53 research outputs found

    Interference Coordination for 5G New Radio

    Get PDF

    Introducing mobile edge computing capabilities through distributed 5G Cloud Enabled Small Cells

    Get PDF
    Current trends in broadband mobile networks are addressed towards the placement of different capabilities at the edge of the mobile network in a centralised way. On one hand, the split of the eNB between baseband processing units and remote radio headers makes it possible to process some of the protocols in centralised premises, likely with virtualised resources. On the other hand, mobile edge computing makes use of processing and storage capabilities close to the air interface in order to deploy optimised services with minimum delay. The confluence of both trends is a hot topic in the definition of future 5G networks. The full centralisation of both technologies in cloud data centres imposes stringent requirements to the fronthaul connections in terms of throughput and latency. Therefore, all those cells with limited network access would not be able to offer these types of services. This paper proposes a solution for these cases, based on the placement of processing and storage capabilities close to the remote units, which is especially well suited for the deployment of clusters of small cells. The proposed cloud-enabled small cells include a highly efficient microserver with a limited set of virtualised resources offered to the cluster of small cells. As a result, a light data centre is created and commonly used for deploying centralised eNB and mobile edge computing functionalities. The paper covers the proposed architecture, with special focus on the integration of both aspects, and possible scenarios of application.Peer ReviewedPostprint (author's final draft

    View on 5G Architecture: Version 1.0

    Get PDF
    The current white paper focuses on the produced results after one year research mainly from 16 projects working on the abovementioned domains. During several months, representatives from these projects have worked together to identify the key findings of their projects and capture the commonalities and also the different approaches and trends. Also they have worked to determine the challenges that remain to be overcome so as to meet the 5G requirements. The goal of 5G Architecture Working Group is to use the results captured in this white paper to assist the participating projects achieve a common reference framework. The work of this working group will continue during the following year so as to capture the latest results to be produced by the projects and further elaborate this reference framework. The 5G networks will be built around people and things and will natively meet the requirements of three groups of use cases: • Massive broadband (xMBB) that delivers gigabytes of bandwidth on demand • Massive machine-type communication (mMTC) that connects billions of sensors and machines • Critical machine-type communication (uMTC) that allows immediate feedback with high reliability and enables for example remote control over robots and autonomous driving. The demand for mobile broadband will continue to increase in the next years, largely driven by the need to deliver ultra-high definition video. However, 5G networks will also be the platform enabling growth in many industries, ranging from the IT industry to the automotive, manufacturing industries entertainment, etc. 5G will enable new applications like for example autonomous driving, remote control of robots and tactile applications, but these also bring a lot of challenges to the network. Some of these are related to provide low latency in the order of few milliseconds and high reliability compared to fixed lines. But the biggest challenge for 5G networks will be that the services to cater for a diverse set of services and their requirements. To achieve this, the goal for 5G networks will be to improve the flexibility in the architecture. The white paper is organized as follows. In section 2 we discuss the key business and technical requirements that drive the evolution of 4G networks into the 5G. In section 3 we provide the key points of the overall 5G architecture where as in section 4 we elaborate on the functional architecture. Different issues related to the physical deployment in the access, metro and core networks of the 5G network are discussed in section 5 while in section 6 we present software network enablers that are expected to play a significant role in the future networks. Section 7 presents potential impacts on standardization and section 8 concludes the white paper

    Resource and Interference Management in UAV-Cellular Network

    Get PDF
    The future Sixth-Generation (6G) network is anticipated to extend connectivity for millions of Unmanned Aerial Vehicles (UAVs) worldwide and support various innovative use cases, such as cargo transport, inspection, and intelligent agriculture. The terrestrial cellular networks provide real-time information exchange between UAVs and Ground Control Stations (GCS), which facilitates the evolution of UAV communication systems while bringing promising economic benefits to cellular network operators. However, the tremendous growth in the UAV data traffic, with diverse and stringent service requirements, would add another pressure on the already congested terrestrial cellular network that is facing a rigorous challenge to increase network capacity with the limited spectrum resources. Moreover, since Macro Base Station (MBS) antennas are typically downtilt, UAVs, which are served by the MBS antenna’s side lobes, suffer from sharp signal fluctuations causing throughput reduction and coverage drop. Besides, due to the Line-of-Sight (LoS) between UAVs and MBSs, UAVs experience higher uplink/downlink interference compared to ground Cellular Users (CUs). In this thesis, we propose two novel aerial network architectures in which we design efficient interference and resource management strategies to support the UAV Quality-of-Service (QoS) guarantee while considering different types of interference. Firstly, we propose a novel standalone aerial multi-cell network where multiple UAV Base Stations (UAV-BSs) provide cellular services to UAV Users by reusing the licensed and unlicensed spectrum. Our objective is to jointly optimize the subchannels and power allocations of UAV-Users in the licensed and unlicensed spectrum to maximize the network uplink sum rate, considering inter-cell interference, co-existence with terrestrial cellular and WiFi systems, and the QoS of UAV-Users. We prove mathematically that the formulated optimization problem is an NP-hard problem. Therefore, the original problem is decomposed into three subproblems to solve it efficiently. We first use convex optimization and the Hungarian algorithm to obtain the global optimal of power and subchannel allocations in the licensed spectrum, respectively. Then, we design a matching game with externalities and coalition game algorithms to obtain the Nash stable of the subchannel allocation in the unlicensed band. Local optimal power assignment in the unlicensed spectrum is obtained using the successive convex approximation method. Lastly, we develop an iterative algorithm to solve the three subproblems sequentially until convergence is reached. Simulation results demonstrate that the proposed algorithm achieves a significantly higher uplink sum rate compared with other resource allocation schemes. Moreover, the proposed algorithm improves the network throughput and capacity by nearly two times comparing to the Long Term Evolution-Advanced (LTE-A). Secondly, we propose a novel integrated aerial-terrestrial multi-operator network. In the network, each operator deploys a number of UAV-BSs besides the terrestrial MBS, where each BS reuses the operator’s licensed spectrum to provide downlink connectivity for UAV-Users. Moreover, the operators allow the UAV-Users, whose demand cannot be satisfied by the licensed band, to compete with others to obtain bandwidth from the unlicensed spectrum. Given the QoS requirements of UAV-Users, we aim to maximize the total sum rate by jointly optimizing user association, BSs transmit power, and dynamic spectrum allocation considering inter-cell interference in the licensed band and inter-operator interference in the unlicensed spectrum. In particular, we divide the resulting non-convex Mixed-Integer Non-Linear Programming (MINLP) optimization problem into two sequential subproblems: user association and power control in the licensed spectrum; and dynamic spectrum allocation and user association in the unlicensed spectrum. Furthermore, the former subproblem is decomposed into multiple subproblems for distributed and parallel problem-solving. Since the resulting former subproblem is still a non-convex MINLP problem, we propose a distributed iterative algorithm consisting of a matching game, coalition game, and successive convex approximation technique to solve it. Afterwards, in the latter subproblem, we first use a matching game to associate UAV-Users with the UAV-BSs for each operator in the unlicensed spectrum. Then, we propose a three-layers auction algorithm to allocate the unlicensed spectrum among operators dynamically. Extensive simulation results demonstrate that the proposed algorithm in the licensed spectrum significantly improves network throughput per operator than the conventional terrestrial network alone. Moreover, the achieved system throughput of the proposed algorithms in both licensed and unlicensed spectrum is 86.8% higher compared with that of using the licensed spectrum only. In summary, we have proposed integrated aerial-terrestrial network architectures that leverage the aerial network to complete the terrestrial network to serve cellular-connected UAVs by reusing licensed and unlicensed spectrum considering multi-cell and multi-operator scenarios. Under the proposed network architectures, we have investigated the subchannel allocation, UAV-Users’ transmit power, user association, BSs’ transmit power, and dynamic spectrum management to maximize the network throughput considering the QoS of UAV-User. The proposed architectures and algorithms should provide valuable guidelines for future research in designing resource and interference management schemes, improving network capacity, and enhancing spectrum utilization for complex interference environments in integrated UAV-cellular networks

    View on 5G Architecture: Version 2.0

    Get PDF
    The 5G Architecture Working Group as part of the 5GPPP Initiative is looking at capturing novel trends and key technological enablers for the realization of the 5G architecture. It also targets at presenting in a harmonized way the architectural concepts developed in various projects and initiatives (not limited to 5GPPP projects only) so as to provide a consolidated view on the technical directions for the architecture design in the 5G era. The first version of the white paper was released in July 2016, which captured novel trends and key technological enablers for the realization of the 5G architecture vision along with harmonized architectural concepts from 5GPPP Phase 1 projects and initiatives. Capitalizing on the architectural vision and framework set by the first version of the white paper, this Version 2.0 of the white paper presents the latest findings and analyses with a particular focus on the concept evaluations, and accordingly it presents the consolidated overall architecture design

    Wireless access network optimization for 5G

    Get PDF

    A Comprehensive Survey of the Tactile Internet: State of the art and Research Directions

    Get PDF
    The Internet has made several giant leaps over the years, from a fixed to a mobile Internet, then to the Internet of Things, and now to a Tactile Internet. The Tactile Internet goes far beyond data, audio and video delivery over fixed and mobile networks, and even beyond allowing communication and collaboration among things. It is expected to enable haptic communication and allow skill set delivery over networks. Some examples of potential applications are tele-surgery, vehicle fleets, augmented reality and industrial process automation. Several papers already cover many of the Tactile Internet-related concepts and technologies, such as haptic codecs, applications, and supporting technologies. However, none of them offers a comprehensive survey of the Tactile Internet, including its architectures and algorithms. Furthermore, none of them provides a systematic and critical review of the existing solutions. To address these lacunae, we provide a comprehensive survey of the architectures and algorithms proposed to date for the Tactile Internet. In addition, we critically review them using a well-defined set of requirements and discuss some of the lessons learned as well as the most promising research directions

    Slicing on the road: enabling the automotive vertical through 5G network softwarization

    Get PDF
    The demanding requirements of Vehicle-to-Everything (V2X) applications, such as ultra-low latency, high-bandwidth, highly-reliable communication, intensive computation and near-real time data processing, raise outstanding challenges and opportunities for fifth generation (5G) systems. By allowing an operator to flexibly provide dedicated logical networks with (virtualized) functionalities over a common physical infrastructure, network slicing candidates itself as a prominent solution to support V2X over upcoming programmable and softwarized 5G systems in a business-agile manner. In this paper, a network slicing framework is proposed along with relevant building blocks and mechanisms to support V2X applications by flexibly orchestrating multi-access and edge-dominated 5G network infrastructures, especially with reference to roaming scenarios. Proof of concept experiments using the Mininet emulator showcase the viability and potential benefits of the proposed framework for cooperative driving use cases1812não temMinistério da Ciência, Tecnologia, Inovações e Comunicações - MCTICThe research of Prof. Christian Esteve Rothenberg was partially supported by the H2020 4th EUBR Collaborative Call, under the grant agreement number 777067 (NECOS - Novel Enablers for Cloud Slicing), funded by the European Commission and the Brazilian Ministry of Science, Technology, Innovation, and Communication (MCTIC) through RNP and CTI
    corecore