154 research outputs found

    Improved ECG watermarking technique using curvelet transform

    Get PDF
    Hiding data in electrocardiogram signals are a big challenge due to the embedded information that can hamper the accuracy of disease detection. On the other hand, hiding data into ECG signals provides more security for, and authenticity of, the patient\u27s data. Some recent studies used non-blind watermarking techniques to embed patient information and data of a patient into ECG signals. However, these techniques are not robust against attacks with noise and show a low performance in terms of parameters such as peak signal to noise ratio (PSNR), normalized correlation (NC), mean square error (MSE), percentage residual difference (PRD), bit error rate (BER), structure similarity index measure (SSIM). In this study, an improved blind ECG-watermarking technique is proposed to embed the information of the patient\u27s data into the ECG signals using curvelet transform. The Euclidean distance between every two curvelet coefficients was computed to cluster the curvelet coefficients and after this, data were embedded into the selected clusters. This was an improvement not only in terms of extracting a hidden message from the watermarked ECG signals, but also robust against image-processing attacks. Performance metrics of SSIM, NC, PSNR and BER were used to measure the superiority of presented work. KL divergence and PRD were also used to reveal data hiding in curvelet coefficients of ECG without disturbing the original signal. The simulation results also demonstrated that the clustering method in the curvelet domain provided the best performance-even when the hidden messages were large size

    Electrocardiogram pattern recognition and analysis based on artificial neural networks and support vector machines: a review.

    Get PDF
    Computer systems for Electrocardiogram (ECG) analysis support the clinician in tedious tasks (e.g., Holter ECG monitored in Intensive Care Units) or in prompt detection of dangerous events (e.g., ventricular fibrillation). Together with clinical applications (arrhythmia detection and heart rate variability analysis), ECG is currently being investigated in biometrics (human identification), an emerging area receiving increasing attention. Methodologies for clinical applications can have both differences and similarities with respect to biometrics. This paper reviews methods of ECG processing from a pattern recognition perspective. In particular, we focus on features commonly used for heartbeat classification. Considering the vast literature in the field and the limited space of this review, we dedicated a detailed discussion only to a few classifiers (Artificial Neural Networks and Support Vector Machines) because of their popularity; however, other techniques such as Hidden Markov Models and Kalman Filtering will be also mentioned

    Design and Implementation of Complexity Reduced Digital Signal Processors for Low Power Biomedical Applications

    Get PDF
    Wearable health monitoring systems can provide remote care with supervised, inde-pendent living which are capable of signal sensing, acquisition, local processing and transmission. A generic biopotential signal (such as Electrocardiogram (ECG), and Electroencephalogram (EEG)) processing platform consists of four main functional components. The signals acquired by the electrodes are amplified and preconditioned by the (1) Analog-Front-End (AFE) which are then digitized via the (2) Analog-to-Digital Converter (ADC) for further processing. The local digital signal processing is usually handled by a custom designed (3) Digital Signal Processor (DSP) which is responsible for either anyone or combination of signal processing algorithms such as noise detection, noise/artefact removal, feature extraction, classification and compres-sion. The digitally processed data is then transmitted via the (4) transmitter which is renown as the most power hungry block in the complete platform. All the afore-mentioned components of the wearable systems are required to be designed and fitted into an integrated system where the area and the power requirements are stringent. Therefore, hardware complexity and power dissipation of each functional component are crucial aspects while designing and implementing a wearable monitoring platform. The work undertaken focuses on reducing the hardware complexity of a biosignal DSP and presents low hardware complexity solutions that can be employed in the aforemen-tioned wearable platforms. A typical state-of-the-art system utilizes Sigma Delta (Σ∆) ADCs incorporating a Σ∆ modulator and a decimation filter whereas the state-of-the-art decimation filters employ linear phase Finite-Impulse-Response (FIR) filters with high orders that in-crease the hardware complexity [1–5]. In this thesis, the novel use of minimum phase Infinite-Impulse-Response (IIR) decimators is proposed where the hardware complexity is massively reduced compared to the conventional FIR decimators. In addition, the non-linear phase effects of these filters are also investigated since phase non-linearity may distort the time domain representation of the signal being filtered which is un-desirable effect for biopotential signals especially when the fiducial characteristics carry diagnostic importance. In the case of ECG monitoring systems the effect of the IIR filter phase non-linearity is minimal which does not affect the diagnostic accuracy of the signals. The work undertaken also proposes two methods for reducing the hardware complexity of the popular biosignal processing tool, Discrete Wavelet Transform (DWT). General purpose multipliers are known to be hardware and power hungry in terms of the number of addition operations or their underlying building blocks like full adders or half adders required. Higher number of adders leads to an increase in the power consumption which is directly proportional to the clock frequency, supply voltage, switching activity and the resources utilized. A typical Field-Programmable-Gate-Array’s (FPGA) resources are Look-up Tables (LUTs) whereas a custom Digital Signal Processor’s (DSP) are gate-level cells of standard cell libraries that are used to build adders [6]. One of the proposed methods is the replacement of the hardware and power hungry general pur-pose multipliers and the coefficient memories with reconfigurable multiplier blocks that are composed of simple shift-add networks and multiplexers. This method substantially reduces the resource utilization as well as the power consumption of the system. The second proposed method is the design and implementation of the DWT filter banks using IIR filters which employ less number of arithmetic operations compared to the state-of-the-art FIR wavelets. This reduces the hardware complexity of the analysis filter bank of the DWT and can be employed in applications where the reconstruction is not required. However, the synthesis filter bank for the IIR wavelet transform has a higher computational complexity compared to the conventional FIR wavelet synthesis filter banks since re-indexing of the filtered data sequence is required that can only be achieved via the use of extra registers. Therefore, this led to the proposal of a novel design which replaces the complex IIR based synthesis filter banks with FIR fil-ters which are the approximations of the associated IIR filters. Finally, a comparative study is presented where the hybrid IIR/FIR and FIR/FIR wavelet filter banks are de-ployed in a typical noise reduction scenario using the wavelet thresholding techniques. It is concluded that the proposed hybrid IIR/FIR wavelet filter banks provide better denoising performance, reduced computational complexity and power consumption in comparison to their IIR/IIR and FIR/FIR counterparts

    A pyramid-like model for heartbeat classification from ECG recordings

    Get PDF
    <div><p>Heartbeat classification is an important step in the early-stage detection of cardiac arrhythmia, which has been identified as a type of cardiovascular diseases (CVDs) affecting millions of people around the world. The current progress on heartbeat classification from ECG recordings is facing a challenge to achieve high classification sensitivity on disease heartbeats with a satisfied overall accuracy. Most of the work take individual heartbeats as independent data samples in processing. Furthermore, the use of a static feature set for classification of all types of heartbeats often causes distractions when identifying supraventricular (S) ectopic beats. In this work, a pyramid-like model is proposed to improve the performance of heartbeat classification. The model distinguishes the classification of <i>normal</i> and <i>S</i> beats and takes advantage of the neighbor-related information to assist identification of <i>S</i> bests. The proposed model was evaluated on the benchmark <i>MIT-BIH-AR</i> database and the <i>St. Petersburg Institute of Cardiological Technics</i>(INCART) database for generalization performance measurement. The results reported prove that the proposed pyramid-like model exhibits higher performance than the state-of-the-art rivals in the identification of disease heartbeats as well as maintains a reasonable overall classification accuracy.</p></div

    Sensors for Vital Signs Monitoring

    Get PDF
    Sensor technology for monitoring vital signs is an important topic for various service applications, such as entertainment and personalization platforms and Internet of Things (IoT) systems, as well as traditional medical purposes, such as disease indication judgments and predictions. Vital signs for monitoring include respiration and heart rates, body temperature, blood pressure, oxygen saturation, electrocardiogram, blood glucose concentration, brain waves, etc. Gait and walking length can also be regarded as vital signs because they can indirectly indicate human activity and status. Sensing technologies include contact sensors such as electrocardiogram (ECG), electroencephalogram (EEG), photoplethysmogram (PPG), non-contact sensors such as ballistocardiography (BCG), and invasive/non-invasive sensors for diagnoses of variations in blood characteristics or body fluids. Radar, vision, and infrared sensors can also be useful technologies for detecting vital signs from the movement of humans or organs. Signal processing, extraction, and analysis techniques are important in industrial applications along with hardware implementation techniques. Battery management and wireless power transmission technologies, the design and optimization of low-power circuits, and systems for continuous monitoring and data collection/transmission should also be considered with sensor technologies. In addition, machine-learning-based diagnostic technology can be used for extracting meaningful information from continuous monitoring data

    A survey of the application of soft computing to investment and financial trading

    Get PDF

    Novel active sweat pores based liveness detection techniques for fingerprint biometrics

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.Liveness detection in automatic fingerprint identification systems (AFIS) is an issue which still prevents its use in many unsupervised security applications. In the last decade, various hardware and software solutions for the detection of liveness from fingerprints have been proposed by academic research groups. However, the proposed methods have not yet been practically implemented with existing AFIS. A large amount of research is needed before commercial AFIS can be implemented. In this research, novel active pore based liveness detection methods were proposed for AFIS. These novel methods are based on the detection of active pores on fingertip ridges, and the measurement of ionic activity in the sweat fluid that appears at the openings of active pores. The literature is critically reviewed in terms of liveness detection issues. Existing fingerprint technology, and hardware and software solutions proposed for liveness detection are also examined. A comparative study has been completed on the commercially and specifically collected fingerprint databases, and it was concluded that images in these datasets do not contained any visible evidence of liveness. They were used to test various algorithms developed for liveness detection; however, to implement proper liveness detection in fingerprint systems a new database with fine details of fingertips is needed. Therefore a new high resolution Brunel Fingerprint Biometric Database (B-FBDB) was captured and collected for this novel liveness detection research. The first proposed novel liveness detection method is a High Pass Correlation Filtering Algorithm (HCFA). This image processing algorithm has been developed in Matlab and tested on B-FBDB dataset images. The results of the HCFA algorithm have proved the idea behind the research, as they successfully demonstrated the clear possibility of liveness detection by active pore detection from high resolution images. The second novel liveness detection method is based on the experimental evidence. This method explains liveness detection by measuring the ionic activities above the sample of ionic sweat fluid. A Micro Needle Electrode (MNE) based setup was used in this experiment to measure the ionic activities. In results, 5.9 pC to 6.5 pC charges were detected with ten NME positions (50μm to 360 μm) above the surface of ionic sweat fluid. These measurements are also a proof of liveness from active fingertip pores, and this technique can be used in the future to implement liveness detection solutions. The interaction of NME and ionic fluid was modelled in COMSOL multiphysics, and the effect of electric field variations on NME was recorded at 5μm -360μm positions above the ionic fluid.This study is funded by the University of Sindh, Jamshoro, Pakistan and the Higher Education Commission of Pakistan

    Efficient and secured wireless monitoring systems for detection of cardiovascular diseases

    Get PDF
    Cardiovascular Disease (CVD) is the number one killer for modern era. Majority of the deaths associated with CVD can entirely be prevented if the CVD struck person is treated with urgency. This thesis is our effort in minimizing the delay associated with existing tele-cardiology application. We harnessed the computational power of modern day mobile phones to detect abnormality in Electrocardiogram (ECG). If abnormality is detected, our innovative ECG compression algorithm running on the patient&#039;s mobile phone compresses and encrypts the ECG signal and then performs efficient transmission towards the doctors or hospital services. According to the literature, we have achieved the highest possible compression ratio of 20.06 (95% compression) on ECG signal, without any loss of information. Our 3 layer permutation cipher based ECG encoding mechanism can raise the security strength substantially higher than conventional AES or DES algorithms. If in near future, a grid of supercomputers can compare a trillion trillion trillion (1036) combinations of one ECG segment (comprising 500 ECG samples) per second for ECG morphology matching, it will take approximately 9.333 X 10970 years to enumerate all the combinations. After receiving the compressed ECG packets the doctor&#039;s mobile phone or the hospital server authenticates the patient using our proposed set of ECG biometric based authentication mechanisms. Once authenticated, the patients are diagnosed with our faster ECG diagnosis algorithms. In a nutshell, this thesis contains a set of algorithms that can save a CVD affected patient&#039;s life by harnessing the power of mobile computation and wireless communication

    Electrocardiogram Pattern Recognition and Analysis Based on Artificial Neural Networks and Support Vector Machines: A Review

    Full text link

    Hilbert-Huang Transform: biosignal analysis and practical implementation

    No full text
    Any system, however trivial, is subjected to data analysis on the signals it produces. Over the last 50 years the influx of new techniques and expansions of older ones have allowed a number of new applications, in a variety of fields, to be analysed and to some degree understood. One of the industries that is benefiting from this growth is the medical field and has been further progressed with the growth of interdisciplinary collaboration. From a signal processing perspective, the challenge comes from the complex and sometimes chaotic nature of the signals that we measure from the body, such as those from the brain and to some degree the heart. In this work we will make a contribution to dealing with such systems, in the form of a recent time-frequency data analysis method, the Hilbert-Huang Transform (HHT), and extensions to it. This thesis presents an analysis of the state of the art in seizure and heart arrhythmia detection and prediction methods. We then present a novel real-time implementation of the algorithm both in software and hardware and the motivations for doing so. First, we present our software implementation, encompassing realtime capabilities and identifying elements that need to be considered for practical use. We then translated this software into hardware to aid real-time implementation and integration. With these implementations in place we apply the HHT method to the topic of epilepsy (seizures) and additionally make contributions to heart arrhythmias and neonate brain dynamics. We use the HHT and some additional algorithms to quantify features associated with each application for detection and prediction. We also quantify significance of activity in such a way as to merge prediction and detection into one framework. Finally, we assess the real-time capabilities of our methods for practical use as a biosignal analysis tool
    corecore