ends of the link, hybrid schemes have been proposed [46,
47] that take advantage of the strengths of both philosophies.

For simplicity, we will study these methods in a channel with L = 2 reliable paths between BS and
MT, which will allow us to use the commonly called Alamouti scheme [34]. Nonetheless, the same
ideas can be applied to more general channels1. The model of the signal received at the MT follows
the already presented asymmetric LAA-MISO channel (6.1):

y[k] = hHx[k] + z[k]

= D̃
2∑

l=1
αl sinc

(
nH − (nl + ϵl)1H

)
x[k] + z[k]. (6.10)

The transmitted signal is constructed as

x[2k′] ≜ Σ
( 1√

2
wA,1s1[2k′] +

1√
2
wA,2s2[2k′]

)
(6.11)

x[2k′ + 1] ≜ Σ
( 1√

2
wA,1s1[2k′ + 1] + 1√

2
wA,2s2[2k′ + 1]

)
, (6.12)

where wA,1, wA,2 are two distinct beamforming vectors and s1[k], s2[k] are two instances taken from
a sequence of unit energy symbols, {s[k]}. Σ is the antenna selection matrix. The encoding of s1[k]
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2k′ 2k′ + 1
s1 s[2k′] −s∗[2k′ + 1]
s2 s[2k′ + 1] s∗[2k′]

Table 6.1: Alamouti’s code.

and s2[k] is specified in Table 6.1. By taking this codification into (6.10) and assuming the channel
remains constant over two symbol times, we have

y[2k′] = h̃H
( 1√

2
wA,1s[2k′] +

1√
2
wA,2s[2k′ + 1]

)
+ z[2k′] (6.13)

y[2k′ + 1] = h̃H
(−1√

2
wA,1s

∗[2k′ + 1] + 1√
2
wA,2s

∗[2k′]
)
+ z[2k′ + 1]. (6.14)

We can write the previous two expressions in space-time matrix form2:
[

y[2k′]
y∗[2k′ + 1]

]
= 1√

2

[
h̃HwA,1 h̃HwA,2
wH

A,2h̃ −wH
A,1h̃

] [
s[2k′]

s[2k′ + 1]

]
+
[

z[2k′]
z∗[2k′ + 1]

]

= 1√
2

[
g1 g2
g∗2 −g∗1

] [
s[2k′]

s[2k′ + 1]

]
+
[

z[2k′]
z∗[2k′ + 1]

]

y̆ = 1√
2
GAs[2k′] + z̆[2k′]. (6.15)

We have defined g1 ≜ h̃HwA,1 and g1 ≜ h̃HwA,2. Since the MT has full knowledge of the channel, it
can obtain these two values, as well, and compute the receive weights matrix

WA ≜
GH

A

∥GA∥2F
= 1

|g1|2 + |g2|2
GH

A . (6.16)

Weighting the received signal accordingly, we finally obtain

ỹ = WA

( 1√
2
GAs[2k′] + z̆[2k′]

)
= 1√

2
1

|g1|2 + |g2|2

[
g∗1 g2
g∗2 −g1

] [
g1 g2
g∗2 −g∗1

] [
s[2k′]

s[2k′ + 1]

]
+WAz̆[2k′]

= 1√
2

1
|g1|2 + |g2|2

[
|g1|2 + |g2|2 0

0 |g1|2 + |g2|2

] [
s[2k′]

s[2k′ + 1]

]
+ z̃[2k]

= 1√
2
s[2k′] + z̃[2k′]. (6.17)

This scheme allows the transmission of 2 data symbols in 2 channel uses (full rate). It successfully
transforms our original communication problem into 2 parallel AWGN subchannels. Each one of them

1If L > 2, two different approaches can be carried out: generalize the schemes for larger STBCs or arrange the paths
in two disjoint groups and treat them as individual beams.

2Contrary to other instances of space-time notation throughout this work, the convention used in this section is rows
for time.
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carries a symbol with power 1
2 . Both noise components have power

E
[∣∣z̃1[2k′]∣∣2] = E

[∣∣z̃2[2k′]∣∣2] = 1(
|g1|2 + |g2|2

)2 E [∣∣g∗1z[2k′] + g2z
∗[2k′ + 1]

∣∣2]

= |g1|2 Pz + |g2|2 Pz + g∗1g
∗
2 E [z[2k′]z[2k′ + 1]] + g1g2 E [z∗[2k′]z∗[2k′ + 1]](

|g1|2 + |g2|2
)2

=

(
|g1|2 + |g2|2

)
Pz(

|g1|2 + |g2|2
)2 = Pz

|g1|2 + |g2|2
, (6.18)

so the effective SNR is

SNR = |g1|2 + |g2|2

2Pz
. (6.19)

The design of wA,1 and wA,2 and, as a consequence, the performance of the scheme, will be
conditioned by the amount of channel knowledge available at the Tx. In general terms, we can consider
three degrees of CSIT:

• AoDs: If the BS knows the directions to reliably communicate with the MT, it can cleverly
allocate its power to maximize the SNR. This is the default case in LAA systems that employ
antenna selection. In the ideal case (perfect beam alignment), the beamforming vectors and their
corresponding gains are:

wA,l =
√
PBS

2 sinc (n− nl1) =
√
PBS

2 δ (n− nl1) (6.20)

gl = hHwA,l = D̃αl

√
PBS

2 δ
(
nH − nl1H

)
δ (n− nl1) = D̃αl

√
PBS

2 , l = 1, 2. (6.21)

This results in a SNR of

SNR =
D̃2PBS

(
|α1|2 + |α2|2

)
4Pz

, (6.22)

6dB below the one in (6.6).

• AoD with the highest gain: Beyond knowing the AoDs, the Tx may also be aware of which
one presents a higher gain. This information is especially useful at low-SNR regimes, since all the
available power can be allocated to a single beam. The maximum resulting SNR in this case is

SNR = D̃2PBS |αmax|2

2Pz
. (6.23)

• AoDs + Path gains: Finally, knowing the gain profile of each path allows the BS to optimally
allocate its available power proportionally. The power assigned to each beam is

PBS,l ≜

√√√√ PBS |αl|2

|α1|2 + |α2|2
, l = 1, 2. (6.24)
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Hence, the resulting SNR is

gl = D̃αl

√√√√ PBS |αl|2

|α1|2 + |α2|2
⇒ SNR =

D̃2PBS

(
|α1|2 + |α2|2

)
2Pz

(6.25)

This approach can yield much better performance than when only AoDs are known, only 3dB
below MRC.

6.3 Noncoherent schemes
The transmission schemes we have presented so far rely on perfect CSI either on the Tx or Rx

end. As explained in Section 2.1, this knowledge usually relies on training-based channel estimation
techniques, which can imply various issues that may hinder the communication, especially in mmWave
mobile environments. Given the special characteristics of the LAA channel, we strongly advocate for
the development of noncoherent and blind schemes that thoroughly exploit its strengths. It must be
stated that so called truly noncoherent methods [22] are not the topic of interest in this thesis. Indeed,
in a channel with a structure as clearly defined as the LAA, discarding the statistical knowledge about
it would entail a remarkable loss in performance.

In this section, we present two noncoherent schemes: Multiple-Symbol Differential Detection
(MSDD) for the UL and Differential Orthogonal Space-Time Block Coding (D-OSTBC) for the DL.
They are both built upon the foundations of CDD, generalizing and improving it. Beside presenting
them in a generic form, we specifically characterize them for LAA-SIMO and LAA-MISO. The intuitions
behind their operation will be of great usefulness in Chapter 7, where we will modify and extend
them to the multi-user scenario.

6.3.1 Multiple Symbol Differential Detection (MSDD)

As stated in Section 2.3, one of the main drawbacks of CDD is the fundamental 3dB penalty in
performance against coherent schemes. It is well-known that this limit can be improved by estimating
a sequence of symbols jointly. In fact, the performance loss can be arbitrarily reduced as the length of
the sequence increases3. The scheme that takes advantage of this idea is known as MSDD.

Consider the UL SIMO scenario from previous sections, with a BS equipped with a LAA of
NBS >> 1 antennas as the Rx and a single-antenna MT (NMT = 1) as the Tx. The received signal
can be represented in the compact space-time block notation as

Y = hxT + Z ∈ CNBS×K (6.26)
[y[0], . . . ,y[K − 1]] = h [x[0], . . . , x[K − 1]] + [z[0], . . . , z[K − 1]]

in which each row is a different BS antenna (space ↓) and each column is a different time instant (time
→). The signal block4 xT contains a sequence of K differentially encoded symbols, x[k] = x[k − 1]s[k],
transmitted by the MT. s[k] are taken from a unitary constellation S of size M (M-DPSK). h is the
channel vector, which takes the form

h ≜ D̃
L∑
l=1

αl sinc
(
n− D̃φ̃BS,l1

)
∈ CNBS×1. (6.27)

3Asymptotically, performing this joint differential detection on an infinite sequence of symbols would yield the same
performance as a coherent scheme. However, this is not achievable in practice, and the performance is limited by the
maximum window of time in which the channel coefficients remain constant.

4In contrast to other well-established literature dealing with this SIMO model [8, 21–24, 48] we will keep the transpose
symbol ·T throughout this chapter for clarity of notation when computing inner and outer products.
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For simplicity, we assume Rayleigh fading [34] and the path gains αl will be distributed as Circularly
Symmetric Complex Gaussian (CSCG) variables CN (0, Pl) (which is consistent with the multi-path
channel model presented in Chapter 5). h is therefore the sum of LAA response vectors scaled by
univariate complex normal coefficients, i.e. h is a complex normal multidimensional variable with
statistics h ∼ CN (0,Ch):

E [h] = E
[

L∑
l=1

αlaBS (φBS,l)
]
=

L∑
l=1

E [αlaBS (φBS,l)]

=
L∑
l=1

E [αl]aBS (φBS,l) = 0 (6.28)

E
[
hhH

]
≜ Ch.

5 (6.29)

Finally, Z ∼ MCN (0, PzINR , IK) is a matrix that contains AWGN.

As the authors in [21] point out, this system model is closely related to Impulse Radio Ultra
Wideband (IR-UWB). In that scenario, it is common to employ binary DPSK, so users transmit
information in the sign of a sequence of short pulses. As a consequence of multipath propagation, the
receiver perceives a number of echoes for each transmitted pulse. To avoid Inter-Symbol Interference
(ISI), the symbol duration is chosen large enough so that all echoes have been received before the next
symbol starts. We can draw a clear analogy to the mmWave scenario we are dealing with in the thesis:
while in IR-UWB the echoes are spread along the temporal dimension, in LAA-SIMO the echoes are
spread along the spatial dimension (multiple antennas of the Rx). Furthermore, the IR-UWB problem
can be easily expressed using the same formulation as in the transmission block model (6.26). It is then
natural to assume that LAA-SIMO shares the same advantages and disadvantages as IR-UWB systems.
In particular, they both present numerous practical incentives to avoid explicit channel estimation
and instead favor noncoherent approaches. For all these reasons, we will employ and extend the tools
developed in [22] for IR-UWB, applied to LAA-MIMO in the line of research from [21, 23].

Let us consider the ML estimation for the transmit symbols at the Rx. The Probability Density
Function (PDF) of the received signal block conditioned on a hypothesis for the transmitted sequence
x and a channel realization h is

fY (Y|x,h) = 1
(πPz)NBSK

exp
(−1
Pz

∥∥∥Y− hxT
∥∥∥2
F

)
, (6.30)

which is the PDF of the noise Z displaced by hxT . If h was known to the receiver (full CSIR), the
optimum ML coherent detector would be

x̂ML
coh = argmax

x∈SK , x[0]≡1
fY (Y|x,h) , (6.31)

with SK being the set of all possible sequences of symbols from S. Since this is not the case, we have
to derive the ML noncoherent detector. To do so, we must remove the uncertainty of h from the
detection, taking into account its statistics. The PDF of h is

fh(h) =
1

πNBS |Ch|
exp

(
−hHCh

−1h
)
. (6.32)

We average (6.30) over it to obtain the ML marginal distribution

fML
Y (Y|x) = Eh [fY (Y|x,h)] =

∫
CNBS

fY (Y|x,h) fh (h) dhdh∗. (6.33)

5See Section 7.1 for a complete derivation of Ch in a multiuser environment.
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Then, based on this distribution, the ML detection problem is reduced to
x̂MSDD = argmax

x∈SK , x[0]≡1
fML
Y (Y|x) . (6.34)

In [22], the author derives a so-called truly noncoherent ML receiver from (6.34) in the context of
IR-UWB. By assuming uncorrelated elements in h, i.e.

Ch =

 Ph,1 0
. . .

0 Ph,NBS

 , (6.35)

a simplified detector is obtained, which works on a best guess when no information about h is known.
In our thesis, however, we are dealing with a LAA environment, whose associated channel has a clearly
defined structure. Hence, we want to characterize (6.34) for our working conditions.

In the following derivation, we will generalize the results from [22] to any channel vector that is
distributed as h ∼ CN (0,Ch), for any arbitrary covariance matrix. Then, in further applications of
this scheme (see Section 7), the covariance matrix can be set as required by the problem.

The integral in (6.33) can be expanded as

fML
Y (Y|x) =

C︷ ︸︸ ︷
1

πNBS(K+1) |Ch|PNBSK
z

∫
CNBS

exp
(
−hHCh

−1h
)
exp

(−1
Pz

∥∥∥Y− hxT
∥∥∥2
F

)
dhdh∗

= C
∫
CNBS

exp
(
−hHCh

−1h− 1
Pz

∥∥∥Y− hxT
∥∥∥2
F

)
dhdh∗. (6.36)

We have gathered all the multiplicative factors that do not affect the detection under constant C. We
can now develop the exponent inside the integral into a quadratic form of h:

fML
Y (Y|x) = C

∫
CNBS

exp
(
−hHCh

−1h−
∥Y∥2F − xTYHh− hHYx∗ + |x|2 |h|2

Pz

)
dhdh∗

=

C′(Y)︷ ︸︸ ︷
Ce−

∥Y∥2
F

Pz

∫
CNBS

exp
(
−hHCh

−1h− K |h|2 − xTYHh− hHYx∗

Pz

)
dhdh∗

= C ′(Y)
∫
CNBS

exp
(
−hH

(
Ch

−1 + K

Pz
INBS

)
h+ 1

Pz
xTYHh+ 1

Pz
hHYx∗

)
dhdh∗,

(6.37)

where we have used the fact that the elements of x are unitary (and thus |x|2 = K) and the equivalence
|h|2 ≡ hHINBSh.

We can apply the change of variable dhdh∗ ≡ 2NBSdRe {h} d Im {h} [49] and reformulate the
previous expression as

fML
Y (Y|x) = 2NBSC ′

∫
CNBS

exp
(
−hH

(
Ch

−1 + K

Pz
INBS

)
h+ xTYHh

Pz
+ hHYx∗

Pz

)
dRe {h} d Im {h} .

(6.38)
This integral has a known closed form solution that is widely used in quantum field theory (see Equation
(2.139) in [49]):

fML
Y (Y|x) = (2π)NBS C ′(Y)

det
(
Ch

−1 + K
Pz
INBS

) exp
(

1
P 2
z

xTYH
(
Ch

−1 + K

Pz
INBS

)−1
Yx∗

)
. (6.39)
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The original ML detection problem reduces to the maximization

x̂MSDD = argmax
x∈SK , x[0]≡1

fML
Y (Y|x) = argmax

x∈SK , x[0]≡1
log

(
fML
Y (Y|x)

)
= argmax

x∈SK , x[0]≡1
xTYH

(
Ch

−1 + K

Pz
INBS

)−1

︸ ︷︷ ︸
Wopt

Yx∗

= argmax
x∈SK , x[0]≡1

xTYHWoptYx∗ . (6.40)

It is noteworthy that the generalized noncoherent detector we have obtained with the optimized
weighting matrix Wopt displays a structure very reminiscent of the classical estimator-correlator [50].
Unsurprisingly, it is also very similar to the one presented in [22]: the only difference appears to be in
the weights matrix Wopt. In the mentioned thesis, Wd is a diagonal matrix with elements

[Wd]n,n = 1
K + Pz

Ph,n

, (6.41)

stemmed from the assumed uncorrelatedness of h. On the contrary, our detector allows for any kind of
covariance matrices, with higher complexity and structure. This implies that it can better exploit the
statistical CSI of second order. Indeed, our detector is a generalization of the one presented in [22],
which can clearly be seen from the fact that Wopt becomes Wd under the diagonal covariance matrix
assumption:

Wopt (diag (Ph,1, . . . , Ph,NBS
)) =

(
diag (Ph,1, . . . , Ph,NBS

)−1 + K

Pz
INBS

)−1

= diag
(
P−1
h,1 + K

Pz
, . . . , P−1

h,NBS
+ K

Pz

)−1

= diag

 1
K
Pz

+ 1
Ph,1

, . . . ,
1

K
Pz

+ 1
Ph,NBS



=


Pz

K+ Pz
Ph,1

0

. . .
0 Pz

K+ Pz
Ph,NBS

 . (6.42)

The factor Pz comes from the exponent in (6.39), and Ph,n are the diagonal terms of the full channel
covariance matrix, [Ch]n,n.

In general, Ch is not known at the BS, so the detector has to use an estimation Ĉh. Since this
matrix may be badly conditioned, its inversion would entail numerical inaccuracies. Fortunately, we
can apply Woodbury’s Inversion Lemma to the computation of Wopt:

Wopt =
(
Ĉ−1

h + K

Pz
INBS

)−1
= Ĉh − Ĉh

(
Pz

K
INBS + Ĉh

)−1
Ĉh. (6.43)

Now the term in the parenthesis is easily invertible, thanks to the diagonal loading that acts as a sort
of Tikhonov regularization [51].

MSDD is based on the autocorrelation of a signal block. Considering (6.40), we define matrix

R ≜ YHWoptY (6.44)
rk,k′ ≜ [R]k,k′ = yH [k]Ry[k′].
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From this definition we can understand rk,k′ as the weighted correlation coefficient between received
signal y[k] and y[k′]. We can express the noncoherent detection rule in a double summation form:

x̂MSDD = argmax
x∈SK , x[0]≡1

xTRx∗ = argmax
x∈SK , x[0]≡1

K−1∑
k=0

K−1∑
k′=0

rk,k′x[k]x∗[k′]. (6.45)

For k = k′, x[k]x∗[k] = |x[k]|2 = 1, so we can remove these terms from the summation. Furthermore,
since Wopt is a symmetric matrix, we only need to consider the correlation terms from one of its two
triangular halves:

x̂MSDD = argmax
x∈SK , x[0]≡1

K−1∑
k=1

x∗[k]
k−1∑
k′=0

x[k′]rk′,k (6.46)

Before introducing a noncoherent scheme for the DL in the following section, let us briefly comment
on some numerical results regarding the use of the optimized weights matrix. Consider a LAA P2P
UL scenario (model (6.26)), with D̃ = 50 (NBS = 101) and L = 3. A MT transmits a signal block of
length KUL = 401 with power PMT = 1. We assume the channel h remains invariant during the full
transmission. The SNR perceived by the Rx can be defined as

SNR ≜
E
[
∥h∥2

]
NBSPz

. (6.47)

To perform MSDD, the BS must estimate the covariance matrix of the channel, Ch, from the received
signal y[k]. Its correlation matrix is computed as

Cy ≜ E
[
y[k]yH [k]

]
= E

[
(hx[k] + z[k]) (hx[k] + z[k])H

]
= E

[
hx[k]x∗[k]hH + hx[k]zH [k] + z[k]x∗[k]hH + z[k]zH [k]

]
= E

[
hhH

]
+ E

[
z[k]zH [k]

]
= Ch + PzI. (6.48)

We have used the fact that the AWGN z[k] ∼ CN (0, PzI) is uncorrelated with the transmitted signal
and the channel, and x[k] is unitary (|x[k]|2 = 1), since it is drawn from an M-PSK constellation.
From this result we conclude that Ch can be obtained by estimating Cy and removing the noise power
contribution. An appropriate option to do such estimation is the unbiased sample covariance from the
received block:

Ĉy ≜
1

KUL
YYH . (6.49)

Then, we subtract the noise load to obtain an estimate of the channel covariance matrix:

Ĉh ≜ Ĉy − P̂zI. (6.50)

P̂z is an estimate of the noise power, obtained from antennas moderately separated (in the angular
sense) from the signal AoAs.

Let us make some comparisons between our generalized covariance matrix method and the truly
noncoherent method from [22] and its subsequent line of research. A qualitative illustration of Ĉh
computed from the previous received signal block Y at SNR = 0dB can be seen in Figure 6.1a. Using
only its diagonal elements (Figure 6.1b) to produce the weights matrix discards an important amount
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of signal power and information from the crossed path terms. This loss can be observed in Figures 6.1c
and 6.1d, where the latter has substantially less active elements than the former.

In practice, this results in the expected effect. After averaging over 3000 UL transmissions at
various SNRs, we have obtained the Symbol Error Rate (SER) displayed in Figure 6.2. It is then clear
that better exploiting the available statistical CSI produces a more reliable noncoherent system. With
this proposal, we have successfully generalized and improved upon a well-known MSDD scheme for a
P2P UL.

(a) Full estimated channel covariance matrix. (b) Estimated channel covariance under the uncorrelated-
ness hypothesis.

(c) Weights matrix computed with the full covariance ma-
trix.

(d) Weights matrix computed with the diagonal covariance
matrix.

Figure 6.1: Comparison between MSDD weighting approaches.
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Figure 6.2: SER comparison between optimized and truly noncoherent MSDD methods for various values of
SNR.

6.3.2 Differential Orthogonal Space-Time Block Coding (D-OSTBC)

Traditional space-time coding schemes remove the CSI acquisition task from Txs and rely instead
on full CSIR. They are specially suitable for slowly fading channels and Rxs with enough resources
(energy, computational power) to devote to signal processing, since the channel matrix coefficients
must be estimated accurately. An UL would be an appropriate scenario). This approach, however
may not work in fast fading channels or schemes with battery-constrained receivers. A noncoherent
approach seems like the more natural alternative.

Differential Space-Time Modulation (DSTM) is the multiantenna extension of DM for SISO systems
(see Section 2.3). Instead of dealing with scalars, we now manipulate space-time block matrices, in
which rows (↓) represent the spatial dimension (Tx antennas) and columns (→) are different instances
of time. Consider a MISO DL6 setting in which a LAA BS with NBS antennas transmits data to a
single-antenna MT (NMT = 1). The space-time model of the received signal is

y̆T = hHX̆+ z̆T ∈ C1×K

[y[0], . . . , y[K − 1]] = hH [x[0], . . . ,x[K − 1]] + [z[0], . . . , z[K − 1]][
yT [0], . . . ,yT [K −Kb]

]
= hH [X[0], . . . ,X[K −Kb]] +

[
zT [0], . . . , z[K −Kb]

]
, (6.51)

where y̆T contains the full sequence of {y[k]} received signals, hH ∈ C1×NBS is the reciprocal channel
vector from (6.26), X̆ ∈ CNBS×K contains theK transmitted signals x[k] ∈ CNBS×1, for k = 0, . . . ,K−1,
and z̆T [k] ∈ C1×NBS is additive noise and interference. x[k] are constructed as x[k] = G[k]c[k], such
that G[k] ∈ CNBS×Ns is a power-loading/beamforming matrix and c[k] are the transmitted symbols
of dimension Ns, a parameter we will refer to as its spatial size [29]. These symbols are coded into
space-time blocks of length Kb, C[i] ≜ [c[i], c[i+ 1], . . . , c[i+Kb − 1]]. The same occurs with the
beamformed signals X[i] ≜ GC[i] = [x[i],x[i+ 1], . . . ,x[i+Kb − 1]].

A full DL transmission of duration K is composed of Nb ≜ ⌊ K
Kb

⌋ signal blocks7. The block-wise
model can be expressed as

yT [i] = hHX[i] + zT [i] , i = 0,Kb, 2Kb, . . . , (Nb − 1)Kb. (6.52)
6The MIMO extension of this scheme is straightforward and can be found in [31].
7We assume K is a multiple of Kb for convenience.

41



CHAPTER 6. POINT TO POINT COMMUNICATIONS WITH LENS ANTENNA ARRAYS

For the moment, we assume the channel remains constant over the duration of at least two blocks.

Let SU ≜ {S[i]} be a set of unitary matrices8 to be transmitted. Extending the ideas of Section
2.3, instead of transmitting S[i] directly, we encode the information differentially on a new set {C[i]}:

C[i] = C[i− 1]S[i] (6.53)
C[0] ≡ INs .

Since {S[i]} are unitary, we can prove that CH [i]C[i] = INs by following the recursion
CH [i]C[i] = SH [i]CH [i− 1]C[i− 1]S[i]

= SH [i]SH [i− 1] . . .SH [1]

INs︷ ︸︸ ︷
CH [0]C[0]S[1] . . .S[i]

= SH [i] . . .

INs︷ ︸︸ ︷
SH [1]S[1] . . .S[i]

= INs . (6.54)
This property guarantees that the transmit power is kept constant if the beamforming matrix is
properly normalized. By transmitting X[i− 1] and X[i], the received signal blocks are

yT [i− 1] = hHX[i− 1] + zT [i] (6.55)
yT [i] = hHX[i] + zT [i]

= hHG[k]C[i] + zT [i]
= hHG[k]C[i− 1]S[i] + zT [i]
= hHX[i− 1]S[i] + zT [i]. (6.56)

If hHX[i− 1] was known, we could simply use the coherent ML detector

ŜML ≜ argmin
S[i]∈SU

∥∥∥yT [i]− hHX[i− 1]S[i]
∥∥∥2 . (6.57)

Since this is not the case, we will decode S[i] using two consecutive blocks yT [i] and yT [i− 1]:

ŜML[i] = argmin
S[i]∈SU

∥∥∥yT [i]− hHX[i− 1]S[i]
∥∥∥2 + ∥∥∥yH [i− 1]− hHX[i− 1]

∥∥∥2
= argmin

S[i]∈SU

∥∥∥yT [i]SH [i]− hHX[i− 1]
∥∥∥2 + ∥∥∥yH [i− 1]− hHX[i− 1]

∥∥∥2 . (6.58)

The vector hHX[i− 1] is completely unknown, so we use the value that minimizes (6.58):

ĥHX[i− 1] = 1
2
(
yT [i]SH [i] + yT [i− 1]

)
. (6.59)

We replace it in (6.58) and obtain the simplified minimization problem:

ŜML[i] = argmin
S[i]∈SU

∥∥∥yT [i]SH [i]− yT [i− 1]
∥∥∥2

= argmin
S[i]∈SU

(
∥y[i]∥2 − yT [i]SH [i]y∗[i− 1]− yT [i− 1]S[i]y∗[i] + ∥y[i− 1]∥2

)
= argmin

S[i]∈SU

−2Re
{
yT [i− 1]S[i]y∗[i]

}
= argmax

S[i]∈SU

Re
{
yT [i− 1]S[i]y∗[i]

}
. (6.60)

8This constrains the temporal size of the block to be equal to its spatial size, i.e. Kb ≡ Ns.
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Notice that both (6.57) and (6.60) ML detectors are the natural space-time extension of the coherent
and noncoherent detectors introduced in Section 2.3.

For an arbitrary set of unitary code matrices {S[i]}, the ML detector (6.60) becomes computationally
expensive, since it requires a search through all possible S[i]. Instead, using Orthogonal Space-Time
Block Coding (OSTBC) rather than group codes, the complexity can be remarkably reduced and an
overall better performance can be achieved [31].

Differential encoding of matrix blocks requires square and unitary matrices. However, code matrices
for OSTBC are semi-unitary9 and not square in general. The only instances in which they are square
are for Kb = 2, 4, 8. They can be constructed using the following linear model:

S[i] ≜
√

1
Ms

Ms∑
m=1

(Re {sm[i]}Am + j Im {sm[i]}Bm) , (6.61)

where {s1[i], . . . , sMs [i]} is a set of complex symbols taken from a unitary constellation S to be
transmitted in a space-time block and {Am,Bm}Ms

m=1 ∈ CNs×Kb are fixed code matrices. This scheme
allows us to send Ms symbols over Kb time intervals, hence its rate is defined as Rb ≜

Ms
Kb

. Symbol
blocks of sizes 2, 4 and 8 have rates of 1, 3/4 and 1/2, respectively. The scheme can be extended to
larger blocks but their rate becomes so low (<1/2) that are of little interest in practice.

For (6.61) to be orthogonal, {Am,Bm} must be an amicable orthogonal design [31], which is a
special set of matrices whose structure follows some defined constraints. These ensure the following
unitary property:

S[i]SH [i] = 1
Ms

Ms∑
m=1

|sm|2 IKb
= 1
Ms

Ms∑
m=1

IKb
= IKb

. (6.62)

By constructing space-time code blocks with these designs, OSTBC guarantees that the ML detection
of different symbols in a block is decoupled. The ML detector (6.60) simplifies considerably compared
to searching for general unitary code matrices. Its final expression is derived as follows:

ŜML[i] = argmax
S[i]∈SU

Re
{
yT [i− 1]S[i]y∗[i]

}

= argmax
s[i]∈S

Re
{√

1
Ms

yT [i− 1]
(

Ms∑
m=1

(Re {sm[i]}Am + j Im {sm[i]}Bm)
)
y∗[i]

}

= argmax
s[i]∈S

Re
{

Ms∑
m=1

(
Re {sm[i]}yT [i− 1]Amy∗[i] + j Im {sm[i]}yT [i− 1]Bmy∗[i]

)}

= argmax
s[i]∈S

Ms∑
m=1

(
Re {sm[i]}Re

{
yT [i− 1]Amy∗[i]

}
+ Im {sm[i]} Im

{
yT [i− 1]Bmy∗[i]

})
.

(6.63)

The main practical issue regarding D-OSTBC scheme is the structural rigidity of the code matrices
which can only be square for certain Ns. In many systems and scenarios, the conditions may not
be optimal for any block size. Particularly, under the LAA-MISO channel model studied in this
section, there may be L reliable signal paths between the BS, and we may want to assign a different
spatial dimension on each one of them (i.e. spatial multiplexing). Since L is arbitrarily given by the
geometry of the communication setting, it may not be suitable for any D-OSTBC design. This would

9A matrix M is semi-unitary when either MHM = I or MMH = I.
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force the scheme to employ fewer paths than the available ones to accommodate a block code, hence
underutilizing the full channel diversity.

To circumvent this inconvenience, we can apply a simple modification to the basic scheme that will
make it more adaptable to channel characteristics. Given a differentially encoded matrix C[i] ∈ CNs×Kb ,
we define the trimming matrix

ΦL ≜
[
IL 0L×(Kb−L)

]
, (6.64)

in which Kb is 2, 4 or 8 accordingly, and transmit ΦLCKb
[i] instead of CKb

[i] (the subscript Kb

indicates the size of the unitary matrix). This is equivalent to only transmitting the first L rows of
CKb

[i]:

yT [i] = hHG[k]ΦLCKb
[i] + zT [i]. (6.65)

The receiver can use the regular ML detector with S[i] defined for Ns = Kb. With this scheme, we
can successfully exploit the LAA channel for Ns = 2, . . . , 8. While we could easily extend it to larger
spatial dimensions, mmWave channels are characterized by their multipath sparsity, hence L > 8 is not
common in most environments [5].

D-OSTBC presents the same diversity order (Gd = rank
{
E
[
hhH

]}
∝ L) as its coherent counterpart.

The only difference between their performances is the expected 3dB loss in SNR. Indeed, for coherent
detection, the SNR is

SNRcoh = Kb

MsNBS

∥h∥2

Pz
= ∥h∥2

RbNBSPz
, (6.66)

for noise power Pz, assuming total transmitted energy equal to one during each time instant and
ignoring the impact of G[k]. Notice that there is a gain inversely proportional to the block rate in
SNR. Then, in the noncoherent scenario, it can be proven [31] that

SNRnon = ∥h∥2

2RbNBSPz
= SNRcoh

2 , (6.67)

due to the effect of using yT [i− 1] instead of hH in the ML detector, which doubles the noise power.
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Chapter 7

Multi-user Communications with Lens
Antenna Arrays

In the final chapter of this thesis we are going to study the problem of LAA communications in a
multi-user environment. All the tools we have presented so far will be useful in this setting, but the
presence of both noise and Inter-User Interference (IUI) will require the development of new methods
with a more in-depth analysis. We want to garner all the benefits that LAAs deliver for mmWave
wireless communications and combine them with the strengths of noncoherent schemes.

The setting we are going to study in particular consists in a group of NU users in the vicinity of a
BS that want to establish simultaneous communication with it. Each user has a single-antenna MT
and the BS is equipped with a LAA of sufficiently large size in order to give service to all NU users
at once. Therefore, we will employ a generalized multi-user version of the SIMO and MISO models
discussed in the previous chapter: MU-MIMO [27]. Since MTs are powered by batteries, they are
constrained in terms of energy consumption, which translates into limited computational power. For
this reason, we want the BS to carry out the CSI acquisition for both the UL and DL, thus removing
most of the signal processing from the users’ terminals.

We have designed a full UL-DL scheme that exploits the advantages of using very large LAA with
partial CSI at the BS. Not only have we considered the communication side of the system, but also
CSI acquisition, antenna selection and other signal processing aspects that are crucial for the scheme
to be robust and successful. We have organized the exposition in two sections: one for the UL and
one for the DL. Each one of them has been divided in various subsections that contain encapsulated
techniques that, once combined, form a synchronized whole. After these explanations, the performance
of the resulting scheme will be tested in various numerical simulations.

7.1 Uplink

In the UL stage, NU MT users (Tx) start a communication with the BS (Rx). This means that
a set of NU SIMO systems have to be processed simultaneously (MU-MIMO). Its associated signal
model is the result of combining those NU SIMO ones:

Y = [y[0], . . . ,y[KUL − 1]] =
NU∑
u=1

huxT
u + Z ∈ CNBS×KUL

= [h1, . . . ,hNU ] [x1, . . . ,xNU ]
T + Z

= HXT + Z . (7.1)

Each row of the signal block XT , xT
u , corresponds to a different user u that transmits KUL symbols

from an M -ary constellation S. Each column of matrix H, hu, is the channel associated to user u,
which takes the form

hu ≜ D̃
∑
l∈Lu

αUL
l sinc

(
n−

(
n
(u)
l + ϵ

(u)
l

)
1
)
, (7.2)
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where Lu is the set of channel paths connecting Tx u with the Rx. Vector n =
[
−NBS−1

2 , . . . , NBS−1
2

]T
contains the BS antenna indices. Once again, we assume Rayleigh fading as in Section 6.3.1
(αUL

l ∼ CN (0, Pl)). The path gains can then be expressed as

αUL
l ≜

∣∣∣αUL
l

∣∣∣ ejωUL
l ⇒

∣∣∣αUL
l

∣∣∣2 ∼ Exp
( 1
Pl

)
, ωUL

l ∼ U [0, 2π) . (7.3)

Finally, Z ∼ MCN (0, PzINR , IKUL) is AWGN.

7.1.1 Antenna Selection

As explained in Section 2.2, very large antenna arrays cannot afford the infrastructure and power
requirements to employ all their elements at once, and LAAs are no exception. For this reason, the
system designed in this chapter requires the use of antenna selection as well. However, while the
energy-based AS criterion discussed in Section 2.2 is well-suited for P2P communications, multi-user
scenarios require a more nuanced approach.

Straightforward energy based antenna selection does not distribute available resources in a fair
manner across all the MTs establishing communication with the BS. While this technique maximizes
the available sum rate, it does so by favoring users with strong channel paths and neglecting others
with worse SNR conditions. To circumvent this non-ideal situation, we propose an approach that first
divides the available RF chains fairly along the users and then applies energy detection to each one of
them individually.

This new antenna selection procedure is described as follows. Each MT transmits training symbols
s
(u)
sel for a duration Ksel with power P (u)

sel :

x
(u)
sel [k] ≜

√
P

(u)
sel s

(u)
sel . (7.4)

An advantage of not having to explicitly estimate the channel coefficients is the fact that the training
symbols are not required to be orthogonal. As mentioned in Section 2.2, since the amount of RF
chains available at the BS is lower than the number of Rx antennas (NRF < NBS), it has to perform
the AS phase by scanning across all its array elements, which results in an effective training time of

Tsel ≜
⌊
KselNBS

NRF

⌋
. (7.5)

The BS receives signals of the form
ysel[k] = Hxsel[k] + z[k] , k = 0, . . . ,Ksel − 1. (7.6)

= [h1, . . . ,hNU ]
[
x
(1)
sel [k], . . . , x

(NU )
sel [k]

]T
+ z[k]

with H being the same as in (7.1) and z[k] being complex AWGN (z[k] ∼ CN (0, PzI)). Once all the
training symbols have been received, the BS combines them into a single vector, in the same manner
as in Section 2.2:

ȳsel =
1√
Tsel

Tsel−1∑
k′=0

ysel[k′] =
1√
Tsel

Tsel−1∑
k′=0

(
Hxsel[k′] + z[k′]

)

= 1√
Tsel

Tsel−1∑
k′=0

NU∑
u=1

hux
(u)
sel [k

′] +

z̄︷ ︸︸ ︷
1√
Tsel

Tsel−1∑
k′=0

z[k′]

=
√
TselD̃

NU∑
u=1

√
P

(u)
sel s

(u)
sel

∑
l∈Lu

αl sinc
(
n− D̃φ̃BS,l1

)
+ z̄. (7.7)
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Then, to perform an energy based selection, the BS considers

¯̄ysel ≜ ȳsel ⊙ ȳ∗
sel =


|ȳsel,1|2

...
|ȳsel,NBS

|2

 . (7.8)

At this point, our proposal starts to depart from the one in Section 2.2. If we closely analyze the
structure of ¯̄ysel, we can clearly see it presents very prominent energy peaks, thanks to the focusing
properties of the LAA channel. Each one of these peaks corresponds to a different signal beam l. In
other words, a local maximum in ¯̄ysel corresponds to the antenna closest to the angular direction of a
beam. We will denote it as nl, using a notation similar to (4.24), and ¯̄ysel,nl

will be denoted pl. As
stated in Section 2.2, antennas whose energy level is under a certain threshold ∆sel will be considered
noise and be left out of the selection process.

The task of assigning each identified path l to its corresponding origin MT is a very complex
problem beyond the scope of this thesis, especially considering we are dealing with a noncoherent
scheme that does not employ orthogonal training pilots. Nonetheless, we propose general brush strokes
on how this task could be carried out. After the antenna selection phase1, each MT could transmit
Kid identifying symbols. Without the need for orthogonal identifiers, we propose that some sort of
signaling is encoded in each sequence autocorrelation in such a way that it uniquely identifies and
differentiates its corresponding user from the rest.

Having said that and for the purposes of the following sections, we assume that the BS is fully
aware of the number of users in active communication (NU ) and which signal beams correspond to
each one of them (Lu, ∀u = 1, . . . , NU ). This information may have been gathered from previous UL
stages or by the means we have just suggested.

For a given number of simultaneous users, the BS should distribute its available resources equally
among them, by following a fairness policy. In particular, for NRF available RF chains, each user
should be allocated NRF,u ≜

⌊NRF
NU

⌋
of them. Then, given the set of beams coming from user u, Lu,

each one of them is assigned an amount of RF chains Ml, proportionally to their associated p(u)l :

Ml,u ≜

 p
(u)
l∑

l∈Lu
p
(u)
l

NRF,u

 . (7.9)

The RF chains allocated to user u that have not been assigned to any of its corresponding AoAs will
be devoted to the one with highest pl, i.e. argmaxl∈Lu

pl. This approach ensures a fair distribution of
the available resources while trying to maximize the received energy per user.

After the RF chains have been assigned to each beam, the BS defines a support of antennas around
every estimated AoA (n(u)l ). The way in which this task is implemented is displayed in Appendix A
(1.). In a nutshell, the support increases on both sides of each n(u)l until all its assigned RF chains have
been paired with consecutive antennas or another AoA from a different user has been reached. This
condition is applied to reduce the amount of IUI captured by a set of antennas: while some supports
may overlap, each n

(u)
l will only belong to a single one of them. Refer to Figure 7.1 for a simple

diagram on how this algorithm operates. If there are spare RF chains after the antenna support of a
beam has been defined, they are assigned to the following strongest path (per user). This procedure is
iterated until all the resources have been allocated to their corresponding users.

1This procedure could be carried out during the selection phase by cleverly employing the second order statistics of
the transmitted symbols.
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Figure 7.1: Four illustrative steps of the AS algorithm.

Figure 7.2 illustrates the result of this antenna selection technique2. The dark blue area represents
the normalized ¯̄ysel over the antenna indices and the black dashed lines are the real AoAs of each
beam. Each user is connected to the BS by 3 reliable paths. Notice that the union of supports (colored
lines) for each user has roughly the same number of elements due to the fairness policy. Each support
contains and is centered around a single AoA. Due to the energy proportionality criterion, an AoA of
User 5 (light blue) is not covered by any support of antennas, since its associated power is negligible
compared to its other two beams.

The supports of antennas allocated to each user after the antenna selection process, M(u)
sel , are

gathered in individual selection matrices Σu, as in Section 2.2:

[Σu]m,m =
{

1 if m ∈ M(u)
sel

0 otherwise
, u = 1, . . . , NU (7.10)

A global selection matrix Σ for the BS can be constructed by combining all the individual ones:

Σ ≜
NU⊕
u=1

Σu (7.11)

On a final note regarding antenna selection, realize that AoAs are a large-scale effects and hence,
changes in them are slow compared to the transmission of signal blocks. This implies that, while full
AS is unavoidable on the first UL, antennas selected during this phase can be reused for the following
DLs and ULs, thanks to channel reciprocity. In order to keep track of AoAs3, however, the BS may
need to perform AS periodically. Fortunately, due to the slowness in these changes, previously known
AoAs can be employed to only perform a partial procedure (i.e. on fewer array elements), which is
simpler and faster.

2This plot has been obtained from the UL simulations presented in Section 7.3 at SNR = 0dB.
3AoA tracking is a classical and well understood problem in signal processing. Works like [52] study it under the LAA

paradigm.
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Figure 7.2: Example of antenna selection and assignment. The colored lines represent the supports for each
user.

7.1.2 Channel covariance estimation

Once the AS is complete, the NU MTs can start the transmission of relevant data to the BS, for a
duration KUL. We apply the selection matrix Σ onto (7.1):

Y = Σ
(
HXT + Z

)
. (7.12)

One of the design choices we have set for our multi-user communication scheme is partial nonco-
herence. Even without full CSI, we will rely on second order statistical knowledge about the channel,
provided by its covariance matrix. Previously, in Section 6.3.1, we have presented a possible way to
estimate it in the P2P case. However, since this is a multi-user setting, we will need an approach that
takes ISI into consideration.

To gain some insights, let us study the structure of Ch
(u), the covariance matrix of the channel

vector associated with each user u. Firstly, we recover (6.48) and generalize it for multiple users:

Cy ≜ E
[
y[k]yH [k]

]
= E


NU∑

u=1
huxu[k] + z[k]

NU∑
u=1

huxu[k] + z[k]

H


= E

NU∑
u=1

huxu[k]
NU∑
u=1

x∗u[k]hH
u

+ PzI (7.13)

Under the assumed model, the channel vector hu corresponding to each user is independent from the
others, which implies E[huhH

u′ ] = 0 for u ̸= u′. This reduces the first term of the covariance to a single
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summation:

Ch = E

NU∑
u=1

huxu[k]x∗u[k]hH
u

+ PzI. (7.14)

Furthermore, since we are employing an M-PSK modulation, every transmitted symbol is unitary, so
xu[k]x∗u[k] = |xu[k]|2 = 1. Thus, the covariance matrix of the received signal takes the form:

Cy =

Ch︷ ︸︸ ︷
E

NU∑
u=1

huhH
u

+PzI =
NU∑
u=1

Ch
(u)︷ ︸︸ ︷

E
[
huhH

u

]
+PzI. (7.15)

This means that the full covariance matrix of the NU channels is the sum of their individual covariances.
We can characterize the expression of Ch for our LAA-MU-MIMO channel:

Ch =
NU∑
u=1

E

∑
l∈Lu

αUL
l aBS

(
φ̃BS,l

) ∑
l′∈Lu

αUL∗
l′ aHBS

(
φ̃BS,l′

)
=

NU∑
u=1

∑
l∈Lu

∑
l′∈Lu

E
[
αUL
l aBS

(
φ̃BS,l

)
αUL∗
l′ aHBS

(
φ̃BS,l′

)]
. (7.16)

In general, every signal path gain is independent from the rest, which translates into E
[
αUL
l αUL∗

l′
]
= 0

for l ̸= l′. This assumption nulls the crossed terms in the double summation of (7.16) and leaves only
the repeated ones

Ch =
NU∑
u=1

∑
l∈Lu

E
[∣∣∣αUL

l

∣∣∣2]aBS

(
φ̃BS,l

)
aHBS

(
φ̃BS,l

)

=
NU∑
u=1

∑
l∈Lu

PlaBS

(
φ̃BS,l

)
aHBS

(
φ̃BS,l

)
= D̃2∑

l∈L
Pl sinc (n− (nl − ϵl)1) sinc

(
nH − (nl − ϵl)1H

)
. (7.17)

L ≜
⋃NU

u=1 Lu is the set of all channel paths coming from all NU users and Pl is their associated power
gain. Ch presents a very sparse structure. Since we have assumed inter-path independence, it is
only made of the |L| << NBS contributions. All its non-negligible terms will be gathered around
the diagonal because it is a sum of 2D sinc functions with the same displacement in both axes,
which contrasts with the richer structure seen in Figure 6.1a. This is expected as in that case, the
channel coefficients stayed constant during the full transmission. However, in a real case scenario this
assumption might not hold (block fading [34]). For this reason, only the diagonal sinc contributions
remain. By sacrificing information from crossed terms in Ch we increased robustness against channel
changes, as will be made clear in Section 7.3.

After closely analyzing the structure of Ch, we must design a method to estimate it from the
received signal block Y and extract the individual covariance matrices per user. We resort to the sample
covariance once again. To slightly improve its accuracy, we can add more samples to its computation
by simply appending the selection signals to Y:

Ỹ ≜ [Σ (ysel[0], . . . ,ysel[Tsel − 1]) ,Y] ∈ CNBS×(Tsel+KUL) ⇒ Ĉy = 1
K + Tsel

ỸỸH . (7.18)
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Then, we remove the noise contribution as in (6.50): Ĉh = Ĉy − P̂zI.

The individual channel covariances have the form

Ch
(u) = D̃2 ∑

l∈Lu

Pl sinc (n− (nl − ϵl)1) sinc
(
nH − (nl − ϵl)1H

)
. (7.19)

Notice that only Pl and ϵl are unknown, since D̃ is defined by the LAA and nl have been obtained in
the AS phase. Under the assumption that AoAs are sufficiently separated, i.e. small overlap between
beams, relevant terms around the diagonal of Ch are composed by a single path contribution, with
negligible leakage from the others. For this reason, by fitting a curve of the type sinc squared on a few
selected points around [Ch]nl,nl

, we can obtain a good approximation4 for Pl and ϵl, the only degrees
of freedom in the fitting process. The implementation of this procedure can be found in Appendix A
(2.). With these results, we finally obtain the estimated channel covariance matrix per user:

Ĉ(u)
h = D̃2 ∑

l∈Lu

P̂l sinc (n− (nl − ϵ̂l)1) sinc
(
nH − (nl − ϵ̂l)1H

)
. (7.20)

Pl is often referred to as Power Space Profile (PSP) in the literature [9, 23, 53].

7.1.3 Decision-Feedback Differential Detection (DFDD)

At the beginning of this chapter, we stated that one of the goals of our scheme is to be able to
operate without the phase information of the channel, neither on the transmitter nor on the receiver
ends (i.e. partially noncoherent scheme), thus avoiding the need for orthogonal pilot sequences and all
the issues their use entails. Our approach will be based on differential modulation and detection.

As discussed in Section 2.3, CDD implies a 3dB loss in performance compared to coherent schemes.
In Section 6.3.1, we have presented MSDD, a technique to overcome this limitation by performing joint
differential detection on a sequence of consecutive symbols. The issue that hinders its implementation is
the fact that the complexity of decoding a sequence of length KUL scales exponentially with such length
(i.e. O

(
MKUL−1)), making it computationally very demanding and not implementable in practice in

most systems. Several attempts have been made in order to reduce its computational cost without
sacrificing the performance gains of MSDD. Some prominent examples are based on sphere decoding
algorithms (Multiple-Symbol Differential Sphere Decoding (MSDSD) [33]), and on decision feedback
(Decision-Feedback Differential Detection (DFDD)). We will explore this last method in this section.

Consider the single symbol differential detection problem as an MSDD of block length KUL = 2:

x̂CDD ≡ x̂MSDD
∣∣∣
KUL=2

= argmax
x̂∈S2, x̂[0]=1

Re
{
x̂∗[1]

1−1∑
k′=0

rk′,1x̂[k′]
}

= argmax
x̂∈S2, x̂[0]=1

Re {x̂∗[1]x̂[0]r0,1}

= argmax
x̂∈S2, x̂[0]=1

Re {x̂[1]x̂∗[0]r1,0} . (7.21)

Since we are only interested in the information symbols s[k] = x[k]x∗[k − 1], the previous detection
problem reduces to

ŝCDD[k] = argmax
ŝ∈S

Re {ŝ[k]x̂[k − 1]x̂∗[k − 1]rk,k−1}

= argmax
ŝ∈S

Re {ŝ[k]rk,k−1}

= exp (jQPSK (rk,k−1)) , (7.22)
4The approximation becomes exact when there is no power leakage, i.e. ϵl = 0, ∀l ∈ L.
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which is the quantization of the phase of rk,k−1 over the M -ary constellation S, by defining

QPSK (x) ≜ 2π
M

⌈
M

2πarg (x)
⌋
. (7.23)

Therefore, the correlation coefficient rk,k−1 is the decision variable for the M-PSK information symbol.

To improve the performance over this detection scheme while avoiding full MSDD, we can extend
the length of the block of symbols without having to perform a search over all possible sequences. To do
so, we detect new symbols by taking into account the already decided ones, in a successive procedure;
this is the core idea behind DFDD. Starting with x̂DFDD[0] ≡ 1, the following symbol estimates are

x̂DFDD[1] = exp
(
jQPSK

(
x̂DFDD[0]r0,1

))
x̂DFDD[2] = exp

(
jQPSK

(
x̂DFDD[0]r0,2 + x̂DFDD[1]r1,2

))
...

x̂DFDD[k] = exp
(
jQPSK

(
k−1∑
k′=0

x̂DFDD[k′]rk′,k
))

, k = 1, . . . ,KUL − 1. (7.24)

Then, to recover the information symbols ŝDFDD[k] we simply apply differential decoding:

ŝDFDD[k] = x̂DFDD[k]
k−1∏
k′=0

ŝDFDD∗[k′] , k = 1, . . . ,KUL − 1. (7.25)

This scheme presents a complexity of the order of O (M), since only a single symbol has to be detected
at a time [33]. The trade-off to achieve this complexity reduction is a performance loss compared to
MSDD and an increased vulnerability to error propagation.

The order in which the decisions are made can greatly influence the error rate of DFDD, and
optimizing it can lead to marginal loss in performance compared to MSDD. The optimum decision
order is a variation on the well-known concept of Decision-Feedback Equalization (DFE), the basis
of Bell Laboratories Layered Space-Time (BLAST) systems. The metric to sort the reliability of the
symbols in each step will be the phase quantization error over S, which is computed with the function

∆QPSK (x) ≜ (arg (x)−QPSK (x)) mod s2π. (7.26)

It is important to highlight the conceptual difference between BLAST schemes and DFDD: in the
former, sorting is performed per channel realization among users, while in the latter, it is performed
per user among symbols in a block.

In the first iteration, we select the pair of symbols (k̂0 and k̂1) that are the most reliable to decide.
According to (7.21), they are connected through their corresponding correlation coefficient (rk̂0,k̂1), so
we want to find the one which produces the smallest quantization error:[

k̂0, k̂1
]
= argmin

k̂0,k̂1∈{0,...,KUL−1}
k̂0<k̂1

∣∣∣∆QPSK

(
rk̂0,k̂1

)∣∣∣ . (7.27)

We set x̂DFDD[k̂0] ≡ 1 and decode x̂DFDD[k̂1] with (7.24). Next, taking these two decisions into
account, we search among the remaining symbols x̂DFDD[k̂], k̂ ∈ {0, . . . ,KUL − 1} /

{
k̂0, k̂1

}
which

one can be decided in the next step the most reliably:

k̂2 = argmin
k̂∈{0,...,KUL−1}

/{k̂0,k̂1}

∣∣∣∆QPSK

(
x̂DFDD[k̂0]rk̂,k̂0 + x̂DFDD[k1]rk̂,k̂1

)∣∣∣ . (7.28)
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We continue this procedure with the optimum decision order

k̂n = argmin
k̂∈{0,...,KUL−1}
/{k̂0,...,k̂n−1}

∣∣∣∣∣∆QPSK

(
n−1∑
m=0

x̂DFDD[k̂m]zk̂n,k̂m

)∣∣∣∣∣ , n = 0, . . . ,KUL − 1 , (7.29)

and the symbol estimates at every step

x̂DFDD[k̂n] = exp
(
jQPSK

(
n−1∑
m=0

x̂DFDD[km]rk̂n,k̂m

))
, (7.30)

setting x̂DFDD[k̂0] ≡ 1. After the complete block has been detected, every symbol (with the original
ordering) can be sequentially decoded. The DFDD algorithm can be performed very efficiently since
the successive detection of symbols can be vectorized.

There is one minor detail regarding the order of detection that must be stated. The detection of a
given symbol in the sequence is based on an increasing number of prior decisions. In particular, the
first detected symbol, which is the one with the least phase quantization error, relies on no prior result,
while the last one benefits from KUL − 1 estimates. Since it is reasonable to consider that more priors
translate into more reliable estimations, this situation leads to varying conditions for the individual
decisions. In [24], the authors propose a method to combat this effect. After all symbols have been
detected, the DFDD algorithm can iterate once again over each one of them. This way, the detection is
performed with better conditions, as always KUL − 1 prior estimations are available. Note that, after
the first iteration has been completed, any additional one does not require symbol ordering, since each
one of them is virtually the last.

In the original article [24], it is numerically shown that this simple modification exhibits significant
gains compared to the non-iterated scheme. It is also stated that the number of additional iterations
can be kept rather small: a single additional iteration provides almost the full obtainable gain.

A version of this algorithm coded in Matlab can be found in Appendix A (5.).

7.1.4 Noncoherent Decision-Feedback Equalization (nDFE)

A central issue in any wireless multi-user scheme is IUI. How effectively the interference is combated
can be the determinant factor on whether a system is implementable in practice or not. The multi-user
LAA system we are studying in this section is no exception. The PDM capability of the LAA guarantees
small Inter-Path Interference (IPI) for sufficiently spread paths in the angular domain. Since different
MTs will, in general, communicate to the BS through different paths, their IUI will, as well, be smaller
thanks to the use of the lens. This extension of the PDM concept to a multi-user environment has
been coined Path Division Multiple Access (PDMA) in [17]. Nevertheless, although the IUI effect is
less significant than in other multi-user environments, it still degrades the overall performance and
achievable sum rate of the system.

A typical approach to deal with IUI in coherent multi-user systems is sorted DFE over the users,
also referred to as BLAST in MIMO contexts [54–56]. In a nutshell, it consists in detecting each user
sequentially and using already detected ones to cancel interference (Successive Interference Cancellation
(SIC)). The order in which this procedure is performed is dictated by some metric that quantifies the
reliability of decoding a user sequence at each step. The interference cancellation, however, requires
full channel knowledge. It would seem that this idea is not applicable in our noncoherent scheme, but
this is not the case. In [23], the authors propose a variation of DFE that operates with statistical CSI:
Noncoherent Decision-Feedback Equalization (nDFE).
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Let us closely analyze the correlation matrix of each user,

Ru ≜ YHWuY. (7.31)

Omitting the effect of the selection matrix Σu, Ru is decomposed in 5 distinguishable terms:

Ru = YHWuY =

NU∑
ν=1

x∗
νhH

ν + ZH

Wu

NU∑
ν=1

hνxT
ν + Z


=
(
hH
u Wuhu

)
x∗
uxT

u (7.32)

+
∑
ν ̸=u

(
hH
ν Wuhν

)
x∗
νxT

ν (7.33)

+
NU∑
µ=1

∑
1≤ν<µ

((
hH
ν Wuhµ

)
x∗
µxT

ν +
(
hH
µ Wuhν

)
x∗
νxT

µ

)
(7.34)

+
NU∑
ν=1

x∗
νhH

ν WuZ+ ZHWu

NU∑
ν=1

hνxT
ν (7.35)

+ ZHWuZ (7.36)

(7.32) contains the desired correlation coefficients of the sequence transmitted by user u, (7.33) is the
autocorrelation contribution of all the other users, (7.34) has the cross-correlation between sequences
by different users (including u), (7.35) is the correlation between signals and noise, and finally, (7.36)
is the noise correlation term.

We now characterize the statistics of all the previous terms to be able to cancel their effect. In
[23], the authors assume the uncorrelated channel model from [22] (commented in Section 6.3.1) and
derive simple statistics based on normal distributions. Since we are dealing with a more structured
channel model, we propose a slightly more involved derivation of the first and second order moments
of the previous terms.

Let us define the correlation factors

ξu,ν ≜ hH
ν Wuhν =

NU∑
n=1

NU∑
m=1

w
(u)
m,nh

∗
ν,mhν,n (7.37)

ξu,ν,µ ≜ hH
ν Wuhµ =

NU∑
n=1

NU∑
m=1

w
(u)
m,nh

∗
ν,mhµ,n. (7.38)

(7.37) corresponds to the autocorrelation factor of the channel from user ν weighted in the detection of
user u, while (7.38) represents the cross-correlation between channels from users ν and µ weighted in
that same detection. Their expected values are, respectively

ηu,ν ≜ E [ξu,ν ] = E
[
hH
ν Wuhν

]
= E

[
Tr
[
hH
ν Wuhν

]]
= E

[
Tr
[
WuhνhH

ν

]]
= Tr

[
E
[
WuhνhH

ν

]]
= Tr

[
Wu E

[
hνhH

ν

]]
= Tr

[
WuCh

(ν)
]

(7.39)

ηu,ν,µ ≜ E [ξu,ν,µ] = Tr
[
Wu E

[
hµhH

ν

]]
= Tr [Wu0] = 0. (7.40)

In (7.39), we have used the cyclic property of the trace and the commutation of E [·] and Tr [·], since they
are both linear operators and, in (7.40), we have used the fact that different users have uncorrelated
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channel vectors. Regarding the variance of ξu,ν ,

σ2u,ν ≜ E
[
ξu,νξ

∗
u,ν

]
− |ηu,ν |2 = E

[
hH
ν WuhνhH

ν Wuhν

]
− Tr

[
WuCh

(ν)
]2

= E

NU∑
n=1

NU∑
m=1

w
(u)
m,nh

∗
ν,mhν,n

NU∑
n′=1

NU∑
m′=1

w
(u)
m′,n′hν,m′h∗ν,n′

− Tr
[
WuCh

(ν)
]2

=
∑
n

∑
m

∑
n′

∑
m′

w
(u)
m,nw

(u)
m′,n′ E

[
h∗ν,mhν,nhν,m′h∗ν,n′

]
− Tr

[
WuCh

(ν)
]2
. (7.41)

The first term of the previous expression is a sum of fourth order moments of a complex multivariate
normal distribution, since hν ∼ CN (0,Ch). By using Isserlis’ Theorem [57], and assuming hν is
circularly symmetric (i.e. , E

[
hνhT

ν

]
= 0), we can proceed in the following manner:

σ2u,ν =
∑

n,m,n′,m′

w
(u)
m,nw

(u)
m′,n′

(
E
[
h∗ν,mhν,n

]
E
[
hν,m′h∗ν,n′

]
+ E

[
h∗ν,mhν,m′

]
E
[
hν,nh

∗
ν,n′

])
− Tr

[
WuCh

(ν)
]2

=
∑

n,m,n′,m′

w
(u)
m,nw

(u)
m′,n′c

(ν)
m,nc

(ν)
m′,n′ +

∑
n,m,n′,m′

w
(u)
m,nw

(u)
m′,n′c

(ν)
m,m′c

(ν)
n′,n − Tr

[
WuCh

(ν)
]2
. (7.42)

We have denoted
[
Ch

(ν)
]
m,n

as c(ν)m,n for visual clarity. Then, we simply express the two summations in
matrix form:

σ2u,ν = Tr
[
WuCh

(ν)
]2

+Tr
[
WuCh

(ν)WuCh
(ν)
]
− Tr

[
WuCh

(ν)
]2

= Tr
[(

WuCh
(ν)
)2]

. (7.43)

Deriving the variance σ2u,ν,µ is much less involved since it depends on independent variables (cross-signal
interference):

σ2u,ν,µ = 2E
[
ξu,ν,µξ

∗
u,ν,µ

]
= 2E

NU∑
n=1

NU∑
m=1

w
(u)
m,nh

∗
ν,mhµ,n

NU∑
n′=1

NU∑
m′=1

w
(u)
m′,n′hν,m′h∗µ,n′


= 2

∑
n

∑
m

∑
n′

∑
m′

w
(u)
m,nw

(u)
m′,n′ E

[
h∗ν,mhν,m′hµ,nh

∗
µ,n′

]
= 2

∑
n

∑
m

∑
n′

∑
m′

w
(u)
m,nw

(u)
m′,n′ E

[
h∗ν,mhν,m′

]
E
[
hµ,nh

∗
µ,n′

]
. (7.44)

We have used the fact that hν is independent from hµ, so

E
[
h∗ν,mhν,m′hµ,nh

∗
µ,n′

]
= E

[
h∗ν,mhν,m′

]
E
[
hµ,nh

∗
µ,n′

]
. (7.45)

The factor 2 is to account for the conjugate transpose term in (7.34). σ2u,ν,µ is then expressed in terms
of the covariance matrices associated to users ν and µ:

σ2u,ν,µ = 2
∑
n

∑
m

∑
n′

∑
m′

w
(u)
m,nw

(u)
m′,n′c

(ν)
m,m′c

(µ)
n,n′ = 2Tr

[
WuCh

(ν)WuCh
(µ)
]
. (7.46)

Finally, we will characterize the cross influence of noise with signal and the noise autocorrelation (both
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are zero-mean) under the same factor:

σ2n,u =

signal×noise︷ ︸︸ ︷
2E

NU∑
µ=1

NU∑
ν=1

hH
ν WuZZHWuhµ

+
noise×noise︷ ︸︸ ︷

E
[
Tr
[
ZHWuZZHWuZ

]]

= 2E
[∑

µ

∑
ν

Tr
[
WuZZHWuhµhH

ν

]]
+Tr

[
Wu E

[
ZZH

]
Wu E

[
ZZH

]]
= 2

∑
µ

∑
ν

Tr
[
Wu E

[
ZZH

]
Wu E

[
hµhH

ν

]]
+Tr [WuPzIWuPzI] . (7.47)

We have used the same rationale as in (7.43) and the uncorrelatedness between the channel and the
noise. In the first term, the only addends that do not null are the ones in which µ = ν. The result in
matrix form is

σ2n,u = 2Pz Tr

W2
u

NU∑
ν=1

Ch
(ν)

+ P 2
z Tr

[
W2

u

]
(7.48)

After these parameters have been particularized, we are now in the position to define the nDFE
principles and operation. The main idea behind DFE is the successive subtraction of interference
caused by already detected users. Under the noncoherent paradigm, this subtraction can only be done
statistically. Since the channel coefficients are not explicitly known, the best guess we can have is its
expected value. More precisely, we can subtract the signal correlation effect of already detected users
from the correlation matrix Ru of user u. The scale of this subtraction is dictated by the interference
autocorrelation mean, ηu,ν . The set of already detected users is ν ∈ D, with estimated signal sequences
x̂ν . The correlation matrix for detection of user u with removed interference is computed as

R′
u = Ru −

∑
ν∈D

ηu,ν x̂∗
ν x̂T

ν (7.49)

Analogous to DFDD (and thus, analogous to BLAST) the order in which the interference cancellation
is conducted can greatly affect the overall performance of the scheme. We want to start dealing
with users whose detection is the most reliable, so that removing their interference from the other
received sequences propagates the minimum amount of errors. A metric that quantifies the transmission
conditions of each user is their Signal to Noise plus Interference Ratio (SINR) after interference from
previously detected ones has been suppressed. From the previously described statistics of the received
signals, we define the SINR of user u as

SINRu ≜
η2u,u + σ2u,u∑

ν ̸=u
σ2u,ν +

∑
ν ̸∈D
ν ̸=u

η2u,ν

+
( ∑
ν<µ

σ2u,ν,µ

)
+
(
σ2n,u

) (7.50)

= desired signal power
(signal× interf.) + (interf.× interf.) + (interf.× noise+ noise× noise)

Similarly to what happened with DFDD, the last user to be detected profits the most from the
cancellation of all the other mean interference. Once every user has been detected, estimates for all
the sequences are available. Hence, an additional iteration of interference suppression can be applied
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to improve the detection on all users, without having to sort them again by the SINR criterion. The
interference-reduced correlation matrix of this second iteration is computed as

R′′
u = Ru −

∑
∀ν ̸=u

ηu,ν x̂∗
ν x̂T

ν (7.51)

This procedure could be repeated various times. However, in [24] it is shown numerically that the
majority of the gain achievable with this method is already obtained by just one additional nDFE
iteration.

7.1.5 Some remarks on joint DFDD + nDFE

Figure 7.3: Graphical representation of DFDD+nDFE on a signal block Y.

As we have seen, the uplink communication phase (not accounting for AS) is based on two DFE
tasks along 2 orthogonal dimensions (Figure 7.3): users (nDFE) and time (DFDD). They both present
significant performance gains under iterative applications. The sequential nature of nDFE and DFDD
raises the question on whether their results can be improved by jointly performing the user/temporal
sorting.

It turns out that detecting the received symbols over the whole user/time plane jointly requires a
redesign of the weighting matrix of each user. It is numerically shown in [48] that the performance
gains of this joint scheme are marginal in front of performing nDFE and DFDD separately, while
its increased complexity limits its application. Hence, in terms of performance-complexity trade-off,
DFDD/nDFE should be the default choice.

Another aspect that should be addressed is how to combine the various iterations of both algorithms.
In [24], different configurations are tested. The simulations show that the best performance is achieved
when iterative nDFE over the users is applied and, on each one, iterative DFDD is employed, as
well. This is the approach we will consider in the simulations. A Matlab code version of the full
DFDD/nDFE algorithm can be found in Appendix A (4.).
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7.2 Downlink

In systems that rely on full CSI and channel reciprocity, i.e. hUL
u ≡ hDL∗

u , Time Division Duplexing
(TDD) can be employed for the DL by simply reusing the pilot information from the UL. This is a
very strong assumption and not always realistic. In addition, Frequency Division Duplexing (FDD)
is not easily implementable, since channel reciprocity is not ensured at different spectral bands. It
cannot reuse the same pilots between UL and DL and would require further training time.

The scheme we are going to present in this section only expects path reciprocity; this means that the
amount of signal paths (Lu ≜ |Lu|, ∀u = 1, . . . , NU ) as well as their corresponding AoAs and AoDs
do not change between UL and DL (φ̃BS,l = φ̃MT,l). This allows the use of TDD and FDD equally5.
Since the lens is a passive component, at least in TDD it is realistic to expect the maintenance of
second order statistics, i.e. power, between UL and DL (

∣∣∣αUL
l

∣∣∣2 =
∣∣∣αDL

l

∣∣∣2). In contrast to the channel
phases ωl, which are small-scale effects, path gains are large-scale effects and vary slowly, reasserting
our channel reciprocity assumptions. This will allow the reuse of the partial CSI acquired during the
UL on the DL phase, translating into performance gains in front of completely agnostic noncoherent
schemes.

In this setting, the BS transmits data to the same NU MTs from the UL simultaneously (MU-MIMO).
The space-time block notation of the signal received by each user u is

y̆T
u = hH

u X̆+ z̆T ∈ C1×KDL (7.52)
[yu[0], . . . , yu[KDL − 1]] = hH

u [xu[0], . . . ,xu[KDL − 1]] + [zu[0], . . . , zu[KDL − 1]][
yT
u [0], . . . ,yu[KDL −K

(u)
b ]

]
= hH

[
Xu[0], . . . ,Xu[KDL −K

(u)
b ]

]
+
[
zTu [0], . . . , zTu [KDL −K

(u)
b ]

]

yT
u [i] = hH

u Xu[i] + zTu [i] ∈ C1×KDL , i = 0,K(u)
b , . . . ,KDL −K

(u)
b , (7.53)

the same one employed in Section 6.3.2.

7.2.1 D-OSTBC with Power Loading (D-OSTBC-PL)

As explained in Section 6.3.2, DSTM allows to bypass the CSIR acquisition required in regular
space-time schemes. This is well motivated in our DL scheme, because we want to remove the processing
load from MTs. In Section 6.2, we have declared that the isotropic nature of basic STBC methods is
not in contradiction with special kinds of Tx beamforming and power loading. As we will show next,
the combination of the two philosophies will prove very useful in LAA channels. We have imported
some ideas from [26], in which the authors propose a way to exploit the available statistical CSI at the
Tx to improve the performance of basic D-OSTBC.

For simplicity, we will display the communication between the BS and a single MT u. Extending
the scheme to the multi-user setting is just a matter of superposing the NU parallel MISO systems.
Consider an orthogonal DSTM scheme based on the linear model from (6.61):

Su[i] ≜
√

1
M

(u)
s

M
(u)
s∑

m=1

(
Re
{
s
(u)
m [i]

}
A(u)

m + j Im
{
s
(u)
m [i]

}
B(u)

m

)
, (7.54)

5Beam-squint is the frequency dependence of the beam power distribution of a signal path component. This issue is
present in many wideband multiantenna systems. Similarly, LAA systems also present a type of beam squint (called
dispersion in optics), which is the result of different refraction indices at different wavelengths. This implies that with
FDD, if the operation frequencies of the UL and DL are too far apart, the beam squint becomes non-negligible. For the
purposes of this thesis, we will ignore it but, otherwise, it should be corrected with array processing techniques.
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which has rate R(u)
b and dimensionsM (u)

s ×K(u)
b . Once again, we assume that KDL is a multiple of K(u)

b

for convenience. The differentially encoded symbol block is then computed as Ču[i] = Ču[i− 1]Su[i],
with Ču[0] ≡ I

M
(u)
s

.

As stated in Section 6.3.2, the spatial dimension of the transmitted blocks and, to a extent, the
amount of symbols per block, is determined by Lu, the number of reliable signal paths between the BS
and MT u. Since the propagation conditions can vary across users (Lu ≠ Lu′ , u ≠ u′), each one of
them might receive signal blocks of different sizes and rates. To adapt the encoded blocks Ču[i] to the
channel characteristics, we apply a suitable trimming matrix to them: Cu[i] ≜ ΦLuČu[i]. We will refer
to this trimmed matrix as codeword.

The main idea of [26] is to transmit the codewords for user u along the eigenvectors of its associated
channel correlation matrix, C(u)

h , with appropriated power loading on each eigenvector. This is known
in the literature as eigen-beamforming [3, 45]. The eigendecomposition of C(u)

h is

C(u)
h = UuΛ2

uUH
u . (7.55)

It presents a very similar structure to the Gramian matrix HHH from Section 5.1.1. Λ2
u only contains

Lu non-negligible eigenvalues. For this reason, we need to project the codewords onto the subspace
spanned by their corresponding eigenvectors (or eigenbeams), with each component scaled by a suitable
power loading coefficient dl. The resulting transmitted block should be constructed as follows:

Xu[i] ≜
√
M

(u)
s P

(u)
BS

Gu︷ ︸︸ ︷
ŨuDuΦLuČu[i], (7.56)

where P (u)
BS is the transmit power per symbol and user. Ũu contains the first Lu columns of Uu and

Du ≜ diag (d1, . . . , dLu) is a diagonal matrix that contains the power loading coefficients. Together,
they form the power loading matrix Gu commented in Section 6.3.2. We impose the constraint∑Lu

l=1 d
2
l ≡ 1 so that Xu[i] has constant power along the transmission:

Tr
[
Xu[i]XH

u [i]
]
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BS Tr
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DH
u ŨH
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BS Tr
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u

]
=M

(u)
s P

(u)
BS Tr
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D2

u

]
=M

(u)
s P

(u)
BS

Lu∑
l=1

d2l =M
(u)
s P

(u)
BS . (7.57)

Thanks to the recursive nature of DSTM, the power loading is only required on the reference symbol,
i.e.

Xu[0] ≜
√
M

(u)
s P

(u)
BS ŨuDuΦLu . (7.58)

It is then easy to check that its effect is carried over to the rest of transmit blocks by simply
applying the regular differential encoding (X[i] = X[i − 1]S[i] for 0 < i < KDL − K

(u)
b ). Without

further eigenbeamforming operation, all the successive blocks are automatically transmitted along the
eigenbeams. The eigendecomposition of C(u)

h should not be computationally complex since, under
antenna selection, the covariance matrix of the channel has many null blocks. Besides, only the largest
Lu eigenpairs are required, from a total of NBS >> Lu.

The design of the power loading matrix Du is one of the central aspects of this scheme, although it
is not particularly sensitive, as it will be shown in the next section. In [26], the authors study the error
probability of DSTM over spatially correlated P2P channels. By considering a simplified expression of
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the SER, they are able to derive a closed form solution for the coefficients of Du that minimize such
approximate error rate:

[
D(u)

opt

]
l,l

≜

√√√√√√√ 1
Lu

+ 2Pz

P
(u)
BS sin2

( π
M

)
 1
Lu

Lu∑
l′=1
l′ ̸=l

1
λ2u,l′

, (7.59)

where λ2u,l are the non-negligible eigenvalues of Ch
(u).

Alternatively, we propose a more heuristic option based on the power loading techniques from
Section 6.2. This approach consists in loading each eigenvector with a weight proportional to its
associated eigenvalue:

[
D(u)

h

]
l,l

≜

√√√√ λ2u,l∑Lu
l′=1 λ

2
u,l′

=

√√√√ λ2u,l
Tr [Λ2] . (7.60)

This way, stronger eigenbeams are favored and can transmit symbols more reliably.

7.3 Numerical results

Now that we have fully defined a complete UL-DL system for LAA-MU-MIMO, it would be of
interest to test its performance and compare it to other well-known coherent schemes. With that
purpose in mind, we have designed a simulated communication environment that will help us assess
our scheme under various circumstances. The main configuration of these tests is the following.

Consider a simultaneous full communication between NU = 5 single-antenna MTs and a BS,
composed of an UL transmission followed by a DL one. In order to provide service to the 5 users at
once, the BS is equipped with an EM lens with normalized aperture D̃ = 100, which translates into
NBS = 201 antenna elements. The LAA has NRF = 75 RF chains available. Each MT can transmit
with a power PMT = 1 and the BS allocates the same amount of power PBS = 1 per symbol and user.
The constellation employed both in the UL and DL is 8-PSK (M = 8).

Setting parameter Symbol Value
Number of users NU 5

Number of antennas per MT NMT 1
Normalized lens aperture D̃ 100

LAA elements NBS 201
Available RF chains NRF 75
MT transmit power PMT 1

BS transmit power per user PBS 1
Signal constellation size M 8

Table 7.1: Configuration of the communication equipment.

Due to the geometry of the physical setting, each user can connect to the BS through L = 3 paths,
and channel reciprocity is expected between UL and DL (αUL

l ≡ αDL
l ≜ αl and φ̃BS,l ≡ φ̃MT,l ≜ φ̃l).

From the 3 available beams per user, one of them corresponds to a LoS link (α(u)
1 ∼ CN (0, 1) while

the other two are NLoS (α(u)
2 , α

(u)
3 ∼ CN (0, 1/2)).
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Setting parameter Symbol Value
Number of beams per user L 3

LoS channel gain α1 CN (0, 1)
NLoS channel gain α2, α3 CN

(
0, 12

)
Table 7.2: Channel characteristics.

The UL is divided in two phases: AS and data transmission. The AS training time is Tsel = 100
and the transmission time is KUL = 401. We will compare our proposed DFDD+nDFE scheme against
Vertical Bell Laboratories Layered Space-Time (V-BLAST) with both perfect and estimated CSI6.
The channel estimation will be performed during the AS phase, with a sequence of orthogonal pilot
signals per user of length Ttrain = Tsel = 100. We have chosen this coherent technique as a benchmark
for our system because it is widely used in practice and clear analogies can be drawn between it
and DFDD+nDFE. By default, both DFDD and nDFE will perform three independent iterations
(#nDFE=#DFDD=3) on each space-time signal block. This way we will be able to observe the
improvement in reliability between iterating 1, 2 or 3 times over every detected symbol/user. Regarding
the weights matrix in DFDD, our main choice will be the optimized version we have derived in Section
6.3.1, although we will compare its performance against the diagonal version from [9] and a uniform
weighting (i.e. Wu = I).

Setting parameter Symbol Value
UL transmission time KUL 401

AS/CSI acquisition time Tsel 100
(Default) nDFE iterations #nDFE 3
(Default) DFDD iterations #DFDD 3
(Default) Weights matrix Wu W(u)

opt

Table 7.3: UL configuration parameters.

The DL phase simply consists in a transmission of data during KDL = 400. We are going to
implement D-OSTBC with power loading adapted to each MT. Since the spatial dimension of the
channel is Ms = L = 3, we can transmit 3 symbols per block. The duration of each signal block must
be Kb = 4, so the transmission rate will be Rb = 3

4 and Nb = 100 blocks will be transmitted. This
means that, in practice, the BS will send NDL

sym = 300 symbols per user during 400 time instants. We
are going to analyze the effects of power loading by studying 3 approaches: uniform power loading
(Du = I), the proposal from [26] and our heuristic one.

Comparing this scheme with regular OSTBC is not truly fair, in the sense that in our scenario,
only the BS has acquired CSI during the UL. Instead, we propose coherent beamforming (both with
approximated and perfect CSI) as a benchmark candidate. It must be pointed out, however, that only
300 time instants are required to transmit 300 symbols with beamforming, since it is a full rate scheme.

6The perfect CSI schemes will employ the full LAA without AS. Their performance is meant to serve as a bound for
the others.
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Setting parameter Symbol Value
DL transmission time KDL 400
Symbol block size Kb 4
Symbols per block Ms 3
Symbol block rate Rb

3
4

Transmitted blocks Nb 100
Transmitted symbols NDL

sym 300

Table 7.4: DL configuration parameters.

In order to evaluate the reliability of each scheme, we will average the SER of each UL and DL over
Ntst = 3000 simulations. In particular, on the UL, only 400 symbols will be accounted, since the first
one is a reference and does not contain data. Similarly, on the DL, 297 are relevant in the transmission
and the first block of 3 is the differential reference, as well. The SER will be plotted for various SNR
values7, between -20dB and 20dB. For the UL, SNR is defined as

SNRUL = 1
NU

NU∑
u=1

PMT ∥hu∥2

PzNBS
= 1
NU

∥H∥2F
PzNBS

, (7.61)

since PMT = 1. It can be seen as the average of the SNR for each user at every simulation. As for the
DL, we have two different definitions. For the beamforming schemes, SNR is defined like in the UL,
while for the D-OSTBC ones,

SNRDL = 1
NU

NU∑
u=1

KbPBS ∥hu∥2

MsPzNBS
= 1
NU

∥H∥2F
RbPzNBS

≡ SNRUL

Ru
(7.62)

7.3.1 Ideal scenario

In the first test, we have set nominal operation conditions, which is the reason why we refer to it as
ideal. It will serve as the baseline for the other two tests. The channel coefficients remain constant
during both the UL and DL and there is full channel reciprocity. AoAs are chosen randomly across the
aperture of the LAA. Since, at the moment, we are not interested in observing the effect of strong
IUI, we have constrained this selection in a way so that two consecutive beams impinge the array with
a minimum separation of 5 elements (with misalignment considered). As the 5 users have the same
communication conditions, we have averaged their relative SERs in order to provide a cleaner graphical
representation in Figures 7.4.

Let us comment on the UL results (Figures 7.4a, 7.4b and 7.4c). In general, both coherent and
noncoherent schemes show similar performances at low SNR. On the contrary, as the SNR increases,
the SER curves of DFDD+nDFE start flattening and a very prominent difference in performance
between coherent and noncoherent schemes is present. This behavior is common in DFDD-based
communications [8, 23, 24, 48].

In Figure 7.4a, three weighting approaches of the DFDD are considered. At a first glance, it is
clear that uniform weighting is not a useful choice and results in unreliable transmissions at both
low and high SNRs. The reasoning behind this phenomenon is that the weighted correlation matrix
captures too much noise and interference and does not favor the signal contributions. In contrast with
the results obtained in Section 6.3.1, it must be pointed out that there is no substantial difference
in SER between the diagonal and optimized weightings. This discrepancy can be easily explained by

7SNR at the Rx.
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(a) UL: Weighting matrices.
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(d) DL: Power loading criteria.

Figure 7.4: UL and DL performance results in an ideal scenario.

the fact that, in this practical scheme, we have discarded the crossed terms in the channel covariance
matrices to provide robustness against fading. Therefore, this strategy has lost the advantage it had
for considering constant channel coefficients. In the low SNR region, the diagonal weighting slightly
outperforms the optimized one, and it is not until the SNR is high that the off-diagonal terms start
providing some gain.

Figures 7.4b and 7.4c present the performance gains of iterating more than once the DFDD and
nDFE algorithms, respectively. Since IUI is low, due to the directional nature of each user’s beams
and the AoA spacing we have enforced, neither executing additional nDFE nor DFDD rounds provides
any substantial increase in performance. Almost all the achievable reduction of SER is obtained on the
first iteration for both algorithms.

Finally, Figure 7.4d displays the DL SER obtained with D-OSTBC schemes with power loading
and Tx beamforming schemes. The curves corresponding to coherent methods presents a similar shape
to those from the UL. There is almost no difference in performance between the estimated and perfect
CSI. Regarding the D-OSTBC schemes, their curves flatten at higher SNR than those corresponding
to noncoherent schemes in the UL, and start diverging from the coherent ones at around 12dB.

As expected, uniform power loading is the least effective policy, since it distributes power equally
among dominant eigenbeams and does not fully exploit the available statistical CSI. The loss in
performance compared to the other two approaches, however, is not significant. Surprisingly, our
heuristic power loading proposal slightly outperforms the optimized method, especially at high SNRs.
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This may be explained by the fact that the optimized method was conceived to minimize the SER in a
P2P setting and the effect of IUI was not taken into consideration in its design.

The conclusions we can draw from this test are summarized in the following points:

1. Weighting based on statistical CSI is fundamental for the correct operation of DFDD.

2. When dealing with constant gain channels, the optimized weighting method for DFDD can
provide a substantial gain against more agnostic approaches. The crossed terms of each user’s
covariance matrix can be estimated like the diagonal ones, with the curve fitting method proposed
in Section 7.1.2.

3. If the crossed terms of the covariance matrix cannot be employed when constructing the optimized
weighting matrix, this method brings negligible gain against diagonal weighting.

4. When users’ signal beams are sufficiently spaced, a single round of nDFE+DFDD suffices to
obtain most of the achievable SER reduction. Further processing should be employed if lower
rates are required.

5. The heuristic power loading policy we have presented should be the method of choice in multi-user
D-OSTBC environments for its improved performance. Even so, this election is not critical for
the operation of the DL scheme.

7.3.2 Path overlap

The second test we have implemented is similar to the first one but some MTs experience strong
IUI. In particular, the LoS beams of User 1 and User 2 impinge the LAA on antennas separated by
just between 1 and 3 indices. Despite the energy focusing capabilities of the EM lens, a considerable
amount of interference corrupts both users’ signals. For the sake of visual clarity in Figures 7.5, we
have averaged the SERs of users in equal communication conditions; in other words, users 1 and 2
form a group (dotted lines with hollow circles) and users 3, 4 and 5 form another one (dashed lines
with crosses).

Unsurprisingly, the V-BLAST schemes do not present significant issues providing reliable communi-
cations in the presence of strong IUI. Notice, however, that regular beamforming in the DL presents
a flattened SER curve at high SNR because it does not employ any kind of interference suppression
method.

On the contrary, neither of the noncoherent schemes can provide reliable communications at high
SNR for the MTs that suffer strong IUI. At some point (around 0dB for the UL schemes, and around
10dB for the DL ones), their SER curves reach a floor and do not decrease further.

Regarding the UL phase, the three weighting alternatives behave as expected from the previous
test. For the various amounts of DFDD and nDFE rounds, we encounter two distinct cases. On the
one hand, for MTs with low IUI, adding more iterations does not provide better SERs, as commented
for the previous test. On the other hand, for MTs with high IUI, the same result applies but for the
opposite reason. The interference is so strong that nDFE cannot cancel it. It is clear from [24, 48], that
nDFE rounds are effective at increasing the scheme reliability in moderate interference environments.
Large mmWave LAA channels present a very different behavior, due to the high directivity of their
response vectors: sinc squared profiles concentrate the majority of their power on a central narrow
lobe. Most of the time, users encounter either very high IUI (overlapping beams) or very low IUI (well
spaced beams). In neither of those cases nDFE can improve the performance.

In the DL phase, a similar phenomenon occurs, since the D-OSTBC technique has not been equipped
with any measure against interference. The three power loading policies behave as in the previous test.
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(c) UL: Nº of nDFE iterations.
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(d) DL: Power loading criteria.

Figure 7.5: UL and DL performance results for a scenario in which users 1 and 2 have high IUI (dotted line,
hollow circles), while users 3, 4 and 5 have low IUI (dashed line, crosses).

This test has allowed us to draw some remarkable conclusions about the operation of our schemes
in presence of strong IUI:

1. It is clear that none of the proposed communication methods are able to provide reliable data
transmission under strong interference. Further processing and more involved techniques will be
required.

2. The performance of simple nDFE+DFDD does not improve regardless of how many times it
is iterated. Therefore, a single round provides most of its achievable gain in low and high IUI
scenarios.

7.3.3 Block fading

The objective of the final test is to observe how the different presented schemes behave in the
presence of block fading [34]. Up until this point, we have considered communications in settings in
which the channel coefficients remain constant during a full transmission. In practical scenarios, this
might not be possible. If we relied on full CSI, we would have to limit each data transmission to fit in
the so-called coherence time of the channel. After that, we could not guarantee its coefficients to be
the same and would require CSI acquisition to reliably continue the communication. This situation is
very limiting for coherent schemes, especially if the fading is fast.
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(c) UL: Different nDFE nº of iterations.

-20 -15 -10 -5 0 5 10 15 20
10-4

10-3

10-2

10-1

100

Uniform
Heuristic
Optimized
Beamforming (training)
Beamforming (perfect CSI

(d) DL: Different power loading criteria.

Figure 7.6: UL and DL performance results for a block fading scenario (phase and power gain change).

In our simulated test, the channel experiences block fading once in the middle of the UL and
once in the middle of the DL. At those points, both power gain and phase of the channel coefficients
will change suddenly, while their AoAs and AoDs will be maintained. Under this model, half of the
symbols (on both UL and DL) will be transmitted through a channel that the BS will have estimated
(coherently or statistically) and the other half through a completely unknown channel (except for the
AoAs and AoDs). We consider low IUI once again.

As expected, V-BLAST that relies on channel estimation suffers a remarkable degradation in its
performance, as seen in Figures 7.6. It can only decode reliably half of the transmitted symbols, since it
does not have any information regarding the channel coefficients of the second half of the transmission.
This issue is even more prominent during the DL, because regular beamforming is very vulnerable to
fading.

On the contrary, by not relying on full CSI, the noncoherent schemes are much more robust against
block fading. While the performance of DFDD+nDFE is moderately degraded compared to previous
tests with no fading, it can still transmit data reliably as SNR increases. This loss in performance can
be easily explained. The channel coefficients change in between the transmission of two symbols xu[k]
and xu[k + 1], making the first be affected by a channel and the second by a different one. This means
that the deterministic component of the differential phase between them is lost, producing a detection
error on the information encoded in xu[k + 1]. This first symbol transmitted within the new channel,
however, virtually becomes a new reference for the subsequent ones.
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As previously stated, the optimized weights matrix for DFDD is computed assuming channel fading,
which is an appropriate assumption in this test. Unsurprisingly, there is no difference in performance
with respect to the diagonal weighting.

Regarding the DL, the SER degradation is moderate as well. Notice in Figure 7.6d that the three
power loading approaches present little difference in performance. While on the first half of the DL, the
policies that effectively account for the statistical CSI are undoubtedly superior to those which do not
(i.e. uniform loading), this advantage does not longer hold when the channel changes. In fact, uneven
power loading can become detrimental. After block fading, the eigenvalues of the channel covariance
matrix might have changed. Adapting the transmitted power to the eigenvalues distribution of the
previous channel becomes suboptimal in the new one, in general. Indeed, the heuristic and optimized
power loading methods perform almost no better than with uniform loading, in average.

To sum it up, from this final test we deduce the following remarks:

1. One of the greatest strengths of noncoherent schemes is their robustness against block fading.
The more agnostic a scheme is in terms of statistical CSI, the more consistent its performance is
across different communications.

2. When we can ensure a channel will be invariant during a whole data transmission, the weighting
matrix of choice for DFDD should be the optimized one. In the multi-user case, the crossed
terms of the covariance matrix should be estimated with an improved version of the curve fitting
method presented in Section 7.1.2.

3. When there is risk that block fading might occur in the middle of a transmission, the weighting
matrix of choice should be the diagonal one. It is computationally simpler to implement than
the optimized one and provides negligible loss in performance.

4. Similarly, when choosing a power loading policy for D-OSTBC, the possibility of channel fading
must be taken into account. In constant channels, approaches that employ statistical CSI should
be selected, whereas in block fading channels, no eigenvalue distribution should be prioritized
over the rest and uniform loading should be the default option.
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Chapter 8

Conclusions and future research

The thesis presented in this document has been the result of over four months of intensive and very
rewarding work. A satisfactory way of bringing it to a close would be to get the full picture of what
has been achieved.

In Chapter 3 we have presented the beamspace representation of a wireless MIMO channel.
Thanks to the sparse scattering in mmWave propagation, this domain transformation through a spatial
DFT allows us to convert a regular channel matrix into its much simpler beamspace domain counterpart.
The clear low rank displayed by this representation hints at a simplified RF infrastructure to process
signals transmitted within millimetric bands. Still, traditional transceiver architectures have no choice
but to go over the full antenna array in order to garner all the benefits from the beamspace domain,
which becomes unfeasible to implement in M-MIMO due to power and cost constraints. It is at this
point of the common thread of the thesis in which EM lenses come into play. Their angular-dependent
power focusing capabilities allow the separation of waves with different AoAs. This property effectively
approximates an analog Fourier transform without the explicit signal processing and RF chains required
otherwise, hence motivating the application of LAAs in mmWave communications.

In Chapter 4, we have discussed some aspects about the physical implementation of a LAA system.
Afterwards, we have rigorously derived an expression for its array response vector from a spherical
wave model. While we have acknowledged that the plane wave approximation is not an accurate
representation of a real mmWave setting, we have adopted it for its simplicity and usefulness in signal
processing. We have also assessed the power leakage problem inherent to LAA systems and briefly
quantified its impact. Subsequently, we have obtained the expression of the symmetric LAA-MIMO
channel in Chapter 5, based on well established propagation models. With it, we have characterized
its capacity in the low and high SNR regimes and investigated how it is affected by different parameters.

After the more theory-centered sections of the thesis, we have applied the studied ideas to practical
communication problems. In Chapter 6, we have considered the P2P setting between a BS and a MT,
both ways (UL and DL). We have integrated the LAA in traditional and mixed schemes within the two
general coherent scenarios (full CSIT and full CSIR), and also in noncoherent schemes, which has been
the main goal of the thesis. For the UL, we have taken the basic MSDD architecture and generalized its
working principles to better exploit well-structured channels. The obtained solution shows important
performance gains against more agnostic approaches when no fading is present. Regarding the DL, we
have adapted D-OSTBC to the LAA-MISO channel.

In Chapter 7, we have designed a full UL-DL system based on the presented noncoherent schemes
and statistical CSI. We have addressed AS in LAA systems and proposed a procedure for multi-user
settings that fairly allocates the available resources among the connected users. We have also suggested
a way to approximate each user’s individual channel covariance matrix from the combination of all the
received signals at the BS. In the extent of the UL noncoherent detection, we have applied the results
from the previous chapter to DFDD, as well as derived nDFE metrics better suited for LAA. We have
used power loading together with D-OSTBC in the DL and introduced a heuristic weighting policy.

Last but not least, we have subjected our designed system to various numerical tests and compared
its performance to V-BLAST and beamforming, both coherent schemes. The conclusions drawn from
these simulations have been very insightful. When coherent schemes can effectively estimate the CSI
(i.e. ideal propagation conditions), their performance is unbeatable by noncoherent methods. This
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difference becomes especially vast when trying to cancel strong IUI. The advantages of noncoherent
schemes, however, start to surface in the presence of block fading. Since they do not rely on full
CSI, they can provide sound communications even in changing channels. On the contrary, coherent
schemes become completely unreliable when they are not able to safely estimate the channel. These
observations suggest the use of noncoherent LAA schemes in high mobility scenarios, such as vehicular
communications, or in very populated networks in which orthogonal training sequences cannot be
allocated for every connected user.

The studies conducted in this thesis have helped slightly broaden the scopes of LAA-M-MIMO and
noncoherent communications, and open the door to many potential lines of research. Let us enumerate
a few of them:

• In reference to the spherical wave model presented in Section 4.1, the complete array response
vector presents a windowing effect that depends on the distance between Rx and Tx. In [20],
the authors study potential applications of this behavior in user position sensing and regular
communications. Following the philosophy of the thesis, it would be of interest to investigate
whether there are some potential advantages in using this property to enhance noncoherent
schemes.

• While radar technologies have not been considered in this thesis, they are a very active area
of research. As seen in [58], there is room for application of LAAs and, in particular, for the
spherical wave model.

• The use of LAAs with AS is very well suited for designs of M-MIMO transceivers with a special
focus on energy efficiency [4].

• As commented in Section 7.2, general FDD schemes cannot rely on channel reciprocity between
UL and DL and must estimate the propagation statistics at every stage. The training overhead
required for these CSI acquisitions can become unacceptably high for M-MIMO systems. A
very promising technique to overcome this limitation is called covariance conversion [59]: the
idea of estimating the DL channel covariance matrix from the UL one. The LAA channel seems
very appropriate for the implementation of such methods, thanks to its rigid structure and path
reciprocity. The beam squint phenomenon between different frequency bands should be carefully
studied, more so considering AS reuse between UL and DL (see Section 7.1.1).

• The user assignment method based on second order statistics, briefly stated in Section 7.1.1,
may be properly expanded and developed. Of special interest is its joint implementation within
the AS phase.

• Although the gains obtained with our optimized DFDD weighting method have been displayed,
we have not fully assessed the performance of the optimized nDFE metrics nor of the heuristic
D-OSTBC power loading. A rigorous analysis should be conducted on the two.

• The method to estimate the covariance matrix of each individual user can be further improved
with a curve fitting technique on cross channel components. This would allow for a better
performance in channels without fading during the transmission of data.

• As it has become very clear in Section 7.3, the implementations we have proposed cannot
provide reliable communications in presence of strong IUI. Further research is needed in that
regard. A very promising starting point for better interference cancellation are subspace-based
methods [60–62].

• Finally, an alternative to orthogonal training pilots in multi-user environments is the so-called
Non-Orthogonal Multiple Access (NOMA) [63]. Its joint application within the LAA paradigm
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could greatly benefit from the special characteristics of this wireless channel.

With all this in mind, we expect that this Master’s Thesis has served to slightly push forward the
field of signal processing in view of the next generation of wireless communications.
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Appendix A

Matlab Code

In this annex, we have gathered all the Matlab code implementations we have utilized throughout
the simulations, based on the theoretical foundations of the thesis. The code has been thoroughly
commended inline (green color) for a clear understanding of its operation. It has been organized into
functions.

1. Perform AS and assign antennas to each user following the fairness policy:

1 function [Wsel_u, Wsel, phi_est] = select_and_assign(Y, nRx, phi_real, Nu, ...

2 Rsel, Nrf, L, Dsel, coh)

3 % Inputs:

4 % Y : Training sequence (space=time block).

5 % nRx : Antenna indices.

6 % phi_real: Real AoAs.

7 % Nu : Nº of users.

8 % Rsel : Effective selection time.

9 % Nrf : Nº of available RF chains.

10 % L : Nº of paths per user.

11 % Dsel : Energy threshold.

12 % coh : Coherent/noncoherent flag.

13 % Outputs:

14 % Wsel_u : Selection matrix per user.

15 % Wsel : Global selection matrix.

16 % phi_est : Estimated AoAs.

17 Nrx = length(nRx); % Nº of antennas.

18 Nrf_u = floor(Nrf/Nu); % Nº of RF/user.

19 Npaths = Nu*L; % Total nº of paths.

20 Wsel_u = zeros(Nrx, Nrx, Nu); % Selection matrix/user.

21 phi_est = zeros(Nu, L); % Estimated directions indexes.

22 %% Coherent detection (V=BLAST). %%

23 if coh

24 for u = 1:Nu % For all users.

25 % Diagonal of the selection matrix.

26 w_sel = zeros(Nrx, 1);

27 % Energy detection per user.

28 y = abs(1/sqrt(Rsel)*sum(Y(:,u:Nu:end), 2)).^2;

29 % Sort antennas by energy.

30 [~, idx] = sort(y, 'descend');

31 % Add selected antennas to user selection matrix.

32 w_sel(idx(1:Nrf_u)) = 1;

33 Wsel_u(:,:,u) = diag(w_sel);

34 end

35 % Global selection matrix.

36 Wsel = any(Wsel_u, 3);

37 %% Noncoherent detection (DFDD+nDFE). %%
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38 else

39 % Energy detection.

40 y = abs(1/sqrt(Rsel)*sum(Y, 2)).^2;

41 % Detect beams: maximum value and associated antenna.

42 [path_val, path_idx] = findpeaks(y, 'MinPeakHeight', Dsel);

43 % Sort paths by energy.

44 [~, sorted_paths] = sort(path_val, 'descend');

45 if length(sorted_paths) >= Npaths

46 sorted_paths = sorted_paths(1:Npaths);

47 end

48 path_idx = path_idx(sorted_paths);

49 path_val = path_val(sorted_paths);

50 % Assign paths and size of corresponding supports to each user.

51 val_est = zeros(Nu, L); % Assigned energy per path.

52 Nsup = zeros(Nu, L); % Nº of supports per path per user.

53 for u = 1:Nu % For all users.

54 for l = 1:L % For all paths.

55 % Nearest detected AoA to real one.

56 [~, idx] = min(abs(nRx(path_idx) = phi_real(u,l)));

57 phi_est(u,l) = path_idx(idx);

58 val_est(u,l) = path_val(idx);

59 end

60 % Nº of supports per path per user with energy criterion.

61 Nsup(u,:) = floor(val_est(u,:)/sum(val_est(u,:))*Nrf_u);

62 % RF chains left after assignment.

63 extraRF = Nrf_u = sum(Nsup(u,:));

64 % Assign RF chains left to strongest path.

65 if extraRF

66 [~, max_path] = max(val_est(u,:));

67 Nsup(u,max_path) = Nsup(u,max_path) + extraRF;

68 end

69 end

70 % Create and assign supports around AoAs.

71 for u = 1:Nu % For all users.

72 for l = 1:L % For all beams.

73 % Counters of the size of the support on both sides

74 % of the AoA.

75 Lcount = 1; % Left support expander.

76 Rcount = 1; % Right support expander.

77 % Flags that indicate if the support can keep expanding

78 % to the left and to the right.

79 Lkeep = true; % Left expander flag.

80 Rkeep = true; % Right expander flag.

81 % Add estimated AoAs antennas to selection matrix.

82 if Nsup(u,l)

83 Wsel_u(phi_est(u,l),phi_est(u,l),u) = 1;

84 Nsup(u,l) = Nsup(u,l) = 1;

85 end

86 % While there are available RF chains for path l and can
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87 % keep expanding to the left or to the right.

88 while (Nsup(u,l) && (Lkeep || Rkeep))

89 % Add support to the left.

90 idx = phi_est(u,l) = Lcount;

91 % If path l has RF chains left, can keep adding

92 % to the left, the antenna index is in bounds and

93 % there is no overlapping with a different AoA.

94 if Nsup(u,l) && Lkeep && (idx > 0) && ...

95 ~any(idx == phi_est, 'all')

96 % Add support antenna to selection matrix.

97 Wsel_u(idx,idx,u) = 1;

98 Nsup(u,l) = Nsup(u,l) = 1;

99 % Move counter to the left.

100 Lcount = Lcount + 1;

101 else

102 % Cannot keep adding support antennas to the left.

103 Lkeep = false;

104 end

105 % Add support to the right.

106 idx = phi_est(u,l) + Rcount;

107 % If path l has RF chains left, can keep adding

108 % to the right, the antenna index is in bounds and

109 % there is no overlapping with a different AoA.

110 if Nsup(u,l) && Rkeep && (idx <= Nrx) && ...

111 ~any(idx == phi_est, 'all')

112 % Add support antenna to selection matrix.

113 Wsel_u(idx,idx,u) = 1;

114 Nsup(u,l) = Nsup(u,l) = 1;

115 % Move counter to the right.

116 Rcount = Rcount + 1;

117 else

118 % Cannot keep adding support antennas to the right.

119 Rkeep = false;

120 end

121 end

122 % Assign spare RF to next strongest path.

123 if Nsup(u,l) && l < L

124 [~, max_path] = max([NaN(1, l), ...

125 val_est(u,(l + 1):end)], [], 'omitnan');

126 Nsup(u,max_path) = Nsup(u,max_path) + Nsup(l);

127 end

128 end

129 end

130 % Global selection matrix.

131 Wsel = any(Wsel_u, 3);

132 end

133 end
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2. Estimate the individual covariance matrix of each user:

1 function [Ch] = estimate_covariance(Y, phi, Pz, nD, Sig_u, Sig, glob)

2 % Inputs:

3 % Y: Received signal block.

4 % phi: Estimated AoAs.

5 % Pz: Noise power.

6 % nD: Normalized lens aperture.

7 % Sig: Selection matrices.

8 % Outputs:

9 % Ch: Estimated covariance matrix per user.

10 [Nrx, K] = size(Y); % Array size and temporal dimension.

11 [Nu, L] = size(phi); % Nº of users and beams per user.

12 Ch = zeros(Nrx, Nrx, Nu); % Estimated covariance matrices.

13 % Diagonal elements of cov. matrix.

14 P = 1/K*sum(Y.*conj(Y), 2) = Pz;

15 % Curve fitting configuration.

16 opts = optimset('Display','off');

17 for u = 1:Nu % For all users.

18 for l = 1:L % For all paths.

19 % Select interpolation points in bounds.

20 if phi(u,l) > 0

21 if phi(u,l) <= Nrx

22 a = phi(u,l) = 1;

23 b = phi(u,l);

24 c = phi(u,l) + 1;

25 else

26 a = phi(u,l) = 2;

27 b = phi(u,l) = 1;

28 c = phi(u,l);

29 end

30 else

31 a = phi(u,l);

32 b = phi(u,l) + 1;

33 c = phi(u,l) + 2;

34 end

35 % Group interpolation points for curve fitting.

36 x = [a, b, c];

37 % Power associated to those points.

38 y = [P(a), P(b), P(c)];

39 % Fit a squared sinc surface.

40 est_par = lsqcurvefit(@(Par, x)Par(1)*(sinc(x = Par(2)).^2), ...

41 [nD, a], x, y, [1, a], [nD^3, c], opts);

42 % Apply antenna selection on the obtained curve.

43 selected_sinc = sinc((1:Nrx)' = est_par(2));

44 selected_sinc(~diag(Sig_u(:,:,u))) = 0;

45 % Add path contributin to covariance matrix.

46 Ch(:,:,u) = Ch(:,:,u) + est_par(1)*(selected_sinc*selected_sinc');

47 end

48 end
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49 end

3. Compute the DFDD weights matrix:

1 function [W] = weight_matrix(Ch, Pz, K, type)

2 % Inputs:

3 % Ch: Individiual covariance matrix of each user.

4 % Pz: Noise power.

5 % K: Space=time block length.

6 % type: Type of weighting.

7 % Outputs:

8 % W: Weights matrix for each user.

9 [~, Nrx, Nu] = size(Ch); % NÂº of antennas and users.

10 W = zeros(Nrx, Nrx, Nu); % Weights matrices.

11 switch type % Type of weighting.

12 case 'uniform' % Uniform weighting.

13 W = repmat(eye(Nrx), 1, 1, Nu); % Identity matrices.

14 case 'basic' % Diagonal weighting.

15 for u = 1:Nu

16 % Only considers the diagonal elements of the covariance

17 % matrices.

18 Ph = diag(Ch(:,:,u));

19 W(:,:,u) = diag(Ph./(K*Ph + Pz));

20 end

21 case 'optimized' % Optimized weighting.

22 for u = 1:Nu

23 % Considers the full covariance matrix.

24 W(:,:,u) = Ch(:,:,u)*(eye(Nrx) = ...

25 (Pz/K*eye(Nrx) + Ch(:,:,u))\Ch(:,:,u));

26 end

27 end

28 end

4. Perform iterative nDFE over users and iterative DFDD over time:

1 function [X] = iterative_nDFE(Y, W, Ch, Pz, Nu, M, Nit_ndfe, Nit_dfdd)

2 % Inputs:

3 % Y: Full signal block.

4 % W: Weights matrix of every user.

5 % Ch: Channel covariance matrix of every user.

6 % Pz: Noise power.

7 % Nu: Nº of users.

8 % M: Size of the signal constellation.

9 % Nit_ndfe: Nº of iterations of nDFE.

10 % Nit_dfdd: Nº of iterations of DFDD.

11 % Outputs:

12 % X: Coded symbols, each row is a user.

13 K = size(Y, 2); % Space=time block length.

14 d = zeros(Nu, 1); % Detected users flags.

15 sinr = zeros(Nu, 1); % SINR metric of every user.
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16 Ru = zeros(K, K, Nu); % Correlation matrix of every user.

17 X = zeros(Nu, K); % Coded symbols.

18 ord = zeros(Nu, 1); % Detection order.

19 eta_int = zeros(Nu); % Interference contribution.

20 o = 1; % Order counter.

21 while ~all(d) % While some users are not detected.

22 for u = 1:Nu

23 if ~d(u)

24 % Compute SINR metric and mean interference per user.

25 [sinr(u), eta_int(:,u)] = SINR_u(Ch, W, u, d, Pz);

26 end

27 end

28 % Remove already detected users from SINR vector.

29 sinr(d == 1) = NaN;

30 % Choose user with better SINR metric.

31 [~, u_sel] = max(sinr, [], 'omitnan');

32 % User detection order.

33 ord(o) = u_sel;

34 o = o + 1;

35 % Weighted correlation matrix of the selected user.

36 Ru(:,:,u_sel) = Y'*W(:,:,u_sel)*Y;

37 for nu = 1:Nu % For all users.

38 if d(nu)

39 % Interference removal caused by detected users nu.

40 Ru(:,:,u_sel) = Ru(:,:,u_sel) = ...

41 eta_int(nu,u_sel)*X(nu,:)'*X(nu,:);

42 end

43 end

44 % User detected.

45 d(u_sel) = 1;

46 % Detection of user sequence.

47 X(u_sel, :) = optDFDD(Ru(:,:,u_sel), M, Nit_dfdd, 0);

48 end

49 for i = 2:Nit_ndfe % Additional iterations

50 for u = 1:Nu

51 % User to be detected.

52 d(ord(u)) = 0;

53 % Recompute interference power.

54 [~, eta_int(:,u)] = SINR_u(Ch, W, ord(u), d, Pz);

55 % Remove interference from all the other users.

56 for nu = 1:Nu

57 if d(nu)

58 Ru(:,:,ord(u)) = Ru(:,:,ord(u)) = ...

59 eta_int(nu,ord(u))*X(nu,:)'*X(nu,:);

60 end

61 end

62 % User detected.

63 d(ord(u)) = 1;

64 % Detection of user sequence.
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65 X(ord(u), :) = optDFDD(Ru(:,:,ord(u)), M, Nit_dfdd, 0);

66 end

67 end

68 end

5. Perform iterative DFDD:

1 function [x] = optDFDD(Ru, M, N_it, varargin)

2 % Inputs:

3 % Z: Weighted correlation matrix.

4 % M: Constellation size.

5 % N_it: Nº of iterations.

6 % varargin: 1st flag and previous estimation (optional).

7 % Outputs:

8 % x: Encoded symbols.

9 K = size(Ru, 2); % Signal block size.

10 x = [1 zeros(1, K = 1)]; % Encoded symbols.

11 phi = zeros(1, K); % Differential phase.

12 % Constellation phase differential.

13 delta = 2*pi/M;

14 % Symbol phases.

15 ang = zeros(1, K);

16 % Phase quantization error per symbol.

17 Derr = zeros(1, K);

18 if ~varargin{1} % There are not prior results.

19 d = [true false(1, K = 1)]; % Detected symbols.

20 while ~all(d) % While there are undetected symbols.

21 % Vectorized DFDD detection.

22 phi(~d) = x(d)*Ru(d, ~d);

23 ang(~d) = atan2(imag(phi(~d)), real(phi(~d)));

24 Derr(~d) = abs(ang(~d) = delta*round(ang(~d)/delta));

25 % Remove already detected symbols from the comparison.

26 Derr(d) = NaN;

27 % Detect symbol with less quantization error.

28 [~, k] = min(Derr, [], 'omitnan');

29 % Symbol is detected.

30 d(k) = true;

31 % Choose symbol from M=ARY constellation.

32 x(k) = exp(1j*delta*round(atan2(imag(phi(k)), ...

33 real(phi(k)))/delta));

34 end

35 else % There are prior results.

36 x = varargin{2};

37 end

38 for i = 2:N_it % Use the full detected sequence to perform DFDD.

39 for k = 1:K

40 phi(k) = x((1:K) ~= k)*Ru((1:K) ~= k, k);

41 x(k) = exp(1j*delta*round(atan2(imag(phi(k)), ...

42 real(phi(k)))/delta));

43 end
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44 end

45 end

6. Compute each user’s SINR metrics for nDFE:

1 function [SINR, eta_int] = SINR_u(Ch, W, u, d, Pz)

2 % Inputs:

3 % Ch: Channel covariance matrix of each user.

4 % W: Signal correlation matrix of each user.

5 % u: Selected user.

6 % d: Detected users.

7 % Pz: Noise power.

8 % Outputs:

9 % SINR: Signal=To=Noise=And=Interference Ratio

10 Nu = size(Ch, 3); % Nº of users.

11 Nrx = size(Ch, 1); % Nº of antennas.

12 eta_int = zeros(Nu, 1); % Mean interference power per user.

13 % Product of weights matrix by other users' covariance matrices.

14 WCnu = zeros(Nrx, Nrx, Nu);

15 WCnu(:,:,u) = W(:,:,u)*Ch(:,:,u);

16 % Desired signal power.

17 Pu = sum(diag(WCnu(:,:,u)))^2 + sum(sum(WCnu(:,:,u).*WCnu(:,:,u).'));

18 % Signal x Interference power.

19 Pint = 0;

20 % Interference x Interference power.

21 Pcross = 0;

22 for mu = 1:Nu

23 if mu ~= u

24 WCnu(:,:,mu) = W(:,:,u)*Ch(:,:,mu);

25 Pint = Pint + sum(sum(WCnu(:,:,mu).*WCnu(:,:,mu).'));

26 if ~d(mu)

27 eta_int(mu) = sum(diag(WCnu(:,:,mu)));

28 Pint = Pint + eta_int(mu)^2;

29 end

30 end

31 for nu = 1:(mu = 1)

32 Pcross = Pcross + 2*sum(sum(WCnu(:,:,nu).*WCnu(:,:,mu).'));

33 end

34 end

35 WuWu = W(:,:,u)*W(:,:,u);

36 % Interference x Noise + Noise x Noise

37 Pnoise = 2*Pz*sum(sum(WuWu.*sum(Ch, 3).')) + Pz^2*sum(diag(WuWu));

38 % SINR metric.

39 SINR = Pu/(Pint + Pcross + Pnoise);

40 end

7. Perform Minimum Mean Squared Error V-BLAST detection over users:

1 function [Xest] = mmse_vblast(H, Y, Pz, Nu, M)

2 % Inputs:
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3 % H: Estimated channel.

4 % Y: Received signal block.

5 % Pz: Noise power.

6 % Nu: NÂº of users.

7 % M: Signal constellation size.

8 % Outputs:

9 % Xest: Detected symbols.

10 Xest = zeros(Nu, size(Y, 2));

11 delta = 2*pi/M; % Phase differential.

12 d = false(1, Nu); % Detected users vector.

13 for i = 1:Nu % For all users.

14 % Precoding matrix.

15 G = H/(H'*H + Pz*eye(Nu));

16 % Ignore detected users.

17 G(:,d) = NaN;

18 % Find user with better communication conditions.

19 [~, u] = min(vecnorm(G), [], 'omitnan');

20 % Detect user sequence.

21 y = G(:,u)'*Y;

22 Xest(u,:) = exp(1j*delta*round(atan2(imag(y), real(y))/delta));

23 % User has been detected.

24 d(u) = true;

25 % Remove user contribution from received signal and channel.

26 Y = Y = H(:,u)*Xest(u,:);

27 H(:,u) = 0;

28 end

29 end

8. Compute the power loading matrix for D-OSTBC:

1 function [Duni, Dh, Dopt, U] = power_load(Ch, L, M, Pz)

2 % Inputs:

3 % Ch: Channel covariance matrix per user.

4 % L: Nº of beams per user.

5 % M: Size of the symbol constellation.

6 % Pz: Noise power.

7 % Outputs:

8 % Duni: Uniform power loading matrix.

9 % Dh: Heuristic power loading matrix.

10 % Dopt: Optimized power loading matrix.

11 % U: Matrix with L most significant eigenvectors per user.

12 Nu = size(Ch, 3); % Nº of users.

13 Nrx = size(Ch, 1); % Nº of antennas.

14 U = zeros(Nrx, L, Nu); % Eigenvectors per user.

15 % Power loading matrices per user.

16 Dh = zeros(L, L, Nu);

17 Dopt = zeros(L, L, Nu);

18 % Uniform power loading.

19 Duni = 1/sqrt(L)*repmat(eye(L), 1, 1, Nu);

20 for u = 1:Nu % For all users.
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21 % Partial eigendecomposition. L eigenpairs.

22 [U(:,:,u), D] = eigs(Ch(:,:,u), L);

23 % For each path.

24 for i = 1:L

25 % Heuristic weight.

26 Dh(i,i,u) = sqrt(D(i,i)/sum(diag(D(1:L,1:L))));

27 % Optimized weight.

28 Dopt(i,i,u) = sqrt(1/L + 2*Pz/sin(pi/M)^2* ...

29 1/L*(sum(1./diag(D(1:(i = 1),1:(i = 1)))) + ...

30 sum(1./diag(D((i + 1):L,(i + 1):L)))));

31 end

32 end

33 end

9. Decode differentially encoded OSTBCs:

1 function [S] = diff_decoder(y1, y2, M, A, B)

2 % Inputs:

3 % y1: Received signal at time k = 1.

4 % y2: Received signal at time k.

5 % M: Size of the signal constellation.

6 % A: First matrix component of the amicable design.

7 % B: Second matrix component of the amicable design.

8 % Outputs:

9 % S: Decoded symbol block.

10 S = zeros(1,3);

11 for p = 1:3 % For all the symbols in a block.

12 dec = 0;

13 for i = 0:(M = 1) % Explore all the symbols in the constellation.

14 s = exp(1j*2*pi/M*i);

15 % Maximize the decoding metric.

16 newdec = real(y1*A(:,:,p)*y2')*real(s) = ...

17 imag(y1*B(:,:,p)*y2')*imag(s);

18 % If the current symbol improves the metric for the received

19 % symbols, it is selected.

20 if newdec > dec

21 dec = newdec;

22 S(p) = s;

23 end

24 end

25 end

26 end
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10. Generate OSTBCs of rate 3/4:

1 function [S] = OSTBC3_4(s1, s2, s3)

2 % Inputs:

3 % s1, s2, s3: Symbols to be encoded.

4 % Outputs:

5 % S: Encoded space=time block.

6 S = [ s1, 0, s2, =s3;

7 0, s1, s3', s2';

8 =s2', =s3, s1', 0;

9 s3', =s2, 0, s1']/sqrt(3);

10 end
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