1,196 research outputs found

    Co-Evolution of Technology, Markets and Institutions - the Case of Fuel Cells and Hydrogen Technology in Europe

    Get PDF
    The birth, growth and maturity of industries, sectors and technologies have spurred the curiosity of researchers as well as managers and policy makers for a long time. Intriguingly, the emergence of a new industry is a complex process including many different actors and with a high level of uncertainty related to technology, institutions and markets facing the actors involved. Empirically this book analyses a case study of fuel cells and hydrogen technologies in Europe, a set of inter-related technologies that has a large economic and environmental potential. These technologies can provide energy to a diverse set of products, ranging from powering cars and buses, or consumer products like a laptop or cell phone, to heat and electricity for buildings. Energy conversion within these technologies is furthermore emission free which hold the promise to change the mode of transportation and for electricity production to become more sustainable. While there is a tendency to approach technological change with a long time perspective, focusing on the shift between different phases, this book will fill a gap in the literature on technological change by focussing on the formative, or early phase. The thesis approaches the formative phase by analysing how the different actors in Europe strive to create stability in technology, market and institutions, so that the emerging technologies can evolve to a growth phase and new markets be formed

    NFV/SDN enabled architecture for efficient adaptive management of renewable and non-renewable energy

    Get PDF
    Ever-increasing energy consumption, the depletion of non-renewable resources, the climate impact associated with energy generation, and finite energy-production capacity are important concerns that drive the urgent creation of new solutions for energy management. In this regard, by leveraging the massive connectivity provided by emerging 5G communications, this paper proposes a long-term sustainable Demand-Response (DR) architecture for the efficient management of available energy consumption for Internet of Things (IoT) infrastructures. The proposal uses Network Functions Virtualization (NFV) and Software Defined Networking (SDN) technologies as enablers and promotes the primary use of energy from renewable sources. Associated with architecture, this paper presents a novel consumption model conditioned on availability and in which the consumers are part of the management process. To efficiently use the energy from renewable and non-renewable sources, several management strategies are herein proposed, such as prioritization of the energy supply and workload scheduling using time-shifting capabilities. The complexity of the proposal is analyzed in order to present an appropriate architectural framework. The energy management solution is modeled as an Integer Linear Programming (ILP) and, to verify the improvements in energy utilization, an algorithmic solution and its evaluation are presented. Finally, open research problems and application scenarios are discussed.This work was supported in part by the Ministerio de EconomĂ­a yCompetitividad of the Spanish Government under Project TEC2016-76795-C6-1-R and Project AEI/FEDER, UE, and in part by the SGRProject under Grant 2017 SGR 397 from the Generalitat de Catalunya.Peer ReviewedPostprint (published version

    Planning the future of smart cities with swarms of fully autonomous unmanned aerial vehicles using a novel framework

    Get PDF
    The autonomy of unmanned aerial vehicles (UAVs) - self-governing in the aerospace discipline has been a remarkable research area with the development of the advanced bespoke microcontrollers embedded with advanced AI techniques for the last several decades. The road forward about the operational environment is certain about the swarms of fully automated UAVs (FAUAVs), that is, urban areas. Therefore, the planning the future of cities with swarms of fully autonomous unmanned aerial vehicles is explored in this paper to optimise the use of this type of autonomy with a diverse range of applications and a contemporary methodology is proposed using a synergistic holistic framework equipped with various effective and efficient techniques along with a novel FAUAV routing approach customisable to the constraints of FAUAVs and urban areas. The framework consists of a decentralized agent-based control architecture that monitors and controls the swarms of resource-constraint FAUAVs for their real-time requirements in optimising their urban uses. The results demonstrate that the constraints of FAUAVs can be mitigated significantly in urban areas and their use in realising their diverse range of missions can be optimised using the proposed methodology

    FPGA based technical solutions for high throughput data processing and encryption for 5G communication: A review

    Get PDF
    The field programmable gate array (FPGA) devices are ideal solutions for high-speed processing applications, given their flexibility, parallel processing capability, and power efficiency. In this review paper, at first, an overview of the key applications of FPGA-based platforms in 5G networks/systems is presented, exploiting the improved performances offered by such devices. FPGA-based implementations of cloud radio access network (C-RAN) accelerators, network function virtualization (NFV)-based network slicers, cognitive radio systems, and multiple input multiple output (MIMO) channel characterizers are the main considered applications that can benefit from the high processing rate, power efficiency and flexibility of FPGAs. Furthermore, the implementations of encryption/decryption algorithms by employing the Xilinx Zynq Ultrascale+MPSoC ZCU102 FPGA platform are discussed, and then we introduce our high-speed and lightweight implementation of the well-known AES-128 algorithm, developed on the same FPGA platform, and comparing it with similar solutions already published in the literature. The comparison results indicate that our AES-128 implementation enables efficient hardware usage for a given data-rate (up to 28.16 Gbit/s), resulting in higher efficiency (8.64 Mbps/slice) than other considered solutions. Finally, the applications of the ZCU102 platform for high-speed processing are explored, such as image and signal processing, visual recognition, and hardware resource management

    Sustainable Wireless Services with UAV Swarms Tailored to Renewable Energy Sources

    Full text link
    Unmanned Aerial Vehicle (UAV) swarms are often required in off-grid scenarios, such as disaster-struck, war-torn or rural areas, where the UAVs have no access to the power grid and instead rely on renewable energy. Considering a main battery fed from two renewable sources, wind and solar, we scale such a system based on the financial budget, environmental characteristics, and seasonal variations. Interestingly, the source of energy is correlated with the energy expenditure of the UAVs, since strong winds cause UAV hovering to become increasingly energy-hungry. The aim is to maximize the cost efficiency of coverage at a particular location, which is a combinatorial optimization problem for dimensioning of the multivariate energy generation system under non-convex criteria. We have devised a customized algorithm by lowering the processing complexity and reducing the solution space through sampling. Evaluation is done with condensed real-world data on wind, solar energy, and traffic load per unit area, driven by vendor-provided prices. The implementation was tested in four locations, with varying wind or solar intensity. The best results were achieved in locations with mild wind presence and strong solar irradiation, while locations with strong winds and low solar intensity require higher Capital Expenditure (CAPEX) allocation.Comment: To be published in Transactions on Smart Gri

    Energy-Efficient Softwarized Networks: A Survey

    Full text link
    With the dynamic demands and stringent requirements of various applications, networks need to be high-performance, scalable, and adaptive to changes. Researchers and industries view network softwarization as the best enabler for the evolution of networking to tackle current and prospective challenges. Network softwarization must provide programmability and flexibility to network infrastructures and allow agile management, along with higher control for operators. While satisfying the demands and requirements of network services, energy cannot be overlooked, considering the effects on the sustainability of the environment and business. This paper discusses energy efficiency in modern and future networks with three network softwarization technologies: SDN, NFV, and NS, introduced in an energy-oriented context. With that framework in mind, we review the literature based on network scenarios, control/MANO layers, and energy-efficiency strategies. Following that, we compare the references regarding approach, evaluation method, criterion, and metric attributes to demonstrate the state-of-the-art. Last, we analyze the classified literature, summarize lessons learned, and present ten essential concerns to open discussions about future research opportunities on energy-efficient softwarized networks.Comment: Accepted draft for publication in TNSM with minor updates and editin

    Analysis of onshore wind - solar PV - battery bank power generation system development for Toamasina port

    Get PDF
    • …
    corecore