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Abstract

Cardiovascular Disease (CVD) is the number one killer for modern era. Majority of the

deaths associated with CVD can entirely be prevented if the CVD struck person is treated

with urgency. This thesis is our effort in minimizing the delay associated with existing

tele-cardiology application. We harnessed the computational power of modern day mobile

phones to detect abnormality in Electrocardiogram (ECG) and if abnormality is detected, our

innovative ECG compression algorithm running on the patient’s mobile phone compresses

and encrypts the ECG signal and performs efficient transmission towards the doctors or

hospital services. After receiving the compressed ECG packets the doctor’s mobile phone

or the hospital server authenticates the patient using our proposed set of ECG biometric

based authentication mechanisms. Once authenticated, the patients are diagnosed with our

faster ECG diagnosis algorithms. In a nutshell, this thesis contains a set of algorithms, that

can save a CVD affected patient’s life by harnessing the power of mobile computation and

wireless communication.



Chapter 1

Introduction

1.1 Motivation

Coronary Heart Disease (CHD) and stroke being the top most killer diseases in Australia [Acc,

Accessed 2008], more people are diagnosed with Cardiovascular (CVD) related disorders.

Among Australians about 25 % would be dead within an hour of their first symptom of heart

attack and 40 % will be dead within a year [Acc, Accessed 2008]. However, medical research

suggests that if the CVD attacked patient is provided with faster treatment, he or she may

survive longer [Luca et al., 2004]. According to [Luca et al., 2004], every second counts

towards longevity of the CVD attacked patient, since cardiac cell damage is a completely

irrecoverable process. Cardiologists state ’time is muscle’ regarding cardiac cell damage.

Therefore, to reduce the risk of patient death, hospitals arrange all the necessary facilities in

providing early detection and faster care to the CVD patients [Bradley et al., 2006; Otsuka

et al., 2009; Sillesen et al., 2008; Ortolani et al., 2007].

Today we are living in the era of mobile phone and faster communication. Modern mobile
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phone has limited computational power, on which we execute miniature programs, audio /

video applications, games etc [Yuan, c2004]. Harnessing the computational intelligence of

mobile phone’s processor (computational resource), we may run intelligent life saving pro-

grams for CVD patients or even for normal people (having a chance possible CVD anomaly)

for wellness monitoring. Providing realtime health monitoring services has recently been

addressed by several research groups [Lee et al., 2007; Hung and Zhang, 2003; Zhou et al.,

2005; Gao et al., 2005; Jasemian and Arendt-Nielsen, 2005; Kim et al., 2006]. However, none

of these presents a comprehensive version of tele-health (or wireless health) platform that

can be readily adopted and commercialized.

The existing tele-health platforms have not been accepted well because of inefficient

transmission, primitive authentication mechanism, security vulnerabilities, and above all

slower diagnosis. Since for cardiac health monitoring, faster action is required for saving

a patient’s life [Luca et al., 2004; Bradley et al., 2006; Otsuka et al., 2009; Sillesen et al.,

2008; Ortolani et al., 2007], slower communication and diagnosis are completely undesirable.

In addition to faster communication and diagnosis, the medical service providers require

establishment of proper authentication mechanism to identify their subscribers (i.e. CVD

affected patients / monitored patients). Moreover, security threats must be conquered for

protection of patient’s privacy.

Thus, providing faster cardiac healthcare toward a CVD affected patient, who is being

monitored by mobile computation platform, spurred the initiation of this research work. The

entire objective is to save valuable life, with the help of portable computational platforms,

like mobile phones and portable Electrocardiogram (ECG) monitoring devices [Ali, Accessed
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2009].

After the initial literature review, we came up with our own proposed platform that we

believe, has the potential of addressing most of the obstacles faced by the existing tele-health

applications. As seen from Figure 1.1, the patient is attached with an ECG acquisition device

that collects the ECG signal from the patient’s body. The collected ECG is continuously

transmitted from the body sensor to the patient’s mobile phone using Bluetooth protocol.

The patient’s mobile phone then compresses and encrypts the ECG packets for fast and

secured transmission to the hospital or medical servers.

Once the ECG packets are received by the hospital, the hospital may use the ECG

packets to authenticate the patient using ECG based biometric techniques. Once the hospital

recognizes the patient as a subscriber, the hospital can perform a preliminary detection of

CVD with our proposed set of CVD detection techniques. This faster preliminary detection

of CVD can determine the serious patients requiring cardiologist’s attention.

1.2 Objectives and Approach

After the initial literature review within the area of mobile phone based telecardiology ap-

plication, we found that the existing telemonitoring platforms are more focused towards

Cardiovascular (CVD) diagnosis [Lee et al., 2007; Hung and Zhang, 2003; Zhou et al., 2005;

Gao et al., 2005] or underlying transmission mechanism [Jasemian and Arendt-Nielsen, 2005;

Kim et al., 2006]. Even though there have been a lot of research performed in remote tele-

cardiology diagnosis, hardly any of the previous literatures addressed the necessity of delay

minimization within the telecardiology framework. After a person has a heart abnormality,
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Figure 1.1: Mobile phone based ECG telemonitoring and diagnosis. ECG can be compressed
and encrypted before transmission to reduce data size and ensure secured-delivery. Authen-
tication at the hospital server makes sure that the right person is provided with the service.
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if that person is not taken to the cardiologist immediately, then his life may be in jeopardy

[Luca et al., 2004]. According to literature [Luca et al., 2004], the delay of every second may

even shorten the lifespan of a patient having heart attack. The contributions of the existing

research [Bradley et al., 2006; Otsuka et al., 2009; Sillesen et al., 2008; Ortolani et al., 2007]

were mainly focused on the overall process of mobilizing the patient to the hospital consid-

ering ambulance to hospital communication, ECG diagnosis performed within ambulance,

electronic transfer of ECG from the ambulance to the hospital etc.

However, to the best of our knowledge, none of these previous researches made any effort

in minimizing delay in diagnosis process (i.e. faster algorithms to diagnose cardiovascular

diseases) or faster transmission of ECG data. Twelve lead ECG data with 500 Hz sampling

frequency along with some other vital signal can easily reach 13 GB per day [Sufi et al.,

2006b]. Without efficient transmission mechanism in place, this massive amount of ECG

packets can create enormous delay in realtime CVD patient monitoring.

CVD patients are generally subscribed to a hospital, from where they might receive one or

more medical services (e.g. on-site cardiologist’s visit, ambulance service for critical condition

etc.). However, for CVD patients monitored remotely via the mobile phone, the patients

must be authenticated before providing them with any services. Unfortunately, very few

research articles [Blount et. al., 2007] have addressed this mobile phone based authentication

mechanism. The research presented in [Blount et. al., 2007], basically provide manual user

name and password based authentication system and at an event of cardiac failure, the CVD

patients may be unable to move their fingers for these manual authentication system. This

is because, the cardiac arrest may result in the anomaly of Autonomous Nervous System
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(ANS) [Kumar et al., 2007], making them unable to move their finger. Therefore, efficient

mechanisms for automated authentication of patients need to be thoroughly researched.

Health Insurance Portability and Accountability Act (HIPAA) of United States in 1996

mandates that patient’s privacy being protected at all times [Cen, Accessed 2008; Pub, 1996].

Other countries like Taiwan and Australia have similar regulations regarding protection of

information [Lee and Lee, 2008; Off, Accessed 2009]. However, none of the existing telecar-

diology platforms [Lee et al., 2007; Hung and Zhang, 2003; Zhou et al., 2005; Gao et al.,

2005; Jasemian and Arendt-Nielsen, 2005; Kim et al., 2006] addressed the issues of secured

and efficient ECG transmission mechanism. Without secured ECG transmission the ECG

packets can be spoofed by the malicious user. Once the hackers attain the patients ECG sig-

nal, they may run detection algorithms [Hamilton and Tompkins, 1986; Friesen et al., 1990;

Kumar et al., 2007; Bartolo et al., 2001; Akselrod et al., 2007; Kusumoto, 2009; Clifford

et al., 2006] to obtain a patient’s private health information. Moreover, using ECG based

biometric techniques [Biel et al., 2001; Chan et al., 2008; Wubbeler et al., 2007; Poon et al.,

2006; Israel et al., 2005; Irvine et al., 2001; Bui and Hatzinakos, 2008; Kyoso and Uchiyama,

2001; Kyoso, 2003; Shen et al., 2002; Shen, 2005; Shen and Tompkins, 2005; Wang et al.,

2008; Hou and Andrews, 1978; Plataniotis et al., 2006; Kanade and Jain, 2005], the hacker

can gain access to secured ECG biometric facility. Therefore, serious research requires to be

in place, to ensure secured ECG transmission for protecting patient’s privacy, as well as for

protecting ECG biometric template. These issues that have been neglected by the existing

research have motivated us to derive four research questions:

• How to ensure faster and more efficient ECG transmission (with the objective of mini-
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mizing transmission delay)?

• How to perform automated authentication mechanism (with the objective of minimizing

the authentication delay)?

• How to establish end to end secured ECG transmission (with the objective of protecting

patient’s privacy and upholding HIPAA regulations)?

• How to perform faster Cardiovascular Disease (CVD) diagnosis (with the objective of

saving patient’s life and increasing life span)?
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1.3 Summary of Contributions

In summary, this thesis contributes the followings:

• A new wireless telecardiology platform : We established a new mobile phone based re-

altime telecardiology application supporting fast and secured ECG transmission along

with fast and accurate patient authentication and diagnosis. Our proposed telecar-

diology application can significantly reduce the threats posed by CVD, which is the

number one killer of modern era.

• An innovative ECG compression algorithm : We proposed a new lossless ECG compres-

sion mechanism that has higher compression ratio, faster execution speed and realtime

processing capabilities (detailed in Chapter 2).

• Novel authentication mechanisms with ECG based Biometric : We have proposed new

techniques of highly accurate ECG based biometric that works on plain ECG. These

techniques present the capability of automated CVD patient authentication using pa-

tient’s ECG signal. Moreover, we have presented new mechanisms of patient iden-

tification directly from the compressed ECG. Person identification directly from the

compressed ECG has never been reported in earlier literature (detailed in Chapter 3).

• Innovative algorithms for securing ECG signal and protecting patient’s privacy : We

have presented new techniques (ECG encryption with permutation cipher, noise based

ECG obfuscation/ anonymization, discrete wavelet based ECG anonymization and

wavelet packet based ECG anonymization) for securing ECG signals (detailed in Chap-

ter 4).
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Figure 1.2: Overview of this thesis

• Novel algorithms for faster CVD diagnosis : We invented a new set of algorithms that

can diagnose CVD directly from the compressed ECG. According to the literature this

has never been investigated by previous researchers (detailed in Chapter 5).

• Cardiod based CVD detection and patient authentication : Finally, we have designed and

developed a completely new cardiod based approach for patient identification and CVD

diagnosis. Cardioid is our proposed technique that providers a graphical representation

of cardiovascular abnormalities (detailed in Chapter 6).

1.4 Structure of the Thesis

To achieve and document the aim of this research, this thesis is organized in four major sec-

tions: compression, automated authentication (with ECG Biometric), secured transmission

and faster diagnosis. Figure 1.2 structures the content of the thesis, based on our research

objectives.

Chapter 1 establishes the foundations of this research work, by providing a brief descrip-

tion of the problems and challenges incurred in existing wireless telecardiology applications.

These problems or challenges provided us the motivation for this research work. Based on the
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major challenges, four research questions are raised within this chapter. Lastly, this chapter

organizes the thesis, relating each chapter with the objectives and research questions.

Chapter 2 answers the first research question, which is how to achieve faster and more

efficient ECG data transmission. Using a completely new ECG compression algorithm, we

were able to produce significantly higher level of compression ratio. Unlike the existing ECG

compression algorithms [Zhang et al., 2005; Duda et al., 2001; Miaou and Chao, 2005; Rossi

et al., 2002; Jalaleddine et al., 1990; Kim et al., 2006; Goudarzi et al., 2004; Urar and Ider,

2001; Blanchett and Kember, 1998; Zigel et al., 2000a; Hao et al., 2005; Rezazadeh et al.,

2005; Miaou and Lin, 2002; Wei et al., 2001; Barlas et al., 1993; Horspool and Windels,

1994; Hamilton and Tompkins, 1991; Moody et al., 1998; Cox and Ripley, 1973; Yuan, c2004;

Alesanco et al., 2006; Velasco et al., 2004], our novel ECG compression algorithm is of lower

complexity. Therefore, it is highly suitable for mobile phone based remote telecardiology

applications, which is the objective of this thesis. According to our experimentations with

several existing compression algorithms (both generic compression algorithms as well as spe-

cialised ECG compression algorithms), the compression and decompression times of this

algorithm is faster than most of the existing methods. Being a faster algorithm with it’s

capacity for achieving higher compression ratio, our proposed compression algorithm entails

faster cardiovascular (CVD) patient care. As we had stated earlier, faster patient care is

highly desirable for CVD patients, since every second counts towards the mortality [Luca

et al., 2004; Otsuka et al., 2009; Sillesen et al., 2008; Ortolani et al., 2007; Bradley et al.,

2006].

Chapter 3 presents the answers to the second research question, which is how to perform

11 (October 31, 2011)



CHAPTER 1. INTRODUCTION

faster authentication of the CVD patient. Since each patient receives a set of services (e.g.

realtime CVD abnormality detection, on-site cardiologist support, faster ambulance service

etc.), the patient must be authenticated by the hospital server before providing any ser-

vice. We present four different authentication mechanisms, based on ECG based biometric.

Among these authentication mechanisms weighted Signal Processing (WSP) Approach and

Polynomial Distance Measurement (PDM) Approach are specifically designed for telecar-

diology applications not utilizing our ECG compression technique [Hung and Zhang, 2003;

Blount et. al., 2007; Zhou et al., 2005; Jasemian and Arendt-Nielsen, 2005; Lee et al., 2007;

Gao et al., 2005; Kim et al., 2006]. On the other hand, for telecardiology applications us-

ing our compression algorithm, this chapter presents two different ECG based biometric

methodology. Both these methodologies named as Direct Approach and Data Mining based

Approach are faster than existing ECG based authentication mechanisms [Biel et al., 2001;

Chan et al., 2008; Wubbeler et al., 2007; Poon et al., 2006; Israel et al., 2005; Irvine et al.,

2001; Bui and Hatzinakos, 2008; Kyoso and Uchiyama, 2001; Kyoso, 2003; Shen et al., 2002;

Shen, 2005; Shen and Tompkins, 2005; Wang et al., 2008; Hou and Andrews, 1978; Platanio-

tis et al., 2006; Kanade and Jain, 2005]. Apart from being faster, which is directly related to

faster CVD patient care (i.e. saving the lives of more CVD patients), our algorithms provide

more accurate form of person identification (i.e. lower misclassification, lower False Match

Rate, lower False Non-Match Rate) compared to the existing ECG based biometrics.

Chapter 4 describes different methodologies for securing the ECG signal, answering our

third research question. The first one is Joint encoding-compression-encryption mechanism.

This method is so secured that approximately 4 × 18 × 9.333 × 10970 years is required to
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compute the full search space with a super computer that can compare a trillion trillion tril-

lion (1036) combinations of one ECG segment (comprising 500 ECG samples) per second for

ECG morphology matching. The security strength of this mechanism is substantially higher

than that of the existing encryption mechanism like, AES or DES. While providing the high-

est level of security, this algorithm shrinks the file size up to 95% (i.e. 20.06 Compression

Ratio), which is highly desirable for realtime telecardiology applications with massive data

transmission. Secondly, this chapter illustrates an ECG obfuscation mechanism that can

hide the ECG features required for both person identification and CVD disease recognition.

Therefore, patient’s privacy is protected which is mandated by HIPAA regulations [Cen, Ac-

cessed 2008; Off, Accessed 2009; Pub, 1996; Lee and Lee, 2008]. The obfuscated ECG appears

as regular ECG, misguiding the Hackers and making conventional hacking utilities useless

(since the text is not encrypted; it is rather unencrypted). Lastly, Discrete Wavelet based

ECG anonymization technique and Wavelet Packet based ECG anonymization technique are

presented. For obfuscation and anonymization techniques, only authorized person with the

shared secret key can decrypt the anonymized ECG without any loss of information.

Chapter 5 illustrates innovative algorithms directed towards answering the last research

question of faster cardiovascular diagnosis. In this chapter, we segregated the main stream

ECG diagnosis algorithms in two types: plain ECG based diagnosis and compressed ECG

based diagnosis. For the first category (plain ECG based diagnosis), we implemented a rule

based system for identifying heart beats of the CVD patients. We also developed several

algorithms that works directly on compressed ECG providing faster patient care.

Chapter 6 presents cardiod based technique for both CVD patient authentication and di-
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agnosis. Cardiod based technique is a completely new technique that is specifically designed

for mobile phones with limited computational resources. Since the biometric template size is

substantially smaller than other existing ECG biometrics, the patient authentication mech-

anism is more efficient. The CVD disease identification is also very fast since only 5 points

(or sample) are used for diagnosis (rather than several hundred samples, used by the existing

ECG diagnosis system). Therefore, cardiod based technique answers two of the research

questions, namely authentication and diagnosis.

Finally, chapter 7 concludes this thesis with summary of research progress, our core

research contributions and suggested future research.
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Compression of ECG

This chapter answers our first research question regarding achievement of faster and more

efficient ECG transmission. By harnessing the power of a new compression mechanism that

can raise the compression ratio to a higher level with minimal computation, we can achieve

faster and efficient transmission. The idea is to compress the ECG at patient’s side (i.e.

on patient’s mobile phone), before sending it to the doctor or to the hospital server. The

receiver (doctor or the hospital server), on the other hand, needs to quickly decompress the

ECG, when necessary. Since both compression and decompression may execute within mobile

phone platform (patient’s and doctor’s) with limited computational resources, the design of

the compression algorithm needs special consideration with the objective to minimize the

number of operations.

This chapter, therefore, presents a new compression algorithm to compress ECG files in

realtime for faster transmission on mobile platform. The proposed compression algorithm,

lays the foundation of latter chapters that describe other algorithms (for ECG biometric
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based authentication, encryption mechanism, CVD diagnosis etc.), which are based on the

compressed ECG signals. At first, the background of the existing compression algorithms is

provided. Then, the motivations of compression and the reasons for choosing a new com-

pression algorithm are outlined. Next, the proposed compression algorithm is described in

details, with examples for ASCII and MMS character sets. In the results section, performance

comparisons were carried out with respect to existing compression methods. Lastly, the dis-

cussion section shows how to raise the compression ratio further with Lempel-Ziv-Welch

(LZW) based compression before this chapter is concluded.

2.1 Why ECG Compression is Necessary in Wireless Telecardiology?

First of all, in a wireless telecardiology application, huge ECG data is transmitted from

the patient to the medical server or to the doctors. Transmission and storage of enormous

amount of physiological signal impose huge challenges to the research community. To help

us understand precisely about how large data we are dealing with, examples from [Sufi

et al., 2008c] is necessary. Data volume from a single patient with only few biosignal ac-

quisition devices (ECG, EEG, EMG, SpO2, Accelerometer), can easily reach several GB

in 24 hours [Sufi et al., 2008c], in case of continuous monitoring. If a patient with heart

abnormality is remotely monitored, then with 12 lead ECG, 10 bit Resolution and 360 Hz

Sampling Frequency the data can easily reach up to 2.77 GB in one day. And if we intend

to transmit this enormous amount of data using available telecommunication technologies

(like, PSTN, GSM, GPRS, 3G etc.), then a dedicated minimum speed of 269 kbps is required

(Required Transmission Speed = Size of Data
Transmission T ime = 2.77 GB

24 Hours = 269 kbps). Unfortunately,
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this type of transmission speed is guaranteed by a very limited number of telecommunication

service providers. During this transmission of enormous ECG data, compression technology

can be applied for faster transmission on limited bandwidth wireless link. At the end, faster

transmission means faster treatment for the patient.

Secondly, some of the messaging protocols like SMS can only allow a limited set of char-

acters or message sizes. For example, SMS can only accommodate a message size of 140 bytes

or 160 (140× 8
7) characters. Since each SMS involves cost for the patient, it is imperative to

transmit compressed data for economic reasons.

Lastly, compression algorithm also adds value to a realtime telemonitoring scenario by

allowing more storage of physiological signals.

2.2 Background on ECG Features

The human heart contains four chambers: 2 Atria and 2 Ventricles. The de-oxygenated blood

from the body is collected in the right atrium, from where it is pumped to the right ventricle.

The right ventricle then pumps the de-oxygenated blood (carbon dioxide saturated) blood

to the lungs for gas exchange via diffusion. Within the lungs the blood becomes oxygen rich

and from the lungs the oxygenated blood reaches the left atrium. The left atrium forwards

the oxygenated blood to the left ventricle, from where the fresh blood is forced to the rest

of the body. This whole work flow of circulatory management is controlled by the nervous

system. During this process, both the atria contract and relax together followed by the joint

ventricular contraction and relaxation.

These mechanical activities of the heart can be efficiently traced by ECG recordings,
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Figure 2.1: PQRST Signature of an ECG Signal

Table 2.1: ECG Features Related to P Wave, QRS Complex and T Wave

P wave duration QRS complex duration T wave duration
P wave amplitude QRS complex amplitude T wave amplitude
P wave onset slope Q onset slope T wave onset slope
P wave offset slope Q offset slope T wave offset slope

R onset slope
R offset slope
S onset slope
S offset slope

where the electrical activities of heart are depicted. ECG tracing has 3 major waves or

complexes that signify atrial and ventricular activities (as seen from Figure 2.1): P wave, QRS

complex and T wave. P wave signifies atrial depolarization (equivalence of mechanical atrial

contraction), QRS complex represents more vigorous ventricular depolarization (equivalence

of mechanical ventricular contraction) and T wave identifies repolarization of the arteries

(equivalence of mechanical ventricular relaxation). The electrical activity occurs from atrial

repolarization is lost (or superimposed) by the more vigorous (high amplitude) QRS complex,

which represents ventricular contraction (mechanical event). Cardiologists have used different

features of these feature waves (i.e. P wave, T wave and QRS complex) to assess the condition

of heart. Table 2.1 lists some of these features.
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2.3 Background and Related Works on ECG Compression

Considering the loss of information, the existing compression algorithms can be divided into

two main categories: lossless [Zhang et al., 2005; Duda et al., 2001; Miaou and Chao, 2005]

and lossy [Rossi et al., 2002], [Jalaleddine et al., 1990; Kim et al., 2006; Goudarzi et al.,

2004; Urar and Ider, 2001; Blanchett and Kember, 1998; Zigel et al., 2000a; Hao et al., 2005;

Rezazadeh et al., 2005; Miaou and Lin, 2002; Wei et al., 2001; Barlas et al., 1993; Horspool

and Windels, 1994; Hamilton and Tompkins, 1991; Moody et al., 1998; Cox and Ripley, 1973;

Yuan, c2004; Alesanco et al., 2006; Velasco et al., 2004]. Lossless compression algorithms

are based on techniques such as null suppression, run-length encoding, diatomic encoding,

pattern substitution, inter-beat differencing, intra-beat differencing techniques and statistical

encoding [Gilbert., 1987]. In null suppression method repeated null values or zero values are

replaced with shorter code word followed by the length of the null occurrence. Run-length

encoding is similar to null suppression, except for its application for all the repeated symbols.

In diatomic encoding method, occurrence of two consecutive symbols is coded with a single

code symbol. Pattern substitution method looks for specific patterns and encodes them with

short code symbols. All the above mentioned lossless compression methods can be imple-

mented in single pass. But in two pass statistical encoding methods, the complexity level is

higher, where symbol probability or frequency is calculated before encoding. The knowledge

of symbol probability or frequency is used to encode the information optimally, where more

frequent symbols are encoded with shortest code word and less frequent symbols are encoded

with larger code word. Many forms of entropy coding are used in the literature [Duda et al.,

2001] for ECG compression. Huffman encoding [Huffman, 1952] is also used frequently as the
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final step for many ECG compression algorithms [Urar and Ider, 2001; Hamilton and Tomp-

kins, 1991; Alesanco et al., 2006], since it compresses the information further without any

loss. In Huffman encoding most frequently occurring values are represented by simple and

shortened binary code. LZW [Ziv and Lempel, 1978] based algorithms pioneers Huffman and

Arithmetic encoders by searching for the repeated patterns in the input stream and encoding

them with shorter codes. Since all the two pass encoding schemes scan the whole document

in the first pass, these methods cannot be utilised for the purpose of realtime compression

as the whole ECG session is required to be completed before applying compression.

Transformational techniques like wavelet transform also have been used for ECG com-

pression [Duda et al., 2001; Miaou and Chao, 2005; Goudarzi et al., 2004; Miaou and Lin,

2002]. After wavelet decomposition, Set Partitioning in Hierarchical Trees (SPIHT) encoding

is often adopted to exploit the inherent similarities across sub bands in a wavelet decomposi-

tion and perform uniform quantization and bit allocation. SPIHT codes the most important

wavelet transform coefficients in priority, and transmits them according to that order. Even

though SPIHT encoding is generally used for lossy compressions [Goudarzi et al., 2004; Miaou

and Lin, 2002], recent research demonstrates its applicability in lossless ECG compressions

[Miaou and Chao, 2005].

Research on lossy ECG compression has out numbered the research in lossless ECG

compression. There are mainly three types of lossy ECG compressions: direct time domain

methods [Jalaleddine et al., 1990; Rossi et al., 2002; Hamilton and Tompkins, 1991], feature

extraction methods [Kim et al., 2006; Goudarzi et al., 2004; Urar and Ider, 2001; Zigel

et al., 2000a; Hao et al., 2005; Wei et al., 2001; Hamilton and Tompkins, 1991; Alesanco
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et al., 2006] and transformational methods which generally exploit Wavelet transformation,

Discrete Cosine transformation, KLT, and Fourier transformation etc. [Kim et al., 2006;

Goudarzi et al., 2004; Hao et al., 2005; Miaou and Lin, 2002; Alesanco et al., 2006; Velasco

et al., 2004].

Direct time domain methods are of lower complexity than the feature extraction methods

or transformational methods. Therefore, techniques presented in direct time domain methods

can be easily implemented in small devices [Rossi et al., 2002]. Generally these methods

employ the knowledge of previous samples, often referred to as the prediction algorithm

or utilise the knowledge of both previous and future sample, referred to as interpolation

algorithm [Jalaleddine et al., 1990]. Differential Pulse Code Modulation (DPCM) has been

one of the most popular direct transformational ECG compression methods. The simplest

form of DPCM, applies Zero Order Prediction (ZOP), where the previous sample is thought

to be the predicted sample, and only the difference between the current sample and the

previous sample is transmitted [Jalaleddine et al., 1990]. This technique is commonly termed

as first difference or intra-beat difference.

In feature extraction methods of lossy ECG compression, different sections of ECG curve

is recognized by the algorithm. Many of the ECG compression techniques that start with

QRS detection, before performing the actual compression, fall into this category [Kim et al.,

2006; Goudarzi et al., 2004; Urar and Ider, 2001; Zigel et al., 2000a; Hao et al., 2005; Wei

et al., 2001; Hamilton and Tompkins, 1991; Alesanco et al., 2006]. QRS detection is needed for

detecting each of the beats. Many of the methods perform inter-beat difference where current

beat is subtracted from the previous beat or an average beat [Zhang et al., 2005; Hamilton and
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Tompkins, 1991; Alesanco et al., 2006]. The residue from inter-beat subtraction is generally

less than intra-beat difference. This is mainly because in inter-beat difference complex areas,

like QRS and T, is also normalized, leaving minimal residue. But, for patients, having

irregular beats, inter-beat difference does not offer much reduction of information. To deal

with this varying period (TT interval) issue, beats are averaged [Kim et al., 2006; Goudarzi

et al., 2004; Urar and Ider, 2001; Wei et al., 2001; Hamilton and Tompkins, 1991] before any

other operations. Some techniques [Alesanco et al., 2006] engage beat template databases,

which are modified and updated with every ECG sample. Beat templates from the database

are used for inter-beat difference calculations resulting in complex PC based telecardiology

applications [Alesanco et al., 2006]. Moreover, since the baseline is not always straight or

even, some methods adjust or remove the baseline [Zigel et al., 2000a; Alesanco et al., 2006].

Beat alignment/period alignment, amplitude normalization [Goudarzi et al., 2004] or baseline

adjustment [Zigel et al., 2000a; Alesanco et al., 2006] requires execution of further operations.

All these additional operations make the compression procedure more complex.

Recently, transformational methods, especially wavelet transform based compression al-

gorithms are becoming popular. Almost all of the transformational methods are targeted

for PC based solutions. Unlike the PC based programming environment, the small device

environment, e.g. Connected Limited Device Configuration (CLDC) of Java 2 Micro Edition

(J2ME), has hardly any supporting libraries which make the development extremely diffi-

cult [Sufi, 2007; Sufi et al., 2006b; 2008c]. Moreover, the limitations of the hardware such

as the lower memory size, the number of I/O ports etc, challenge the implementation of

transformational methods on the mobile phone.
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2.4 Why a New ECG Compression is Required?

Based on the techniques used, compression algorithms for ECG can be broadly classified

into three major groups, namely direct domain method [Rossi et al., 2002; Jalaleddine et al.,

1990], feature extraction method [Kim et al., 2006; Zigel et al., 2000a] and transformational

method [Miaou and Lin, 2002; Velasco et al., 2004]. The existing ECG compression techniques

are somewhat unsuitable for mobile phone based wireless telecardiology applications for the

following reasons:

• Computationally expensive: Most of the existing ECG compression algorithms were

designed and tested on PC [Kim et al., 2006; Jalaleddine et al., 1990; Rossi et al., 2002;

Zigel et al., 2000a; Miaou and Lin, 2002; Velasco et al., 2004]. However, a regular

mobile phone (not high end) is capable of running only 10, 000 operations per second,

while executing Java MIDlets on Java Kilobyte Virtual Machine (KVM) [Sufi, 2007].

CLDC 1.1 restricts the usage of floating point operations, which means all the floating

point must be removed before performing any operations on the mobile devices. Multi

dimensional arrays are not supported as well, hence, any algorithm performing matrix

based calculation can not be implemented on JavaTM based mobile devices directly.

Complex functions comprising a large number of basic operations like QRS detection,

Beat/Period alignment, and transformations will provide unexpected delay or even

deadlock in small devices. Furthermore, due to the memory restriction, algorithms

requiring large memory for maintaining lookup table [Duda et al., 2001], codebook [Zigel

et al., 2000a] and frequency table [Kim et al., 2006; Urar and Ider, 2001; Horspool and
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Table 2.2: Comparison of RAM and CPU Speed Among Mobile Phone, Implantable Devices
and PC

Device Type RAM (KB) CPU Speed (kHz)
Pacemaker About 10 30 to 100

Implantable Loop About 100 30 to 100
Recorder

Implantable Cardioverter About 250 30 to 100
Defibrillator

Mobile Phone About 250 50 to 100
Personal Computer 128000 1200000

Windels, 1994; Hamilton and Tompkins, 1991; Alesanco et al., 2006] are not feasible for

mobile phone platforms. Frequency tables were widely used by some 2-pass encoding

techniques like Huffman [Urar and Ider, 2001; Hamilton and Tompkins, 1991; Alesanco

et al., 2006; Velasco et al., 2004], LZW [Horspool and Windels, 1994], Significant bit

encoding [Kim et al., 2006], SPIHT [Miaou and Chao, 2005; Goudarzi et al., 2004;

Miaou and Lin, 2002] etc. Therefore, algorithms for ECG compression, analysis, display,

secured transmission etc. must be shared by limited computational power offered by

the mobile devices. Under these limitations, existing PC based ECG compression

algorithms are ineffective for mobile phone based wireless telecardiology applications.

• Unsuitable for MMS/SMS transmission: Mobile phone based wireless telecardiology

application often requires transmission of ECG signals over existing MMS and SMS

protocols [Lee et al., 2007; Sufi et al., 2006b]. These MMS and SMS protocols only

support limited character sets (e.g. GSM 03.38) during transmission. However, most of

the existing ECG compression algorithms use Huffman-encoded and optimally arranged

binary representation of the compressed ECG as the final output. Therefore, if existing
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ECG compression algorithms are adopted for transmission of compressed ECG over

existing text messaging (SMS/MMS) communication, many of the characters will be

lost, since they are not supported by the underlying transmission infrastructure. This

will result in lossy and mutilated transmission of ECG, which is not at all suitable for

diagnostic purposes.

• Need for Realtime Performance: Realtime processing in telemonitoring simply means

the time required to process (compute) the physiological signal must be less than the

time required to receive that signal, during a continuous acceptance of physiological

signal from the acquisition device. If the mobile phone, which receives physiological

signal, consumes less than one second to process one second worth of ECG data, then

realtime operation is executed [Sufi et al., 2007]. This realtime factor [Sufi et al., 2007],

often determines the efficiency and effectiveness of a remote telemonitoring platform.

Therefore, any algorithm pertaining to realtime telemonitoring should be evaluated for

realtime performance.

• Requirement of decompression for further analysis on compressed ECG: Finally, the

main objective of existing ECG compression techniques is to achieve high compressibil-

ity by having redundancy free output. This means that to perform analysis from the

compressed ECG one must decompress the compressed ECG signals, which results in

unwanted delays. This is specially true in case of resource constraint mobile devices,

where decompression time could be long.
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Moreover, the vast majority of the literatures related to existing ECG compression algo-

rithms are lossy, which make them unsuitable for medical diagnosis as mandated by the law

requirement in many countries including U.S. Therefore, lossless compression is mandatory

and the main focus of this section. The unsuitability of existing compression algorithms for

mobile phone based telemonitoring is briefed in Table 2.3.

2.5 The Proposed Compression Method

The proposed ECG compression algorithm is based on symbol substitution technique [Lei

et al., 2004; Sufi et al., 2005; 2006a], which has been successfully applied in our previous

genome sequence compression algorithm. The algorithm was proven to be faster than many

other existing algorithms for compression of genome sequences [Sufi et al., 2006a; 2005].

Encouraged by the result, we intended to apply similar technique in the present case as well,

although there is subtle difference between the two. Genome sequences are represented by

only four types of ASCII characters: A, T, G and C. For each of these characters 8 bits are

used. However, with binary encoding only 2 bits (22 = 4) are sufficient to represent each

these four characters, establishing a basic compression ratio of 4 (log444). Previous symbol

substitution algorithms [Lei et al., 2004; Sufi et al., 2005; 2006a] achieved the same level of

compression by symbol substitution of 4 consecutive characters from genome sequence with

a single ASCII character. According to [Lei et al., 2004; Sufi et al., 2006a; 2005], the basic

compression achieved with symbol substitution is faster and computationally inexpensive

compared to other types of compression algorithm. Therefore, it is reasonable to adopt a

symbol substitution based ECG compression technique for inexpensive processing on mobile

26 (October 31, 2011)



CHAPTER 2. COMPRESSION OF ECG

phones. By efficiently substituting ECG samples with a character, which is supported by

MMS and SMS architecture, we will be able to transmit compressed ECG without any loss

or distortion. However, this task is not as straight forward as it were for genome sequences

for the following three reasons:

1. Unlike genome sequences, where there is a single character (any character from A, T,

G, C group) representing a single nucleotide, each of the ECG sample has multiple

digits (1-6 digits for MIT BIH Database ECG entries). The number of digits depends

on the acquisition device settings (resolutions).

2. Unlike genome sequences, where the four characters can be represented with 4 digits

(1, 2, 3 and 4), a single ECG sample is a non-integer floating point value. Therefore,

before the start of symbol substitution process, ECG samples should be transformed

into integer values.

3. Unlike genome sequences, where the sequences do not have any negative values, a single

ECG sample can be either positive or negative. Therefore, the signs and the values

require separate encodings.

For obtaining proper understanding of the proposed compression framework, at first the

generic compression model will be presented. Next, based on the proposed generic com-

pression framework, ASCII encoding and a user defined character set will be applied to

compress ECG respectively. Within the result section, detailed performance comparison will

be performed. Finally, the discussion section illustrates how further compression ratio can

be obtained using LZW based compression along with the proposed compression technique.
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Figure 2.2: Mobile Phone based ECG Compression

2.5.1 Generic Framework of the Proposed Compression Mechanism

The proposed symbol substitution based ECG compression deals with the above challenges

while performing compression. As depicted in Figure 2.3, original ECG is first normalized.

During this normalization, the original ECG is multiplied with an acquisition device depen-

dant constant, C as in Eq. 2.1.

y(n) = x(n)× C (2.1)

The purpose of this normalization is to reduce the character size (number of digits) of each

of the samples and transform the floating point values to integer values. As an example, two

consecutive samples of 0.205 and 0.210 (of MIT BIH Arrhythmia database) become 41 and
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42, when C is 200 for that whole duration of ECG acquisition. Therefore, for this example,

the character size is reduced from 10 to 4. Then, the difference between two consecutive

samples is calculated using Eq. 2.2.

z(n) = y(n)− y(n− 1) (2.2)

This operation, as depicted in Figure 2.3 (c), performs amplitude reduction. This in-

trabeat subtraction for the reduction of amplitude was previously used by [Hamilton and

Tompkins, 1991] during ECG compression. Therefore, for the previous example, 41 and 42

results in 1. This task further reduces the number of digits for the ECG samples. Most of

the ECG samples are transformed to single digit signed integer values by Eq. 2.1 and 2.2.

As it is evident from Figure 2.3(a) - 2.3(c), sample values can be negative or positive. Next,

the signs and the values are segregated and character encoded separately using the same

character set, S = {S1, S2, S3, S4, · · · , SM}, where M is the highest number of character for

that particular character encoding. Compression ratio (CR) of a symbol substitution based

compression depends on the range of input and output characters, for a particular character

encoding. When Mi and Mo are the number of different characters supported by the input

and output texts, then CR can be expressed as Eq. 2.3. As an example, when Mi is 4

for genome sequence data and Mo is 256 (since 256 ASCII characters were used for symbol

substitution), a CR value of 4 is obtained (log4 256) [Lei et al., 2004; Sufi et al., 2005; 2006a].
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CR = logMi
Mo (2.3)

However, unlike genome data, where ATGC can be represented by unsigned 1234 (base

4 numbering), ECG data is signed. Therefore, sign and value encodings should be done

separately. During the sign encoding process, Mi is 2 (0 for positive value and 1 for negative

value), since sign (+/-) can be encoded in binary numbering system. For ASCII, the value

of CR is 8 (log2 28) as was performed in our previous research [Sufi et al., 2006b; Sufi and

Khalil, 2008b]. However, the full set of 256 ASCII characters are not supported by existing

text messaging (SMS/MMS) systems. Therefore, a reduced character set is required for ECG

transmission via SMS and MMS. Algorithm 1 shows both sign encoding and value encoding

process. In this algorithm the value of q, which is the number of Differenced Normalised

ECG to be read by the algorithm at a time, depends on the particular character encoding.

For ASCII, it is 8, since 8 consecutive sign bits (0 or 1) from 8 ECG samples are represented

by a single character from 256 ASCII set. For SMS and MMS transmission, the supported

character set is often 7 bits, resulting in q = 7.

After successful sign encoding, absolute values (values without sign information) are left

as seen in Figure 2.3 (d). Within these values, there are both single double digit numbers.

The encoding of single digit and double digit numbers are done with different character subset

U and V respectively, where S = U ∪ V .

To increase the compressibility, 2 consecutive single digit values are encoded with one
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Figure 2.3: Preprocessing Stages of ECG Compression
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D e t e c t e d  B e a t s

Figure 2.4: Beats Hidden Within Compressed ECG

element of U . However, for double digit values, one to one mapping is performed with

elements of V . Theoretically, CR achieved for encoding single digit values is 2× log10 Mo for

a particular character set. But for double digit values it is only log10 Mo.

Therefore, all double digit high pitched values are represented with V = {v1, v2, v3, v4, · · · }.

Among these high pitched values, QRS complexes are the most obvious ones. For a person,

who knows the character set V , it is possible to ascertain the possible locations of the QRS

complexes from the compressed ECG as depicted in Figure 2.4. This is how, the proposed

compression algorithm exposes the crucial ECG feature waves (QRS Complex) within the

compressed ECG, from where it is possible to perform ECG analysis without requiring to

decompress the compressed ECG. Details of ECG analysis from the compressed ECG will be

presented in chapter 5.
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Figure 2.5: ECG Samples Compression with the Proposed Method (Example)

The generic biosignal compression algorithm presented in Algorithm 1 can be successfully

applied to any of the character sets S like, ASCII, UTF-7, GSM 03.38, Unicode-16, Unicode-

32 to compress signals like ECG, Blood Pressure or Pulse.

2.5.2 ECG Compression using ASCII Character Set

The signs and the values from all the normalised differences with sign are separated using

Eq. 2.4. For each element of the normalised difference with sign, vector d(i):

d(i) = m(i)× p(i) (2.4)

where m(i) = Sign[d(i)] and p(i) is the absolute value of d(i). Then the signs and the values

are ASCII encoded using Eqs. 2.5 -2.8 and Eqs. 2.9-2.11 respectively. During the sign

encoding process, the proposed algorithm reads 8 consecutive entries of Step 2 (Figure 2.6)

and represents their signs by a single ASCII character. Since each of the 8 entries can be

either positive or negative, they can have 28 or 256 different values, just enough for using

256 ASCII characters to represent each of the combinations.
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Figure 2.6: Step By Step Process Of Encoding (For an Example Case)

Sign information m(i) is rearranged as in Eq. 2.5.

L =




m(1) m(9) ... m(K − 7)

m(2) m(10) ... m(K − 6)

. .

. .

. .

m(8) m(16) ... m(K)




(2.5)

where K = N − 1 if (N − 1) is divisible by 8; otherwise, we add + (Positive Padding) such

that K > N . The signs are replaced by 0 or 1 as in Eq. 2.6.

b(i) =





0 if m(i) = +ve

1 if m(i) = −ve

(2.6)
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Therefore, a new matrix B can now be constructed as follows,

B =




b1(1) b1(2) ... b1(K
8 )

b2(1) b2(2) ... b2(K
8 )

. . .

. . .

. . .

b8(1) b8(2) ... b8(K
8 )




(2.7)

where bj(k) is either zero or one according to Eq. 2.6 and j = 1, 2, · · · , 8 and k =

1, 2, · · · , K/8. Then all columns in Eq. 2.7 are converted into corresponding decimal value

(from binary) followed by ASCII conversion using Eq. 2.8. The first element is the least

significant bit and the last element is the most significant bit.

sk = ASCII(
7∑

i=0

bj(k)× 2i) (2.8)

where k = 1, 2, · · · ,K/8 Once the signs are coded, the signs from the original normalised

differences (with sign) are removed. Figure 2.3 (d) shows the sign removed values of differ-

ences. The normalised difference without sign values can be divided into simple blocks and

complex blocks. In simple blocks, the normalised difference without sign values ranges from

0 to 9 and for complex block the values are equal to or higher than 10. Therefore, simple

blocks have single digit and complex blocks have multiple digits for each of the values. Dif-
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ferent functions are used for converting the simple block and complex blocks as presented in

Eq. 2.11. In simple block, diatomic encoding was performed, where each pair of normalised

differences without sign values was encoded with a single ASCII character and for complex

region one to one mapping was performed. Thus for simple block bounded by 0-9 region,

ASCII codes 0-47 and 58-110 were used and for complex block ASCII codes 110-255 were

used. From Eq. 2.4, pair wise values were taken to construct pair set of the d(i) value,

Therefore,

ol = (p2i−1(l), p2i(l + 1)) (2.9)

where, i = 1, · · · , N − 1 and l = 1, · · · , (N−1)
2 Every pair of ol are evaluated as follows,

ol =





((p2i−1 × 10) + p2i) When p2i < 10

((p2i−1 × 100) + p2i) When 9 < p2i < 10
(2.10)

where i = 1, · · · , N − 1 and l = 1, · · · , (N−1)
2 . In Eq.2.10 string concatenations were

performed.

If the consecutive 2 entries have a numerical value less then 100 (i.e. 2 digits number),

then the two entries are encoded by a single ASCII character, using the 2 digit decimal

number as the character code (from Eq. 2.11). As an example, if 2 consecutive numbers

(Step 2 of Figure 2.6) are 3 and 7, then we get 37, and the ASCII character represented by
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the character code of 37 is %.

Again, if the numerical value of concatenated 2 consecutive entries (step 2 of Figure 2.6)

is more than 100 then we represent each of the 2 entries by a single ASCII character. As

a result, there will be 2 different ASCII characters (Eq. 2.11). For an example if the 2

consecutives entries found in step 2 (Figure 2.6) are 5 and 18, then the numeric value of

the concatenated string will be 518, which is greater than 100. So, in this case 5 will be

represented by the ASCII character (s) with character code (5+110) or 115 and 18 will be

represented by the ASCII character with character code (18+110) or 128. Eq. 2.11 shows

the value encoding process.

When ol < 100,

cr =





ASCII((p2i−1 × 10) + p2i) When ol < 48

ASCII((p2i−1 × 100) + p2i + 10) When 48 < ol < 100

where i = 1, 2, · · · , N − 1 and r = 1, 2, · · · , R

When ol > 100

cr = ASCII(p2i−1 + 110)

cr+1 = ASCII(p2i + 110)

where i = 1, 2, · · · , N − 1 and r = 1, 3, 5, · · · , R− 1

(2.11)

R > (N−1)
2 when ol < 100 for all ol R = N − 1 when ol > 100 for all ol Compression is

achieved when the number of sign coded ASCII characters and number of value coded ASCII
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characters are less than the original length of the ECG signal or when, K
8 + R < N . During

this encoding process (Eq. 2.11), numbers were not utilised for ASCII encoding purpose.

Hence, character code 48 to 57 (number 0 to 9) has been left outside this encoding scheme.

As a result, any unnatural (more than 255) values of normalised difference without sign, for

which limited ASCII characters are not enough, can be preserved using the numerical values

(no ASCII conversion is performed).

2.5.3 Decompression in Doctor’s Mobile

During the decompression process, each of the compressed character is read and translated

to the character code. The very first character is the first ECG sample and the next one

holds the sign information of eight consecutive entries.

x1, sk, cr = x1, s1, c1, c2, c3, c4, c5, s2, c6, c7, · · · ,

sK , cR−5, cR−4, cR−3, cR−2, cR−1, cR

(2.12)

where k = 1, 2, · · · , K
8 and r = 1, 2, · · · , R

The decompression is processed in two parts: decompression of sign from sk (Eq. 2.13-

2.14) and decompression of value from cr (Eq. 2.15-2.19). First the sign values are decoded

from the ACSII values using Eq. 2.13 and matrix B of Eq. 2.7 is recreated.

bj(k) = Dec → Bin[CharacterCode[sk]] (2.13)
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where j = 1, 2, · · · , 8 and k = 1, 2, · · · , K
8 After the creation of Matrix B, Matrix L of

Eq. 2.5 can be recovered by

m(i) = ((−2)× bj(k) + 1) (2.14)

where i = 1, 2, · · · ,K The occurrences of the next ASCII characters are translated to nor-

malised difference values (Step 2 of Figure 2.6) until there are 8 consecutive digits, and then

these 8 consecutive digits are appended to the sign information (Eq. 2.15-2.18).

If CharacterCode(cr) < 48 then,

di = m(i)× ((CharacterCode(cr)) Div 10)

di + 1 = m(i + 1)× ((CharacterCode(cr) Mod 10)

(2.15)

If 58 6 CharacterCode(cr) < 110 then,

di = m(i)× ((CharacterCode(cr)− 10) Div 10) (2.16)

di+1 = m(i + 1)× ((ChararacterCode(cr)− 10) Mod 10) (2.17)

If CharacterCode(cr) > 110 then,

d(i) = m(i)× ((CharacterCode(cr)− 110) (2.18)

where i = 1, 2, · · · , N − 1 for all cases of Eq. 2.15 to 2.18. During this process of
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decoding (Eq. 2.15-2.18), whenever i is divisible by 8, the next compressed character by

the doctor’s mobile will be an ASCII coded character holding sign information of the next 8

normalised difference value. Lastly, each of the decoded normalised differenced values with

sign is multiplied with 0.005 and added with previous uncompressed digit to retrieve the next

uncompressed digit (Eq. 2.19).

x(i + 1) = x(i) + (d(i)× 0.005) (2.19)

In case of JavaTM based mobile phones, which can not operate with floating point num-

bers, ECG curves are drawn based on the reconstructed normalised ECG. Therefore, mul-

tiplication with 0.005 is not performed (Eq. 2.19). Table 2.4 contains the experimentation

results obtained by the proposed method against different entries of MIT-BIH Database.

Compression Ratio was calculated by Eq. 2.20.

CR =
n1
n2

(2.20)

where n1 and n2 are the sizes of original ECG file and Compressed ECG file. Table

2.4 shows that the compression ratio is linearly dependant (γ=0.983) on the number of

Simple Block Encoding and inversely dependant (γ=-0.983) on the number of Complex Block

Encoding. This is due to the fact that during simple block encoding 2 entries of Normalised

Difference without sign is represented by 1 ASCII Character, therefore higher compression
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Figure 2.7: Our Selection of MMS Character Set for Compressed ECG transmission

is achieved. Whereas in complex block, single entry of Normalised Difference without sign is

represented by a single ASCII character. Therefore, ECG samples containing larger area of

complex blocks result in lesser compression.

2.5.4 Compression using a User Defined Character Set

Character encodings significantly varies from platform to platform. Therefore, when we

wanted to transport our previous implementation [Sufi and Khalil, 2008b] of ECG compres-

sion with ASCII encoding from Windows Mobile platform to Java 2 Micro Edition platform

we faced challenges. One of the major challenges encountered was many of those ASCII

encoded characters were lost after transmission via MMS. Regular mobile phone as well as

the telephony network can only deal with a reduced number of character set (e.g. GSM

3.38). For the research involved in this work, we carefully selected a set of characters (Figure

2.7) supported by MMS transmission. Figure 2.7 shows the selected character sets for our

implementation of mobile phone based telecardiology application.

These characters were kept in an array of 148 length called MMSCS for performing symbol

substitution based compression of ECG signal.
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M I D I C E C G
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Figure 2.8: A Health Message Frame (for SMS)

Message Format

For the proposed framework, the message frames for both SMS and MMS contain 3 main

sections namely the Message ID (MID), Health Index (I) and the Compressed ECG (CECG).

Figure 2.8 shows the message format used during our implementation of patient to doctor

communication via SMS. Unlike MMS and HTTP implementations, SMS can only accom-

modate a short message restricted by 160 characters. Therefore, ECG transmission via a

single SMS can only accomodate a limited number of ECG samples (Approximately 173).

This size is enough to transmit a single abnormal ECG feature (e.g. Abnormal QRS).

Size of MID is 5 characters. Since, each of the characters can have 148 different values from

our MMSCS, the proposed MID can contain (148)5 or 71,008,211,968 different combinations.

This enormous combination range is capable of uniquely identifying messages sent from

different patients at different times. Indicator or I can contain 148 different characters from

MMSCS. Hence, this one character position can provide indications of 148 cardiovascular

abnormalities (RBBB, LBBB, Tachycardia, Bradycardia, Arrhythmia etc.). CECG contains

the actual ECG in a compressed format.

Health Message is similarly constructed for MMS messages containing ECGs. But, the

CECG is not limited to 154 cc, since MMS can accommodate longer messages. Hence, more

ECG data can be sent at a time via MMS messages.
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Figure 2.9: Our Implementation of Mobile Phone based Wireless Telecardiology Application
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2.6 Experimental Results

Compression Ratio, Percentage Root Mean Square Difference (PRD), Number of Operations

(NOp), compression time and decompression time were selected for performance comparison.

Performance of the proposed method was measured based on 12 random entries of MIT-

BIH Arrhythmia Database (http://www.physionet.org/). Each of the entries was 1 minute

long and had 360 Hz sampling rate using a resolution of 11b/sample. The experimentation

was performed on Intel Centrino 1.4 GHz Desktop PC with 512 MB RAM for performance

measurement of the proposed method (in Table 2.4) and execution time comparison with

LZW and Wavelet based methods (Figure 2.10, Figure 2.11, Figure 2.12 and Figure 2.13).

HP iPAQ h2200 Pocket PC and HP iPAQ h6365 smart phone were used to deploy and

implement ZOP, Peak, Scan Along Polynomial Approximation (SAPA) and the proposed

method for Number of Operation per Second (NOp/s) wise comparison (Table 2.5). Details

of ZOP, SAPA and Peak methods can be found in [Rossi et al., 2002; Miaou and Lin, 2002].

In addition, the calculations involving realtime factors and execution times for the proposed

algorithm were performed in both handheld and smart phone platforms.

2.6.1 Number of Operations per Second (NOp/s) Comparison

An operation is termed as an expression that derives a new value from one or more other

values. It is an action resulting from one or more instructions. Previous research [Rossi

et al., 2002] calculated the complexity of three different ECG compression algorithms based

on the average NOp needed to compress 1 second of ECG data (NOp/s) [Rossi et al., 2002].

NOp often determines the computational cost, complexity, total lines of codes (LOC) and

44 (October 31, 2011)



CHAPTER 2. COMPRESSION OF ECG

execution time of an algorithm.

ZOP, Peak, SAPA and the proposed method were programmed in .Net platform using

Microsoft Visual Studio 2005, Pocket PC 2003 environment. These four compression algo-

rithms were implemented on HP iPAQ h2200 Pocket PC and HP iPAQ h6365 smart phone

for final deployment and testing purpose. At first, all the basic operations were identified

within the source code environment. For each of the identified operations, counter variables

were set up. Corresponding counter variables were incremented just after the execution of

the basic operations. Thus, the total number of operations (NOp) during the compression

of ECG file was obtained. Finally, the total NOp was normalised to calculate the number of

operations required to compress one second of ECG data.

In [Rossi et al., 2002], the actual peak (QRS Complex) detection was supposed to be

carried out by the microcontroller based pace maker. Therefore, NOp counting for QRS

Complex detection was overlooked in the Peak method [Rossi et al., 2002]. To make the Peak

method operable in mobile phone, a QRS detection algorithm was required be incorporated.

One of the simplest forms of ECG complex region detection (QRS complex detection) can be

performed by Eq. 2.21 that was applied by existing research in low-delay ECG compression

algorithm for real-time situation [Jalaleddine et al., 1990].

Std =

√∑B
w=1 (xw − x)2

B
(2.21)

where B is the average length of the QRS complex and w = 1, 2, · · · , B
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If the standard deviation, Std is greater than a predetermined threshold then a QRS

complex is detected. Therefore, by sliding the B block along the N length ECG samples

and evaluating the standard deviation by eq. 2.21, the complex blocks can be detected

and preserved for Peak algorithm. Equation 2.21 was finally utilised to program the Peak

detection method, which was eventually compared with the proposed algorithm.

ZOP Method

ZOP method [Rossi et al., 2002; Miaou and Lin, 2002] detects whether the next sample lies

within a pre-defined range for all the ECG samples. Therefore, the major calculation involves

addition and subtraction of a predefined error value from the previous sample to determine

the permissible range of the next sample. Table 2.6 shows the average NOp performed by

ZOP method every second.

SAPA Method

SAPA method [Rossi et al., 2002; Miaou and Lin, 2002] is based on the calculation of gradients

(slopes) from the point of origin to the error ranges of a next point, as well as the calculation

of centre slopes. Therefore, most of the basic operations, depicted in Table 2.7, originated

from the calculation of gradients.

Peak Method

Equation 2.21 includes addition, subtraction, square, division and square root operations

and it was frequently utilised by the Peak method. Moreover, for calculating the threshold,

multiplication of a constant with the average normalised ECG value with sign was performed.
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Array List functionality of .Net 2 was also utilised to maintain and update (sliding of the

block) block B (Equation (2.21)). Table 2.8 exposes the fact that for all the cases, NOp

count for the basic operations remained equal.

Proposed Method

Finally, the proposed method was implemented on the same environment and the basic

operations also included string join operation (for calculation of ol using Eq. 2.10) and

ASCII Conversion operation (for Eq. 2.8 and 2.11). Table 2.9 represents the basic operations

performed while executing the proposed method for different MIT-BIH entries. Among all

the operations, absolute operation was performed only after the signs (+ve/-ve ECG Sample)

were coded. Therefore, performing the absolute operation was essential for obtaining the p(i)

value of equation 2.4.

Table 2.5 shows the NOp/s comparison results, where only Zero Order Prediction (ZOP)

[Jalaleddine et al., 1990] method has less NOp compared to the proposed method. But,

ZOP suffers seriously from the high Percentage Root-Mean-Square Deviation (PRD) value

indicating its unacceptability for diagnostic purposes [Rossi et al., 2002; Miaou and Lin,

2002]. Peak method removes the T wave completely and becomes unsuitable for diagnostic.

2.6.2 Compression and Decompression Time Comparison

Transformational method and LZW based methods frequently use library functions provided

by the programming interface. Since library functions applies multiple numbers of basic

operations and programmers are often kept distant from identifying these basic operations,
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the NOp/s count for transformational methods, e.g., wavelet based methods, is not always

viable. Therefore, for transformational methods and LZW based ECG compression methods,

the compression and decompression times were selected as comparison parameters. Figure

2.10 and Figure 2.11 shows the lower time requirement for the proposed method to compress

and decompress randomly selected ECG files, compared to Wavelet based and LZW based

compression methods.

Figure 2.10: Compression Time Comparison with LZW and Wavelet based Compression
Algorithm. 12 MIT-BIH Entries were Randomly Chosen

Unlike some recent research in realtime ECG compression [Alesanco et al., 2006], which

needs 1200 ms for compression and 180 ms for decompression of 1 second ECG data, the

proposed method only needs 88 ms for compression and 106.33 ms for decompression on

an average. The proposed method outperforms existing methods with its faster execution

time which can be ascribed to the simplicity and compact nature of the proposed algorithm.

Moreover, it is important to compare the file size dependency of the proposed method.
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Figure 2.11: Decompression Time Comparison with LZW and Wavelet based Compression
Algorithm. 12 MIT-BIH Entries were Randomly Chosen

Figure 2.12 and Figure 2.13 are the compression and decompression time comparison for

LZW based compression, wavelet based compression and proposed method with five different

file sizes (5.76 KB, 10.6 KB, 51.8 KB, 114 KB and 166 KB). These varying sized files were

obtained by random selection of different sections of a randomly selected MIT-BIH entry. It

is noticeable that our proposed method provides best performance for both compression and

decompression while the file size increases.

2.6.3 Compression Ratio Comparison

The compression ratio of the proposed method was compared with other existing lossless

compression methods. Table 2.10 shows the compression ratio wise comparison.

The proposed method pioneers most of the existing lossless ECG compression with higher

compression ratio.

49 (October 31, 2011)



CHAPTER 2. COMPRESSION OF ECG

Figure 2.12: Compression Time Comparison for LZW Based Compression, Wavelet based
Compression and Proposed method for Different File Sizes

2.6.4 Realtime performance measurement

Realtime factor, Tr, which is defined as the time needed to compress / decompress 1 second

of ECG data, was calculated on both HP iPAQ h2200 Pocket PC and HP iPAQ h6365 smart

phone. The average total time (Tt) needed to compress / decompress 12 randomly selected

MIT-BIH Arrhythmia Database entries was measured on both devices and Eq. 2.22 was used

to calculate the realtime factor Tr for compression and decompression.

Tr =
Tt × F

N
(2.22)

Where N is the length (total number of samples) of the ECG file and F is the sampling

frequency. For our MIT-BIH Arrhythmia Database entries F was 360 and N was 21600.
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Figure 2.13: Decompression Time Comparison for LZW Based Compression, Wavelet Based
Compression and Proposed method for Different File Sizes

Table 2.11 shows that for both devices it was less than 1 second, adhering to the minimum

criteria for realtime operation [Sufi et al., 2007].

2.7 Discussion: Further Enhancement of the Compression Ratio

From the design objectives, experimentation results and comparison details, it becomes ap-

parent that the proposed compression algorithm is not only a simple algorithm capable of

being executed on generic mobile phone platforms, but also it provides a significant amount

of compression ratio. However, this compression ratio can be raised even further, when it is

coupled with existing LZW based compression algorithms to obviates the repetition found

within the encoded ECG text (by the proposed method). Up to 90.64% of compression ratio

can be obtained from 2 phase encoding (proposed compression) and LZW based compres-
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E C G

C o m p r e s s e d  E C G

1 .  P r o p o s e d  E C G  
C o m p r e s s i o n

2 .  L Z W  b a s e d  E C G  
C o m p r e s s i o n

E n c o d e d  E C G

Figure 2.14: Raising the Compression Ratio with the Proposed Compression Scheme and
LZW based Compression Scheme

sion algorithm with the specific sequence shown in Figure 2.14. It should be noted that

performing LZW based compression before the proposed ECG will not produce any suitable

result, because the proposed compression algorithm only expects ECG sample (not LZW

based compressed ECG). The results of this higher compression ratio can be clearly seen

from Table 2.12.

In Table 2.12, So refers to original ECG size for the first one minute data in kilobyte

(KB). Then, Se refers to the reduced data size with the proposed compression method.

The compression ratio obtained by the proposed compression method is represented by

CRoe(CRoe = So
Se

). Next, Sc refers to compressed ECG with LZW based compression al-

gorithm. CRec(Se
Sc

) and CRt(CRoe × CRec) denote compression achieved with LZW based

compression and total compression ratio respectively. Lastly, compression time achieved by

the proposed method, compression time achieved by the LZW based method and the total

compression time is represented by Te, Tc and Tt respectively.

As already stated, higher compression ratio benefits faster transmission of enormous
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ECG at the expense of higher computational complexities for resource constraint mobile

devices. It should be mentioned that we obtained algorithms of ICSharpCode.SharpZipLib

(http://www.icsharpcode.net) library to compress the data using LZW based algorithms.

This library supports four types of compression (Zip, GZip, Tar, BZip2). Since this com-

pression library was available in open source format, it can be easily programmed for J2ME

platform.

2.8 Conclusion

Proposed here is a relatively simple but highly efficient lossless ECG compression method that

can be implemented on mobile phones for realtime diagnosis. The output of the compressed

file can easily be transmitted utilising HTTP/ SMS/ MMS and decompressed on a mobile

phone handset at the receiver’s end. The compression algorithm performs encoding while

it receives new samples and transmits them with minimal delay, which makes the system

suitable for realtime applications. Moreover, the proposed method outperforms most of

the existing compression methods with less computational cost, faster execution time and

better compression ratio without compromising the reconstruction quality. According to our

experimentation, a maximum of 4.051 compression ratio was achieved with our proposed

encoding scheme. This compression ratio could be raised even further to 90.64%, if LZW

based compression is added after encoding is performed with our proposed method (as shown

in Fig. 2.14).

Now that we have achieved efficient transmission and storage of ECG, we need to explore

details of the CVD patient authentication mechanism. In our next chapter, we will delve into
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the details of our proposed ECG based biometric authentication systems. Few of our proposed

authentication mechanisms can directly authenticate patients from their compressed ECG

packets, which were compressed using the methods described in this chapter.
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Table 2.3: Unsuitable Criteria for Mobile Phone based Realtime ECG Compression

Unsuitable criteria for mobile phone
based realtime ECG compression

Listed References (Reviewed litera-
tures)

Complex Calculation involving float-
ing points

[Urar and Ider, 2001; Goudarzi et al.,
2004; Jalaleddine et al., 1990; Moody
et al., 1998; Hao et al., 2005; Barlas
et al., 1993; Miaou and Chao, 2005;
Rezazadeh et al., 2005; Blanchett and
Kember, 1998; Gilbert., 1987]

Matrix based calculation (involves us-
age of multidimensional array)

[Urar and Ider, 2001; Barlas et al.,
1993; Gilbert., 1987]

Reconstruction Error [Urar and Ider, 2001; Goudarzi et al.,
2004; Jalaleddine et al., 1990; Moody
et al., 1998; Hao et al., 2005; Barlas
et al., 1993; Miaou and Chao, 2005;
Rezazadeh et al., 2005; Velasco et al.,
2004; Gilbert., 1987]

QRS Detection [Urar and Ider, 2001; Goudarzi et al.,
2004; Moody et al., 1998; Velasco
et al., 2004; Hao et al., 2005; Barlas
et al., 1993; Rezazadeh et al., 2005;
Blanchett and Kember, 1998]

Beat Alignment (Period Normaliza-
tion/ Base Alignment/ Amplitude
Normalization)

[Urar and Ider, 2001; Goudarzi et al.,
2004; Moody et al., 1998; Hao et al.,
2005; Barlas et al., 1993; Blanchett
and Kember, 1998; Velasco et al.,
2004]

2-Pass Encoding [Urar and Ider, 2001; Goudarzi et al.,
2004; Jalaleddine et al., 1990; Moody
et al., 1998; Blanchett and Kember,
1998; Velasco et al., 2004; Gilbert.,
1987]

Lookup Table based encoding [Hao et al., 2005; Miaou and Chao,
2005]

Application of Transformational
Methods

[Urar and Ider, 2001; Goudarzi et al.,
2004; Jalaleddine et al., 1990; Miaou
and Chao, 2005; Rezazadeh et al.,
2005; Velasco et al., 2004; Gilbert.,
1987]
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Algorithm 1: Compression of ECG Data
//Notation Description:
//cc holds the compressed character (output of this algorithm).
//char(index) returns to returns the V character for
//that index value (vindex ∈ V ).
//entry(index) returns the Differenced Normalised ECG
//of the index value.
Loop (Until the end of Differenced Normalized ECG entries)
Read q number of Differenced Normalized ECG entries
cc = ” ”
signV al = 0
// Following codes performs sign encoding
Loop (i = 1; i + +; i ≤ q)

if (ith entry is negative)
signV al = signV al + 2(q−1)

endif
cc = char(signV al)

End Loop
//Following codes performs the value encoding
Loop (i = 1; i = i + 2; i ≤ q)

if (two consecutive entries are both single digit)
cc = cc+ char((entry(i)× 10) + entry(i + 1))

else
cc = cc+char(entry(i))
cc = cc+char(entry(i + 1))

endif
End Loop

End Loop
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Table 2.4: Experimentation with Different Entries of MIT-BIH

MIT-BIH
Entry

CR Number of Simple Block Encode Number of Com-
plex Block Encode
(ol > 100)

ol < 48 48 < ol < 99 Total
100 4.05 9598 533 10131 669
102 4.01 9341 740 10081 719
105 3.85 8665 840 9505 1295
111 3.86 8311 1384 9695 1105
114 4.03 9129 1026 10155 645
201 3.97 9486 427 9913 887
210 3.93 9084 752 9836 964
213 3.56 5728 2801 8529 2271
222 4.05 9204 1067 10271 529
228 3.86 8001 1780 9781 1019
231 3.87 8966 771 9737 1063
234 3.93 9196 674 9870 930

Table 2.5: Comparison of the Proposed Method with Other Direct ECG Compression Algo-
rithms

Compression Number of Operations CR PRD
Algorithms Second

Peak 90750.73 6.6 2.1
ZOP 913.62 4.7 2.6
SAPA 2081.38 5.5 2.4

Proposed method 2038.67 3.9 0
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Table 2.6: NOp/s Counting of ZOP Method

MIT-BIH Entry Add/sec. Sub/sec. Total NOp/s
100 360 163.93 883.93
102 360 169.55 889.55
105 360 193.533 913.53
111 360 213.03 933.03
114 360 196.516 916.516
201 360 160.35 880.35
210 360 185.06 905.066
213 360 268.96 988.966
222 360 198.62 918.62
228 360 219.216 939.216
231 360 182.6 902.6
234 360 172.08 892.08

Average 360 193.62 913.621
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Table 2.10: Comparison of the Proposed Method with Other Lossless ECG Compression
Algorithm

Lossless ECG Compression Method Highest Possible Compression Ratio
with MIT/BIH Arrhythmia Database

Direct SPIHT (Method 1 of [Jalaled-
dine et al., 1990])

2.443

Direct SPIHT +BPC (Method 2 of
[Jalaleddine et al., 1990])

3.011

DCCR+SPIHT (Method 3 of [Jalaled-
dine et al., 1990])

2.569

DCCR + SPIHT +BPC (Suggested
Method of [Jalaleddine et al., 1990])

3.281

Entropy Coding of second-difference
ECG [Kim et al., 2006]

2.800

Proposed Method 4.051

Table 2.11: Realtime Compression / Decompression Factor for Pocket PC and Smart Phone

Device Type Realtime factor for com-
pression (ms)

Realtime factor for de-
compression (ms)

HP iPAQ h2200 Pocket
PC

0.233 0.15

HP iPAQ h6365 Smart
Phone

0.416 0.266
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Chapter 3

ECG based Biometric

Authentication

In the previous chapter, we have described a novel ECG compression algorithm that is

fast in execution and can also provide high level of compression ratio. Patient’s mobile

phone executes the algorithm and sends the compressed ECG packets to the doctor/ hospital

server. After receiving the compressed ECG packets the hospital server or the mobile phone

requires to quickly authenticate the patient, before providing the patient with any services.

Therefore, in this chapter, we present our innovative algorithms for ECG based biometric

for remote authentication of CVD patients. Our second research question regarding faster

authentication is answered in this chapter.

Since our telecardiology platform is based on compressed ECG for efficient transmission

(as discussed earlier in Chapter 2), we focus our attention mainly on biometric authenti-

cation mechanisms that do not require decompression. On the other hand, telecardiology
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Figure 3.1: ECG Required for Biometric Recognition

systems not harnessing the efficiency of compression algorithms [Hung and Zhang, 2003;

Jasemian and Arendt-Nielsen, 2005; Gao et al., 2005; Zhou et al., 2005; Lee et al., 2007],

need faster ECG biometric mechanisms based on plain ECG (not compressed). Therefore, in

this chapter, we present four different algorithms to cater to the needs of all different forms

of ECG transmission. Two of them are designed to work on plain ECG (Weighted Signal

Processing (WSP) Approach and Polynomial Distance Measurement (PDM) Approach). It

should be mentioned that WSP served as a preliminary assessment and feasibility study for

our core contribution with PDM. On the other hand, the other two methods are suitable

for compressed ECG (Direct Approach and Data Mining based Approach). Data Mining

based approach is our core contribution for compressed ECG based biometric, while direct

approach served as proof of concept for the same.

We start this chapter, with a brief background on ECG morphology and existing ECG

based biometric, challenges faced by existing ECG biometric techniques, general steps of a

biometric system and then detailing our four ECG based biometric methods that overcome

the challenges faced by existing ECG biometric.
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3.1 Related Works on ECG based Biometric

Biometrics has been a topic of research for the last 2 decades [Jain et al., 2004; Yu et al., 2008;

Wubbeler et al., 2007; Biel et al., 2001; Israel et al., 2003; Kyoso and Uchiyama, 2001; Kyoso,

2003; Shen et al., 2002; Shen, 2005; Shen and Tompkins, 2005; Wang et al., 2008; Plataniotis

et al., 2006; Irvine et al., 2001; Israel et al., 2005; Poon et al., 2006; Bui and Hatzinakos,

2008; Chan et al., 2008]. Biometric data can be acquired from several sources like DNA,

ear, face, facial thermogram, fingerprint, gait, hand geometry, hand vein, iris, keystroke,

odor, palm print, retina, signature, voice etc [Jain et al., 2004; Yu et al., 2008]. In recent

years, fingerprint and iris have been most pervasively used in biometric authentications.

Even joint fingerprint and ECG based multimodal biometric sensor is feasible, since recent

study by [Chan et al., 2008] has already shown that person identification from ECG acquired

from finger is possible. ECG biometric is possible because of difference in subtle patterns

within these ECG waves or complexes, which is originated from the mechanical activities

of the heart. Apart from reinforcing a stronger authentication technique by being a part of

multimodal authentication, ECG can also be used as a standalone biometric authentication

system [Jain et al., 2004; Yu et al., 2008; Wubbeler et al., 2007; Biel et al., 2001; Wang et al.,

2008; Israel et al., 2003; Kyoso and Uchiyama, 2001; Kyoso, 2003; Shen et al., 2002; Shen,

2005; Shen and Tompkins, 2005; Plataniotis et al., 2006; Irvine et al., 2001; Israel et al., 2005;

Poon et al., 2006; Bui and Hatzinakos, 2008; Chan et al., 2008].

One of the first attempts in establishing the fact that features extracted from the ECG

can be used for person identification was shown by [Biel et al., 2001]. Since then there have

been a surge of researches in ECG based biometric recognition [Jain et al., 2004; Yu et al.,
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2008; Wubbeler et al., 2007; Biel et al., 2001; Wang et al., 2008; Israel et al., 2003; Kyoso

and Uchiyama, 2001; Kyoso, 2003; Shen et al., 2002; Shen, 2005; Shen and Tompkins, 2005;

Plataniotis et al., 2006; Irvine et al., 2001; Israel et al., 2005; Poon et al., 2006; Bui and

Hatzinakos, 2008; Chan et al., 2008].

[Biel et al., 2001] have utilized many time domain features of ECG that were conven-

tionally used for cardiovascular diagnosis purposes only. Some of the time domain features

(features shown in Table 2.1) demonstrate a degree of uniqueness. This uniqueness of fea-

ture is the basis of biometric. It should be mentioned that the features associated with QRS

complex shows the highest degree of uniqueness according to recent findings [Wubbeler et al.,

2007]. Apart from the features shown in Table 2.1 (that remain unchanged over time), there

are other features that varies over time such as RR Interval, Heart Rate Variability (HRV),

Instantaneous Heart Rate (IHR) etc. RR Interval is the time difference between two consec-

utive heart beats. HRV is the reciprocal of the RR Interval ( 1
RR) and IHR corresponds to

heart rate calculated from a single RR Interval value ( 60
RR). RR Interval, HRV, IHR features

have also been used by [Wubbeler et al., 2007; Bui and Hatzinakos, 2008; Irvine et al., 2001]

for person identifications.

Apart from the time domain ECG features, ECG based human identification is also

possible with frequency domain features. [Chan et al., 2008] shows that employing wavelet

based distance measurement techniques, ECG based biometric can attain a higher accuracy

than different statistical approaches (e.g. Percentage Root-Mean-Square Deviation, Cross

Correlation, etc.).

In addition to time domain and frequency domain features based techniques, there are
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also other techniques that revolves around curve fitting (or polynomial based techniqes).

ECG biometric methods demonstrated in [Sufi et al., 2010a; Sufi and Khalil, 2008a; Khalil

and Sufi, 2008a] fall under this category (details of [Sufi et al., 2010a] is described in Section

3.6).

3.2 Challenges Faced by Existing ECG based Biometric

The existing ECG based biometric authentication systems suffer from several pitfalls, which

motivated us to pursue a new set of research on ECG based biometric. Few of these pitfalls

of the existing ECG biometric techniques are summarized as follows:

• Lack of Standardization of Fiducial Points: Most of existing works related ECG bio-

metric, including the earliest method shown in [Biel et al., 2001], rely heavily on the

detection of ECG features namely the PQRST signature. Recent papers describe the

ECG biometric performed in two possible ways; with or without fiducial point detec-

tion. ECG biometric based on fiducial point detection is inherently flawed as reported

by recent research [Wang et al., 2008], since there is no standard definition as to where

the ECG feature wave boundaries lie [Martinez et al., 2004]. Most of the medical grade

ECG devices approximate these fiducial points since approximate locations are suffi-

cient for medical diagnosis [Wang et al., 2008]. However, for the purpose of ECG being

a biometric entity, the points need to be precise since the slightest variation of fiducial

point locations will result in misclassifications within the enormous domain of human

population (6.5 billion). The misclassification will be even severe when the same ma-

chine is not used for ECG acquisition, since each of the device vendors follows its own
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definition of ECG wavelength boundaries [Wang et al., 2008].

• Time Variant in Nature: The second challenge inflicting the domain of ECG based

biometric is the time varying nature of ECG. Unlike other biometric entities like fin-

gerprint, iris etc., the morphology of the ECG signal acquired even for a fraction of a

second varies from time to time for the same person [Israel et al., 2005], With the change

of heart rates, different patterns like RR interval, QT interval, T duration of the ECG

signal change for the same person [Srnmo and Laguna, 2003]. Therefore, if the acquired

ECGs for the same person during both the enrolment stage and recognition stages are

derived when the person is under different physiological conditions (exhausted, stressed,

exercise, relaxed, anxious), most of the existing system on ECG based biometric will

likely fail, since these time varying physiological changes were considered by very few

algorithms [Israel et al., 2005]. Based on this time varying nature, which is one of the

major challenges for ECG based biometric recognition, researchers have demonstrated

the possibility of ensuring security on a body sensor network with multiple sensors

communicating amongst themselves [Poon et al., 2006; Bui and Hatzinakos, 2008]. Re-

searchers in [Poon et al., 2006; Bui and Hatzinakos, 2008] have proposed a scenario

where all the sensors placed within a body have their own heart monitoring sensors

just for ensuring secured communication among the sensors placed within a body area

network. Therefore, as long as these sensors sense the synchronized (subject to minute

delay) heart beats for a particular person, they are allowed to communicate with each

other, since it is ensured that they are located within the same body. For these cases,

the randomness and biometric nature of the heart is used as a substitute for a session
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key for a secured communication.

• Pertinence of random abnormality: Certain random traces of ECG abnormality can

prevail in normal person, ruining the ECG signature, which may result in misclassifica-

tion for biometric recognition. One of these abnormalities is ectopic beat which often

goes unnoticed for a normal person. Hardly any of the existing biometric recognition

techniques employed any algorithms to deal with automated detection of non-standard

beats. Application of only simple beat averaging techniques employed by earlier re-

searches [Shen et al., 2002; Shen, 2005; Shen and Tompkins, 2005] results in the stor-

age of faulty template, giving misclassifications when applied to few seconds of ECG

acquisition with an ectopic beat present.

• Longer duration for ECG acquisition: For a biometric system to be widely accepted, the

time required to acquire the biometric data should be as minimal as possible. Present

biometric solutions based on finger print take less than a second of acquisition time,

which is one of the reasons of fingerprint being pervasively accepted where urgency

is crucial (military operations, medical service providers etc.). Many of the previous

researches adopted beat averaging for 20 beats, which might take up to 20 seconds of

acquisition time. Therefore, these ECG based biometric systems are not feasible for

time critical operations.

• Lack of portability and higher computational cost: One of the major challenges in the

world of biometrics is reduction of the number of features for biometric recognition.

Therefore, principal component analysis and similar measurements have been obtained
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by earlier works on ECG biometrics [Biel et al., 2001; Israel et al., 2005]. The sizes of

the templates for iris, face and voice are 512 bytes, 150-300 Kbytes and 2-10 Kbytes

respectively [Yu et al., 2008]. Even the most recent work demonstrated on ECG based

human identification requires at least 600 bytes (100 ms data of 11 bit resolution for 2

vectors on 500 Hz sampling frequency) of data for the creation of heart vector to be used

as a biometric template (enrolment / verification data) [Wubbeler et al., 2007]. Even

though the size of the template appears to be insignificant, when this information is

matched using the O(N2) algorithm, across a recognition database on only 100 people,

the computational latency/cost is noticeable for many of the existing ECG biometric

systems [Chan et al., 2008; Wang et al., 2008; Plataniotis et al., 2006]. Therefore, for

organizations comprising of thousands of the workers, many of the existing biometric

algorithms are unsuitable for commercialization, even though their research value is

significant. Therefore, an algorithm where one-to-many matching is performed only

for limited number of values (vectors with minimal elements) is an optimal choice for

future ECG based biometric system seeking commercial exposure.

Apart for all these challenges, research communality is continuously endeavoring for

more accurate biometric solutions. All the previous researches related to ECG based

biometric system [Jain et al., 2004; Yu et al., 2008; Wubbeler et al., 2007; Biel et al.,

2001; Israel et al., 2003; Kyoso and Uchiyama, 2001; Kyoso, 2003; Shen et al., 2002;

Shen, 2005; Shen and Tompkins, 2005; Wang et al., 2008; Plataniotis et al., 2006; Irvine

et al., 2001; Israel et al., 2005; Poon et al., 2006; Bui and Hatzinakos, 2008; Chan et al.,

2008] show moderate level of accuracy in identifying person by template matching or
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feature comparison techniques.

Existing ECG based biometric systems are constantly being challenged by higher mis-

classification error, longer acquisition time, larger template size, slower processing time and

pertinence of abnormal beats within the biometric template. These challenges are the prime

hindrance for ECG based biometric being commercialized as a pervasive authentication mech-

anism. At least, ECG based biometric can provide a secured mechanism for cardiac patients

being monitored over telephony network.

3.3 Stages of Biometric Systems

A conventional biometric system has the following three stages:

• Enrolment Stage: In this stage, the biometric entity (ECG recordings, Fingerprint,

Handprint, Retina etc.) is acquired and used as a template. This template is saved in

a biometric template database along with other templates from different individuals. At

later stages of verification or identification, this template is used for template matching

purposes.

• Verification Stage: During this stage, the system validates the claimed identity of a

particular person. The person provides a PIN number, name or smart card to identify

himself and his acquired biometric entity is matched (one to one matching) with his

own template, which was acquired during an earlier stage of enrolment.

• Identification Stage: At this stage, an individual’s biometric entity is recorded and

template matching is performed throughout the biometric template database records.
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After this one to many matching, whenever a match is found within a set threshold

the individual is identified. In case of positive identification a scoring value, rank or

confidence level denotes the matching proximity between the acquired biometric entity

(during verification or identification stage) and template. In case of no match, the

person remains unidentified.

Throughout this chapter, the biometric entity template is referred as enrolment data

and the data acquired during the verification or identification stage is termed as recog-

nition data.

3.4 Types of ECG Biometric

In this chapter, we will present four different types of ECG biometric techniques, which we

developed during the course of this research. These four techniques, namely Weighted Signal

Processing (WSP) Approach, Polynomial Distance Measurement (PDM) Approach, Direct

Approach on compressed ECG and Data Mining (DM) Approach on Compressed ECG, will

be detailed in the following four sections.

WSP Approach and PDM Approach are designed to work for telemonitoring based on

uncompressed ECG (i.e. ECG is not transmitted and maintained in compressed format

[Hung and Zhang, 2003; Lee et al., 2007; Gao et al., 2005; Zhou et al., 2005; Blount et.

al., 2007; Jasemian and Arendt-Nielsen, 2005]). On the other hand, Direct Approach and

DM Approach on compressed ECG work on tele-monitoring platforms that transmit and

maintain ECG in compressed format. As mentioned earlier, PDM method of ECG biometric

is our core contribution on biometric from plain ECG. On the other hand, DM approach on
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compressed ECG is our core contribution on compressed ECG based biometric.

3.5 Weighted Signal Processing (WSP) Approach

Researchers have used Percentage Root-Mean-Square Deviation (PRD) [Zigel et al., 2000b],

Cross Correlation (CC) [Last et al., 2004] and Wavelet Distance Measurement (WDM) [Chan

et al., 2008] techniques on enrolled ECG and recognition ECG to successfully identify persons

[Chan et al., 2008].

PRD is widely used to measure the quality of reconstructed ECG after lossy ECG com-

pression [Chan et al., 2008], PRD provides a measurement of dissimilarity between two signals

as in Eq. 3.1.

PRD =

√∑N
i=1[x(i)− x̂(i)]2∑N

i=1[x(i)]2
× 100 (3.1)

CC is a technique used in statistics to match the similarity of two vectors or signals as

represented in Eq. 3.2 [Chan et al., 2008]. We employed CC using Eq. 3.2 as it was utilized

by previous studies [Chan et al., 2008], for ECG based biometric recognition.

rcc =
1
M

N∑

i=1

x(i)× x̂(i) (3.2)

The ECG waveform can be comprised of multiple pulses, where the timing and shape of

the pulses provide the distinguishing characteristics of the waveform. Wavelets offer a means
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of representing a signal in a manner that simultaneously provides both time and frequency

information; hence, it would provide an appropriate representation of the ECG waveform.

Detail coefficients of the discrete wavelet transform λq,v; detail coefficient v from the qth

level of decomposition are computed for each signal. Using these coefficients, a distance is

computed as WDM.

The numerator of Eq. 3.3 is the absolute difference of the wavelet coefficients from the

recognition data and the enrolled data. The denominator is used to weigh the contribution of

this difference based upon the relative amplitude of the wavelet coefficient from the unknown

signal. The denominator also includes a threshold value (ξ) to avoid relatively small wavelet

coefficients from overemphasizing differences. For the WDIST measure, the person associated

with the enrolled data with the lowest WDIST is selected as a match. For this WDM, the

mother wavelet was chosen to be sym5 with a five-level decomposition.

WDIST =
Q∑

q=1

V∑

v=1

|γq,v
0 − γq,v

z |
max(|γq,v

0 |, ξ) (3.3)

We have also implemented similar ECG based biometric authentication with the intention

of using it as a metric for measuring successful ECG anonymization (for securing ECG), as

well as for ECG based authentication (i.e. ECG biometric). In [Chan et al., 2008], all the

three methods (PRD, CC and WDM) resulted in misclassifications. Therefore, our initial

thought was to implement a weighted approach involving all these three techniques.

First, determination of threshold values for PRD, CC and WDM for successful identifica-
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tion is required. To obtain these thresholds, 15 subjects were taken for ECG acquisition and

the ECGs were stored in an SQL Server database. These ECGs were used as templates (en-

rolled data) for biometric recognition. After one month, ECGs from the same subject group

were taken to be used as recognition data. Therefore, ECGs collected at different times

from the same subject (one to one matching) were used for the calculation of PRD, CC and

WDM. This particular experiment provided the knowledge of the threshold for successful

person identification. We call it thresholds for successful identification, since two ECGs from

the same person were utilised for the threshold calculation. Figure 3.2 shows the enrolment

ECG for the first five subjects. Figure 3.3 shows the recognition ECG for the same 5 subjects

acquired one month after the collection of their enrolment ECG. Table 3.1 shows the variance

of values for PRD, CC and WDM for different persons (same persons ECG were used for

calculation).

For all the cases, PRD were less than 13.3, CC greater than 0.0351 and WDM were less

than 5.4. Accounting calculation and experimentation errors PRD, CC and WDM values

for identification were determined to be less than 14, greater than 0.051 and less than 6,

respectively. Therefore, based on the experimentation result, we concluded that following

are the conditions for a person being unidentified:

• PRD >14 (since all PRD values were less than 13.3 during successful identification)

• CC <0.055 (since all CC values were greater than 0.051 for successful identification)

• WDM >6 (since all WDM values were less than 6)

After the successful discerning of the thresholds for identification, the condition was hard-
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Figure 3.2: The ECG Template (Enrolment ECG) for the First Five Subjects
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Table 3.1: Variance of Values for PRD, CC and WDM on Different Subjects. 1 = Enrolment
ECG and 2 = Recognition ECG. The Enrolment and Recognition ECGs are in Bytes.

Subject PRD CC WDM CL Length EECG1 RECG2

1 11.3 0.16449 5.576 73.49925 1511 16,273 14,611
2 13.116 0.072614 4.2031 70.4348 1701 16,554 16,555
3 12.387 0.1375 3.7496 73.46595 1488 14,153 14,090
4 13.194 0.059062 4.0596 70.89825 1314 12,783 12,838
5 13.109 0.068704 3.141 71.11985 1195 11,749 11,663

coded to develop a rule based ECG biometric system. The whole system was implemented

under .Net environment with MS Visual Studio 2005. Enrolment data were maintained in

SQL Server 2000. Biopac system was used for ECG acquisition (enrolment, verification and

identification). The software system presented in Figure 3.4 requires the location of the ECG

file containing recognition data (captured with biopac system). After locating the ECG file,

Identify Person option performs template matching (using PRD, CC and WDM) across the

SQL Server database (one to many). The best match (the profile of the identified) pulled

up from the database and presented by the system. Recognition data is also shown on the

screen. However, the recognition ECG data contains vital cardiovascular details [Kusumoto,

2009]. Therefore, only selected personnel with proper authorization will be able to view this

ECG signal. Otherwise, only noised ECG is shown. This noise obfuscation procedure has

been explained in the next chapter of this thesis.

3.6 Polynomial Distance Measurement (PDM)

The history of polynomial being used in signal processing tasks for filtering noisy signals,

interpolation of data and data compression started about 30 years ago [Hou and Andrews,

1978; Liou, 1976; Sandman and Sapir, 1988]. However, polynomials being used for ECG data
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Figure 3.3: Recognition ECG (for Verification or Identification) for the First Five Subjects

79 (October 31, 2011)



CHAPTER 3. ECG BASED BIOMETRIC AUTHENTICATION

Figure 3.4: Front End of the Implemented (Using .Net) ECG Biometric System

processing have a history of 15 years [Philips and Jonghe, 1992; Philips, 1993; 1996; Poli et al.,

1995; Linh et al., 2003]. Polynomials entered the arena of ECG signal processing with ECG

data compression [Philips and Jonghe, 1992; Philips, 1993], then ECG noise removal [Philips,

1996] and recently it has been bringing about promising solutions for heart beat recognition

problem [Poli et al., 1995; Linh et al., 2003]. Apart from that, polynomial has long been used

for biometric authentication purposes such as fingerprint based biometric authentications

[Nandakumar et al., 2007; Toh et al., 2004].

In this section, we propose a polynomial based ECG biometric detection. The application

Polynomial Distance Measurement (PDM) has never been explored for ECG based biometric,

according to the best of our knowledge. Apart for implementing a new approach for ECG

biometric, the proposed PDM model has the following contributions towards ECG biometric:

• Performs faster than many of the existing ECG biometric algorithms (12 times, 8.33
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times and 4.82 times faster than PRD, WDM and CC based methods [Chan et al.,

2008]).

• Possesses a reduced feature set resulting storage and transmission efficiency (6.5 times

for PRD/CC [Chan et al., 2008], 4.03 times for WDM [Chan et al., 2008], 1.74 times

for [Wubbeler et al., 2007])

• Provides higher feasibility for biometric authentication with lower acquisition time (only

2.49 s on average)

• Inherits reduced misclassification errors compared to previous models (as low as 0%)

• Shows a degree of robustness in dealing with abnormal beats that may occupy with

normal ECG signals

Apart from these contributions, the proposed PDM was deployed on a multilayer authen-

tication mechanism for mobile phone based telemonitoring to demonstrate its applicability

in realtime patient healthcare monitoring. This obviates the need to collect any additional

biometric data, since ECG, which is being monitored for cardiac health, is also used for

biometric authentication.

3.6.1 System & Method for PDM Biometric

In the proposed PDM based ECG biometric approach, ECG features are extracted before

obtaining the polynomial coefficients of the ECG features. The difference between the enrol-

ment and recognition coefficients is crucial for PDM Biometric. Mathematically, ECG can

be represented by Eq. 3.4.
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x(n) = {x(1), x(2), x(3), · · · , x(N)} (3.4)

where N is the length of the ECG signal. If x(n) is the enrolment ECG, recognition ECG

can be represented by Eq. 3.5.

x̂(n) = {x̂(1), x̂(2), x̂(3), · · · , x̂(N)} (3.5)

In our proposed PDM method, the complete ECG biometric is performed in three basic

steps:

ECG Feature Extraction

During both enrolment and recognition steps, the original ECG is processed first to detect

all the fiducial points, namely QRS complex, T wave and P wave (Step 2, Figure 3.5). This

detection of ECG features is performed by using our own ECG feature extraction technique,

which is presented in chapter 4. This ECG feature extraction method basically extracts the

different ECG features based on the similarity between the subset of ECG and an input

feature template by using Eq. 3.6. The input feature template, f(m), can be P wave, T

wave or QRS complex. M is the length of the feature template. Equation 3.6 is evaluated

in a window sliding fashion with j = 0 to (N −M) to ascertain the similarity vector, r(j),

presented in Eq. 3.7. During sliding, the local maximas above the similarity threshold
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(experimentally 92%) are stored as the possible candidates for ECG features (within feature

vectors). Therefore, final outcome of the feature extraction process is P vector, P (comprising

of all P waves), QRS vector, QRS (comprising of all QRS complexes) and T vector, T

(comprising of all T waves) (Eq. 3.8-3.10).

r(j) =

(
1−

√∑M
m=1 [x(m + j)− f(m)]2∑M

m=1 [x(m + j)− x̄]2

)
× 100 (3.6)

During this sliding process only the value of j is incremented and therefore, j = 1, 2, 3, , (N−

M)

r(j) = {r(1), r(2), r(3), · · · , r(N −M)} (3.7)

P = {p(1), p(2), p(3), · · · } (3.8)

QRS = {qrs(1), qrs(2), qrs(3), · · · } (3.9)

T = {t(1), t(2), t(3), · · · } (3.10)

Cardinalities of P, QRS and T are dependent on the acquisition time for both enrolment
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4 .  Coe f f i c i en t  
G e n e r a t i o n

Figure 3.5: Coefficient Generation Process with Polynomial

and recognition stage. However, these cardinalities are independent of the ECG sampling

frequency during data acquisition process.

Coefficient Generation for PDM

After the detection of the ECG features, those features (∀P, ∀QRS, ∀T ) are first differentiated

(Step 3, Figure 3.5) using Eq. 3.11.

y(l) = x(n)− x(n− 1) (3.11)
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where l = 1, 2, 3, , (M − 1). The first differenced values are then used to construct a

polynomial equation (approximated) (Step 4, Figure 3.5). In general, the approximated

polynomials take the form of Eq. 3.12.

y = C0 +
I∑

i=1

Ci × xi (3.12)

These accumulated coefficients create the coefficient sets for P wave, T wave and QRS

complex as seen in Eq. 3.13-3.15.

CP = CP
1 , CP

2 , CP
3 , · · · , CP

A (3.13)

CT = CT
1 , CT

2 , CT
3 , · · · , CT

B (3.14)

CQRS = CQRS
1 , CQRS

2 , CQRS
3 , · · · , CQRS

D (3.15)

where, A, B and D are the lengths of the coefficient sets for P wave, T wave and QRS

complex respectively. From the coefficient sets, the order of the polynomial can be obtained

by following:
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A = |CP | − 1, B = |CT | − 1, D = |CQRS | − 1 (3.16)

Therefore, the entire polynomial can be recreated just from the transmitted coefficient

to the other side. The heart vector is created with combining the coefficients generated from

the polynomial equations for P wave, T wave and QRS complex. Therefore, the heart vector

is the union of CP , CT and CQRS as shown in Eq. 3.17.

h = CP ∪ CT ∪ CQRS (3.17)

Similarly, recognition heart vector can be obtained from the recognition data and modeled

as

h̄ = C̄P ∪ C̄T ∪ ¯CQRS (3.18)

Polynomial Distance Measurement (PDM) Process

The coefficients of the polynomial equation are used as the biometric feature, which is com-

pared against the same (extracted features) for recognition data. At the beginning of the

proposed PDM method, the system extracts all the coefficients from both enrolment heart

vector, h and recognition heart vector, h̄. Then, the distances from the coefficients are
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Figure 3.6: Polynomial Distance Measurement

measured using Eq. 3.19-3.21.

Whenever, this distance (calculated from both the enrolment data and recognition data)

lies within a set threshold, person identification is thought to be successful.

∆P =
A∑

i=0

∣∣CP
i − C̄P

i

∣∣
CP

i

(3.19)

∆T =
B∑

i=0

∣∣CT
i − C̄T

i

∣∣
CT

i

(3.20)

∆QRS =
D∑

i=0

∣∣∣CQRS
i − C̄QRS

i

∣∣∣
CQRS

i

(3.21)

In an ideal case, for an identity, Sk, following condition should be met: min(∆P (k)) ∧

min(∆P (k))∧min(∆P (k))), where, k = 1, 2, 3, · · · ,K, K + 1. SK+1 simply means no identity

could be matched. Thus, the proposed ECG biometric model is based on Polynomial Distance

Measurement (PDM) between the enrolment data and recognition data.
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3.6.2 Experimentation & Results for PDM

A total of 25 healthy subjects were employed for validation of the proposed biometric system.

GE Mac 5500 ST stress testing ECG acquisition device was used for data acquisition purposes.

This device is equipped with automatic noise cancellation feature, to provide uniformity in

the recorded data. Using the on screen menu the data was saved on to an SD card, in

XML format. The acquired ECG files were then transferred to the computer for further

analysis. However, to decode the GE proprietary format of ECG to computer readable

ECG format, a .Net data conversion software were written. The conversion software only

selected lead I data and converted it to binary format. Then from the binary format, data

was read in little Endian format. Finally, the formatted data were multiplied with 4.88 to

retrieve amplitude (in millivolts) for the acquired ECG samples. Three healthy beats were

taken for pre-processing and feature extraction (on average), during both enrolment and

recognition. Figure 3.7, 3.8, 3.9 and 3.10 show the approximated polynomials created during

the enrolment stage. After obtaining data at a later recognition phase, the polynomials were

created again. These figures make it apparent that inter person polynomials for the ECG

features are different. Table 3.2, 3.3 and 3.4 also reflexes the same fact that the coefficients

derived from different persons for P wave, T wave and QRS complex are dissimilar, which is

the basis of the proposed PDM approach. Table 3.5, 3.6 and 3.7 reflects the crucial fact that

human identification is possible by matching his/her coefficients obtained at different times.

The distances were measured, using Eqs. 3.19, 3.20 and 3.21. For 23 cases out of total 25

subjects, the 85% of the recognition coefficients lied within coefficient boundaries provided

by 95% confidence level curves, which was calculated from the approximated enrolment
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Table 3.2: Dissimilarity of Coefficients for P Wave Across 5 Subjects

Coef. Subject 1 Subject 2 Subject 3 Subject 4 Subject 5
C1 -1.327e-006 -7.586e-007 -4.975e-013 -1.955e-012 1.051e-012
C2 8.751e-005 4.989e-005 9.305e-011 4.172e-010 -2.383e-010
C3 -0.001955 -0.001101 -6.783e-009 -3.699e-008 2.25e-008
C4 0.01679 0.008849 2.336e-007 1.767e-006 -1.146e-006
C5 -0.04484 -0.02414 -3.245e-006 -4.932e-005 3.417e-005
C6 0.02343 0.09011 -1.589e-005 0.0008172 -0.0006048
C7 - - 0.0009748 -0.007817 0.006164
C8 - - -0.009851 0.04007 -0.03322
C9 - - 0.03505 -0.09481 0.07834
C10 - - -0.02285 0.08755 -0.04594

Table 3.3: Dissimilarity of Coefficients for T Wave Across 5 Subjects

Coef. Subject 1 Subject 2 Subject 3 Subject 4 Subject 5
C1 2.604e-011 2.716e-010 -6.759e-012 1.842e-016 3.619e-016
C2 -4.502e-009 -4.94e-008 2.605e-009 -6.463e-014 -1.94e-013
C3 3.093e-007 3.48e-006 -2.603e-007 8.639e-012 4.108e-011
C4 -1.074e-005 -0.000119 6.382e-006 -5.641e-010 -4.505e-009
C5 0.0002 0.002031 0.0001737 2.274e-008 2.794e-007
C6 -0.001996 -0.01618 -0.00717 -1.003e-006 -9.997e-006
C7 0.01056 0.0529 0.06448 4.516e-005 0.0002012
C8 -0.02643 -0.02168 - -0.001094 -0.002081
C9 0.04858 - - 0.01083 0.008961
C10 - - - -0.02014 -0.002099

polynomials.

During our experimentation, we found that QRS complex inherits the most uniqueness,

which is required for successful person identification. For the successful candidate (recognized

person), the value of distance was always less than 4.69. However, this distance for QRS

complex would soar as high as 51 for wrong person. T wave showed moderate level of

uniqueness for person identification, which can contribute towards higher confidence level

for person identification with QRS complex only. However, P wave possessed the lowest

level of uniqueness, while varying the most (4 to 76). Our conjecture for this lower level of
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Figure 3.7: Polynomial Creation for Subject 5 (for P Wave, T Wave and QRS Complex)
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Figure 3.8: Polynomial Creation for Subject 10 (for P Wave, T Wave and QRS Complex).
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Figure 3.9: Polynomial Creation for Subject 15 (for P Wave, T Wave and QRS Complex).
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Figure 3.10: Polynomial Creation for Subject 20 (for P Wave, T Wave and QRS Complex).
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Table 3.4: Dissimilarity of Coefficients FOR QRS Complex Across 5 Subjects

Coef. Subject 1 Subject 2 Subject 3 Subject 4 Subject 5
C1 -6.103e-009 -4.016e-008 1.593e-007 -1.858e-010 -9.457e-014
C2 7.831e-007 4.081e-006 -1.287e-005 2.518e-008 3.318e-011
C3 -4.039e-005 -0.0001724 0.0003861 -1.338e-006 -4.829e-009
C4 0.001066 0.003916 -0.005221 3.439e-005 3.778e-007
C5 -0.01513 -0.05185 0.03069 -0.0003999 -1.723e-005
C6 0.1124 0.4063 -0.07337 0.0006271 0.0004647
C7 -0.4075 -1.845 0.1677 0.02647 -0.007194
C8 0.7095 4.597 -0.01157 -0.1988 0.05886
C9 -0.397 -5.572 - 0.4743 -0.2125
C10 - - - -0.337 0.2189

Table 3.5: Similarity of P Wave Coefficients for an Individual Across all the ECG Features

Coef. Upper Boundary Instance 1 Instance 2 Instance 3 Lower Boundary
C1 -1.836e-006 -3.387e-006 -3.452e-006 -9.171e-007 -8.181e-007
C2 5.812e-005 0.0002062 0.000211 6.383e-005 0.0001169
C3 -0.002574 -0.00441 -0.004527 -0.001475 -0.001336
C4 0.01103 0.03852 0.03975 0.013 0.02255
C5 -0.06743 -0.1199 -0.1251 -0.03635 -0.02225
C6 -0.004528 0.08586 0.08779 0.02507 0.05138

Table 3.6: Similarity of T Wave Coefficients for an Individual Across all the ECG Features

Coef. Upper Boundary Instance 1 Instance 2 Instance 3 Lower Boundary
C1 1.889e-011 2.578e-011 2.381e-011 1.961e-011 3.319e-011
C2 -5.82e-009 -4.434e-009 -4.031e-009 -3.199e-009 -3.184e-009
C3 2.093e-007 3.039e-007 2.697e-007 1.996e-007 4.094e-007
C4 -1.478e-005 -1.06e-005 -9.047e-006 -5.774e-006 -6.708e-006
C5 0.000107 0.0002017 0.0001606 6.972e-005 0.0002929
C6 -0.003221 -0.002141 -0.001504 -2.109e-005 -0.0007716
C7 0.001847 0.01287 0.007369 -0.005691 0.01927
C8 -0.05548 -0.03952 -0.01663 0.03598 0.002614
C9 0.01628 0.0701 0.03941 -0.03239 0.08089
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Table 3.7: Similarity of QRS Complex Coefficients for an Individual Across all the ECG
Features

Coef. Upper Boundary Instance 1 Instance 2 Instance 3 Lower Boundary
C1 -6.829e-009 -6.506e-009 -6.005e-009 -5.661e-009 -5.376e-009
C2 6.929e-007 8.326e-007 7.582e-007 7.343e-007 8.733e-007
C3 -4.502e-005 -4.284e-005 -3.839e-005 -3.828e-005 -3.577e-005
C4 0.0009393 0.001128 0.0009902 0.00102 0.001192
C5 -0.01711 -0.01603 -0.01365 -0.01464 -0.01316
C6 0.09465 0.1197 0.09703 0.1102 0.1302
C7 -0.4949 -0.4391 -0.3304 -0.4067 -0.3201
C8 0.5052 0.7659 0.5594 0.7278 0.9137
C9 -0.5597 -0.4117 -0.3208 -0.4026 -0.2343

uniqueness by P is, presence of noise. Since P wave possess the lowest amplitude of all the

ECG features, it gets easily corrupted with noises (such as, muscle artifacts, motion artifacts

and instrumentation artifacts arising from loose conductivity). With proper measurements,

the effects of noises and artifacts can be removed, providing better uniqueness for P wave.

When QRS complex is not prioritized for distance measurement, misclassification oc-

curred while computing the minimum values of distances (Eq. 3.18, 3.19 and 3.20). For this

specific case of misclassification, which is shown in Figure 3.12, PDM distances of P and

T waves for subject 25 were minimum while performing identification for subject 16. How-

ever, subjects 16s own PDM distance for QRS wave was minimum, while performing that

identification. As a result, when the minimum values of distances are averaged across all

ECG features (∆P , ∆T and ∆QRS) a misclassification took place. As discussed earlier, QRS

distance measurements for all the subjects shows maximum dissimilarity. Hence, obtaining

Algorithm 1 protects misclassification for subject 16 as shown in Figure 3.12.

Since a person might have abnormal beats, such as ectopic beat, which can occur for

any healthy beings at random points, only normal beats should be taken for enrolment data,
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Figure 3.11: Occurrence of Ectopic Beat in Healthy Subject

as random occurrence of ectopic beats is not an ECG feature for a healthy subject. As

an example, Figure 3.11 shows an occurrence of ectopic beat for subject 22. This ectopic

beat occurred during the acquisition of the enrolment data. However, for all the other cases

of ECG acquisition from the same subject there were no more occurrence of ectopic beat.

The higher PDM distance between the enrolment coefficients from the ectopic beat and the

recognition coefficients resulted in misclassification. Therefore, to overcome misclassifications

arising from ectopic beats, algorithm 2 was adopted.

Our experimentation results uphold the polynomial distance measurement as a highly

accurate ECG based person identification when both algorithm 1 and algorithm 2 are em-

ployed for the proposed PDM measurement. Figure 3.13 show a successful candidate for

identification. This figure shows, subject 12 is identifiable because of lower distance, ∆f for

P wave, T wave and QRS complex.
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Figure 3.12: Misclassification Resulting from not Prioritizing the Distance Measurement

Figure 3.13: Successful Identification of Subject 12, using PDM + Algorithm 1 + Algorithm
2

Algorithm 1: Distance Measurement based on Wave Priority
select Dk based on min(∆QRS)
if k > 1 then

select Dk based on min(∆T )
if k > 1

select Dk based on min(∆P )
end if

end if
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Algorithm 2: Abnormal Beat Cancellation
i = 0
Acquire beat i
i + +
Acquire beat i
i + +
compute ∆f for beat i− 1 and beat i
while (∆f > threshold)

Acquire beat i
i + +
compute ∆f for beat i− 1 and beat i

end while
calculate heart vector h from average (beat i− 1, beat i)

3.6.3 An Implementation Scenario

In previous research [Yu et al., 2008], multiple factor pertaining to authentication mechanism

was outlined. They are knowledge factor, possession factor and biometric factor. Knowledge

factor, which is conventional password / PIN number based security scheme, is often under

threat when password is lost or when password is hacked with heuristic brute force attack.

Possession factor, where token or smart card or RFID is utilized, can also be stolen and

captured by an impostor, who then can gain access to a secured facility. However, biometric

based security provides direct binding between the user and his trait. Unlike knowledge and

possession based security scheme, biometric can be continuously monitored without active

user intervention. Therefore, it can be ideally suited for mobile phone based cardiovascular

condition monitoring. In that particular scenario, cardiovascular data is acquired by minia-

ture heart monitor (e.g. Alive Heart Monitor). Then the captured ECG data is transmitted

to the mobile phone via Bluetooth. Mobile phone then transmits the data securely to an

authentication server, where polynomial coefficients are calculated and with PDM user is
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identified. After identification, the user is allowed to access the secured medical facility. In

fact, incorporation of knowledge factor, possession factor and biometric factor can be ideal

for a highly secured mobile phone based telemonitoring solution (as seen in Figure 3.14).

Java 2 Micro Edition (J2ME) is used program this secured solution [Sufi, 2007; Yuan, c2004].

Possession based security was implemented with near field communication (NFC) toolkit

offered by Nexperts [NFC, Accessed 2008; Nex, Accessed 2008] and JSR-257 (Contactless

Communication API) [JCP, Accessed 2008]. Alive Heart Monitor [Ali, Accessed 2009] was

communicated with the mobile phone via Bluetooth with JSR-82 (Bluetooth API) [JCP,

Accessed 2008]. The ECG segments were transmitted to the authentication server with Java

Wireless Messaging API 2.0, JSR 205 [JCP, Accessed 2008]. The authentication message

was also transmitted to the user with HTTP.

Hence, Figure 3.14 reflects the fact that cardiovascular patients are initially authenticated

with their username and password. Then they are asked to provide a form of possession fac-

tor based authentication (e.g. Smart Card, NFC Card, RFID etc.). Once the patients are

identified with their possession factor, their ECG is collected to perform the proposed PDM

for ECG based biometric authentication. Thus, Figure 3.14 is an ideal implementation sce-

nario for highly secured cardiovascular patient authentication system that employs knowledge

factor, possession factor and biometric factor.

The crucial benefit of using ECG based biometric authentication for this particular

scenario is no further requirement for a separate biometric device. The user can be re-

authenticated intermittently, while cardiovascular monitoring is in progress. Application of

multimodal biometric security scheme using mobile phones camera (JSR 135: Mobile Media
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Figure 3.14: PDM method for ECG based biometric authentication on a mobile phone based
cardiovascular condition monitoring scenario (the picture within the User Authenticated
screen has been intentionally obfuscated for privacy reasons

API [JCP, Accessed 2008]) with Alive Heart Monitor can also be performed, which is one of

our topic for future research.

3.7 Direct Approach on Compressed ECG

Adoption of compression technology is often required for wireless cardiovascular monitoring,

due to the enormous size of ECG signal and limited bandwidth of Internet. However, com-

pressed ECG must be decompressed before performing human identification using present

research on ECG based biometric techniques. This additional step of decompression creates

a significant processing delay for identification task. This becomes an obvious burden on a

system, if this needs to be done for a trillion of compressed ECG per hour by the hospital.
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Even though the hospital might be able to come up with an expensive infrastructure to tame

the exuberant processing, for small intermediate nodes in a multihop network identification

preceded by decompression is confronting. In this section, we report a technique by which

person can be identified directly from their compressed ECG. This technique completely

obviates the step of decompression and therefore upholds biometric identification as less in-

timidating towards the small nodes in a multihop network. The biometric template created

by this new technique is lower in size compared to the existing ECG based biometrics as

well as other forms of biometrics like face, finger, retina etc (up to 8302 times lower than

face template and 9 times lower than existing ECG based biometric template). Lower size of

the template substantially reduces the one to many matching time for biometric recognition,

resulting in a faster biometric authentication mechanism.

Therefore, in a mobile phone based cardiovascular patient monitoring scenario [Sufi and

Khalil, 2008b; Lee et al., 2007; Car, Accessed 2009; Hung and Zhang, 2003], where ECG

is transmitted in compressed format, it is possible for the intermediate nodes to identify

the patient even without decompressing the ECG signal. Every node within the multihop

network have their own listing of routing information. After identifying the patient from

their compressed ECG, the route listing is pulled up internally by these nodes. Based on the

routing information the compressed ECG reaches the correct destination. Apart from patient

identification by the intermediate routing nodes, the hospital (which is the final destination

for these compressed ECG) similarly identifies the patient from their compressed ECG and

provides appropriate cardiovascular monitoring facility to the subscribed patient.

101 (October 31, 2011)



CHAPTER 3. ECG BASED BIOMETRIC AUTHENTICATION

3.7.1 System Design for Direct Approach on Compressed ECG

The compression algorithm described in Chapter 2 represents an ECG signal losslessly.

Therefore, the encoding function, ε(.) transforms the ECG signal, Xn to a compressed ECG,

Cr (Eq. 3.22). As the ECG features set, F is a subset of ECG signal Xn (Eq. 3.23), there-

fore, feature waves are subset of encoded ECG Cr (Eq. 3.24). Innovative algorithm can be

designed to reveal these encoded ECG feature set (that represents original ECG feature set)

and then perform matching between the enrolment and recognition data. This is the core

theory behind using encoded ECG to identify a person.

ε(Xn) = Cr (3.22)

F ⊂ Xn (3.23)

F ⊂ Cr (3.24)

Examples will clarify the theory behind person identification with compressed ECG. Fig-

ure 3.15 to 3.21 show ECG signals from three different individuals. All these ECG signals

were collected from MIT BIH Normal Sinus Rhythm Database (known as nsrdb) [Phy, Ac-

cessed 2009]. The sampling frequency of the ECG samples used for our experiment (from

NSRDB) was 128 Hz with 10 bit resolution. Figures 3.15 to 3.21 basically illustrate the
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Figure 3.15: An ECG Segment of MIT BIH Normal Sinus Rhythm Database (nsrdb) Entry
no. 16420. X Axis Shows the Number of Samples and Y Axis Shows the Corresponding ECG
Amplitude in mV (millivolt) Range
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Figure 3.16: An ECG Segment of MIT BIH Normal Sinus Rhythm Database (nsrdb) Entry
no. 16773. X Axis Shows the Number of Samples and Y Axis Shows the Corresponding ECG
Amplitude in mV (millivolt) Range
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Figure 3.17: An ECG Segment of MIT BIH Normal Sinus Rhythm Database (nsrdb) Entry
no. 16786. X Axis Shows the Number of Samples and Y Axis Shows the Corresponding ECG
Amplitude in mV (millivolt) Range
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Figure 3.18: An ECG Segment of MIT BIH Normal Sinus Rhythm Database (nsrdb) Entry
no. 16795. X Axis Shows the Number of Samples and Y Axis Shows the Corresponding ECG
Amplitude in mV (millivolt) Range
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Figure 3.19: An ECG Segment of MIT BIH Normal Sinus Rhythm Database (nsrdb) Entry
no. 17052. X Axis Shows the Number of Samples and Y Axis Shows the Corresponding ECG
Amplitude in mV (millivolt) Range
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Figure 3.20: An ECG Segment of MIT BIH Normal Sinus Rhythm Database (nsrdb) Entry
no. 17453. X Axis Shows the Number of Samples and Y Axis Shows the Corresponding ECG
Amplitude in mV (millivolt) Range
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Figure 3.21: An ECG Segment of MIT BIH Normal Sinus Rhythm Database (nsrdb) Entry
no. 16265 (used as Enrolment Data). X Axis Shows the Number of Samples and Y Axis
Shows the Corresponding ECG Amplitude in mV (millivolt) Range
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Figure 3.22: An ECG Segment of MIT BIH Normal Sinus Rhythm Database (nsrdb) Entry
no. 16265 (used as Recognition Data). X Axis Shows the Number of Samples and Y Axis
Shows the Corresponding ECG Amplitude in mV (millivolt) Range
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Figure 3.23: Two Overlapped ECG Segments of MIT BIH Normal Sinus Rhythm Database
(nsrdb) Entry No. 16265. X Axis Shows the Number of Samples and Y Axis Shows the
Corresponding ECG Amplitude in mV (millivolt) Range
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Figure 3.24: Compressed ECG Segment of nsrdb Entry 16420 (of Figure 3.15)

Figure 3.25: Compressed ECG Segment of nsrdb Entry 16773 (of Figure 3.16)

fact that there are minute difference in the ECG signals collected from different individu-

als. These differences are mostly obvious within the features waves (P wave, QRS complex

and T wave). Previous research identified the feature waves using different feature detection

algorithms and performed biometric identification based on the ECG features. However,

for fast and efficient transmission of ECG signals in telecardiology services, researchers are

increasingly using compressed ECG. As shown in Eq. 3.22 - 3.24, compressed ECGs reveals

ECG features. Extracting features from compressed ECG is generally faster than feature

extraction from plain text (uncompressed) ECG, as minimal characters are read from com-

pressed ECG. Therefore, faster cardiovascular diagnosis has recently been established based

on compressed ECG [Sufi et al., 2009a]. Within this section, we also utilize compressed ECG,

however to fulfil a different objective of patient identification. Similar to faster cardiovas-
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Figure 3.26: Character Frequency of Compressed ECG Segment in Figure 3.15. X Axis Shows
the Number of Encoding Characters (157 Characters in Total), Y Axis Shows the Correspond-
ing Frequency (or the Number of Occurrence for that Character within a Compressed ECG
Packet).

cular diagnosis from compressed ECG, patient identification from compressed ECG is faster

because of minimal data length (in compressed ECG) and processing. Figures 3.24 and 3.25

show the compressed ECG of ECG segments of Figure 3.15 and Figure 3.16 respectively.

In a telecardiology scenario, while the ECG segments are being routed through different

nodes, each node will quickly calculate the character frequency of the compressed ECG. This

tally of character frequency is an inexpensive process and therefore can be easily performed

by the limited resources of the nodes. Our experiments reveal the fact that for each individual

the distribution of encoding character set (from the compressed ECG) is different. This fact

can be observed from Figure 3.26 to Figure 3.28, where X axis and Y axis correspond to

individual characters and their frequency counts respectively.

However, for a particular person, the distribution of character frequency is identified (as

seen in Figure 3.28), even if their original ECG may look different at different point in time

(as seen in Figure 3.23).
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Figure 3.27: Character Frequency of Compressed ECG Segment in Figure 3.16. X Axis Shows
the Number of Encoding Characters (157 Characters in Total), Y Axis Shows the Correspond-
ing Frequency (or the Number of Occurrence for that Character within a Compressed ECG
Packet).
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Figure 3.28: Overlap of Character Frequency of Compressed ECG Segments in Figure 3.21
and 3.22. X Axis Shows the Number of Encoding Characters (157 Characters in Total), Y
Axis Shows the Corresponding Frequency (or the Number of Occurrence for that Character
within a Compressed ECG Packet).
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3.7.2 An Algorithm for Biometric Feature Creation

Based on the fact that character frequency distribution from the compressed ECG taken

at two different times (enrolment and recognition data for biometric) for a single person is

similar, we can write an algorithm for person identification with compressed ECG. How-

ever, before performing the matching, we need to generate a shortened feature character

set that represents a person. Selection of feature set is crucial for biometric identification,

as optimal selection of feature set results in faster and accurate processing of identification

task. Algorithm 3 establishes a process that generates individual features from their com-

pressed ECG. The algorithm first calculates the character frequency followed by sorting of

the character frequency. After the sorting, the first l number of frequent characters can be

collected. This ordered (sequential) character set (referred to as Λ in algorithm 3) is a biomet-

ric feature that uniquely identifies a person. The two dimensional feature set, Λ =




C

A




contains both the selected character, C and their respective frequencies, A. The character

set, C = C1, C2, C3, · · · , CN ranges from 1 to N (Length). Λ for different entries are clearly

different according to our experiments on random MIT BIH ECG entries (as it is seen for

entry 16420, 16773, 16786, 16795, 17052, 17453 and 16265). On the other hand, features

created for the same entry (same person) at different point in time are similar. As we can

observe this similarity for entry 16265, Λ16265E is used as enrolment data and Λ16265R is used

as recognition data. This difference in biometric feature set across different individuals and

the similarity of feature set for the same individual establish the basis for person identifica-

tion based on compressed ECG. Figure 3.29 shows the distance value, ψ is minimum when
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enrolment and recognition ECG templates of 16265 are calculated using Eq. 3.25. Similarly,

figure 3.30 shows correct matching (with minimum ψ value) of entry 16795.

ψ =
∑l

n=1(A
E
n −AR

n )2

l
(3.25)

AE
l and AR

l are the frequency counts of Enrolment and Recognition (respectively) for lth

template parameter. Table 3.8 shows the 12 different template parameter for enrolment data

of 16265. According to our experimentation, all the template attributes varies greatly (Table

3.8), except for the case when same person’s enrolment and recognition data are used (as

shown in Figure 3.29). It should be mentioned that one person’s ECG template parameter

may not be present in another person’s selected parameter. In those cases, the values of the

missing parameters are thought to be zero (during the calculation of Eq. 3.25). Experimen-

tation was performed using the 18 entries of MIT BIH of NSRDB [Phy, Accessed 2009] with

no cases of misclassification. NSRDB was chosen for our experimentation, since this data-

base contains normal ECG signals. Most of the other MIT BIH database contains abnormal

ECG (generally, used for validating cardiovascular abnormality detection algorithms [Hamil-

ton and Tompkins, 1986; Friesen et al., 1990]). Abnormal ECG signals (from other MIT BIH

database) has almost never been used in other existing ECG based biometric systems [Sufi

et al., 2010a; Khalil and Sufi, 2008a; Sufi and Khalil, 2008a; Sufi et al., 2008e; 2009b; Biel

et al., 2001; Chan et al., 2008; Wubbeler et al., 2007; Poon et al., 2006; Israel et al., 2005;

Irvine et al., 2001; Bui and Hatzinakos, 2008; Kyoso and Uchiyama, 2001; Kyoso, 2003; Shen
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Λ16420 =
(

$ ] @ ; Û æ 50to100 è / p 0to50 ?
62 59 58 52 52 40 39 32 32 27 27 26

)

Λ16773 =
(

p Û 0to50 @ r æ ] t 50to100 ; l n
67 54 44 43 42 39 38 34 31 28 27 27

)

Λ16786 =
(

Û p $ æ r @ ] t ù 50to100 è É
81 72 67 50 42 35 34 31 30 30 28 26

)

Λ16795 =
(

p r Û t j l v h n x 50to100 f
124 85 80 74 66 60 57 57 52 48 46 36

)

Λ17052 =
(

Û ] ; $ æ è Í p Ï ? / É
82 63 48 46 41 37 33 32 32 32 28 26

)

Λ17453 =
(

$ ] ; @ æ 150to200 / 0to50 Û è 50to100 p
74 56 56 55 43 28 27 25 23 23 23 22

)

Λ16265E =
(

p Û r j h t l 0to50 f n v 50− 100
114 75 73 57 57 49 45 44 34 32 29 28

)

Λ16265R =
(

p Û r j t h l 0to50 n 50to100 f v
110 84 54 51 44 44 42 38 36 30 26 25

)

et al., 2002; Shen, 2005; Shen and Tompkins, 2005; Wang et al., 2008; Plataniotis et al., 2006;

Kanade and Jain, 2005]. To obtain a more accurate evaluation of the algorithm presented

within this section, experimentation needs to be carried out on a substantially larger sample

(different ECG segments from different persons) size. This could be done in future, when

MIT-BIH accommodates more normal ECG samples (at present, there are only 18 entries

available in NSRDB [Phy, Accessed 2009]).

3.7.3 An Algorithm for Biometric Feature Matching

The compressed ECG feature Λ has three major characteristics: character set, order of

character set and the frequency of the individual characters.

• Character Set: Character set for each feature set representing a particular individual

shows a degree of uniqueness. As an example, in the case of entry 17052, character Í

and Ï is not present in entries 16420, 16773, 16786, 16795, 17052, 17453, 16265 (both
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Table 3.8: Standard Deviations of the ECG Biometric Template Values (Templates for
Λ16265E)

Attribute Value Range
p 64.86± 40.70
Û 65.14± 23.04
r 31.86± 33.08
j 16.71± 28.87
h 14.43± 24.93
t 26.14± 28.12
l 18.43± 24.89

0to50 19.14± 19.01
f 8.86± 15.4
n 12.57± 21.96
v 11.71± 22.04

50-100 28.43± 14.55

Algorithm 3: Feature Extraction from Compressed ECG
//Notation Description:
//F holds the feature set comprising of
compressed character.
Count the frequency of the encoding characters
from compressed ECG

Γ =
(

C1 C2 C3 ... CN

A1 A2 A3 ... AN

)

Sort Γ based on the frequency Count A
in a descending order

Υ =
(

Cp Cq Cr ... Cs

Ap Aq Ar ... As

)

Where,Ap ≥ Aq ≥ Ar ≥ As

Create feature template Λ by taking
first l number of entries from Υ

Λ =
(

Cp Cq Cr ... Cl

Ap Aq Ar ... Al

)
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in enrolment and recognition). Therefore, existence of some characters reduces the

domain of similar ECGs (for biometric matching purpose). In most of the cases, the

enrolment data is found within this limited set of similar ECGs.

• Order of Characters: Once a limited subset of ECG templates is established, repre-

senting the possible candidates for successful biometric match, ordering of the character

set is considered. It is obvious from the enrolment and recognition data of entry 16265

that for the first 7 characters the sequence (or ordering) of the characters are nearly the

same, with an exception of characters t and h. For this example, these two characters

(t and j), just swapped their corresponding positions. Higher matching of character

sequence also reduces the number of candidates for biometric matching. When this

candidate subset reduces to one, this means the completion of human identification

task.

• Character frequency: If the previous steps of character set and order of characters

still leaves few candidates, then the frequency of each characters are matched. For the

ECG pairs, having closer match according to the character frequency is given preference

to be selected as biometric recognition / identification.

3.7.4 Discussion

Here, we reported an algorithm for selecting biometric feature template from compressed

ECG and a methodology for performing matching. The ECG biometric technique presented

here is particularly useful for mobile phone based cardiovascular monitoring in the following

respects (as seen from Figure 3.31).
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Figure 3.29: Matching Enrolment Data of 16265, 17453, 17052, 16795, 16786, 16773, 16420
with Recognition Data of 16265. X Axis Represents Different Individual and Y Axis Repre-
sents ψ Value of Equation 3.25. Matching Occurs with the Minimum Value of ψ.

Figure 3.30: Matching Enrolment Data of 16265, 17453, 17052, 16795, 16786, 16773, 16420
with Recognition Data of 16795. X Axis Represents Different Individual and Y Axis Repre-
sents ψ Value of Equation 3.25. Matching Occurs with the Minimum Value of ψ.
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• Intermediate Nodes: The template (feature) matching algorithm is simple enough

to be implemented within the limited computational resources of an intermediate node

that is responsible for relaying the compressed ECG within a multihop network. By

successfully identifying the person from compressed ECG, the intermediate node knows

the destination of that compressed ECG packet, provided that the intermediate node

possess the knowledge of subscriber listing for different cardiovascular monitoring ser-

vices (or hospitals).

• Hospital or Cardiovascular Monitoring Service Provider: The monitoring fa-

cility can also identify the person from the compressed ECG sent to them. The primary

goal of identification is to check whether that person is actually subscribed for the fa-

cility. If the person is found to be a valid subscriber, then the list of subscribed services

for that person is retrieved. This biometric authentication and authorization is made

possible by ECG biometric from compressed ECG.

Our direct approach on compressed ECG based biometric technique is the first of its

kind for ECG based biometric authentication. This technique has several advantages over

existing ECG based biometric authentication. This technique is fast and efficient (this will

be discussed further in Performance Comparison section of this chapter). Being convinced

with this initial assessment of an ECG biometric technique from compressed ECG, further

research was conducted for developing a more robust biometric method with data mining

techniques.
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Patient A Patient B

Compressed ECG transmission
to multihop network

Multihop network nodes
utilizes ECG biometric and
knows which patient the 
data is coming from and
where to route the message

ABC Hospital XYZ Hospital

Hospital uses ECG based biometric from compressed data and knows 
what type of facilities the patient should receive from the hospital

Figure 3.31: ECG based Biometric (from Compressed ECG) being used by the Multihop
Network Node as well as The Hospital
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3.8 Data Mining Methods on Compressed ECG

This section proposes a novel method of ECG biometric directly form compressed ECG

harnessing data mining (DM) techniques like attribute selection and clustering. The template

size (and also the matching time) is up to 8533 times lower than face template, 61 times lower

than existing PRD ECG based biometric template and 9 times smaller than Polynomial

Distance Measurement (PDM) based ECG biometric. This improved method of compressed

ECG biometric has even lower template size compared with our previous direct method on

compressed ECG biometric. Lower size of the template substantially reduces the one to

many matching time for biometric recognition, resulting in a faster biometric authentication

mechanism and ECG stream verification directly from compressed ECG.

In wireless body sensor networks (BSN), ECG and other physiological data forwarded by

one node to the other also need to be verified and authenticated to thwart against intruder

attacks. Incorporation of biometric based ECG packets validation and patient authentication

in these scenarios basically enable secured remote monitoring for the patients.

Here we reported a technique of patient authentication from compressed ECG using data

mining techniques. This ECG biometric directly reads the compressed ECG to obtain unique

features that can identify an individual using Expectation Maximization (EM) based clus-

tering. As the lengths of the compressed ECG segments are substantially smaller than plain

text ECG, minimal reading operations are performed for biometric authentication compared

to the existing ECG based biometrics (as they need to read larger plain ECG packets). Also,

the biometric templates created from the compressed ECG are substantially reduced in size

(61 times smaller than PRD based ECG biometric [Chan et al., 2008], 38 times smaller than

117 (October 31, 2011)



CHAPTER 3. ECG BASED BIOMETRIC AUTHENTICATION

WDM [Chan et al., 2008], 16 times smaller than ECG biometric of [Wubbeler et al., 2007]

and 9 times smaller than PDM based ECG biometric [Sufi et al., 2010a; Sufi and Khalil,

2008a]). Reduced template size only means faster biometric authentication and processing of

data validation, which makes way for faster diagnosis and treatment of emergency cardiac pa-

tients in wireless telecardiology applications. In addition, the proposed ECG biometric from

compressed ECG packets is computationally inexpensive for authentication in telecardiology

applications, as the requirement of decompression step is completely obviated.

As seen from Figure 3.32, in an automated CVD detection mechanism, a patient can sub-

scribe to a monitoring facility for instant diagnosis service, onsite cardiologist visit, immediate

ambulance call, specialized treatment facility etc. To know what services the patient is sub-

scribed for can only be ascertained after successful identification of the patient, for which

ECG biometric provides automated identification, as well as a continuous validation of ECG

data stream. It should be noted that conventional patient identification mechanisms using

user name and password ([Blount et. al., 2007]) might not be ideal for patients having car-

diac anomaly, as abnormal rhythm can have direct impact on patients autonomous nervous

system (ANS) [Kumar et al., 2007]. Therefore, during a time of cardiac arrest ANS might

prevent the CVD patients to correctly type their username and password as it was done by

previous researchers [Blount et. al., 2007]. Moreover, ECG based biometric authentication

is more secured than user name and password based authentication, since it depicts liveness.

Apart from automating the patient authentication and minimizing delays in treatment,

the compressed ECG based biometric can be useful in the following three areas:

• Authentication between the ECG Acquisition Device and the Patient’s Mobile Phone:
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ECG Acquisition
Device

Patient’s mobile
phone compresses
and encrypts the
ECG packets

ECG acquisition device 
to mobile communication
via Bluetooth, NFC, Zigbee
or Wifi

Monitoring service / hospital employs
Data Mining Agent to Identify Patients,
and provide diagnosis / rescue services

After identifying the patient, 
subscribed services for that 
particular patient is provided

Patient’s mobile phone transmits
the ECG packets via HTTP, MMS or
SMS to the hospital / monitoring 
service

Patient Identfication (Authentication)
& Authorization

Figure 3.32: Architecture of the Data Mining based Patient Identification from Compressed
ECG

The communication between the ECG acquisition device and patient’s mobile phone

can be made secured with compressed ECG based biometric presented within this

section. The patient’s mobile phone should only allow patient’s ECG packets to be

transmitted to the hospital.

• Authentication within the Routing Nodes:

After the ECG packets are released from the patient’s mobile phone, they are chan-

nelled from one or more routing node towards the appropriate hospital. Implementing

compressed ECG based biometric, these nodes can identify the valid ECG packets com-

ing from authenticated sources (patients). Therefore, DDoS attack can be prevented by

the routing nodes, by discarding all the ECG packets stemming from unauthenticated

sources.

• Authentication of Patient in the Hospital:
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Figure 3.33: A Normal ECG Segment of a Monitored Patient at Instance A (ECG Obtained
from CU1 Entry MIT BiH CU Ventricular Tachyarrythmia Database) [Phy, Accessed 2009]

Figure 3.34: Compressed ECG for Figure 3.33 (using Algorithms Presented Earlier in Chap-
ter 2)

The hospital or the cardiovascular monitoring services (e.g. www.cardionet.com) may

want to authenticate their subscribed patients before sending in emergency personnel

or releasing other services that the patient is subscribed for. In that case, the hospital

can instantly identify their subscribed patients straight from their compressed ECG

packets, using the techniques described within this section.

Without utilizing compressed ECG based biometric (or authentication), each compressed

ECG packets requires additional step of decompression (creating massive delays) for all the

areas, where authentication can play a role (acquisition device to mobile phone communica-

tion, intermediate routing nodes and hospital side patient authentication).
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Figure 3.35: An Abnormal ECG Segment of the Monitored Patient at Instance A+1 (ECG
Obtained from CU1 Entry of MIT BiH CU Ventricular Tachyarrythmia Database) [Phy,
Accessed 2009]

3.8.1 Architecture of the Proposed Patient Identification System

Figure 3.33 shows the normal ECG signal for an event based monitored patient (Entry ID

CU1 of CU Ventricular Tachyarrhythmia database [Phy, Accessed 2009]) at instance A. At

the next instance all on a sudden, that patient encounters abnormal heart beats as seen

in Figure 3.35. Patient’s mobile phone detects the abnormality using existing abnormality

detection algorithms [Sufi et al., 2009a]. Then the patient’s mobile sends both normal and

abnormal ECG packets in compressed format. The normal compressed ECG (Figure 3.34)

is used in identifying the patient and the abnormal ECG is used for diagnosis of the cardiac

abnormality (using algorithms presented in Chapter 5). After identifying the patient directly

from the compressed ECG (Figure 3.34), the patient can then be provided for the services

he is entitle to (e.g. ambulance facility, onsite specialist etc.).

Eq. 5.12 and 5.13 basically demonstrates the fact that lossless compression algorithm

(presented in Chapter 2) preserves the subtle ECG features responsible ECG based biometric.

Therefore, these features can be directly obtained from the compressed ECG (Eq. 5.14). Our

proposed DM model presented in this chapter examines only a limited feature set (highly

correlated with person identification) and assigns a recognition ECG into a known enrolment
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cluster.

The 148 characters and the numeric values (0 - 9) are used to compress (or encode)

the plain text ECG signal, as seen from Figure 3.37 (ECG compression is performed inside

patient’s mobile phone). The Data Mining Agent (DMA) of the hospital (Figure 3.32)

needs to be trained for patient identification with enrolment ECG (compressed) of all its

subscribers. After being trained, the DMA can be tested with recognition ECG (compressed)

of a particular patient. Figure 3.36 shows during this testing phase a recognition data is

passed to the trained DMA, and DMA then decides the closest distance with the trained

clusters (i.e. 1, 2, 3, 4, ...N , where N is number of patients). This cluster matching (testing

phase 2 in Figure 3.36) can be done either with EM or with Algorithm 5, which will be

presented later on.

3.8.2 Training of the Proposed Model

During the training phase, the proposed model learns the cluster means and standard devi-

ations for all the clusters, where each cluster uniquely identifies a particular patient. Figure

3.38 shows the main stages of this learning process from compressed ECG.

Character Frequency Calculation: As shown in Figure 3.38, from the compressed ECG,

the frequency of each encoded characters is computed first. There are about 148 characters

and 6 numeric subgroups for which the frequencies are generated (Figure 3.37). The frequency

of these 157 character (and numeric sub groups) are utilized as the attributes for clustering.

However, 157 attributes are too many for generating clusters (one cluster per subscribed

patient). Therefore, the attribute subset selection is necessary. Using proven techniques, we
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Figure 3.36: Training with Enrolment Data and Testing with Recognition Data

Characters

Numeric Sub Groups

Figure 3.37: 157 Character and Numeric Sub Groups (Attributes) used for Generating Com-
pressed ECG (from Plain ECG Signal). Details of this Character Substitution based Com-
pression Techniques have been Described in Chapter 2
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Compressed ECG 
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Reduced Attributes
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of Each Characters

Person
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Figure 3.38: Step by Step Procedure of the Proposed Patient Identification System

first select characters from the compressed ECG that are mainly responsible for identifying

individuals (i.e. attribute subset selection). Then, based on the selected characters (or

attributes) clusters (representing individuals) are generated.

Attribute Subset Selection:

Data pre-processing with attribute selection is an important step in data mining [Han

and Kamber, 2006]. The goals of feature subset selection are the followings:

• To reduce the dimensionality of the data to be analysed

• For faster execution of Data Mining algorithms

• To improve predictive accuracy of data mining techniques

• To generate a comprehensive of the output

Existing studies have demonstrate the fact that attribute subset selection helps improve

the performance of clustering algorithms with reduced attributes [Talavera, 1999a;b]. In this

section, we performed attribute selection with Correlation based Feature Selection (CFS)

algorithm.

CFS algorithm filters or ranks feature subsets according to a correlation based heuristic

evaluation function. There are two important criteria that effect this feature selection process.

1. Features that are highly correlated with the class
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2. Features that are uncorrelated with each other

The first criterion ensures that irrelevant features will be removed (since they are not

correlated with the class). On the other hand, the second criterion mandates that redundant

features should be removed (since they are correlated with other features).

CFS feature subset evaluation function is represented by Eq 3.26.

MS =
krcf√

(k + k(k − 1)rff )
(3.26)

where, MS is the heuristic merit of a feature subset S containing k features, rcf is the

mean feature-class correlation (f ∈ S), and rff is the average feature-feature intercorrelation.

The denominator of Eq. 3.26 represents the redundancy of the features and the numerator

indicates how predictive of the class, a set of features are.

In this section, we have used Best First search algorithm for searching through the can-

didate subsets the local optimal solution. Best First search can operate in following two

different modes:

• Start with no features at all and search progresses forward through the search space

adding single features

• Start with all features and search moves backward through the search space removing

single feature

A stopping criteria is imposed to prevent Best First search from exploring the entire
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feature subset search space.

Clustering of Individual Patients from their Compressed Enrolment ECGs:

EM is basically iterates between two core steps, called the E-Step and the M-Step. In

the E-Step, assignment of the probabilities for each instances being a member of a particular

class is performed. On the other hand, M-Step updates or re-estimates the probability values

by calculating the log likelihood data [Han and Kamber, 2006].

As shown in Algorithm 4, our implementation of EM revolves around the idea that every

single patient is assigned to a cluster for identification purpose. We assume that there are

l number of clusters (A1, A2, A3, · · · , Al), representing l number of persons to be identified

with a defined set of features (derived from the frequency of the compressed characters).

At the beginning of Algorithm 4, we start of with initial value of cluster means, standard

deviation for each of the class (or patients). As the algorithm iterates though the loops,

the value of standard deviation and cluster means are refined and updated. At the end of

this process (at convergence), we will have the same number of cluster means and standard

deviation as the number of subscribed patients (i.e. clusters).

EM can decide how many clusters to create by cross validation, or it may be specified

apriori (as is the case in the present study).

Testing the Identification Model with Compressed Recognition ECG

After successful training phase, the model possesses the knowledge of cluster means and

standard deviations for all the patients. Therefore, EM based model can easily be tested

with recognition data.
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Algorithm 4: EM for Indetifying Patients
//Notation Description:
//Input: Start with initial value of parameters mean µ, standard deviation σ
//Input: and probability p (for Clusters {A1, A2, A3, · · · , Al})
//Output: Final Value of value of parameters mean µ, standard deviation σ
//Output: and probability p (for Clusters {A1, A2, A3, · · · , Al}) height
Loop (For each iteration j - Number of instances)

Calculate the probability that instance I belongs to clusters A1, A2, · · · , Al:

P (A1|I) =
pj

A1
P j(I|A1)

P j(I)
, · · · , P (Al|I) =

pj
Al

P j(I|Al)

P j(I)

The probability of P (I|A1) can be modelled using any distribution function.
For the commonly used Gaussian distribution, it can be given by,

P (I|A1) = 1√
(2π)σA1

exp
−(I−µA1

)2

2σ2

Update the mixture parameters on the basis of the new estimates:
P j+1

A1
=

∑
I P (A1|I)

n , · · · , P j+1
Al

=
∑

I P (Al|I)
n

µj+1
A1

=
∑

I I×P (A1|I)∑
I P (A1|I) , · · · , µj+1

Al
=

∑
I I×P (Al|I)∑

I P (Al|I)

σj+1
A1

=
∑

I P (A1|I)(I−µj+1
A1

)2∑
I P (A1|I) , · · · , σj+1

Al
=

∑
I P (Al|I)(I−µj+1

Al
)2∑

I P (Al|I)

End Loop
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Algorithm 5: Person Identification with Cluster Distance Measurement
//Notation Description:
//Input: Attribute values for all the instances
//Input: Cluster means of all the clusters for all the attributes
//Output: Identified patient

Step 1

Create distance vector, A1, A2,..., AM for
Cluster 1, 2...M, where M is the total number of clusters
(or total number of subscribed patient)

A1 =
√∑I

i=1(fi − C1
i )2

A2 =
√∑I

i=1(fi − C2
i )2

...

AM =
√∑I

i=1(fi − CM
i )2

here, fi is the attribute value vector for all I
attributes and C1

i , C2
i ,...C

M
i are the centroid

vectors of cluster means 1, 2, ...,M
where i = 1, 2, 3, ..., I is the number of attributes

Step 2

The identified person, m has the lowest value of Am

(i.e. Min(A1, A2, A3, . . . , Am, . . . , AM))

When recognition compressed ECG is received by the trained model, the frequencies for

the selected attributes (characters), fi are calculated first, where i is the number of attribute

and Cm
i is the centroid vector of cluster m (which can range between 1 to M). Algorithm 5

calculates the distance of recognition ECG with all the classes. The least distant class (with

the recognition ECG) signifies the fact that the person belongs to the particular class.
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3.8.3 Experimentation and Results

To demonstrate the fact that ECG based biometric authentication is possible from com-

pressed ECG, we have selected 120 ECG segments from publicly available database (so that

the experimentation can be reproduced by other researchers). These ECG data were pro-

cessed in five stages (data collection, ECG compression, frequency calculation, attribute

selection and finally clustering) and at the end, our experimentation showed that ECG seg-

ments collected from the same individual (nsrdb entry) are highly correlated (i.e. they

belonged to a single cluster).

Data Collection

Even though we had experimented with 30 different entries from different databases in phys-

iobank [Phy, Accessed 2009] to validate our proposed model of biometric authentication, for

thorough demonstration purposes, we refer to 9 entries of Normal Sinus Rhythm Database

(NSRDB) [Phy, Accessed 2009]. From each entry four randomly selected ECG segments were

used for our experimentations. The sampling frequency of the collected ECG signals was 128

Hz. The duration of each of the ECG segments were 5 seconds (i.e. 5×128 or 640 samples in

one ECG segment). Table 3.9 shows the segments (time duration) used for different entries

in our experimentation (middle column). The right column lists the number of beats (QRS

complex) contained within each of the ECG segments (four segments per person).

Figure 3.39 shows 4 different ECG segments of entry 16265 (nsrdb of MIT BIH) on the

left column and 4 different ECG segments of entry 16272 (nsrdb of MIT BIH) on the right

column. Therefore, the left column demonstrates the self similarity of the same person’s
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Table 3.9: ECG Segments Collection from NSRDB, Entry No. and Segments Obtained. Four
ECG Segments were Obtained for Each of the Entries (i.e. 36 ECG Segments Obtained for
our Experimentation)

Entry No. Segmentation Position Number of Beats
in each segments

16265 [08:04:00.000]-[08:04:09.992] [8,7,7,8]
[08:22:50.000]-[08:22:59.992]

16273 [08:15:10.000]-[08:15:19.992] [6,7,6,6]
[08:16:10.000]-[08:16:19.992]

16483 [10:02:00.000]-[10:02:09.992] [7,7,7,7]
[10:07:00.000]-[10:07:09.992]

16773 [09:50:20.000]-[09:50:29.992] [6,6,6,6]
[09:54:20.000]-[09:54:29.992]

16786 [11:48:00.000]-[11:48:09.992] [6,6,6,6]
[11:53:00.000]-[11:53:09.992]

16795 [11:21:00.000]-[11:21:09.992] [5,4,6,5]
[11:28:00.000]-[11:28:09.992]

17052 [11:20:00.000]-[11:20:09.992] [6,5,5,6]
[11:27:00.000]-[11:27:09.992]

17453 (09:49:00.000]-[09:49:09.992] [6,7,6,7]
[09:54:00.000]-[09:54:09.992]

18177 [12:05:00.000]-[12:05:00.359] [7,9,8,9]
[11:33:00.000]-[11:33:09.992]
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Figure 3.39: Eight Different ECG Segments for nsrdb Entry 16265 (4 Segments - in First
Column) and 16272 (4 Segments - in Second Column)[Phy, Accessed 2009]
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ECG at different times. This is the basis of ECG biometric. However, there are minute

differences even for the same person’s ECG taken at a different point of time (as in the case

of Entry 16272 - Figure 3.39). Attribute selection process can be utilized to select only the

features or attributes that are responsible for identifying person.

ECG Compression

As discussed earlier, compressed ECG provides transmission efficiency for wireless telecardi-

ology application (Figure 3.32) and this section outlines a technique that identifies person

(or patient) from their compressed ECG. Therefore, to prove our theory laid earlier, we

compressed the 36 ECG segments collected from 9 different individuals. The compression

algorithm used is well documented in Chapter 2 and also the ECG segments used are from

public ECG database ([Phy, Accessed 2009]).

As seen from Figure 3.40, for human being it is hard to distinguish two individuals just

by gazing at their compressed ECG (manual inspection). Also, it takes enormous amount of

efforts on an individual to identify self similarity of compressed ECG collected from the same

person at different point in time. Therefore, a DMA was employed to automate the process

of person clustering from compressed ECG. Successful clustering of individuals basically

demonstrates the rationality of person identification.

Frequency Calculation

To employ an automated DMA for clustering of individuals from their compressed ECG, at-

tribute selection needs to be performed. In our experiments, we require compressed character
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Entry 16265 Entry 16272

Figure 3.40: Eight Different ECG Segments for nsrdb Entry 16265 (4 Segments - in First
Column) and 16272 (4 Segments - in Second Column) are Compressed using Compression
Algorithm Described in Chapter 2
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Algorithm 6: Frequency Calculation of Compressed ECG Characters from
the Compressed ECG Segment
//Notation Description:
//Input: CompressedCharacter[157] as One dimensional Array of Characters
//Input: CompressedECG as String
//Output: Freq[157] as Two Dimensional Array of Integer

Loop Until the end of CompressedECG
Find the index, i of CompressedCharacter that matches
ReadChar(CompressedECG)
Freq[i]= Freq[i] + 1

End Loop

(the 157 alpha and numeric characters shown in Figure 3.37) and their frequencies as the

attribute for DMA. To obtain the character frequencies of 157 characters (both alpha and

numeric), we first populate all this 157 characters (Figure 3.37) in an array (CompressedChar-

acter[157] in Algorithm 6). Algorithm 6 then reads all the characters from the compressed

ECG segment and increments the corresponding frequencies (Freq[i], where i is the matched

character read from compressed ECG). ReadChar() function in Algorithm 6 reads one char-

acter from the compressed ECG segment and forwards the position. Eventually, the looping

procedure reads all the characters present in the compressed ECG segment and updates the

frequency of each characters (CompressedCharacter[157]).

After using Algorithm 6, frequencies for all the 36 ECG segments (each segment has 157

frequencies) was calculated (5652 Character frequencies in total for the 9 different nsrdb

entries and 18840 character frequencies in total for the full 120 entries). Figure 3.41 shows

the character frequencies of Entry 16265 and 16272 for different ECG segments (shown in

Figure 3.40).
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Figure 3.41: Frequencies of 157 Characters on the Eight Different ECG Segments for nsrdb
Entry 16265 (4 Segments - in First Column) and 16272 (4 Segments - in Second Col-
umn)[Phy, Accessed 2009]
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Table 3.10: Average Frequencies of the 16 Selected Attributes for the Nine Entries (or Pa-
tient). ECG Segments Collected from Public Database [Phy, Accessed 2009]

Att 16265 16273 16483 16773 16786 16795 17052 17453 18177
@ 7.5 25.75 40.75 18.5 15 20 42.25 21.25 16.25
$ 13 24.75 27.25 16.75 27.25 20.5 42.25 19.75 15.5
+ 0.5 4.75 0.5 1.5 0 5.25 1 0 0.75
i 0.25 0 0 1.75 0 2.25 0.25 0.5 0
Ö 1 0.75 0.75 0 1.25 0 0.25 0 1.75
Û 39 29.25 30.25 29 41.75 17.25 40.75 15 36.75
r 17.75 22.75 16 27.5 26.5 12.5 1.75 12.5 32.25
v 4.5 9.5 9.5 13 16 7.5 0.75 6 12
D 0 5 4 7.25 2.5 1.5 0.5 0.5 3.5
Z 0 0 2.75 0.75 0 0 0 1.25 1.5

0-50 18.75 12 19.75 20.75 11.25 15 11 11.5 21.75
100-150 9.75 6.25 9 5 4.5 2.25 6.5 12 16.25
200-250 5.25 3.5 9.25 9 4.75 3 2 5.75 2
250-300 7 5 4.25 4 5.5 0.75 3.5 1.75 0
300-350 8.25 5.25 0 2 7.25 0 0 2 0
350-400 4.25 6.75 0 1.5 2.25 0 0 4.5 0

Attribute Selection

In the attribute selection process, FilteredSubsetEval was used as evaluator with BestFirst

searching (refer to WEKA, http://www.cs.waikato.ac.nz/ml/weka/). This resulted in selec-

tion of 16 key attributes (or compressed characters) that can be used for identifying person

(each person representing one class). This is substantially less number of attributes compared

to the 157 total attribute for which the frequencies have been created earlier (Algorithm 6).

These selected attributes were used for clustering individuals.

Figures 3.42 and 3.43 show the selected character frequencies for entry 15265 and 16272

for different cases.
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Figure 3.42: Frequencies of 16 Selected Characters (or Attributes) for Entry no 16265
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Figure 3.43: Eight Different ECG Segments for nsrdb Entry 16265 (4 Segments - in First
Column) and 16272 (4 Segments - in Second Column)[Phy, Accessed 2009]
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Clustering

EM was chosen to cluster the 36 ECG entries (collected from 9 nsrdb entries) into 9 classes

(each class represents a particular individual or Entry no.). A 100 % accuracy was obtained

with EM, classes to cluster evaluation. Therefore, each of the nine classes contained four

ECG segments grouped by a particular nsrdb entry. Table 3.11 shows the cluster means (M)

and cluster deviation (S) from their corresponding means for all the attributes (16 attributes)

against 9 classes.

The log likelihood value for applying EM on the selected attribute set to form 9 clusters

(apriori) was -32.62486.

Then we extended our experimentation with 21 other entries (therefore, 30 entries in

total) from other databases of physiobank [Phy, Accessed 2009] and could successfully group

them.

This successful clustering demonstrates the fact that person can be identified from their

compressed ECG, from where only 16 attributes are used.

3.9 Performance Comparison

Performance comparison of the PDM method and Data Mining based ECG biometric from

compressed ECG were conducted against many of the existing ECG biometric techniques in

terms of misclassification rate, template size and computational cost. Our proposed methods

were proven to perform better than existing algorithms when compared for lower misclassifi-

cation rate, smaller template size and minimal computational requirements while performing

template matching.
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Table 3.11: Cluster Means (Denoted by M) and Deviations (Denoted by S) for all the 9
Clusters, Against Each of the 16 Selected Attributes)

Att Cls1 Cls2 Cls3 Cls4 Cls5 Cls6 Cls7 Cls8 Cls9
1 M 40.75 21.25 7.5 20.0001 18.5 16.25 15 25.75 42.2501
1 S 10.1088 3.6997 1.6583 4.2428 2.6926 3.9607 4.6368 1.9203 6.1796
3 M 27.25 19.75 13 20.5001 16.75 15.5 27.25 24.75 42.25
3 S 3.4187 2.3848 3.5355 8.6459 1.479 3.6401 6.9417 3.8971 6.3787

37 M 0.5 0 0.5 5.25 1.5 0.75 0 4.75 1
37 S 0.5 2.4068 0.5 2.8614 1.118 1.299 2.4068 2.3848 1.2247
46 M 0 0.5 0.25 2.25 1.75 0 0 0 0.25
46 S 0.9694 0.5 0.433 1.0897 0.8292 0.9694 0.9694 0.9694 0.433
72 M 0.75 0 1 0 0 1.75 1.25 0.75 0.25
72 S 0.8292 0.7617 0.7071 0.7617 0.7617 0.433 0.433 0.433 0.433
75 M 30.25 15 39 17.2502 29 36.75 41.75 29.25 40.75
75 S 1.479 1.8708 1.8708 3.7672 2.1213 1.299 2.586 3.9607 6.057

113 M 16 12.5 17.75 12.4999 27.5 32.25 26.5 22.75 1.75
113 S 2.5495 2.958 4.4931 3.6401 4.3875 5.6734 6.0622 2.3848 1.479
117 M 9.5 6 4.5 7.5 13 12 16 9.5 0.75
117 S 3.9051 1.5811 3.0414 2.0616 2.1213 3.0822 3.1623 3.2016 1.299
125 M 4 0.5 0 1.5 7.25 3.5 2.5 5 0.5
125S 1 0.5 2.7813 0.866 2.3848 3.3541 1.118 0.7071 0.5

147 M 2.75 1.25 0 0 0.75 1.5 0 0 0
147 S 1.299 0.8292 1.1166 1.1166 0.8292 0.5 1.1166 1.1166 1.1166
149 M 19.75 11.5 18.75 15 20.75 21.75 11.25 12 11
149 S 3.9607 2.6926 3.562 1.5811 2.586 3.4911 1.479 3.0822 2.1213
151 M 9 12 9.75 2.25 5 16.25 4.5 6.25 6.5
151 S 0.7071 1.2247 2.4875 2.2776 1.5811 6.3787 2.0616 2.0463 0.5
153 M 9.25 5.75 5.25 3 9 2 4.75 3.5 2
153 S 1.0897 2.586 2.0463 0.7071 1.4142 2 1.7854 2.0616 1.4142
154 M 4.25 1.75 7 0.75 4 0 5.5 5 3.5
154 S 1.0897 1.9203 3.6742 0.433 2.2361 2.9519 2.1794 1.5811 1.8028
155 M 0 2 8.25 0 2 0 7.25 5.25 0
155 S 3.4257 1.5811 0.8292 3.4257 0.7071 3.4257 1.6394 2.8614 3.4257
156 M 0 4.5 4.25 0 1.5 0 2.25 6.75 0
156 S 2.6203 1.118 2.4875 2.6203 0.866 2.6203 0.8292 1.0897 2.6203
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3.9.1 Misclassification Rate

At first, our methods were compared against existing methods of ECG biometric with PRD,

CC and WDM based technique. These tests were performed by the most recent research in

ECG biometric. Three seconds ECG packets were obtained in two different times from 25

persons resulting in 50 ECG segments in total.

When PRD, CC and WDM were applied to recognize person, they resulted in higher

misclassification rate. Whereas, the polynomial coefficient distance measurement technique

resulted in a substantially lower rate of misclassifications. Out of the 25 person only two

persons were misclassified. As already mentioned before, these misclassification occurred

because of not prioritizing the ECG features and occurrence of abnormal beats. However,

we adopted Algorithm 1 (for PDM), which assigned priority for distance measurements with

QRS complex being the highest priority and P wave being the lowest priority. To deal with

the problem of ectopic beat, Algorithm 2 (for PDM) was obtained during the acquisition

phase. Therefore, all the misclassification could be avoided. Table 3.12 compares the lower

misclassification rate of the proposed PDM method with recent ECG biometric matching

algorithms. Table 3.13 compares the PDM method with other biometric modalities. Accoring

to our experimentation, ECG Biometric from Compressed ECG using DM technique didn’t

have any misclassifications.

3.9.2 Template Size

As mentioned earlier, the size of the template for biometric data has a huge impact on

the overall performance of the biometric system. A system that requires larger vector of
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Table 3.12: Misclassification Rate for PRD, CC, WDM and the Proposed ECG Biometric
from Compressed ECG (Applying Data Mining Agent (DMA)

Method Misclassification Rate (%)
PRD [Chan et al., 2008] 25
CC [Chan et al., 2008] 21
WDM [Chan et al., 2008] 11
PDM (without Alg. 1, without Alg.2)
[Sufi et al., 2010a; Sufi and Khalil,
2008a]

8

PDM (with Alg. 1, without Alg.2)
[Sufi et al., 2010a; Sufi and Khalil,
2008a]

4

PDM (with Alg. 1, with Alg.2) [Sufi
et al., 2010a; Sufi and Khalil, 2008a]

0

ECG Biometric from Compressed
ECG using DM

0

Table 3.13: FRM and FNRR Across Different Modalities

Modality FMR (%) FNMR (%) Reference
Face 1 10 [Phillips et al., Last accessed: Jan.

2009]
Fingerprint 0.01 2.54 [Maio et al., 2004]
Iris 0.00129 0.583 [Group, 2005]
On-line signa-
ture

2.89 2.89 [D.-Y. et al., 2004]

Speech 6 6 [Reynolds et al., 2004]
ECG 4 4 PDM (without Alg. 1,

without Alg. 2) [Sufi et al., 2010a; Sufi
and Khalil, 2008a]

ECG 2 2 PMD (with Alg. 1,
without Alg. 2) [Sufi et al., 2010a; Sufi
and Khalil, 2008a]

ECG 0 0 PDM (with Alg. 1
+ with Alg. 2) [Sufi et al., 2010a; Sufi
and Khalil, 2008a]

ECG 0 0 ECG Biometric from Compressed
ECG using DM
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enrolment data can encompass processing delay while performing identification tasks on a

reasonable data set. Moreover, there are issues surrounding longer transmission time and

higher storage requirements of the enrolment data. Therefore, for faster performance, faster

transmission of biometric data and minimal storage, the size of the template data should be

minimal. As seen from Table 3.2, 3.3 and 3.4 the biometric data required for subject 1 is

only 318 bytes. During our experimentation, the active range for this template (enrolment

or recognition data) was 228 -402 bytes, with an average of 340 bytes. The most recent

work based on ECG based human identification requires at least 600 bytes (100 ms data

of 11 bit resolution for 2 vectors on 500 Hz sampling frequency) of data for the creation of

heart vector to be used as template (enrolment/verification data) [Wubbeler et al., 2007].

For ECG biometric presented in [Chan et al., 2008], experimentation with PRD, CC and

WDM based measurement was performed with variable length of ECG from 32 ms to 512

ms. For 32 ms ECG segment, with a 360 Hz sampling frequency results in 12 ECG samples

(.36 × 322) or 126 bytes of data. Similarly, with larger ECG segment of 512 ms with the

same sampling frequency, 185 ECG samples are required (with an average size of 1846 bytes).

However, with only 12 sample (for the case of 32 ms ECG segment), the misclassification

rate is higher, since it can only represent one third of QRS complex (for 360 Hz sampling

frequency). Therefore, not even a single feature can be represented within 126 bytes ECG

segment (360 Hz). According to Table 3.14, the proposed polynomial distance measurement

technique shows highest level of accuracy with minimal biometric template size.

According to Table 3.14, the ECG Biometric from Compressed ECG without DM tech-

nique has minimal template size. Compared to the face recognition biometric template size
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Table 3.14: Comparison of Template Sizes

Biometric Data Type Size in bytes
Iris [Yu et al., 2008] 512
Face [Yu et al., 2008] 153600-307200
Voice [Yu et al., 2008] 2048-10240
ECG [Wubbeler et al., 2007] 600
ECG (WDM) [Chan et al., 2008] 1371
ECG (PRD / CC) [Chan et al., 2008] 2210
ECG (PDM) [Sufi et al., 2010a; Sufi and Khalil, 2008a] 340
ECG Biometric from Compressed ECG without DM 37
ECG Biometric from Compressed ECG using DM 36

of 307200 bytes [Yu et al., 2008], the biometric template of ECG Biometric from Compressed

ECG without DM is approximately 8302 times smaller in size. On the other hand, compared

to the PDM technique of ECG based biometric, ECG Biometric from Compressed ECG

without DM biometric template is at least 9 times smaller in template size.

If matching of 1 byte takes tb amount of time, then according to Table 3.14, ECG Biomet-

ric from Compressed ECG using DM consumes (36× tb) time respectively. Therefore, ECG

Biometric from Compressed ECG using DM method is approximately 8533 times faster than

Face [Yu et al., 2008] recognition template with 307200 bytes of data. Also, the template

size of the proposed method is 61 times smaller than existing PRD [Chan et al., 2008] and

up to 9 times smaller that our previous ECG biometric method based on Polynomial Dis-

tance Measurement (PDM) [Sufi et al., 2010a; Sufi and Khalil, 2008a]. Clearly, the proposed

method requires less storage and executes faster for person identification task compared to

the existing biometric mechanisms.
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Table 3.15: Comparison of Number of Operations (NOP) for PRD, CC, WDM and PDM

Operation PRD CC WDM PDM
Addition 462 231 136 24

Subtraction 231 0 136 24
Multiplication 1 231 0 0

Division 1 1 136 24
Absolute Value 0 0 136 24
Square Root 1 0 0 0

Square 462 0 0 0
Conditional 0 0 256 0

Total 1158 463 800 96

3.9.3 Computational Cost

Computational cost is one of the major factors that determine the acceptability of a biometric

system, since many of the biometric systems are integrated within a small box with less

computational power. For this research, we performed the comparison of computational

power based on the number of operations required to compute similarity matching between

the enrolled data and recognition data. Table 3.15 shows the computational cost for PRD,

CC, WDM and the proposed PDM method while performing these matching. Matching

is thought to be the core computational cost involved for biometric, since this matching

is required to be performed across all the entries (templates) within the database. If the

database contains 100 biometric entries, 100 matching are needed to ascertain the minimum

distance. On the other hand, wavelet decomposition to calculate the wavelet coefficients

for WDM [Chan et al., 2008], or polynomial creation to calculate the values of polynomial

coefficients for PDM are only one time cost. Therefore, the cost for polynomial computation

is only a minute fraction of the cost associated with database wide matching.

The ECG segment to calculate PRD, CC and WDM (both for Table 3.14 and Table 3.15)

144 (October 31, 2011)



CHAPTER 3. ECG BASED BIOMETRIC AUTHENTICATION

were 231 samples, which contained a single heart beat with all the ECG feature waves. For

WDM calculation of Table 3.15 256 coefficients were generated for 231 ECG sample points.

Out of these 256 coefficients, only 136 coefficients were utilized after taking the threshold

value (ξ) into consideration (please refer to Eq. 3.3. Therefore, conditional operations were

evaluated as well, considering the denominator of Eq. 3.3. It is evident from Table 3.15 PDM

is computationally more inexpensive and viable than many of the existing algorithms.

3.9.4 Conclusion

In this chapter, the second research question of faster patient authentication was answered

with new ECG biometric methods. First, we proposed two ECG biometric techniques that do

not need fiducial point detection and suitable for telecardiology application not adopting our

compression mechanism. Then, we proposed another two ECG biometric algorithms based

on compressed ECG packets, generated by our proposed compression algorithm (Chapter 2).

Apart from reading less input, the proposed ECG based biometric executes faster than the

existing ECG based biometric techniques because of smaller template size (Table 3.14). The

compressed ECG biometric with DM method was found to be 61 times faster than PRD

based ECG biometric [Chan et al., 2008], 38 times faster than WDM [Chan et al., 2008],

16 times faster than ECG biometric of [Wubbeler et al., 2007] and 9 times faster than our

previous ECG biometric method of PDM.

Now that we have the innovative techniques available for efficient transmission and faster

authentication, we need technologies for secured ECG transmission, so that the patient’s

privacy is protected. In our next chapter, we will investigate more on secured ECG trans-
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mission.

146 (October 31, 2011)



Chapter 4

Securing the ECG

In our previous chapters, we have successfully ensured faster and efficient transmission (with

a faster ECG compression algorithm) and automated authentication (with ECG biometric).

Our third research question deals with the establishment of secured ECG transmission to

protect a patient’s privacy. This chapter is our effort in answering the third research question.

After the introduction of Health Information Protection and Privacy Act (HIPPA) of

1996 in US, physiological signals are required to be transmitted securely during remote mon-

itoring of patients [Cen, Accessed 2008; Pub, 1996; Off, Accessed 2009; Lee and Lee, 2008].

A telemonitoring platform that ignores protection of private health information is a threat

to patient’s privacy. Unfortunately, existing telemonitoring platforms do not integrate any

encryption, obfuscation/ anonymization technique for the conformance of HIPPA regula-

tions. However, few researchers [Blount et. al., 2007] argue that if physiological signals (like

ECG) are sent without the name of person, then there can be no way to determine (by

a hacker) whose physiological signal is transmitted. Unfortunately, the work done in the
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previous chapter and recent studies in ECG based biometric [Biel et al., 2001; Chan et al.,

2008; Wubbeler et al., 2007; Poon et al., 2006; Israel et al., 2005; Irvine et al., 2001; Bui and

Hatzinakos, 2008; Kyoso and Uchiyama, 2001; Kyoso, 2003; Shen et al., 2002; Shen, 2005;

Shen and Tompkins, 2005; Wang et al., 2008; Hou and Andrews, 1978; Plataniotis et al.,

2006; Kanade and Jain, 2005] shows that ECG can successfully be used to identify person.

Hence, even though the name of the patient is disassociated from the physiological signal, it

is possible to identify that person and retrieve his health information by using ECG biometric

(as described in Chapter 3). Therefore, research in encryption, obfuscation/ anonymization

is deemed to be crucial for a health monitoring platform seeking wide acceptance. In this

respect, we have successfully designed and implemented three methods of encoding/ encryp-

tion, obfuscation/ anonymization which can be easily integrated within our proposed mobile

phone based telemonitoring framework.

The encoding/ encryption mechanism is based on character substitution and permutation

ciphers on the compressed ECG. This method was also compared with conventional AES and

DES encryption techniques. The proposed encoding/ encryption method provides a substan-

tially higher security strength and realtime performance on mobile platform (experimented

on smart phones and PCs).

Secondly, a novel anonymization technique was designed and developed which segregates

the low frequency components from the ECG signal and performs partial encryption with

DES. The segregation of the low frequency component was performed by utilizing both

discrete wavelet transform (DWT) and packet wavelets. However, during the packet wavelet

implementation the secret key size was nearly halved, compared to that of DWT. We realized
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that the key size can be further reduced for more efficient key distribution. Therefore, we

researched on an alternative method that works on uncompressed ECG.

Finally, an alternative obfuscation/ anonymization method was designed and imple-

mented that detects each of the ECG features (P Wave, QRS Complex and T Wave) and

replaces them with a noised ECG. The key size generated by this method was several times

lower than our previous wavelet based anonymization technique. Moreover, the noised ECG

appears to be a regular ECG, while in reality it is substantially different to the original one.

Therefore, to the hacker, existing hacking tools including brute force attack become useless.

4.1 Why Do We Need Secured ECG Transmission?

Biosignals like ECG contains crucial health information of the patient [Kusumoto, 2009;

Clifford et al., 2006; Akselrod et al., 2007]. However, these biosignals are often transmitted

without any encryption from the acquisition device to the local server and from the local

server to the central server (as seen in Fig. 4.1). It is most vulnerable to security threats

while being transmitted from local server to central server over the public internet. Existing

algorithms automatically reads the ECG signals and successfully classify whether a patient

has Bradycardia, Tachycardia, Atrial Premature Beats, Atrial Flutter, Atrial Fibrillation,

Premature Ventricular contraction (PVCs) with minimal errors [Bartolo et al., 2001; Kumar

et al., 2007; Hamilton and Tompkins, 1986; Friesen et al., 1990; Clifford et al., 2006]. Apart

from releasing cardiovascular details, ECG can successfully identify a particular person as

shown in Chapter 3. Some existing mobile phone based remote health monitoring platform

uses patient identifiers, which is transmitted along with the biosignal [Blount et. al., 2007],
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Figure 4.1: Typical Realtime Telemonitoring Scenario

instead of patients’ name. Even though, just from the patient ID, the patient is thought to

be unidentified (since, the mapping between patient ID and patient particulars are main-

tained in secured server as in [Blount et. al., 2007]), recent research in ECG analysis shows

that ECG can serve as a biometric entity for person Identification. Hence, the platform

presented in [Hung and Zhang, 2003; Jasemian and Arendt-Nielsen, 2005; Blount et. al.,

2007; Lee et al., 2007; Gao et al., 2005; Zhou et al., 2005] and previous Chapters can not be

directly implemented for transmission of ECG signals, without providing additional security

mechanisms for protection of private health information.

In one possible scenario as shown in Fig. 4.2, transmission of recognition ECG over the

public network (Internet) as plain text can subject to spoof attack, where a malicious user

intercepts the ECG recognition data and records it, without being noticed. It is possible for

this spoofer to use the recognition ECG to gain access to a secured service by replay attack,

where an unauthorized person uses the captured ECG (of an authorized personnel) for ECG

based biometric system. Therefore, for prevention of possible replay attack by the spoofers,

ECG data must be anonymized before transmission over the public media.
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Figure 4.2: Possible Attack points to Acquire Recognition ECG for Replay Attack

Spoofing is a critical threat to biometric entities like fingerprint and iris as we learned re-

cently that they are likely to be spoofed [Reynolds et al., 2004; Matsumoto, 2004; Matsumoto

et al., 2002]. Spoof attacks can occur by using artificially created biometrics by attacking via

input port and at database, or even by reproduction of data such as a noise obfuscated facial

image that allow to establish a fake identity [Schuckers, 2002]. For handprint, fingerprint,

key stroke pattern, face, hand shape and couple of other biometric measurement (except

DNA) standard information security applies for making it spoof resistant. ECG biometric is

even more vulnerable to spoofing attack, since ECG is not only a biometric entity, but also

a container of cardiovascular information as mentioned earlier.

Therefore, encryption of ECG is required before transmission through the public tele-

phony / mobile network for three crucial reasons; ’protection of person identification’, ’pro-

tection of ECG biometric template’ and ’protection of cardiovascular condition’. Application

of innovative anonymization technique on ECG, not only prevents future spoofing for iden-

tity theft but also protects health privacy. This private health information is emphasised to

follow strict privacy regulation standardized by Health Insurance Portability and Account-
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ability Act (HIPAA) [Cen, Accessed 2008; Pub, 1996]. Many countries are coming forward

to enforce health related privacy regulations stipulating domestic laws [Off, Accessed 2009;

Lee and Lee, 2008].

4.2 Securing the ECG: Encryption, Obfuscation/ Anonymization

Now that we know the motivation for securing ECG, proper methodology for hiding ECG

feature waves (P wave, QRS complex and T wave) must be researched. Within this chapter,

we will be focusing on three different types of methodologies for securing the ECG signal.

1. ECG Encryption: For ECG encryption, we have used permutation cipher during the

encoding phase (chapter 2). After this encoding, with character shuffling the ECG

becomes secured and without the knowledge of the permutation key, original ECG can

not be retrieved. Moreover, using existing compression techniques (like, AES, DES,

Rinjadel) with existing compression algorithms (like WinZip, bzip, pkzip etc.) security

strength of the encoded ECG can be raised further.

2. ECG Anonimyzation with Wavelet: We used two novel ECG anonymization techniques

based on Discrete Wavelet Transform and Wavelet Packets. The wavelet packets were

proven to be providing 100% anonymization, showing robustness against replay attack

by the spoofer. Even with the most recent available technology, the anonymized ECG

remained totally unidentified. A key, which is only 5.8% of the original ECG (with

Wavelet Packets), is securely distributed to the authorized personnel for reconstruction

of the original ECG. Wavelet based anonymization served the purpose of initial assess-

ment for securing uncompressed ECG signal (i.e. plain text ECG). However, a smaller
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key size makes the key distribution more efficient. Therefore, an alternative method

with even lower key size required to be sought.

3. ECG Obfuscation with Noise: A new ECG obfuscation method was designed and im-

plemented on different subjects using added noises corresponding to each of the ECG

features. This obfuscated ECG can be freely distributed over the internet without the

necessity of encryption, since the original features needed to identify personal informa-

tion of the patient remain concealed. Only authorized personnel possessing a secret key

will be able to reconstruct the original ECG from the obfuscated ECG. Distribution

of the key is extremely efficient and fast due to small size (only 0.04% to 0.09% of

the original ECG file). The key size of noise based ECG anonymization method was

approximately 64.44 times lower in size than our wavelet based ECG anonymization

technique. Moreover, if the obfuscated ECG reaches to the wrong hand (hacker), it

would appear as regular ECG without encryption. Therefore, traditional decryption

techniques including powerful brute force attack are useless against this obfuscation.

4.3 Joint Encoding, Compression and Encryption

In chapter 2, an Encoding (compression) mechanism to compress ECG signal was presented.

However, Without the knowledge of the algorithm that was used to compress a plaintext,

compression can serve the purpose of a very basic encryption, which is why a joint compres-

sion and encryption mechanism can strengthen security while reducing the overall file size of

the chosen plaintext (Multimedia, Audio, Video, Speech etc.) [Wu and Kuo, 2005; Mao and

Wu, 2006; Cheng and Li, 2000]. Previous research in joint compression and encryption has
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addressed the problem of fast and secured transmission of multimedia, video, images, speech

and other data files [Wu and Kuo, 2005; Mao and Wu, 2006; Cheng and Li, 2000]. However,

content of ECG file has its own format, which is fundamentally different from multimedia,

video, images and speech. We envisage a joint encryption and compression method that will

be deployed in mobile phone based realtime telemonitoring scenario, where fast computation

and fast data transmission are of paramount importance. Therefore, analysis of compres-

sion and encryption are required to be evaluated for ECG files on different platforms. Also,

the ordering of encryption and compression performed on the same ECG file may generate

different sizes of encoded ECG stream. Three different arrangements of encryption and com-

pression are depicted in Figure 4.4 that are evaluated in this section. Most of the compression

techniques, specifically entropy coder and encryption algorithms perform similar outcome by

creation of redundancy free encoded text from plain text [Wu and Kuo, 2005]. To decode

the encoded text specific information is required. In the case of encrypted text the cipher

key is the information and in the case of entropy coded text it is statistical model [Wu and

Kuo, 2005].

According to our literature survey, joint encryption and compression mechanism has not

been researched for any physiological signals. This motivated us to pursue our research on an

encoding scheme (joint compression and encryption) designed specifically for physiological

signals, like ECG, to protect the patient’s privacy.

We are proposing to use a permutation cipher before performing the actual character

substitution. This basically means shuffling of the character sets, just before the character

substitution starts. The specific order for the permutation can be used as a key for decryp-
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Figure 4.3: Transformation of the ECG with Proposed Encoding Method

tion. Figure 4.3 shows the basic transformation of ECG signal to an encrypted text using a

permutation cipher.

4.3.1 2 Phase Encryption-Compression

At first, we employed an encryption (DES Symmetric) mechanism on selected ECG files from

MIT-BIH Arrhythmia database. We found an increase in file sizes as observed in Table I.

Therefore, to obtain faster transmission, we compressed the encrypted files with standard

Zip library. However, no benefit was observed in respect to faster file transmission, since

no compression was achieved. This problem was also observed for multimedia encryption

followed by compression in previous research [Mao and Wu, 2006]. The author concluded

that since encryption significantly changes the statistical characteristics of the encrypted

file, low level of compressibility is achieved by the compression algorithm [Mao and Wu,

2006]. Table 4.1 shows the results for this 2 Phase Encryption-Compression process. Here,

So, Ss and Sc refer to file sizes for original, encrypted and compressed ECG files in Bytes.

Encryption and compression times (in ms) are respectively denoted by Ts and Tc. Other
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Figure 4.4: Arrangements of Encoding, Compression and Encryption (a) 2 Phase
Encryption-Compression using existing encryption and compression techniques (b) 2 Phase
Compression-Encryption using existing compression and encryption techniques (c) 3 Phase
Encoding-Encryption-Compression using the proposed encoding and existing compression-
encryption techniques.

parameters for Table 4.1 are defined in Eqs. 4.1, 4.2 and 4.3.

Compression Ratio after encryption,

CRos =
So

Ss
(4.1)

Compression Ratio after compression,

CRsc =
Ss

Sc
(4.2)

Total Compression Ratio,

CRt =
So

Sc
or CRt = CRos × CRsc (4.3)
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Table 4.1: Results for Securing ECG with 2 Phase Compression-Encryption Technique

MIT BIH No. So Encryption Compression CRt Ts Tc Tt

Ss CRos Sc CRsc

100 172197 172200 0.99 172405 0.99 0.99 10 46 56
102 171033 171040 0.99 171245 0.99 0.99 46 46 92
105 170912 170920 0.99 171125 0.99 0.99 10 46 56
111 169280 169288 0.99 169493 0.99 0.99 10 46 56
114 171214 171216 0.99 171421 0.99 0.99 10 46 56
201 171367 171368 0.99 171573 0.99 0.99 15 31 46
210 170549 170552 0.99 170757 0.99 0.99 10 46 56
213 168640 168648 0.99 168853 0.99 0.99 0 46 46
222 170355 170360 0.99 170565 0.99 0.99 15 31 46
228 168208 168216 0.99 168421 0.99 0.99 0 62 62
231 169048 169056 0.99 169261 0.99 0.99 15 31 46
234 170184 170192 0.99 170397 0.99 0.99 15 31 46

Therefore, total time for Table 4.1 is,

Tt = Ts + Tc (4.4)

This achieved an average compression ratio of 0.99 (less than 1 or increased file size).

4.3.2 2 Phase Compression-Encryption

Compression can also be applied before encryption as in previous research [Mao and Wu, 2006]

performed on multimedia data. Therefore, we implemented the second set of arrangement

of 2 Phase Compression-Encryption mechanism as depicted in Fig. 4.4 (b). The results are

summarized in Table 4.2. As clearly seen, with this mechanism, a higher compression ratio

of up to 16.71 was achieved. For Table 4.2, compression ratios are defined in Eqs. 4.5, 4.6

and 4.7.
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Table 4.2: Results for Securing ECG with 2 Phase Encryption-Compression Technique

MIT BIH No. So Compression Encryption CRt Tc Ts Tt

Sc CRos Ss CRcs

100 172197 20076 8.58 10488 1.91 16.42 531 10 541
102 171033 21700 7.88 11192 1.94 15.28 578 10 588
105 170912 23220 7.36 12368 1.88 13.82 593 10 603
111 169280 23647 7.16 12472 1.89 13.57 562 10 572
114 171214 21003 8.15 11224 1.87 15.25 562 10 572
201 171367 19851 8.63 10258 1.94 16.71 468 10 478
210 170549 22309 7.64 11640 1.92 14.65 593 10 603
213 168640 28330 5.95 14632 1.94 11.53 640 15 655
222 170355 21425 7.95 11248 1.90 15.15 562 0 562
228 168208 25073 6.71 13376 1.87 12.58 578 10 588
231 169048 23176 7.29 12144 1.91 13.92 531 10 541
234 170184 22365 7.61 11808 1.89 14.41 546 10 556

Compression Ratio after compression,

CRoc =
So

Sc
(4.5)

Compression Ratio after encryption,

CRcs =
Sc

Ss
(4.6)

Compression Ratio after encryption,

CRt =
So

Ss
or CRt = CRoc × CRcs (4.7)
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4.3.3 3 Phase Encoding-Compression-Encryption

Finally, we placed our encoding method, which already have the benefit of compression

of the ECG signal with basic encryption, before applying general (existing) compression

and encryption mechanisms. This method was referred as 3 Phase Encoding-Compression-

Encryption (ECE) mechanism in Fig. 4.4 (c). This 3 Phase ECE resulted an amazing 20.15

(highest) compression ratio with increased security. Table 4.3 shows the improvements. Se

and Te denotes the size of encoded ECG (in Bytes) and time required for encoding (in ms)

in Table 4.3. Other parameters are derived from Eqs. 4.8, 4.9, 4.10, 4.11 and 4.12.

Compression Ratio after encoding,

CRoe =
So

Se
(4.8)

Compression Ratio after compression,

CRec =
Se

Sc
(4.9)

Compression Ratio after encryption,

CRcs =
Sc

Ss
(4.10)

Total Compression Ratio,

CRt =
So

Ss
or CRt = CRoe × CRec × CRcs (4.11)
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Total time,

Tt = Te + Tc + Ts (4.12)

4.3.4 Analysis of Performance

Requirement of increased time is often the indication of higher computational complexities.

Therefore, faster algorithm can be seamlessly integrated within the small device environment

(with less computational resources) of telemonitoring. However, compression of enormous

ECG file is also of crucial importance for faster data transmission. Henceforth, the mech-

anism that raises the compression ratio and security strength substantially with minimal

computational complexity is highly desirable for telemonitoring. The result from Table 4.1,

4.2 and 4.3 was standardised with the concept of time required to raise one unit of compres-

sion ratio, TCR, with Eq. 4.13.

Total time,

TCR =
Tt

CRt
(4.13)

where, Tt and CRt denotes the mean total time and mean total compression ratio. The

purpose of TCR is to present the competitive advantage for realtime telemonitoring by the

3 Phase ECE Mechanism over the other two mechanisms. It is apparent from Table 4.4

that 3 Phase ECE consumes minimal time in respect to raising the compression ratio of

ECG file to a higher value. Our experimentation results indicate that higher compression
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ratio can be achieved with DES rather than AES, even though AES offers higher security.

Therefore, it (i.e. DES) is often preferred, when faster data transmission is crucial. Table 4.1,

Table 4.2 and Table 4.3 reflect some of our best compressibility results achieved with DES.

However, AES implementation is also part of our 18 preferred encryption implementations,

which make our system robust in terms of security. More discussion about this robust

security architecture will be presented later. Using AES before compression (on plain text

ECG) results in a lower compression ratio (CRos of Table 4.1) of 0.75 as compared to 0.99

with DES (2 Phase Encryption Compression). Using AES after compression results in an

average compression ratio (CRcs of Table 4.2) of 0.41 for 2 Phase Compression Encryption

as compared to 1.905 with DES. AES Encryption implemented on 3 Phase ECE scenario

produces an overall compression ratio (CRcs of Table 4.3) of 0.41 as compared to 1.893

achieved with DES. Therefore, it is evident from experimentation that for all the cases DES

provides higher compressibility of ECG files at the expense of security.

As a comparison, the recent research of ECG compression shows that a compression

ratio of 20 is achievable sacrificing a significant amount of data [Lu et al., 2000; Chen et al.,

2006]. Percentage Root-Mean-Square Deviation (PRD) is the standard that quantifies the

lost information. The PRDs are 7.52 and 6.13 respectively for [Lu et al., 2000] and [Lu

et al., 2000], while raising the compression ratio to 20. However, the proposed 3 Phase ECE

mechanism is completely lossless algorithm, where PRD is zero.
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Figure 4.5: Time Requirement for 3 Phase Encoding-Compression-Encryption Mechanism
on .Net Based Smart Device Platform (Pocket PC 2003 Device)

4.3.5 Deployment of 3 Phase Encoding-Compression-Encryption Mechanism on

the Mobile Platform

To evaluate whether faster execution speed indicates its suitability for less resourceful devices,

3 Phase ECE mechanism was deployed on both windows based pocket PC / Smart Phone

platforms and Java based Mobile platform.

Deployment with .Net Compact Framework

The 3 Phase ECE mechanishm was implemented on .Net Compact Framework environment

with Microsoft Visual Studio 2005. It was executed on HP iPAQ h2200 Pocket PC, HP iPAQ

hx2400 Pocket PC and HP iPAQ h6365 smart phone and execution times were noted for each

of the three phase operations. These results are summarised in the box plot of Fig. 4.5.
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Figure 4.6: Time Requirement for 3 Phase Encode-Compress-Encrypt Mechanism on J2ME
based MIDP (on CLDC) Platform

Deployment with Java 2 Micro Edition

This mechanism was also programmed on Java 2 Micro Edition (J2ME) and implemented on

Nokia N91, Siemens C75 and Nokia 6280 mobile phones. NetBeans 5.5 IDE with Mobility

Pack was utilized to program, debug, test and deploy JavaTM Midlets on the mobile phones.

Surprisingly, the execution time requirement was minimal (ms ranges) as seen in Fig. 4.6.

HP iPAQ h6365 smart phone performed the worst during our experimentation with hand

held and mobile platform. Therefore, the time distribution for that smart phone is presented

to ascertain its real time applicability in Fig. 4.7.

4.3.6 System Architecture for Joint Encoding, Compression & Encryption

Once the efficiency of proposed encoding method and 3 Phase ECE are revealed and evalu-

ated on multiple platforms, it is ready to be placed on appropriate telemonitoring scenario.

As depicted in Fig. 4.8, the system architecture contains three major building blocks: Se-

cured Acquisition Device, Secured Mobile Phone and Central Server. There are two major
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Figure 4.7: Time Distribution of 3 Phase Encoding-Compression-Encryption on HP iPAQ
6365

communication links to be secured: the link from the acquisition device to the mobile phone

and the link from the mobile to the VPN mesh of Central servers.

Secured Acquisition Device

We used Alive Heart Monitor [Ali, Accessed 2009] and in-house ECG acquisition device to

collect ECG signal (from subjects) and transmit to the mobile device using well known Blue-

tooth protocol. Securing transmission of ECG signal from acquisition device to patient’s

mobile communication was done with 6 byte long globally unique Bluetooth Device Address

(BDA), authentication, authorization, encryption and PIN exchange [Sufi et al., 2006b].

However, this Bluetooth based authentication consumes nearly 10 seconds of handshaking

time and has security flaws, which may compromise integrity of the ECG data [Potter, 2004].

To minimize the authentication time while using in-house ECG acquisition device, we pro-
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Figure 4.8: System Architecture of 3 Phase Encoding-Compression-Encryption Mechanism

posed and implemented RFID based touch scheme provided by Near Field Communication

(NFC) [NFC, Accessed 2008] technology. The touch scheme allows us to initiate and establish

Bluetooth link between the acquisition device (in-house only) and the mobile phone within

seconds (nearly 2s). Nokia 6131 phone was utilized along with NFC starter kit (from Nex-

perts) [Nex, Accessed 2008] for deployment of NFC based authentication. We used JSR-257

Contactless Communication API and JSR-82 Bluetooth API within the mobile phone per-

mitting NFC and Bluetooth based authentication-communication with the acquisition device

[JCP, Accessed 2008].

Almost all of the existing devices (including Alive) transmit the ECG signal without

encryption, ignoring privacy. However, our low complexity encoding method can be imple-

mented directly on a microprocessor based acquisition device to secure transmission of ECG

signals. This in-house ECG acquisition device supports compact flash based memory and

has enough internal memory (buffer) to support both realtime and ’store-now-forward later’
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operations. In the latter mode large amount of ECG data (several hours) can be stored

depending on the size of the compact flash. Two major purposes of NFC module deployed in

in-house acquisition device are ’fast and authorized establishment of Bluetooth link’ and ’re-

ceiving of paired permutation key from the mobile phone to be used in our proposed encoding

method (Fig. 4.9)’.

Secured Mobile Phone

Once the mobile phone receives the ECG data, it is expected to be already encoded with

the proposed encoding method (e.g. when ECG is acquired from the in-house acquisition

device). However, that may not always be the case when the data is coming from commer-

cially available monitoring devices like Alive Heart Monitor. In such a case, data must be

encoded on the mobile phone with the proposed method, before performing compression and

encryption.

As our 3 Phase ECE mechanism requires existing compression and encryption on the en-

coded text, we obtained algorithms of ICSharpCode.SharpZipLib (http://www.icsharpcode.net)

library to compress the data. This library supports four types of compression (Zip, GZip,

Tar, BZip2). Since this compression library was available in open source format, we could

easily implement the algorithms in J2ME platform.

For encryption System.Security.Cryptography library was used in .Net platform. However

on J2ME platform, our implementation of Encryption mechanism on regular mobile phone

was through the usage of cryptographic algorithm API provided by Legion of the Bouncy

Castle, which supported AES, AES Fast, AES Light, Blowfish, CAST5, CAST6, 3DES,
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DES, IDEA, RC2, RC5 32 bits, RC5 64 bits, RC6, Rijndael, Serpent, Skipjack, Towfish

block cipher as well as RC4 stream cipher [Yuan, c2004; Filho et al., 2004]. The usage of this

API ensures data transfer security from the mobile phone to the medical servers as shown

in Fig. 4.8. Although several alternative algorithms are available for both compression and

encryption on mobile platform, the choice can be made at the central server, which then

notifies the mobile platform about the specific algorithms to be used (Fig. 4.9).

Central Sever (CS)

This is often referred as medical server. The predominant purpose of the central server is to

act as a patient data repository. It collects ECG and other physiological data from IP enabled

mobile phones carried by a large number of patients that are remotely monitored. Generally,

medical servers are distributed in nature. Hence, the doctors and medical practitioners can

issue queries to many of these servers. Security among these medical servers can be achieved

with modern Virtual Private Networking built using IPsec protocol.

Since both acquisition devices and mobile phones (or Smart phones) have lower processing

power, few of the computationally intensive tasks can be delegated to the central servers.

For example, number of permutations for 256 ASCII characters is 256 P 256 = 256!. For

this tremendous value, processing and selection of a particular permutated set of ASCII

value is not feasible on a mobile phone, because of immense computational requirements.

Therefore, before transmission of the biosignal, the encoding mechanism may request a pair

of permutation keys from the central server for a typical scenario presented in Fig. 4.9.

Following the request, the CS sends a pair of permutation keys (for sign and value encoding)
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Figure 4.9: Communication Protocol Among Acquisition Device, Mobile Phone and Central
Server

(e.g. Ps and Pv) in a secured manner. These permutation keys are then used to perform

the encoding with p(.) primitive. To overcome the delay in obtaining the permutation keys,

the mobile phone should receive them from the server (as encrypted message) on regular

intervals before the expiry of the existing keys. Therefore, before transmission of the actual

ECG signal begins (i.e. initiation of a session), the acquisition device can quickly receive the

key pair from the mobile phone without invoking the central server and incurring additional

delay.

While sending the permutation keys, the CS can also notify about the specific compression
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and encryption methods to be used, since there are many possible schemes. Therefore, during

our experimentation phase the CS packed Permutation Keys, Compression and Encryption

identifiers and encrypted this piece of information with DES Symmetric algorithm before

sending to the mobile phone. As explained already, this encrypted information is only needed

to be transmitted before the commencement of actual ECG transmission, which may continue

for few hours or even days. The CS randomly selects the existing compression and encryption

schemes for the 3 Phase ECE mechanism. As stated earlier in Section 3, this not only

enhances the security of ECG data transfer, but also significantly improves transmission

time.

4.3.7 Discussion-Security Strength for Joint Encoding, Compression & Encryp-

tion

A brute force attack is an exhaustive procedure that tries all possibilities until the right

combination is determined. Therefore, the time required to complete the brute force attack

primarily depends on the size of the search space, ∆, which can be defined as:

∆ =
F∏

f=1

∆f (4.14)

where ∆f is the factor search space, F = 3 for the encoding mechanism and F = 5 for

3 phase ECG mechanism. For encoding mechanism the value of ∆1, ∆2 and ∆3 are 4, 256!

and 256! respectively, which are defined in Table 4.5. Apart from the values of ∆1, ∆2 and

∆3, the 3 phase ECE mechanism requires ∆4 = 4 and ∆5 = 18 to expand its search space.
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Therefore, it is evident that for the encoding method, the search space for brute force attack

to obtain the source of ECG (for determining C) and right permutation keys (value and sign)

is an enormous number 4× 265!× 256!. This enormous number is increases further when the

number of possible supported devices (∆1) is raised. As ∆ tends to infinity the probability,

P (1/∆) of the retrieving the right combination for deciphering tends to zero.

Only one out of the entire the combinations of ∆, result in possible ECG samples (nu-

merical floating points), only one of which constructs the right ECG segment. The only way

to discern the right floating point from the wrong ones is to plot at least one segment of

ECG comprising of all ECG features (P wave, T wave and QRS complex). Unlike dictionary

based brute force attack, there is no automated solution to match ECG morphology in order

to ascertain right combination of ECG sample from enormous search space. If in near future,

a grid of super computers can compare a trillion trillion trillion (1036) combinations of one

ECG segment (comprising 500 ECG samples) per second for ECG morphology matching, it

will take approximately 9.333× 10970 years ( (4×256!×256!)
(3600∗24∗365∗1036)

≈ 9.333× 10970) to enumerate

all the combinations. On average the correct combination would be found in half of that time.

In addition, the 3 phase ECE mechanism conceals the statistical model of the encryption by

allowing multiple compressions and encryption algorithms giving (4 × 18) × 9.333 × 10970

years, even without considering the time required to decipher keys for existing encryption

mechanisms. In fact, a device that could check a billion billion (1018) AES keys per second

would require about 3 × 1051 years to exhaust the 256 bit key space. Eventually, at this

point, one might question about the necessity of this ridiculous strength of security for ECG

data transmission. However, we would like to reinforce the fact that the main strength of
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this 3 phase ECE mechanism is inherited from the huge compression ratio (20.06) for ECG

data transmission, which guarantees faster transmission of enormous amount of ECG signal.

4.4 Wavelet based Anonymization Technique

4.4.1 Introduction - Discrete Wavelet based Anonymization

In this section, we propose a secured ECG signal distribution architecture based on wavelet

decomposition of ECG. Wavelet has been used for many years to process biomedical signals.

After the wavelet decomposition, the important parts of the coefficients, which represent

the P, QRS, T signature of the ECG, are segregated leaving the baseline or isoelectric line.

Following this segregation both the parts are compressed. Unimportant part is uploaded

to the public repository without encryption, since all the features (of ECG) that represent

cardiovascular details have been removed from this part. However, the important coefficients

are encrypted and securely distributed among the medical professionals, who need to analyse

patient’s ECG. Following this procedure, the encrypted important coefficients act a key to re-

construct the original ECG, which can be performed by the authorized personnel, conforming

to the HIPAA regulations. According to the best of our knowledge, wavelet decomposition

has never been used to protect patient’s privacy, especially to encrypt ECG signal. Apart

from introducing a new technique, the major contributions of this section are as follows:

• Faster and secured ECG transmission (overall) by the usage of joint compression and

encryption mechanism (up to 2.81 compression ratio)

• Unlike the traditional approach, only minimal portion (25%-50%) of the ECG is re-
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quired to be distributed (only the important part) to the medical professionals

• Rather than employing computationally expensive encryption algorithm of the whole

ECG, only a segment (25%-50%) is selected for encryption

• Instead of traditional doctor centric approach, the overall architecture of the proposed

system upholds modern patient centric approach, which guarantees faster diagnosis and

treatment

4.4.2 System & Methodology for Discrete Wavelet based Anonymization

ECG signal has its unique features represented by P wave, QRS complex and T wave. If

the ECG signal is represented with a number of coefficient with wavelet decomposition, and

a limited set of coefficients is carefully extracted such that the newly constructed trimmed

ECG signal from the remaining coefficients becomes featureless, then encryption will be

achieved. The selected (important) coefficients, which represent the main features of ECG,

are preserved with standard Cryptographic cipher (e.g. RSA Symmetric Cipher). Figure 4.10

demonstrates this process. In wavelet decomposition, filters of different cut-off frequencies

are used to analyse the ECG signal at different scales (frequencies). The ECG is passed

through a series of high pass filters (detail coefficients) to analyse the high frequencies, and

it is passed through a series of low pass filters (approximation coefficients) to analyse the

low frequencies. Wavelet decomposition at level 3 was used during our experimentation.

Mother wavelet was bior5.5, since it is more suitable for speech, video and biomedical signals

providing linear phase. Two individual methods were studied during the experimentation.
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Figure 4.10: Securing ECG with Wavelet Decomposition and Partial Encryption

Method 1: Discrete Wavelet based Anonymization

At level 3 we removed nodes (3, 0), (3, 1). These nodes were encrypted with RSA Symmet-

ric Cryptography. The remaining nodes (1, 1) and (2, 1) are compressed and transmitted

to the ECG repository. The compression was performed with ZIP compression using IC-

SharpCode.SharpZipLib (http://www.icsharpcode.net) library on .Net platform. Without

the knowledge of nodes (3, 0) and (3, 1), the newly constructed signal completely hides both

P wave and T wave of the original ECG (Fig. 4.11).

Therefore, this method hides most of the features required to identify the patient [Biel

et al., 2001]. However, this method does not provide complete obfuscation of the cardiovascu-

lar conditions, since the RR interval and certain types of arrhythmias are visible [Kusumoto,

2009; Bartolo et al., 2001] as obvious in fig. 4.12. The main strength of this method is the

requirement of minimal selection of coefficient (approx. 25%) for encryption and key distri-

bution. Figure 4.12 shows the selected coefficients. Therefore, this method is suitable when
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Figure 4.11: Original ECG Signal and Newly Constructed Trimmed ECG Signal with Node
(3, 0) & (3, 1) Removed

faster distribution of key is priority and strong security is not deemed necessary.

Method 2: Discrete Wavelet based Anonymization

During this configuration, nodes (3, 0), (3, 1) and (2, 1) are selected for encryption. Therefore,

the remaining coefficients, (1, 1) is uploaded to the ECG repository. As seen from Fig.

4.13, the trimmed ECG from the coefficients of the repository completely obfuscates features

related to cardiovascular condition and person identification as seen in Fig. 4.13.

This method provides increased security compromising larger key size (Approx. 50%) as

in Fig. 4.14. It is clearly seen from Fig. 4.13 that trimmed ECG does not contain any ECG

features, encrypting the ECG.
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Figure 4.12: Removed (Selected for Encryption) Coefficients for Method 1

4.4.3 Results and Discussion for Discrete Wavelet based Anonymization

The file size of the original ECG depicted in Fig. 4.11 and Fig. 4.13 is 21,150 bytes. In

method 1 & 2, the selection of coefficients is different, as described earlier. Table 4.6 shows

the overall file reduction during compression and encryption (of the selected coefficients) for

both methods. Method 1 & 2 results in compression ratio of 2.75 and 2.81, respectively.

Even though, method 2 possesses a higher key size of approximately 50% coefficients, the

overall (both encrypted key and compressed public ECG) transmission is faster due to higher

compression ratio. Moreover, method 2 provides complete obfuscation of the ECG, when

downloaded from the ECG repository, without the key. With the key, the authorized medical

professional can recover the original ECG without any loss of information.
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Figure 4.13: Original ECG Signal and Reconstructed ECG Signal with Node (3,0), (3,1) &
(2,1) Removed

4.4.4 Wavelet Packet based Anonymization

Discrete wavelet based anonymization produces a massive key size, which is about 25% to 50%

of the original ECG. Distribution of this larger key entails delay in transmission. Therefore,

we further conducted research in ECG anonymization, so that we can reduce the key size.

Then, we proposed an innovative technique for ECG anonymization by utilizing wavelet

packet transformation [Sufi et al., 2008e]. First, the original ECG were decomposed to sub

band coefficients or nodes from where the first node representing lowest frequency components

were replaced with a distorted coefficient. Then, all the coefficients including the distorted

coefficient were used to reconstruct (wavelet packet based technique) the anonymized ECG

signal. Then, when this anonymized ECG is transmitted over the network, it is neither
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Figure 4.14: Removed (Selected for Encryption) Coefficients for Method 2

vulnerable to major security threat of possible replay attack by the spoofer, nor does it

contain details of any cardiovascular conditions (as shown in Fig. 4.15).

The authorized personnel possessing a secret key will be able to reconstruct the original

ECG. This key is nothing but the original coefficient (first) representing lower frequency

band, which was distorted for the sake of ECG anonymization. Our experiments show that

on an average the key is only 12.78% of the original ECG signal, which is small enough for

efficient key distribution (transmission) and management (storage). This particular result of

lower key size is a substantial improvement of a previous method [Sufi et al., 2008d], where

the researchers used discrete wavelet transform that resulted in a key size of at least 25%

of the original ECG. Hence, the proposed technique halves the required key size for original
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ECG reconstruction. Moreover, the key was compressed and encrypted for further faster and

secured transmission and resulted in a lower size of 5.8% on an average, when experiments

were carried on 25 subjects. The most important contribution claimed by the proposed

technique is all the 25 subjects remained unidentified with current ECG biometric system,

providing security against replay attack and health privacy.

Figure 4.15: Anti Spoofing to Resist Illegal Capture of the Recognition ECG

System Overview for Wavelet Packet based Anonymization

Wavelet Packet has long been used for ECG analysis. A wavelet packet function [Ogden,

1997] is defined as

ϕn
l,k(t) = 2

l
2 ϕn(2lt− k) (4.15)

where l and k are the scale (frequency) and the translation (time) parameter, respectively;

and n = 0, 1, 3, · · · is the oscillation parameter. The structure of wavelet packet (WP)

decomposition is described as a binary tree structure E, each node is described as (l, n),

where l is a node’s scale level and n is a node’s number on the corresponded level. The root
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node (0,0) of the WP tree corresponds to the entire frequency range of the ECG signal. Each

internal node of the WP tree (l, n) ∈ E is called a parent node that is divided into two child

nodes: the first and the second nodes are associated with low-pass h(k) and high-pass g(k)

filters, which forms a quadrature mirror filter (QMF) pair [Wickerhauser, 1994].

The scaling function ω(t) and the mother wavelet psi(t) for the wavelet packet when

n = 0, 1 and l = k = 0 are given by

ϕ0(t) = ω(t), ϕ1(t) = ψ(t) (4.16)

The other wavelet packet functions for n = 2, 3, · · · and l = 1 are shown as follows

ϕ2n(t) =
∑

k

h(k)ϕn
l,k(t) (4.17)

ϕ2n+1(t) =
∑

k

g(k)ϕn
l,k(t) (4.18)

By substituting Eq. 4.15 into Eq. 4.17 and 4.18, we can get

ϕ2n(t) =
√

2
∑

k

h(k)ϕn(2t− k) (4.19)
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ϕ2n+1(t) =
√

2
∑

k

g(k)ϕn(2t− k) (4.20)

where, the low pass filter h(k) = 1√
2
〈ω(t), ω(2t − k)〉, and the high pass filter g(k) =

1√
2
〈ψ(t), ψ(2t− k)〉 = (−1)kh(−k + 1). The operator 〈., .〉 stands for the inner product.

Wavelet packet coefficients of the ECG signal x(t) is expressed as follows

Qn
l (k) = 〈x, ψn

l,k〉 =
∫ ∞

∞
x(t)ψn

l,k(t)dt (4.21)

Each coefficient measures a specific sub-band frequency content, controlled by the scaling

parameter l and the oscillation parameter n. The ECG signal x(t) can be decomposed into

different time-frequency space with Eq. 4.20 and Eq. 4.21. By computing the full wavelet

packet decomposition on the ECG signal, for the lth level of decomposition, we have 2l sets

of sub-band coefficients of length N
2l , where N is the ECG signal length [Scholl et al., 1998].

This is how wavelet packet decomposes the original ECG signal into 2 or more coefficients.

For our anonymization of the ECG signal, we performed level 3 wavelet decomposition

(l = 3). Therefore, the eight (23) sub-band coefficients (nodes) creates the coefficient set, C

that can be represented as in Eq. 4.22.

C = C1 ∪ C2 ∪ C3 ∪ C4 ∪ C5 ∪ C6 ∪ C7 ∪ C8 (4.22)

Here, node C1 (and neighbouring coefficients) corresponds to the lowest frequency range,
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which is sometimes referred as approximation coefficient. Node C8 corresponds to the highest

frequency ranges, which is on the other hand referred as detail coefficients. Each of these

nodes (C1 to C8) contains the coefficient values. Hence,

Cr = xr
1, x

r
2, x

r
3, · · · , xr

M−1, x
r
M (4.23)

where, r is the number of nodes and highest value of r is 2l as stated earlier. M is the highest

number of coefficients in a node, which depends on the number of samples within the ECG

file. As seen in Table 3.1, value of M for subject 1 to 5 were, 196, 220, 193, 172 and 157.

We know that ECG signal itself is a low frequency signal. Therefore, distorting the lower

frequency component, C1 (node) will anonymize the whole ECG, when distorted C1 and the

rest of the nodes are used for ECG reconstruction. Distorted C1 is referred as C̄1 in the rest of

the section. When primitive ϕ(.) is the function that performs wavelet packet decomposition

of level 3 and results in the eight coefficients, this wavelet packet decomposition process at

level 3 can be shown as

ϕ(yu) = C (4.24)

where, yu is the recognition ECG, u = 1, 2, 3, · · · , U and U = length(yu). From these coeffi-

cients, the original signal yu can be reconstructed back by the wavelet packet reconstruction

function, ς(.).

ς(C) = yu (4.25)
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For the sake of simplicity and faster transmission with lower node size, C1 was distorted

using Eq. 4.26. Equation 4.26 basically shows that all the coefficients within node C1 were

replaced with zero.

∀x ∈ C1 : x1
m = 0 (4.26)

where, 1 ≤ m ≤ M . The corrupted coefficient set was acquired by Eq. 4.27.

C̄ = C̄1 ∪ C2 ∪ C3 ∪ C4 ∪ C5 ∪ C6 ∪ C7 ∪ C8 (4.27)

Finally, ECG was anonymized with Eq. 4.28.

κ = O(∆(C1)) (4.28)

where, zu is the anonymized ECG. The key is generated, by joint compression and encryption

of node C1. Joint compression and encryption mechanism has been explained in details,

earlier in this Chapter. With the compression and encryption primitives represented by ∆(.)

and O(.), the key, κ is generated as in Eq. 4.29.

ς(C̄) = zu (4.29)

This anonymized ECG signal appears totally dissimilar from the original ECG. The anonymized

ECG can then be confidently transmitted over the public internet, since the anonymized ECG

does not impose any threat over privacy. The separated node C1 is used as a key, without
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which reconstruction of the original ECG from the anonymized ECG is impossible.

The authorized person, receives the key, κ and the anonymized ECG, zu. When de-

cryption and decompression is represented by functions Θ(.) and Λ(.), the lowest frequency

coefficient C1 can be retrieved back with Eq. 4.30.

C1 = Λ(Θ(κ)) (4.30)

Once, the original C1 is retrieved by the authorized user, he performs wavelet packet decom-

position (Eq. 4.31) on the anonymized ECG, zu. Thus, C̄ is obtained as follows:

ϕ(zu) = C̄ (4.31)

After, the retrieval of C̄, the authorized personnel segregates the C̄1 and replaces it with

original C1. Finally Eq. 4.25 is used to retrieve the original recognition ECG yu.

Implementation of Wavelet Packet based Anonymization

Figures 4.16 and Fig. 4.17 show our implementation of ECG anonymization by the sender

and the ECG reconstruction by the authorized receiver respectively. The recognition ECGs

for all the 30 subjects were used for decomposition of wavelet coefficients. Figure 4.18 shows

the coefficients corresponding to subject one’s ECG. The approximation coefficient (3,0) was

removed (as seen in Fig. 4.16) and a set of keys for all the 65 subjects were generated. Then,

distorted (3,0) was created by substituting all the low frequency coefficients with zeros. The

distorted (3,0) is then positioned in the same location where the original (3,0) was previ-
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ously located before segregation. Finally, all the coefficients along with distorted (3,0) were

used for wavelet packet based signal reconstruction routine to achieve ECG anonymization.

The anonymized ECGs for all the subjects appeared to be totally dissimilar from the original

ECGs. Figure 4.19 shows the anonymized ECG signals for the first five subjects. To measure

whether this dissimilarity is enough for keeping the subjects unidentified, those anonymized

ECGs were fed to our ECG biometric system (as described in Section 4) for identification

purposes. For all the cases, the subjects remained unidentified upholding the privacy require-

ment. Therefore, the wavelet packet based anonymization achieved 100% success for making

all the subjects’ unidentified protecting privacy of patients.

Figure 4.16: The Proposed Wavelet Packet based ECG Anonymization Mechanism

Results for Wavelet Packet based Anonymization

The PRDs for all the 25 cases ranged from 21.987 to 46.592 with an average of 31.562.

CC ranged from -0.012 to 0.0462 with an average of 0.009. For all the cases WDM values

between 25 and 98.715 with an average of 87.315. Table 3.1 shows the result for the first five
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Figure 4.17: The Wavelet Packet Based ECG Reconstruction Mechanism Performed by Au-
thorized Personnel

subjects. From the results, it becomes apparent that our previous empirical calculations of

the thresholds for PRD, CC and WDM for successful identification were effective.

The size of the selected coefficient is only 12.78% of the original ECG signal without any

compression and encryption. This is a substantial improvement compared to our previous

research outcome on discrete wavelet based ECG obfuscation [Sufi et al., 2008d]. The previous

method required at least 25% of whole ECG to be selected to achieve minimal level of

obfuscation [Sufi et al., 2008d]. Therefore, the proposed ECG anonymization approach nearly

halved the selected coefficient size for ECG anonymization. This substantial improvement

results in faster distribution of the secured key.

It is evident from Table 4.7 that the key (node (3,0)) sizes gets reduced after the com-

pression and encryption before secured distribution over the media. This particular ordering

of compression followed by encryption was obtained by the promising results of our previ-

ous studies in [Sufi and Khalil, 2008b]. The overall compression ratio achieved after joint

compression & encryption technique on the keys was 2.373 on an average.
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Figure 4.18: Wavelet Coefficients for Subject 1

On an average, the key is only 5.8 % of the recognition ECG size yu, after performing com-

pression and encryption of the key. Therefore, only a small portion of the recognition ECG

needs secured transmission. Anonymized ECG doest not require further encryption before

transmission, since anonymization servers the purpose of encryption. However, compression

on the anonymized ECG data will ensure faster data transmission.

4.5 ECG Obfuscation with Noise

Wavelet packet based ECG anonymization produces a moderate key size (i.e. 5.8% of the

original ECG). However, in Holter Monitoring scenario, ECG file size could be in Gigabyte

range. A more efficient method that reduces the key size even further needs to be investi-

gated. In addition, our previous methods of ECG encryptions / anonymizations represent

the ECG in encrypted format, alluring the hackers in decrypting the encoded ECG. A new
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Figure 4.19: Anonymized ECG for the First Subjects

anonymization technique that keeps the ECG packets appear to be original ECG while hiding

the cardiovascular details and biometric features, is highly desired.

To achieve this, first of all, in this section, we present a new ECG feature detection

mechanism, which was compared against existing cross correlation (CC) based template

matching algorithms. Two types of CC methods were used for comparison. Compared to the

CC based approaches, which had 40% and 53% misclassification rates, the proposed detection
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algorithm did not perform any single misclassification. Secondly, a new ECG obfuscation

method was designed and implemented on 25 subjects using added noises corresponding to

each of the ECG features. This obfuscated ECG can be freely distributed over the internet

without the necessity of encryption, since the original features needed to identify personal

information of the patient remain concealed. Only authorized personnel possessing a secret

key will be able to reconstruct the original ECG from the obfuscated ECG. Distribution of

the key is extremely efficient and fast due to small size (only 0.04%-0.09% of the original

ECG file). Moreover, if the obfuscated ECG reaches to the wrong hand (hacker), it would

appear as regular ECG without encryption. Therefore, traditional decryption techniques

including powerful brute force attack are useless against this obfuscation.

According to the literature, there are several methods of pattern matching algorithm that

can be used for person identification. Cross correlation (CC) is a technique used in statistics

to match the similarity of two vectors or signals [Last et al., 2004; Ifeachor and Jervis,

1993]. Different varieties of CC approaches have been successfully employed for template

matching of the ECG signal [Last et al., 2004; Abboud and Sadeh, 1984; Govrin et al.,

1985]. As reported by previous literatures, [Govrin et al., 1985] utilized both P and QRS

template to locate successive P waves and QRS complexes for all cardiac cycles during their

experimentation. More recently, [Last et al., 2004] utilized all ECG signature templates (P

wave, QRS Complex and T wave) to perform multi-component CC approach to identify all

three components from 3000 cardiac cycles or beats. We employed CC using both Eq. 4.32

and Eq. 4.33 as they were utilized by previous studies [Abboud and Sadeh, 1984; Govrin

et al., 1985; Last et al., 2004; Ifeachor and Jervis, 1993], for the detection of P wave, QRS
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complex and T wave. Moreover, a new pattern matching algorithm is proposed in this section

for obfuscation of the ECG.

ECG obfuscation can be performed by the usage of existing encryption algorithms [Kar-

talopoulos, 2006]. Even though modern symmetric and asymmetric encryption algorithms

are claimed and challenged to be unbreakable time to time, they are being broken by different

groups [Kartalopoulos, 2006]. The encryption algorithm turns the plain text into redundancy

free code words. Therefore, almost all of existing encrypted data appear as meaningless chunk

of characters. Encrypted or encoded cipher texts allure expert hackers to employ powerful

brute force attacks for decryption of the encoded text. However, if the encrypted text appears

to be ordinary plain text, the hacker would think it to be unencrypted text and eventually he

will not be tempted to decrypt the encoded text. Previous work in ECG encryption employed

partial encryption to the ECG file [Miaou et al., 2002], which generates cipher text to attract

hacker’s attention. Also, more recent efforts of turning ECG text to chaotic representation

will generate doubt among expert hackers [Lin and Chung, 2007]. Moreover, application of

this method generates added error within the recovered ECG [Lin and Chung, 2007].

The proposed obfuscation method produces output signal (obfuscated ECG), which ap-

pears as regular ECG comprising typical feature waves like P waves, QRS complexes and T

waves. Since the proposed ECG obfuscation deceives the hacker by pretending to be original

ECG, the whole range of hacker’s utilities become useless against the proposed method. Most

importantly, the reconstructed signal is exactly same as the original ECG unlike the existing

ECG scrambler [Lin and Chung, 2007].
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Figure 4.20: Key and Obfuscated ECG Distribution

4.5.1 System & Method of ECG Obfuscation with Noise

The proposed ECG obfuscation model detects all three features, namely P wave, QRS com-

plex and T wave from the ECG and replaces them with noised features. Therefore, to the

unauthorized person, this noised ECG (obfuscated ECG) signal will appear as normal ECG

signal, but certainly it will not disclose any person identification or cardiovascular details.

The noised ECG preserves the original ECG hidden within it. Only authorized personnel

(e.g., medical personnel, heart specialist etc.) are distributed with a key, using which the

original ECG can be reconstructed (from the noised ECG). During the reconstruction of ECG

from noised ECG (obfuscated), noised features are detected followed by noise deduction from

the noised features. Thus, original ECG signal is reconstructed. Figure 4.21 demonstrates

the simplified block diagram of ECG obfuscation and reconstruction process. As it is evident

from Fig. 4.21, detection plays a major role before the actual process of obfuscation and

reconstruction. Therefore, selection of an accurate feature detection algorithm (regular fea-

ture detection from ECG signal and noised feature detection from obfuscated ECG) is core

to this research.
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Figure 4.21: Block Diagram of ECG Obfuscation & Reconstruction Process

Selection of Optimal Feature Detection Algorithm

Previous studies have successfully used CC method to detect ECG features [Abboud and

Sadeh, 1984; Govrin et al., 1985; Last et al., 2004; Ifeachor and Jervis, 1993]. For this research

we evaluated two types of CC approaches for the detection of P waves, QRS complexes

and T waves from the input ECG, x(n). Then, we introduced our own algorithm for the

same purpose of detection of ECG features. All three methods of template matching based

ECG feature detection were tested against ECG samples from 25 subjects captured with the

acquisition device developed by Biopac Systems Inc. (www.biopac.com). The possibility of

variation in heart rate increases with longer acquisition time for the patients. If the change

in heart rate is drastic during a single ECG session, then the templates that were chosen at

the beginning of the session might provide poor detection at the end of the session.

Therefore, 10 minutes acquisition time was optimally appointed for each of the subject

to evade wider variation in heart rates during the experimentation session. Moreover, the

subjects were allowed to take 15 minutes rest before the start of the ECG session. Thus,

steadier heart rate was assured. Lead II configuration and 360 Hz sampling frequency was

set for all the acquisitions. The acquisition was performed under resting condition for all

the sessions to avoid the possibility of baseline drifts and noises, since these might impede
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against good CC results. The three template matching algorithms are described as follows:

1) Cross Correlation Method 1:

We used Eq. 4.32 to obtain the similarity between the subset of original ECG and the

template (P template, QRS template and T template). The highest values of CC vector, rcc

reveal possible locations of a feature.

rcc(j) =
1
M

M∑

m=1

x(m + j)× f(m) (4.32)

where, m = 1, 2, , 3, , M and M is the length of feature template f(n). By sliding the

feature template with respect to the ECG x(n), vector r(j) is created as in Eq. 4.33. During

this sliding process only the value of j is incremented and therefore, j = 1, 2, 3, , (N −M)

rcc(j) = r(1), r(2), r(3), ..., r(N −M) (4.33)

This procedure was followed for the detection of P wave, QRS complex and T wave.

To detect P wave, QRS complex and T wave from the original ECG, P templates, QRS

templates and T templates are used respectively. During the P wave classification, this

method misclassified both T waves and QRS complexes apart from successfully identifying P

waves. Therefore, the total misclassification rate was found to be 40% for this method. Figure

4.22, shows a subset of original ECG signal for subject 3. Figure 4.23 shows the templates

for P wave, QRS complex and T wave. These templates were basically chosen from the
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Figure 4.22: Original ECG Signal

first occurrences of corresponding features from Fig. 4.21. Finally, Fig. 4.24 (a) plots the

rcc showing 9 positively classified P features, out of which only 3 are correct. However, this

method successfully detected all the QRS complexes and T waves as seen in Fig. 4.24 (b) and

Fig. 4.24 (c) without misclassifications. Because of lower accuracy arising from misclassified

P waves, this method was not selected for the proposed ECG obfuscation method.

Cross Correlation Method 2: In this method, we used Eq. 4.34 to calculate the CC

vector, rmcc to detect P wave, QRS complex and T wave. This equation was formerly used

by previous research [Last et al., 2004] in multi-component based CC for detection of P, QRS

and T. During our experimentation the misclassification rate observed for this method was

54%, which is even greater than that of CC method 1 (Fig. 4.25).

rmcc(j) =
∑M

m=1[x(m + j)− x̄]× [f(m)− f̄ ]√∑M
m=1 [x(m + j)− x]2[f(m)− f̄ ]2

(4.34)
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Figure 4.23: Feature Template to be used for Feature Extraction

Figure 4.25 (a) shows that out of 8 candidates of possible P onset only 3 were true. Figure

4.25 (b) shows all 3 candidates for QRS complex were misclassified. However, Fig. 4.25 (c)

correctly detected the three T waves. The Proposed Feature Detection Method Because

of high misclassification rates for both CC method 1 and method 2, a better method of

ECG feature detection was sought. Percent of Root-Mean-square Difference (PRD) is widely

used to measure the quality of reconstructed ECG after lossy ECG compression [Zigel et al.,

2000b].

Basically, PRD provides a measurement of dissimilarity between two signals as in Eq.

4.35. Therefore, to obtain the similarity between two waves Eq. 4.36 can be utilized.

The vector, rs provides the highest percentage value (over 92%) when the template wave

is matched within the original ECG as seen in Fig. 4.26.

The proposed similarity matching technique, using Eq. 4.36, which was inspired by the

PRD measurement, did not incur any single misclassification. Therefore, this new technique
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Figure 4.24: Measurement of Cross Correlation (rcc) for Detection of P wave, QRS Complex
and T Wave using CC Method 1
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Figure 4.25: Measurement of Cross Correlation (rcc) for Detection of P wave, QRS Complex
and T Wave using CC Method2
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Figure 4.26: Detection of P wave, QRS Complex and T wave with Percentage of Similarity
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was found to be more suitable whenever higher detection accuracy is of paramount impor-

tance and finally this method was used for the noised based obfuscation and reconstruction

procedure.

PRD =

√∑M
m=1 [x(m + j)− f(m)]2∑M

m=1 [x(m + j)− x̄]2
× 100 (4.35)

rs(j) = (1−
√∑M

m=1 [x(m + j)− f(m)]2∑M
m=1 [x(m + j)− x̄]2

)× 100 (4.36)

rs(j) = 100− PRD(j) (4.37)

The Detection Function, Λ(x(n), f(m)) detects the onset and offset of particular feature

waves from ECG (x(n)) by sliding the Eq. 4.36 and performing template matching with the

particular features, f(m). This detection function receives two parameters: the original signal

x(n) (from where the features are needed to be detected) and the feature template, where,

1 = m = M and M = length(f(m)). In short, Λ(.) is utilized to reveal any of the features

(similar pattern like f(m)) of x(n) by template matching with f(m). The mathematical

symbols are further defined in Table 4.8.
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4.5.2 Key used in ECG Obfuscation & Reconstruction

Both the patients and the doctor share the same key, K for obfuscation and reconstruction.

The key contains the feature template Γ and noise template C. Feature template, Γ contains

three templates for P wave, QRS complex and T wave. Therefore,

Γ = ΓP (o) ∪ ΓQRS(l) ∪ ΓT (v) (4.38)

The noise template contains individual noises for P wave, QRS complex and T wave.

Hence,

C = CP (o) ∪ CQRS(l) ∪ CT (v) (4.39)

Thus, the key,

K = Γ ∪ C (4.40)

Figure 4.27 depicts the key composition, which is central to the proposed ECG obfuscation

and reconstruction process. Therefore, the templates and the noises are carefully selected.

The selection of the templates can be performed during the training phase as in earlier

research [Last et al., 2004]. Noises pertaining to each of the features (P wave, QRS complex
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and T wave) can be represented by either of the followings:

• As a signal vector (e.g. q = 6, 7.5, 3.9, 8.1, 2.3, ...)

• As an equation (e.g. q(x) = e4.5×x)

However, in both the cases there are trillions of possible noise permutations, making

the proposed ECG obfuscation process highly secured. Unlike the obfuscated ECG, the key

requires secured distribution to the authorized personnel, who are allowed to view the ECG.

Key distribution techniques for this obfuscation method are out of the scope for this section,

since it is separate research by itself [Lee and Lee, 2008].

4.5.3 ECG Obfuscation Process

The obfuscation method is a two-step process where individual feature of the ECG (P waves,

QRS complexes and T waves) are detected followed by the addition of different noises to

those detected features (Fig. 4.21). Obfuscation is performed by obfuscation function, which

takes the original ECG signal x(n) and produces the obfuscated ECG signal y(n) using key

K. Figure 4.28 details the ECG obfuscation process.

Step 1-Feature Detection: Detection function, Λ(x(n), Γ) detects all the features, F

from x(n) using feature templates, Γ. Therefore, the feature set contains all the P waves,

QRS complexes and T waves from the original ECG.

This feature revelation process can be shows as follows:

F = P ∪QRS ∪ T (4.41)

200 (October 31, 2011)



CHAPTER 4. SECURING THE ECG

Figure 4.27: Key Composition for ECG obfuscation & Reconstruction

Λ(.) : x(1), x(2), ..., x(n) −→ x(1), x(2), ..., P1(0), ..., QRS1(l), ..., T1(v), ..., P2(o), ..., x(N)

Step 2-Noise Addition: After the features are detected from the original raw ECG

data, various types of relevant noises are added on the detected features for feature obfusca-

tion as follows:

∀P, P̂u(o) = Pu(o) + CP (o) (4.42)

∀QRS, ˆQRSw(l) = QRSw(l) + CQRS(l) (4.43)

∀T, T̂z(v) = Tz(v) + CT (v) (4.44)

An example of this noise addition is presented in Eq. 4.45, which shows how individual
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noises are added to corresponding features.

y(n) = x(1), x(2), ..., (P1(o) + CP (o)), ..., (QRS1(l) + CQRS(l)), ..., x(N) (4.45)

Or,

y(n) = y(1), y(2), y(3), ..., P̂1(o), ..., ˆQRS1(l), ..., T̂1(v), ..., P̂2(o), ...y(N) (4.46)

Following conditions should be noted during this observation:

An example of this noise addition is presented in Eq. 4.45, which shows how individual

noises are added to corresponding features.

y(n) = x(n) where x(n) ∈ F̄ (4.47)

y(n) = x(n) + ξ where x(n) ∈ F̄ (4.48)

where, ξ is the feature specific noise for that particular ECG sample point x(n). Equation

4.47 and 4.48 basically mean that noises are only added to the features (not to the featureless

portion).
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4.5.4 ECG Reconstruction Process

During the Reconstruction process obfuscated or noised features are detected from the obfus-

cated ECG, followed by the noise deduction from those detected noised features (Fig. 4.20).

This process involves the usage of reconstruction function, Ξ = (y(n), K) which reconstructs

the original ECG x(n) from the noised signal y(n) using the key, K. Figure 4.29 shows

the details of ECG reconstruction method. Table 4.9 contains the mathematical symbol

definitions for ECG reconstruction.

Step 1-Noised Feature Detection: The detection function, Λ(y(n), Γ̂) detects all the

noised features, F̂ from y(n) using the corrupted template, Γ̂.

F̂ = P̂ ∪ ˆQRS ∪ T̂ (4.49)

Γ̂ = Γ̂P (o) ∪ Γ̂QRS(l) ∪ ΓT (v) (4.50)

These noised templates for P wave, QRS complex and T wave can be obtained by adding

noises to the corresponding templates as in Eq. 4.51 - 4.53:

Γ̂P (o) = ΓP (o) + CP (o) (4.51)
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Figure 4.28: Details of Obfuscating ECG
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Figure 4.29: Details of Reconstructing ECG
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Γ̂QRS(l) = ΓQRS(l) + CQRS(l) (4.52)

Γ̂T (v) = ΓT (v) + CT (v) (4.53)

Therefore, the noised features are detected as follows: Γ(.) : y(1), y(2), y(3), ..., y(n) −→

y(1), y(2), y(3), ..., P̂1(o), ..., ˆQRS1(l), ..., T̂1(v), ..., P̂2(o), ..., y(N)

Step 2-Noise Deduction: Corresponding feature noises from C (set of noises for P wave,

QRS complexes and T wave) are deducted from the individual corrupted features, F̂ (which

was detected earlier in step 1) to reconstruct the original features. These feature reconstruc-

tion operations can be expressed as follows:

∀P̂ , Pu(o) = P̂u(o)− CP (o) (4.54)

∀ ˆQRS, QRSw(l) = ˆQRS(l)− CQRS(L) (4.55)
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∀T̂ , Tz(v) = T̂z(v)− CT (v) (4.56)

Therefore, as an example the reconstruction process is completed by following (where the

noises are deducted from corresponding noised features):

x(n) = y(1), y(2), y(3), · · · , (P̂1(o)− CP (o)), · · · , ( ˆQRS1(l)− CQRS(l)), · · · ,

(T̂1(v)− CT (v)), · · · , (P̂2(o)− CP (o)), · · · , y(N)

x(n) = x(1), x(2), x(3), · · · , P1(o), · · · , QRS1(l), · · · , T1(v), · · · , P2(o), · · · , x(N)

4.5.5 Experimentational Results for ECG Obfuscation

As noted earlier, this obfuscation method was tested on ECG measurements collected from 25

subjects using the same procedures, as explained earlier. After successful ECG obfuscation,

keys were generated for all the 25 sessions. The key size ranged from only 0.04-0.09% of the

original ECG file. When noise equation was used to represent the noises, minimal key size

was obtained.

Key sizes can be further reduced by representing the feature templates by equations.

Existing research in synthetic ECG shows that the ECG can be represented by mathematical

equations 4.52. Lower key size results in faster key distribution to the authorized personnel.

Figure 4.30 represents the corresponding noises for P waves, QRS complexes and T waves

for subject 3, which can be expressed as follows:
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CP (o) = 0.5× e
−|t|

a (4.57)

where, a is width of the wave and t is time (since, ECG signal is in time domain).

CQRS(l) = Π2a(t) (4.58)

CT (v) = e
−t2

a (4.59)

The original ECG and the selected template for P wave, QRS complex and T wave was

already shown in Fig. 4.22 and Fig. 4.23. Using these templates and noises (key), the ECG

can be successfully obfuscated by the proposed technique as in Fig. 12. This figure reflects

only a fraction (1.39 s) of total acquisition time. Figure 4.31 clearly depicts that the all P

waves, QRS complexes and T waves appears totally different than the original ECG signal. If

features are hidden as it is done by the proposed technique, then both cardiovascular details

and person identification are impossible to detect without the knowledge of Eqs. 4.57-4.59

and templates in Fig. 4.23. After obfuscation, the PRD was measured using Eq. 4.60 and it

was found to be 2.9750 for subject 3.
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Figure 4.30: Noise for P wave, QRS complex and T wave

PRD =

√∑N
i=1 [x(i)− f(i)]2∑N

i=1 [x(i)]2
× 100 (4.60)

The key for subject 3 was only 936 bytes in size. However, the total file size for the original

ECG recording of subject 3 (which is partially presented in Fig. 4.22) was 2433492 bytes.

Therefore, the key is less than 0.04 % of the original ECG. This small piece of information

is so crucial that without it reconstruction of the noised ECG is not possible. Moreover,

this minute information can be very easily transferred to the authorized personnel in secured

fashion.

Similarly, the PRDs for the rest of the subjects were measured to be 5.3450±2.37. For all

the sessions, obfuscated ECGs were recovered using their own keys with 100% accuracy, since

PRDs for the reconstructed and original ECGs were 0 for all the cases. During this process
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Figure 4.31: Noised ECG signal

random noises were chosen from the noise bank containing 50 noises (25 noise equation and

25 noise vector). All these noises were controlled noises specifically generated in way that

adding them with the original ECG does not make the PRD of the original and the obfuscated

ECG more than 10

However, we would like to mention that although the proposed feature detection mech-

anism (Eq. 4.36) provides higher accuracy as compared to both CC method 1 (Eq. 4.32)

and CC method 2 (Eq. 4.34), it is computationally expensive compared to CC method 1.

Therefore, higher accuracy is purchased with the cost of computational complexity, which is

apparent from Eq. 4.36.

A Java MIDlet [Sufi, 2007], which is a miniature program capable of being executed

in java supported mobile phones, was programmed to perform ECG feature detection and

obfuscation. Figure 4.32 demonstrates the Java MIDlet being executed in Nokia N95 mobile

phone.
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Figure 4.32: Implementation of detection and obfuscation on mobile phone

4.6 Conclusion

To prevent spoofing attacks and refrain malicious users from gaining access to the biometric

systems (with the help of captured recognition ECG), the plain-text ECG was encrypted and

anonymized in this chapter.

We first showed that 3 Phase Encoding-Compression-Encryption mechanism, which not

only secures end-to-end data transfer from the acquisition device to the medical server but

also significantly reduces the file size of ECG with a compression ratio of up to 20.06. There-

fore, by adding compression and encryption steps along with our encoding method (shown in

Chapter 2), we have increased the compression ratio. By encoding (with permutation cipher)

the ECG and concealing which compression method and which encryption method to use,

the proposed 3 phase ECE mechanism can provide massive security strength (approximately
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4.666× 10970 years as shown in Section 4.3.7.

Then, for the first time, we successfully employed two methods of discrete wavelet based

ECG anonymization technique [Sufi et al., 2008d;e]. When the proposed anonymization

techniques are applied to a patient centric architecture like Fig. 4.10, patients’ privacy is

protected. Moreover, faster transmission is achieved due to the benefit of higher compression

ratio of up to 2.81.

Next, Packet Wavelet based Anonymization technique was presented. During creation

of the anonymized ECG, a secret key was also generated from a feature rich subset of the

original recognition ECG. This unique key is only 5.8% of the size of the actual recognition

ECG. Therefore, because of the smaller size of the key, key management (e.g. storage) and

distribution (e.g. transmission) is comparatively convenient compared to previous studies

performed with discrete wavelet transformation.

Lastly, we proposed a new technique for ECG feature detection, which performed classifi-

cation of P waves, QRS complexes and T waves from several subjects with 1.67 and 2.17 times

accuracy compared to two existing CC based approaches. This feature detection method was

implemented on the subjects to detect ECG feature for a new noise based ECG obfuscation

technique. The proposed ECG obfuscation technique not only conceals the details necessary

for person identification, but also hides some of the major cardiovascular details. The keys,

which were found to be only 0.04-0.09% of the original ECG file sizes, were generated for

all the subjects. The key size of noise based ECG anonynization method was approximately

64.44 times smaller in size than our wavelet based ECG anonynization technique. Therefore,

key distribution for this noise based ECG annonyminzation techniques is even more efficient.
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The benefit of using the proposed obfuscation over regular encryption mechanisms in-

cluding wavelet based ECG annonymization is that the corrupted ECG appears as regular

ECG without encryption (unlike existing ECG encryption techniques ([Miaou et al., 2002;

Lin and Chung, 2007]). Therefore, to the eavesdropper the process of standard decryption

method is useless. Moreover, noise can be represented in enormous number of combinations

establishing unmatched security for the proposed ECG obfuscation technique.
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Table 4.4: Results of Performance Comparison among Three Joint Compression Encryption
Mechanisms

Different Cases of arrangements Average
Com-
pression
Ratio,
Avg(CRt)

Average
Total
Time
Avg(Tt) in
ms

Time required
to raise one
unit of com-
pression ratio,
TCR, in ms

2 Phase Encryption-Compression
Mechanism

0.99 55.33 55.40

2 Phase Compression-Encryption
Mechanism

14.44 571.58 39.58

3 Phase Encoding-Compression-
Encryption Mechanism

18.94 213.00 11.25

Table 4.5: Notations for Security Strength of the Scheme

Notation Definition
∆1 For ECG acquisition alone we used three different acquisition

devices (GE MAC 5500, Alive Heart Monitor [Ali, Accessed
2009], In-house Developed ECG Monitor) during experimen-
tation. Apart from these, MIT BIH Arrhythmia database
entries were also being evaluated. Therefore, the total num-
ber of ECG sources was 4.

∆2 This is the number of all ASCII permutations for sign encod-
ing, which is 256!

∆3 This is the number of all ASCII permutations for value en-
coding, which is also 256!.

∆4 This is the number of supported compression algorithm.
Eventually, only one compression algorithm is selected from
4

∆5 This is the number of supported encryption algorithms. Dur-
ing our experimentation one encryption is selected from 18
encryption mechanisms
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Table 4.6: Reduction of ECG File Size for Method 1 & 2. M1 and M2 Denotes Method 1
and Method 2.

Coefficient Encrypted Transmitted Encrypted Transmitted
Selection Coefficient

(M1)
Coefficient
(M1)

Coefficient
(M2)

Coefficient
(M2)

Original Size
(bytes)

4,987 17,261 10,513 11,735

Compressed
Size (bytes)

2,052 5,712 3,935 3,812

Encrypted Size
(bytes)

1,968 - 3,728 -

Table 4.7: Performance Metrics for the Proposed ECG Anonymization Mechanism. Cf. Size,
Comp. Cf. Size and Encr. Cf.Size are in Bytes.

Subject PRD CC WDM CL Cf. Len Cf. Size Comp.
Cf.
Size

Encr.
Cf.
Size

1 25.202 0.0415 37.356 51.059 196 1845 837 792
2 25.47 0.004 97.352 20.0565 220 2079 921 880
3 39.112 -0.012 92.425 18.7095 193 1719 801 768
4 33.949 0.006 38.206 47.55975 172 1641 768 728
5 31.407 0.012 28.264 53.31625 157 1505 703 672

216 (October 31, 2011)



CHAPTER 4. SECURING THE ECG

Table 4.8: Definition of Mathematical Symbols for ECG Obfuscation

Notation Description
x(n) Original ECG Signal
y(n) Obfuscated ECG Signal
Λ(.) Detection Function
K Key for obfuscation or reconstruction
Γ Feature template containing P template, QRS template and T template of the ECG
C Noise template containing P noise, QRS noise and T noise
ΓP (o) Set of ECG samples representing P Template, and 1 = o = O, where O =

length(Ptemplate)
ΓQRS(l) Set of ECG samples representing QRS Template, and 1 = l = L, where L =

length(QRStemplate)
ΓT (v) Set of ECG samples representing T Template, and 1 = v = V , where V =

length(Ttemplate)
CP (o) Set of values representing Noise for P and 1 = o = O, where O = length(Ptemplate)
CQRS(l) Set of values representing Noise for QRS and 1 = l = L, where L =

length(QRStemplate)
CT (v) Set of values representing Noise for T and 1 = v = V , where V = length(Ttemplate)
F Feature set containing all the P, QRS and T from original ECG, x(n)
P P feature set containing all the Pu(o) within the original ECG, x(n), where P ⊂ F

and u = 1, 2, 3,
QRS QRS feature set containing all the QRSw(l) within the original ECG, x(n), where

QRS ⊂ F and w = 1, 2, 3,
T T feature set containing all the Tz(v) within the original ECG, x(n), where T ⊂ F

and z = 1, 2, 3,
F̄ Set of ECG samples without containing any ECG Feature like P wave QRS complex

or T wave
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Table 4.9: Definition of Mathematical Symbols for ECG Reconstruction

Notation Description
Ξ Reconstruction Function, Ξ : y(n) −→ x(n)
F̂ Obfuscated Feature Set containing all the Obfuscated P, Obfuscated QRS and Ob-

fuscated T
P̂ Obfuscated P feature set containing all the P̂u(o) within the original ECG, x(n),

where P̂ ⊂ F̂ and u = 1, 2, 3, · · ·
ˆQRS Obfuscated QRS feature set containing all the ˆQRSw(l) within the original ECG,

x(n), where ˆQRS ⊂ F̂ and w = 1, 2, 3, · · ·
T̂ Obfuscated T feature set containing all the T̂z(v) within the original ECG, x(n),

where T̂ ⊂ F̂ and z = 1, 2, 3, · · ·
Γ̂ Obfuscated or noised template containing noised P template, noised QRS template

and noised T template
Γ̂P (o) Noised P template created by adding P noise with P template

ˆΓQRS(l) Noised QRS template created by adding QRS noise with QRS template
Γ̂T (v) Noised T template created by adding T noise with T template
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Chapter 5

Efficient Cardiovascular Diagnosis

ECG has been intensively used by cardiac specialists to efficiently diagnose Cardiovascular

Diseases (CVD) for the last seven decades [Hamilton and Tompkins, 1986; Friesen et al.,

1990; Clifford et al., 2006; Bartolo et al., 2001; Kusumoto, 2009]. Apart from diagnosing

CVD, ECG is also used for monitoring breathing pattern, mental stress and condition of

autonomous nervous system [Kumar et al., 2007]. ECG can also reveal the identity of a

person using ECG based biometric techniques as we have learnt in Chapter 3.

For wireless telecardiology, limited bandwidth is one of the major bottlenecks of faster

diagnosis. Many of the recent telemonitoring platforms suggest using innovative compression

technologies, so that the massive amount of ECG data (e.g. ECG from 12 leads) can be ac-

commodated with today’s bandwidth constrained mobile Internet (as described in Chapter 2).

However, since ECG packets are kept in compressed format by these efficient tele-cardiology

platforms, the packets need to be decompressed before using any existing diagnosis algorithms

[Lee et al., 2007; Hung and Zhang, 2003; Jasemian and Arendt-Nielsen, 2005; Hamilton and
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Figure 5.1: Cardiovascular Diagnosis on Mobile Phone

Tompkins, 1986; Friesen et al., 1990; Clifford et al., 2006; Bartolo et al., 2001]. This extra

step of decompression before performing diagnosis entails delay in diagnosis, which can be a

killer. After having a cardiac arrest, the cardiac cell damage may start, which is an irrecov-

erable process. The dead cardiac cells will never revive. That is why every seconds count,

when a patient is having the symptom of a cardiac arrest [Luca et al., 2004; Bradley et al.,

2006].

The key to faster diagnosis is to perform diagnosis directly from the compressed ECG as

opposed to decompress the compressed ECG and then perform diagnosis on the plain ECG.

Our recent research in wireless telecardiology shows that cardiovascular diagnosis from com-

pressed ECG is faster than decompression followed by diagnosis. This chapter answers our

last research question of faster CVD diagnosis from ECG. To reduce the delay in treatment

and diagnosis, in previous chapters we focused on faster ECG transmission via mobile tele-

phony network and faster (and secured) authentication mechanism. Cardiac abnormality

detection directly from the compressed ECG will be the main focus of this chapter (Fig.

5.1).
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5.1 ECG Diagnosis from plain ECG

The diagnosis of cardiovascular diseases with ECG signal has been well researched and well

established for the last few decades. However, almost all these algorithms were designed for

the plain (uncompressed) ECG. Within the last 5 years, research on mobile phone based

cardiovascular monitoring is progressing well, since cardiovascular diseases is the number one

killer of modern era. Existing ECG diagnosis algorithms can be classified into three different

categories as follows:

• Direct Approach

• Transformational Approach

• Intelligent Approach

5.1.1 Direct Approach

Direct methods encompass diagnosis algorithms that are of relatively lower complexity. They

tend to apply some simple mathematical operations on the original ECG to extract the feature

waves. Amplitude based method, First Derivative based method and Second Derivative based

methods are some examples of direct-methods to locate the QRS complex of ECG [Hamilton

and Tompkins, 1986; Friesen et al., 1990]. Because of lower complexity, they are suitable for

mobile and embedded devices with lower computational capacity. we have implemented few

of the direct methods to locate QRS complex and calculate RR interval in mobile platform,

as seen in figures 5.2 and 5.3.

These 3 existing methods have been used in various applications and their implementa-
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tions vary across different literatures. The details of our implementation for these existing

ECG beat recognition methods are briefly described here.

The Amplitude based Technique (ABT) performs simple and primitive comparisons where

the ranges of sample ECG points falling beyond an amplitude threshold are determined to

be a possible QRS complex candidate. Within Table 5.3, the column ”Th.” shows varying

thresholds for different MIT BIH entries (first 60 seconds of ECG data).

For First Derivative based Technique (FDBT), first derivatives of the original ECG sig-

nal are obtained before performing any other calculations. To measure the performance of

FDBTs on mobile phone, a modified version of [Hamilton and Tompkins, 1986] was adopted.

A QRS complex candidate is suspected whenever three consecutive first derivative values are

greater than a positive slope threshold (0.1375), followed within next ten samples by two

consecutive first derivative values less than a negative slope threshold (-0.2). The following

3 conditions describes this process.

Condition 1: yi, yi+1, yi+2 > 0.1375

Condition 2: yj , yj+1 < −0.2

Condition 3: j − i < 10

In Table 5.3, the column On Set and Off Set reflect these two parameters.

The Second Derivative based Technique (SDBT) relies on similar mechanism used in QRS

detection algorithms based on Second Derivatives. For performance comparison, a modified

version of [Balda, 1977] was adopted. At first, Eq. 5.1 - 5.2 was used to evaluate y0 and y1.

y0d = ABS(xn+1 − xn−1) (5.1)
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y1s = ABS(y0d+2 − 2y0d + y0d−2) (5.2)

where, s = 1, 2, 3, 4, · · · , N − 3

A scaling value, y2 is calculated from y2s = 1.3y0d − 1.1y1s. All values higher than a

threshold value, are determined to be the begining of a QRS candidate (y2s ≥ 0.9). In Table

5.3, this parameter y2s is referred as ”Const”.

Figure 5.2: Implementation of Direct Methods for Diagnosing ECG on J2ME Supported
Mobile Phones

5.1.2 Transformational Approach

These methods include application of transformations like wavelet transform, Fourier trans-

form, cosine transforms etc. [Dokur et al., 1999; Lemire et al., 2000]. They require higher

computational power compared to most of the direct methods. Often, these methods trans-

form the ECG from time domain to some other domains like frequency domain.
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Figure 5.3: Implementation of Direct Methods for Diagnosing ECG on .Net Supported PDAs
/ Smart Phones

5.1.3 Intelligent Approach

These methods employ various intelligent techniques like Neural Network, Clustering, Sup-

port Vector Machine, Attribute Selection, Hermite Polynomial etc. [Gang et al., 2000]. They

consume the highest level of processing power and almost unsuitable for processing by the

mobile or embedded devices.

5.2 ECG Diagnosis from compressed ECG

With the advent of modern mobile phone based telecardiology applications, the ECG packets

are being transmitted in compressed format to suit the limited bandwidth of mobile telephone

network. The ability to perform diagnosis straight from the compressed ECG packets has

been proven to be faster than applying existing ECG diagnosis on the compressed ECG, after

decompression.

Once the ECG data is compressed and secured, faster and efficient transmission is guar-

anteed. The encoded ECG segments from several patients are transmitted to the medical
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server over the wireless network. The medical server continues to perform background detec-

tion on these stored ECGs. When an abnormality is detected by the background monitoring

agent of the medical server, the doctor is notified via SMS and MMS messages. This type

of communication from the medical server to the doctor is called Server Push Abnormality

Notification (SPAN). On the other hand, a doctor might want to view the status of his pa-

tients on his mobile phone, and may request the data from the Medical Server. This type

of communication is defined as Doctor Pull Wellness Monitoring (DPWM). With both the

cases, the doctor’s mobile is flooded with ECG segments from several patients. Under these

circumstances, the urgent and more serious ECG segments must be dealt first with higher

priority. Therefore, a fast HR estimation algorithm (Algorithm 1) is required to screen out

more serious patients requiring immediate attention. The proposed HR estimation algorithm

can estimate the HR very fast with a high degree of accuracy. The crucial reason for this

algorithm to be faster than any other existing HR detection methods is simple: the proposed

HR estimation algorithm does not require to read the compressed ECG data.

Once the HR is estimated, so that the more serious patients are remotely attended by the

doctor, the estimation results are required to be confirmed. This should be done with some

detailed HR calculation methods. However, if existing HR calculation methods are used,

then the compressed and secured ECG data must be decompressed by the doctor’s mobile

phone, since existing HR calculation methods are unable to work with compressed ECG seg-

ments [Friesen et al., 1990; Hamilton and Tompkins, 1986; Balda, 1977]. Decompressing these

multiple ECG segments produced by several patient’s that a doctor is assigned, consumes

enormous time and processing power on the doctor’s mobile phone. Apart from introducing
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delay in diagnosis while performing both decompression and analysis of ECG signals, the

decompression task also poses a new threat of patient’s privacy being compromised. If the

doctor’s mobile phone decodes or decompresses the ECG signal on his mobile phone, the un-

compressed ECG might be captured by an impostor leading to health privacy vulnerability.

Obviously, it should be a better choice if the compressed / encoded ECG segments are main-

tained as it is and the entire ranges of estimation or detection tasks are performed directly on

the compressed ECG packets. It should be noted that during the earlier phase, the proposed

HR estimation method does not even read the content of the compressed ECG packets. At

this stage, the proposed HR calculation method, which is described in algorithm 2, reads

the compressed ECG and without further decompressing or decoding it, can reconfirm the

estimated HR with confidence.

Figure 5.4 shows the workflow of the proposed cardiac diagnosis system based on com-

pressed ECG for the wireless telecardiology application. Once a compressed ECG packet

arrives via MMS, SMS, HTTP or Socket connection to the doctor’s mobile phone, the size

of the compressed ECG is obtained. Then, HR estimation algorithm (Algorithm 1) performs

a preliminary estimation of the HR. As it is seen from algorithm 1, after receiving a packet,

the payload size (containing compressed ECG) is obtained. Then, the heart rate (HRest)

is estimated. Based on the estimated HR, further action is taken. If the HR is lower or

higher than a normal person’s HR, then the proposed HR calculation algorithm (Algorithm

2) performs calculation on the compressed ECG to confirm particular heart abnormalities

like bradycardia or tachycardia. Additionally, the irregularity of the beats are checked for

determination of arrhythmia (using Algorithm 3), where beat intervals are irregular [Bar-
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Figure 5.4: The Proposed Cardiac Diagnosis System

tolo et al., 2001]. Moreover, Algorithm 4 determines instances of wide QRS, which provides

indication of several heart disturbances.

Our previous research works suggest that ECG diagnosis from the compressed ECG can

be performed by the following three ways.

• Instant Detection Approach

• Direct Approach

• Intelligent Approach

5.2.1 Instant Detection Approach

The heart rate estimation algorithm does not require reading the compressed ECG. It only

checks the payload size within a particular ECG packet (containing compressed ECG). There-

fore, these algorithms provides the fastest diagnosis (since there is no decompression or even
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Table 5.1: The Relationship between CR and Encoding Types

MIT BIH Heart Rate Sub Set U Sub Set V CR
Entry No. Encoding Encoding

114 54 10155 645 4.03
231 63 9737 1063 3.87
111 68 9695 1105 3.86
102 73 10081 719 4.01
228 73 9781 1019 3.86
100 74 10131 669 4.05
222 75 10271 529 4.05
105 83 9505 1295 3.85
201 90 9913 887 3.97
210 91 9836 964 3.93
234 92 9870 930 3.93
213 111 8529 2271 3.56

reading of compressed character involved) decision with the cost of accuracy. Therefore, they

are suitable for preliminary diagnosis (not for final diagnosis).

We earlier explained in Chapter 2 that each U character represents 2 entries of Differenced

Normalized ECG without sign. Therefore, higher compression is achieved (2×log10 Mo) when

the compressed ECG segments contain large number of U characters. Whereas, in multiple

character encoding, single entry of Differenced Normalized ECG without sign is represented

by a single V character. Eventually, compressed ECG containing larger area of V character

subset (compared to U character subset), result in lesser compression. Table 5.1 shows

the compression ratio achieved with our proposed algorithm. Clearly, the ratio is linearly

dependant (γ = 0.983) on the number of single character encoding with U and inversely

dependant (γ = −0.983) on the number of multiple character encoding with V .

Curve fitting techniques reveal this in Eq. 5.3 and 5.4
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CR = 0.0003×NUenc + 1.0549 (5.3)

CR = −0.0003×NV enc + 4.2085 (5.4)

where, NUenc = Number of U character subset Encoding, NV enc = Number of V character

subset Encoding and CR = Compression Ratio.

Observation 1: Equation 5.4 basically shows that higher V elements within the

ECG subset results in lower CR (or lower V elements translates to higher CR). Therefore,

Fact 1 is established.

Fact 1: NV enc ∝ 1
CR

Even though, the relationships among CR, NUenc and NV enc are evident from Table 5.1,

the relationship between CR and HR is not seemingly apparent. Therefore, to understand

this relationship, knowledge of QRS morphology is required. The duration of QRS complex

is from 0.06 to 0.1 sec. for normal case. However, for abnormal cases, where conduction is

impaired within the ventricles, duration of QRS is over 0.1 sec. (Wide QRS) [Kusumoto,

2009]. The MIT BIH database contains many of the serious heart abnormality cases, with

wider and shorter QRS durations. Therefore, comparing HRs of different patients from

MIT BIH database with respect to same CR, might result in wider variance in HR values.
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However, for a particular individual, the morphology of QRS complex remains unchanged

[Wubbeler et al., 2007]. Utilizing this phenomenon, recent researches show that human

identification is possible (as shown in Chapter 3). Hence, if we select a particular subject

and measure his ECG for different HRs and then compress those ECG segments (of different

HRs), we will see that there is a clear linear relationship between the HR and CR. The

mathematical logic behind this phenomenon will be further explained at a later stage in this

section after the establishment of few facts. Figure 5.6 shows this linearity for a particular

patient with heart abnormality. For this patient ECGs were taken at different HRs. Those

ECG segments collected for different HRs were compressed. CRs were calculated for all

of those ECG segments. This relationship for that particular patient can be expressed by

following:

HR = −238.79× CR + 957.6 (5.5)

Equation 5.5 basically tells that when CR is known for a particular patient, HR can be

estimated. For each person being monitored, equations like this is easy to calculate with

curve fitting tools. The generic form of this equation is as follows:

HR = a× CR + b (5.6)

For each individual, the values of a and b are different within Eq. 5.6. This is because,
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Figure 5.6: The Relationship between Heart Rate and Compression Ratio

HR pattern differs from person to person according to ECG based biometric research (please

refer to Chapter 3). According to the literature, this intrinsic relationship between HR and

CR was never researched before. This particular relationship can be highly useful for wireless

telecardiology application. When the doctor or the medical server receives the compressed

ECG packets, the payload size can be obtained even without decompressing it. From the

payload size, CR can be derived from Eq. (5.7).
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Figure 5.7: The Distance between the Estimated HR and Original HR
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Algorithm 1: The Proposed Estimation of Heart Rate (HR)
on receipt of message

obtain the payload size, Sc = K − (k + 1)
estimate HR = a× So

Sc
+ b

CR =
So

Sc
(5.7)

Here, So is original ECG packet size, which can be set fixed for a particular telecardiology

application. Sc is the payload size of the packet containing compressed ECG. Hence, HR for

a particular patient can be successfully estimated with the following simple equation:

HRest = a× So

Sc
+ b (5.8)

This estimation of heart rate is by far the fastest and simplest algorithm (containing

three basic operations ×, ÷ and +/-) as far as HR calculation is concerned. Unlike any other

method of HR calculation, this innovative method does not even need to read the payload

data containing compressed ECG. The size of the payload can be retrieved from the header

of compressed ECG packet. As shown in Fig. 5.5, the payload size is (K − k − 1), where K

is the total message length and k is the length of the message header.

When experimented on 30 MIT BIH entries (21600 samples segmented from each entries),

the difference between the predicted (i.e. estimated) and original HR was measured to be

1.14 in terms of Root Mean Square Error (RMSE) (Eq. 5.9) Figure 5.7 shows that for those
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30 ECG segments (collected from randomly selected MITBIH entries) the estimated HR

(HRest) and original HR coincided, upholding high accuracy of this HR estimation method.

RMSE =
[

1
Nsub

∑
(HRest −HRorig)2

]1/2

(5.9)

Here, Nsub is the number of Subjects. This experimentation results suggest that HR can

be estimated with good confidence level within shortest possible time, drastically minimizing

the delay faced by the existing wireless telecardiology applications. Apart from this, the

dependency of CR and HR ensures that the ECG data pertaining to more serious patients

is transmitted first. Whenever, a patient is lively or performing any strenuous activities, he

or she will be experiencing higher heart rates (except for different cases of tachyarrhythmia).

The heart of a dying patient with the symptoms of Assystols, when the electrical activity

of the heart is desperately seeking pause, creates tremendously lesser amount of beats. This

extremely lower HR results in higher CR. Higher CR results in faster data transmission of

minimal ECG data (compressed).

This technique provides the likelihood of a particular compressed ECG packet containing

abnormality. The heart rate estimation method is an example of instant detection technique

based on compressed ECG. It was found that an ECG signal containing more heart beats

will have lower compression ratio when compared with an ECG packet with less heart beat,

under the following two constraints:

1. If the person is same
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2. If the numbers of ECG samples are same for the packets

5.2.2 Direct Approach

While the HR estimation method provides approximate HR values within the shortest pos-

sible time, to confirm the estimated values a detailed and more accurate HR calculation

method is necessary. As it is already mentioned (in Section III - c) that the compression

algorithm encodes the ECG with two different character sets (U and V ). U characters sets

encode the low slopped ECG segments. However, the QRS portion of the ECG segment

contains high slopped values. This high sloped ECG is encoded with V character set. The

proposed HR calculation method only needs to identify V character set locations, to identify

QRS complexes. In this section, we first introduce the system detail of this innovative HR

calculation method.

Method Description

As depicted in Fig. 5.8, the compressed ECG stream S is read from one direction to another

direction inside a buffer. Therefore, the buffer is moved forward in a window sliding fashion

until the end of the compressed ECG stream is reached. During this sliding procedure, the

content of the buffer is updated. This buffer content for a particular instant is expressed as

B, where B ⊆ S.

Hence for a particular instance of the buffer position, B = {b1, b2, b3, ...} can contain Φ

(where, Φ ⊂ U), Ψ (where, Ψ ⊂ V ) or mixed elements from both U and V . From these three

different possibilities of the character contents for B, beats can be detected by the conditions
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Figure 5.8: Heart Beat Detection from Compressed ECG

stated in Eqs. 5.10 - 5.11:

∀bi : B ⊂ V (5.10)

∀bi∃Ψi :| B | − | Ψ |< th (5.11)

In Eq. 5.11, it is required that majority of the content of B be elements from V . The

threshold th was determined to be 2, during our experimentation. To reduce the compu-

tational complexities, after a successful beat detection a mandatory stall is initiated, since

it is a medical fact that minimum distance between two consecutive heart beats is 0.2 sec-

ond. Depending on the acquisition frequency, the minimum number of stalled ECG samples

is calculated as, Stalled Sample = 0.2 × F , where, F is the sampling frequency of ECG

acquisition device.

Hence, for our experimentation with a sampling frequency of 360 the stall period is
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Figure 5.9: Initiation of Stall after Successful Beat Detection

72 ECG samples. This means that we can skip reading 72 characters (approx) following a

successful beat detection, since it is highly unlikely that a high pitched value will be observed

immediately after beat detection. During this stall phase, reading operations in the buffer to

update B is prohibited as seen in Fig. 5.9. The reading operations are resumed only after the

stalled period is over. This increases the performance of the algorithm. It is understood that

the positive predictivity and the specificity of the algorithm revolves around the following

three parameters: Buffer Size (window size), Threshold, th (of Eq. 5.11) and Stall period.

This HR calculation was implemented with Algorithm 2, which detects all the high pitched

values represented with V elements. As seen from Fig. 5.10, the locations of the QRS

complexes remain hidden within the compressed ECG stream, from where it is picked up

by Algorithm 2. Within Fig. 5.10, the V character sets are represented by the numeric

characters (0-9), upper case characters (A-Z), a small subset of lower case characters (m, n,

o, p, q, r, s, t, u, v, w, x, y, z) and double quote character (”). When, this V character

set is known, location of the QRS complexes can be identified. This algorithm 2, basically

reads the compressed ECG and if high pitched (V character set) values are found, then

variable Slope Count is incremented. When the value of the Slope Count gets higher then

the threshold (Buffer Size), a beat is detected. After detecting a beat, a mandatory stall
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Figure 5.10: Beats Hidden within Compressed ECG. The Shaded Segments Represented by
V Character Set, Where Each Segment Indicates Width of a Whole QRS Complex.

is initiated. During the stalled period, only the value of Stall Count is decremented.

Observation 2: Figure 5.10 clearly shows that QRS width is equivalent to the

number of V characters, Nv within a block (where each block represents a QRS complex).

Moreover, since each QRS complex is represented with powerful ventricular activity, HR is

equivalent to number of V character blocks, Nb (within a minute). Therefore, Fact 2 and

Fact 3 are established.

Fact 2: QRS Width = Nv

Fact 3: Nb = HR

At this point, it is also clear that the total number of V characters within an ECG

segment, NV enc is (Nv ×Nb). Therefore, Fact 4 and 5 are deduced.

Fact 4: Nv ∝ NV enc, when, Nb is constant
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Algorithm 2: Heart Rate Calculation From Compressed ECG
Stall Count = 0 // Manage stall after beat detection
Slope Count = 0 // Counts occurrences of the V set
Loop (Until the end of compressed ECG)
Read one compressed character

if ((both current and previous character are
members of V ) AND (Stall Count = 0))

Slope Count = Slope Count + 1
if (Slope Count > Buffer Size)
Beat Detected
//Initiate Stall
Stall Count = (Stall Value)
endif // When the character member of set

elseif (Stall Count <> 0)
Stall Count = Stall Count− 1

endif
End Loop

Fact 5: Nb ∝ NV enc, when, Nv is constant

Finally, from fact 1, 2, 3 and 5, it can be logically deduced that HR ∝ 1
CR , for a

perticular human being, since for a perticular individual the QRS morphology (e.g. QRS

width) remains unchanged as demonstrated in earlier researches [Wubbeler et al., 2007].

This proof (by deduction logic) explains our earlier results (of experimentation) showing the

inverse relationship between HR and CR (demonstrated by Fig. 5.6 and Eq. 5.5).

Cardiovascular Abnormality Detection

Apart from the manual annotations and inspections of ECGs by the expert cardiologists,

automated algorithms have also demonstrated their abilities to efficiently detect different

cardiovascular abnormalities. However, according to the literature, there exists no single
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Table 5.2: Disease Detection with Algorithms

Disease Detec-
tion

Algorithms Used Description

Tachycardia Algorithm 1, Algorithm 2 when HRest > 120 (refer to
Eq.5.7)

Bradycardia Algorithm 1, Algorithm 2 when HRest < 30 (refer to
Eq.5.7)

Arrhythmia Algorithm 1, Algorithm 2, when (HR(n)est−HR(n+1)est)
HR(n)est

>

15%
Algorithm 3 (refer to Eq.5.7)

or RR(n)−RR(n+1)
RR(n) > 15%

for 3 consecutive RRs
WPS, RBBB, Algorithm 4 when QRS width is more than

0.12 seconds
LBBB, Ven-
tricular

or approx. 44 samples (when
the sampling frequency

Conduction
Problems

is 360)

algorithm that can detect all possible abnormalities [Chiu and Kao, 2001; Seydnejad and

Kitney, 1997; Kumar et al., 2007; Akselrod et al., 2007; Hamilton and Tompkins, 1986;

Bartolo et al., 2001]. While most of the existing algorithms execute on uncompressed ECG,

our attempt of ECG abnormality detection from compressed ECG has many advantages like

faster execution, ensuring patient’s privacy etc. Faster execution is possible because number

of characters to be analysed is reduced in compressed ECG. Table 5.2 provides a glimpse

of different cardiovascular abnormalities efficiently recognised by our proposed mobile phone

based wireless telecardiology system.

In Fig. 5.11, RR, which is the time difference between two consecutive occurrences of

heart beats (specifically QRS complex), has been calculated by an existing method and our

proposed HR calculation method. Amplitude based Technique (ABT) is used here as an
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Figure 5.11: RR Interval for an MITBIH Entry. The RR Intervals Values Calculated by both
the Methods are Almost Similar. However, the Proposed Method is a Bit Time Shifted from
the RRs Calculated by ABT. Most Importantly, in Terms of Accuracy, this Lagging does not
have any Adverse Affect, since the Time Shifted Delay (almost constant) is Added to Each
of the RR Intervals.

existing QRS detection mechanism and RR was calculated based on that. It is evident from

Fig. 5.11 that our implementation is able to determine the RR interval with high level of

accuracy.

This RR detection algorithm is implemented with Algorithm 3, which relies on Algorithm

2 for beat detection (by detecting Nb as in Fact 3). Once HR is detected with algorithm

2, index of the current sample is recorded (rr previous). On the detection of the next

beat current sample is again recorded (rr current). Next, the difference between the two

consecutive beats are obtained (in terms of number of samples, int rr). At the end, the

counted number of samples (difference between two beats) are converted to time to obtain

RR interval (rr interval). As seen in Fig. 5.11, execution of this algorithm on a sampled

ECG having irregular RR intervals correctly identifies any irregularity within RR intervals

(which is important for Arrhythmia detection). As clearly seen, the interval RR3 is the
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Algorithm 3: RR Interval Calculation From Compressed ECG
rr interval = 0 //Count the number of samples between successive Rs
int rr = 0 // Count the number of samples between successive Rs
Loop (Until the end of compressed ECG)

if (beat detected)
rr current=(get the index of current sample)
int rr = rr current− rr previous
rr previous = rr current
rr interval = int rr

f

endif
End Loop

shortest and RR4 is longest (Fig. 5.11).

After retrieval of RR signal, it is possible to deduce Heart Rate Variability (HRV), which

is basically the rate of change of consecutive RR values [Akselrod et al., 2007; Seydnejad and

Kitney, 1997; Ruha et al., 1997]. HRV provides detailed understanding of Cardiovascular

Autonomic Control and activities of the Autonomous Nervous System [Chiu and Kao, 2001].

The importance of HRV started to be appreciated in the late 1980s, when it was confirmed

that HRV is a strong predictor of mortality after an acute myocardial infarction [Malik et al.,

1989]. Moreover, recent research shows that HRV also provides indications for mental stress

and respiratory functions of an individual [Kumar et al., 2007; Meste et al., 2005].

Apart from detection of RR interval and HRV from the compressed ECG, it is also possible

to detect Wide QRS, which indicates many cardiovascular abnormalities like Wolff-Parkinson-

White syndrome (WPS), Left Bundle Branch Block (LBBB), Right Bundle Branch Block

(RBBB) etc. [Kusumoto, 2009]. Figure 5.12 shows that using Algorithm 4, it is possible

to detect occurrences of wide QRS. Algorithm 4, continues searching for more V elements

just after detection of a beat by Algorithm 2. If greater number of V elements are located

adjacent to a detected beat, wide QRS is confirmed by Algorithm 4. Within algorithm 4, the
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Figure 5.12: Wide QRS Detected with Wider Buffer Size (Higher Values of Nv as per Fact
2)

number of V characters are calculated and kept in variable QRS Len. When, QRS Len is

greater than the normal beat threshold (normal beat width in terms of V characters), wide

QRS is Identified. This is aligned with Fact 2, where it is stated that wide QRS is identified

with higher values of Nv.

It should be noted that within algorithm 4, two compressed characters are read at a

time. If both of the characters are U elements then it is not a beat. However, if at least

one of the characters are V element then this indicates that the algorithm is still reading

the beat. In this case (one V element and one U element), the U element can be the sign

information and V element can be the high slope of the QRS. In the most obvious case,

both the characters are V elements carrying high sloped QRS values (still reading beats) and

QRS Len is incremented. Direct methods check the frequency of some particular compressed

characters (or encoded characters) and apply a threshold for diagnosis decision.
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Algorithm 4: Detection of Wide QRS
QRS Len = 0 // Holds the QRS length
WideQRS = false
Loop (all the detected beats Hi)
Beat Detection with Algorithm 2 (Equation 11 or 12 is fulfilled)
Loop (if any character of the next two character read ∈ V )

QRS Len = QRS Len + 2
End Loop
if (QRS Len > threshold)

WideQRS = True
endif

End Loop

Comparison Result

Table 5.3 provides the comparison results of various methods. It is clearly seen that the

proposed HR calculation method performs well by accurately calculating the number of

beats (from compressed ECG) with minimal changes of the algorithm parameters. These

algorithm parameters are used to control the positive predictivity and specificity. During

this comparison, different ECG recordings from the MIT BIH database were used. MIT BIH

database entries were previously used by many researchers for performance comparisons of

their algorithms [Jalaleddine et al., 1990].

Finally, to obtain a critical understanding of delay minimizing effort performed for tele-

cardiology applications with our research, Table 5.4 is presented. This table provides a rapid

glimpse of our efforts in reducing the delay when compared to existing telecardiology appli-

cations. In this table two scenarios, as depicted in Fig. 5.13, are compared with our proposed

solution. Clearly, the proposed solution makes better use of the limited network bandwidth

to transfer ECG data with minimal delay.

In scenario 1, ECG segments (files) from randomly selected MIT-BIH entries are trans-
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Table 5.3: Comparison of the proposed HR detection method with ABT, SDBT and FDBT.

MIT
BIH

Proposed SDBT ABT FDBT HR
Count

Slope Stall HR Const HR Th. HR On Set Off
Set

HR

100 13 75 74 1.0 74 0.4 74 0.1375 -0.2 74 74
102 13 75 73 1.0 73 0.35 73 0.12 -0.2 73 73
105 13 75 83 0.6/0.7 111/23 0.4 83 0.18 -0.2 83 83
111 13 75 68 0.4/0.5 112/42 0.37 68 0.1375 -0.11 68 68
114 13 75 54 0.6 54 -

0.0195
53 0.1375 -0.2 54 54

117 10 75 50 0.7 50 -0.16 49 0.1375 -0.2 50 50
207 10 80/81 66/67 0.4 61 0.42 67 0.1375 -0.2 66 66/67
210 4/5 75 92/91 0.6 85 0.4 85 0.1375 -0.2 91 90/92
213 13 75 111 1.4 112 0.4 111 0.1375 -0.2 111 111
219 13 75 74 1.3 72 0.4 74 0.18 -0.2 74 74
222 5 75 75 0.5 90 0.2 75 0.18 -0.2 75 75
228 7 75 73 0.6 72 0.33 75 0.1375 -0.2 73 73
231 13 75 63 1.4 63 0.44 63 0.12 -0.2 63 63
234 13 75 92 1.0 89 0.4 92 0.1375 -0.2 92 92

mitted from the patient (sender) to the doctor/medical server (receiver) without using any

compression algorithms. At present, this mode of transmission is performed by existing

telecardiology applications [Lee et al., 2007]. It is evident from Table 5.4, torig, the time

required for ECG file transmission, is significantly high, when uncompressed ECG files Lorig

are transmitted on a bandwidth, B of 256 kbps. Here, torig = Lorig/B.

ECG HR detection was performed on HP iPAQ h6365 Smart Phone with Amplitude

based technique (ABT), which is faster than most of the existing HR detection method.

Hence, we used ABT to determine tHR, the time to calculate HR (i.e. beats). Obviously, the

total time for diagnosis Torig is the total time of transmission torig and HR detection (tHR).

In scenario 1, since uncompressed ECG transmission leads to longer transmission time, it

is obvious to use ECG compression algorithms. Therefore, to reduce the transmission time,
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Figure 5.13: Two Different Scenarios of a Mobile Phone based Wireless Telecardiology System

ECG files are compressed (lossless) with encoding schemes and then transmitted. As seen

from Table 1, scenario 2, this action minimized the transmission delay, Tcomp.

In scenario 2, transmission time, tcomp = Lcomp/B, where Lcomp is the size of the com-

pressed ECG. Even though the compressed ECG transmission time (tcomp) is minimal, the

receiver node (doctor’s mobile phone or medical server) requires decompressing the data,

before performing HR detection tasks. This added delay of decompression time, tdecomp

measured on same HP iPAQ h6365 Smart Phone platform increases the overall total delay,

Tcomp. Despite this, scenario 2 is a better choice than scenario 1, because ECG compression

has other serious advantages like allowing more ECG data transmission on limited telecom-

munication bandwidth, and larger storage of ECG signals on medical repositories (within

medical server) [Kim et al., 2006].

With our implementation on the same platform, HR calculation times tpHR were slightly

higher than the times taken by ABT based HR calculation. The total times THRest needed

for transmission as well as the HR estimation (0.005 sec. on an average) by algorithm 1
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were substantially lesser than Torig in scenario 1 (6.72 times) and Tcomp in scenario 2 (15.311

times). This faster transmission is possible because algorithm 1 does not need to read the

compressed ECG, as explained earlier. Similarly, THRcal, which denotes the combined time

for compressed ECG transmission (tcomp) and HR calculation by algorithm 2 was also less

than Torig in scenario 1 (1.249 times approx.) and Tcomp in scenario 2 (2.845 times approx.).

It should be noted that for this simulated experimentation, we have chosen HTTP on mobile

platform for the sake of consistency in transmission time, which is not guaranteed on SMS

and MMS based text messaging system. However, the beauty of the system lies in the fact

that ECG analysis can be performed even without decompression of the compressed ECG

segments. As we have seen that the decompression time on a doctor’s mobile phone could be

significant, our proposed direct-method on compressed ECG will be highly advantageous in

patient wellness monitoring system where a doctor has to read and diagnose from compressed

ECG signals of several patients allocated to him.

5.2.3 Intelligent Approach

Intelligent methods involve usage of subset selection, clustering (e.g. K-Means, Expectation

Maximization etc.), principal component analysis (PCA), neural network etc. on compressed

ECG [Sufi and Khalil, 2009a; Ibaida et al., 2009].

In [Sufi and Khalil, 2009a], the frequency of the different characters used for encoding

(compressing) the ECG was counted first. Since there were about 157 characters (including

the numbers), using all these characters as attributes for clustering will result in misclassi-

fication. Therefore, an attribute selection was performed, before clustering. The attribute
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Table 5.4: Delay Involved in Different Telecardiology Scenarios. All the values of times are in
seconds. The ECG Segments collected are for the duration of 1 minute (21600 samples/ECG
segment).

ECG
Seg-
ment

Scenario 1 Scenario 2 Proposed Methods

Lorig torig tHR Torig Lcomp tcomp tdecompTcomp tpHR THRest THRcal

1 172197 5.255 5 10.26 45152 1.378 16 22.378 7 1.383 8.378
2 171033 5.219 4 9.219 44632 1.362 15 20.362 6 1.367 7.362
3 170912 5.215 4 9.215 45203 1.379 16 21.379 5 1.384 6.379
4 169280 5.166 4 9.166 43644 1.332 15 20.332 5 1.337 6.332
5 171214 5.225 4 9.225 44608 1.361 16 21.361 6 1.366 7.361
6 171367 5.229 4 9.229 46163 1.408 16 21.409 8 1.413 9.409
7 170549 5.204 4 9.204 46454 1.417 16 21.418 8 1.422 9.417
8 168640 5.146 4 9.146 44973 1.372 15 20.372 5 1.377 6.372
9 170355 5.198 4 9.198 43804 1.337 15 20.337 5 1.342 6.337
10 168208 5.133 3 8.133 44628 1.362 16 20.362 5 1.367 6.362
11 169048 5.158 4 9.158 44358 1.353 16 21.354 6 1.358 7.354
12 170184 5.193 4 9.193 42478 1.296 15 20.296 6 1.301 7.296

selection mechanism identifies few key attributes (or encoding character) responsible for

distinguishing a normal ECG segment (compressed) from an abnormal ECG segment (com-

pressed). Expectation Maximization (EM) is our favourite (over K-Means clustering) for

identifying abnormal ECG packets in compressed form. However, K-Means algorithms are

easier to be implemented on mobile platform.

In [Ibaida et al., 2009], PCA was used first to identify the principal components from

the 157 frequency counts for all the encoded characters (i.e. characters used for compressing

/ encoding the ECG). Then, using the few principal components a linear neural network

(NN) was trained. When the trained neural network was tested with a test set, the trained

system could correctly identify abnormality directly from compressed ECG, without decom-

pressing them. Implementing this system on mobile and embedded devices, require proper
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optimization of coding, since both PCA and NN are computational intensive.

Compressed Electrocardiography (ECG) is being used in modern telecardiology applica-

tions for faster and efficient transmission. However, conventional ECG diagnosis algorithms

require the compressed ECG to be decompressed before diagnosis can be applied. This added

step of decompression before performing diagnosis for every ECG packets introduces unde-

sirable delays, which can have severe impact on the longevity of the patient. In this section,

we first used an attribute selection method that selects only a few features from the com-

pressed ECG. Then we used Expected Maximization (EM) clustering techniques to create

normal and abnormal ECG clusters. 20 different segments (13 normal and 7 abnormal) of

compressed ECG were tested with 100 % success on our model. Apart from automatic clus-

tering of normal and abnormal compressed ECG segments, this section presents an algorithm

to identify initiation of abnormality. Therefore, emergency personnel can be contacted for

rescue mission, within the earliest possible time. This innovative technique based on data

mining of compressed ECGs attributes, enables faster identification of cardiac abnormalities

resulting in an efficient telecardiology diagnosis system.

CVD being the number one killer of the modern era, researchers are providing wireless

cardiovascular monitoring facility to save lives [Lee et al., 2007; Hung and Zhang, 2003;

Blount et. al., 2007]. As ECG signal are enormous in size [Sufi et al., 2008c], usage of com-

pression technology makes the whole tele-cardiology faster and efficient [Kim et al., 2006;

Alesanco et al., 2006; Istepanian and Petrosian, 2000]. A faster solution is of crucial im-

portance for diagnosis and treatment of CVD, as delay of every second counts towards a

patient’s mortality [Luca et al., 2004; Bradley et al., 2006; Otsuka et al., 2009; Sillesen et al.,
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2008; Ortolani et al., 2007]. Even though ECG compression enables faster transmission, it

introduces a slight delay as the compressed ECG needs to be decompressed before performing

any diagnosis. To mitigate this delay, direct methods on compressed ECG have successfully

detected few CVD anomalies directly from the compressed ECG (i.e. without decompressing

them). Therefore, a completely new direction of research in CVD diagnosis from compressed

ECG is established, that establishes the basis for a fast, secure and efficient telecardiology

solution.

However, the mechanisms of detecting cardiac abnormality from compressed ECG pre-

sented in ”direct method on compressed ECG” employ a rule based algorithm for detection

of a particular disease. In order to identify all the cardiac abnormalities, direct method

on compressed ECG, requires hundreds of complex algorithms to be integrated under one

computationally hungry system. Maintaining and updating such a system for every new

abnormality is intrinsically complex.

This introduces the problem of finding a simple and fast solution towards heart abnor-

mality detection from compressed ECG that raises alert to the cardiac specialist as soon as

a cardiac abnormality is detected.

In this section, we present a simple but efficient Data Mining based solution that detects

an abnormality from the compressed ECG. This technique can be placed within a wireless

monitoring facility to alert the emergency personnel in an event of cardiac abnormality of a

subscribed patient.

As seen from Fig. 5.14, patient is attached with a portable ECG acquisition device,

which collects ECG signal from the patient’s body and transmits ECG packets to the mobile
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phone via Bluetooth, Wifi, Near Field Communication (NFC) or Zigbee protocol. Mobile

phone then compresses and encrypts the ECG packets and forwards them to the hospital

or monitoring services via HTTP or MMS. The monitoring services executes a background

monitoring agent implementing Data Mining techniques.

However, for this section we are adding a data mining module (situated in the hospital)

for identification of diseases from compressed ECG sent by the patient, using clustering

techniques. These data mining techniques use the knowledge of what is normal and what is

abnormal from the monitored patient’s ECG. The input and output to the mining agent are

the compressed ECG and a boolean type denoting abnormality, respectively. Therefore, for

this telemonitoring solution, if the compressed ECG is derived from a normal ECG, output of

the data mining agent would be negative. In case of abnormal ECG signal from the patient,

the agent will output positive detection, signalling abnormality and alert mechanism would

be activated in such a case.

Architecture of the Proposed Disease Identification System

In remote telemonitoring, massive amount of ECG data is transferred [Sufi et al., 2008c],

and therefore, adoption of specialized compression technology (as demonstrated in Chapter

2) is often required. Our ECG compression technique uses the encoding function ε(.) that

transforms the ECG signal, Xn to a compressed ECG, Cr (Eq. 5.12). The lossless nature of

our ECG compression technique ensures that ECG features set, F (a subset of ECG signal

Xn as shown in Eq. 5.13) also exists within the encoded (or compressed) ECG Cr (Eq. 5.14).

New algorithm can be designed to reveal these encoded ECG feature set for CVD diagnosis
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Figure 5.14: Architecture of the Data Mining based Compressed ECG Diagnosis System
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Figure 5.15: A normal ECG Segment of a Patient (a Random CU1 Entry of MIT BiH CU
Ventricular Tachyarrythmia Database)
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Figure 5.16: Initiation of Abnormality (Ventricular Tachyarrythmia) with the ECG Segment
for CU1)
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Figure 5.17: An Abnormal (Ventricular Tachyarrythmia) ECG Segment of a Patient (CU1)

Figure 5.18: Compressed ECG for Fig. 5.15 (Normal ECG), Fig. 5.16 (Normal and Abnor-
mal) and 5.17 (Abnormal ECG)
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directly from the compressed ECG.

As an example, Figure 5.15 shows a normal ECG segment for Entry ID CU1 of CU Ven-

tricular Tachyarrhythmia database [Phy, Accessed 2009]. Figure 5.16 demonstrates the ini-

tiation of abnormality (i.e. Ventricular Tachyarrhythmia) for that particular patient. Lastly,

Figure 5.17 depicts a complete episode of Ventricular Tachyarrhythmia for the same patient.

Figure 5.18 shows the compressed ECG (i.e. compressed using our specialised ECG compres-

sion algorithm) of Fig. 5.15 - 5.17. Equation 5.12 represents the fact that Fig. 5.18 preserve

the ECG features of Fig. 5.15 - 5.17. Within this section, our proposed idea is to harness

data mining routines for efficient detection of CVD anomalies (i.e. Cardiac Abnormality)

directly from compressed ECG (e.g. the compressed ECG shown in Fig. 5.18).

ε(Xn) = Cr (5.12)

F ⊂ Xn (5.13)

F ⊂ Cr (5.14)

During the compression process, 148 characters and numeric values (0 - 9) are used to

encode the plain text ECG signal, as seen in Fig. 5.19 (ECG compression is performed inside

patient’s mobile phone). The data mining agent (DMA) of the hospital (Fig. 5.14) needs to

be trained with normal and abnormal ECG (from compressed ECG) of patients. After being
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trained, the DMA can be tested for irregularities (abnormal ECG). Our proposed algorithm

(Algorithm 5), instantly identifies abnormal ECG segments (directly from the compressed

ECG).

5.2.4 Training of the Proposed Model

During this training phase, the proposed model learns what is normal ECG and what is

abnormal ECG. Figure 5.20 shows the main stages of this learning process from compressed

ECG.

Characters

Numeric Sub Groups

Figure 5.19: 157 Characters and Numeric Sub Groups (Attributes) used for Generating Com-
pressed ECG (from Plian ECG Signal). Details of this Character Substitution based Com-
pression Techniques have been Described in Chapter 2

Character Frequency Calculation

As shown in Fig. 5.20, from the compressed ECG, the frequency of each encoded characters

is computed first. There are about 148 characters and 9 numeric subgroups for which the
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frequencies are generated (Fig. 5.19). The frequency of these 157 character (and numeric

sub groups) are utilized as the attributes for clustering. However, 157 attributes are too

many for generating clusters (normal and abnormal ECG). Therefore, the attribute subset

selection process is neccessary. Using proven techniques, we first select characters from the

compressed ECG that are mainly responsible for identifying diseases. Then, based on the

selected characters (or attributes) classification of abnormality and normality is possible.

Compressed ECG 
Attribute Subset 
Selection

Clustering of 
Reduced Attributes

Data Mining Techniques

Calculate Frequency
of Each Characters

Person
Identification

Figure 5.20: Step by step procedure of the proposed cardiac abnormality detection technique

Attribute subset selection

Data pre-processing using attribute selection is an important step in data mining, since a

large number of attributes often lead to poor learning due to untenably large combinatorial

search space for the solution [Han and Kamber, 2006]. The goal of feature subset selection

is to (a) reduce the dimensionality of the data to be analysed, (b) to speed up execution of

learning algorithms, (c) improve performance of data mining techniques including learning

time and predictive accuracy, (d) improve the comprehensibility of the output. Recent stud-

ies have shown that attribute subset selection helps improve the performance of clustering

algorithms with reduced attributes [Talavera, 1999a;b; Sufi and Khalil, 2009c]. In this sec-

tion, we have adapted for use with continuous ECG signals, a correlation based feature subset

selection technique [Hall, 1999; Sufi and Khalil, 2009c], which outperforms other feature se-

lection algorithms, such as ReliefF [Kira and Rendell, 1992] and RReliefF [Robnik-Sikonja
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and Kononenko, 1997]. The attribute selection is based on an attribute’s relative utility with

regards to the predicted class as well as taking into consideration its correlation with other

attributes in the subset. The utility of an attribute can be represented using the Pearson’s

co-efficient for correlation, where the variables are standardized as in Eqs. 5.15 and 5.16.

rxy =
∑

(xi − x)(yi − y)
(n− 1)σxσy

(5.15)

US =
Crap

(C + C(C − 1)raá)
1
2

(5.16)

where xi and yi are sample mean calculated from the data, σx and σx are the standard

deviations, a, á ∈ S, C ← |S|, rxy ← Averagecorrelation between features x and y. For a

subset S of C features, the utility function calculates how much the features (a, á) are related

rap to the predicted class p, while being less related to each other raá. The utility function

reduces the effect of irrelevant attributes as they are less correlated with the predicted class.

It also discards redundant attributes as they are highly correlated with each other.

We used a greedy best first algorithm to search through the candidate subsets for a locally

optimal solution. The algorithm initiates with an empty subset, adding one attribute at a

time and estimating the utility function, to determine the correlation of the subset with the

predicted class. The next attribute is added as long as the utility value does not decline

for the best subset. If there is a decrease then the algorithm selects the next best subset

and commences adding attributes to it. In some datasets where there are groups of features

that are locally predictive to the predicted class, we investigate the attributes that were

256 (October 31, 2011)



CHAPTER 5. EFFICIENT CARDIOVASCULAR DIAGNOSIS

initially discarded while building the best subset. In this case, after the best subset has been

generated, the algorithm investigates the rejected list of attributes one-by-one and evaluates

its correlation to the predicted class against the average correlation to the subset. If its

correlation to the class is greater than its correlation with the attribute subset, signalling

a stronger attraction to the class than the subset, then the attribute is incorporated in the

subset.

Automatic learning of normal and abnormal patterns using clustering of com-

pressed ECG features

Using the smaller subset of attributes we can now produce a cluster from the normal com-

pressed ECG patterns. This cluster of normal patterns would serve as the benchmark test

against future ECG sent from the observed client. Under normal circumstances any incom-

ing ECG would closely match the stored cluster. However, if there is any abnormality then

the clustering algorithm would create a different cluster from the abnormal ECG. This will

generate an alarm and require urgent attention of a physician or a cardiologist. It should be

noted that the procedure given in this section works solely on the compressed ECG character

frequency, and does not even require decompression, which would take valuable extra time

from a patient’s life.

The aim of clustering is to group a given set of objects so that similar objects (also

known as cases, instances or patterns) are grouped together and dissimilar objects are kept

apart. Although there are many different techniques to build multi-dimensional clusters

[Mahmood et al., 2008], we have chosen a statistical clustering technique called Expectation
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Maximization (EM) [Han and Kamber, 2006] to cluster compressed ECG data, since it can

be used to find the correct number of clusters automatically. Assuming two clusters A and

B, representing normal and abnormal class of ECG, we describe the steps for EM clustering

for two clusters:

1. Choose model parameters mean µ, standard deviation σ and probability of clusters p

arbitrarily for Clusters A and B

2. For each iteration j, calculate the probability that instance I belongs to clusters A and

B:

P (A|I) =
pj

AP j(I|A)
P j(I)

, P (B|I) =
pj

BP j(I|B)
P j(I)

(5.17)

The probability of P (I|A) can be modelled using any distribution function. For the

commonly used Gaussian distribution that we have adopted in this section, it can be

given by

P (I|A) =
1√

(2π)σA

exp
−(I−µA)2

2σ2 (5.18)
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3. Update the mixture parameters on the basis of the new estimates:

P j+1
B =

∑
I P (A|I)

n
, P j+1

B =
∑

I P (B|I)
n

(5.19)

µj+1
A =

∑
I I × P (A|I)∑

I P (A|I)
, µj+1

B =
∑

I I × P (B|I)∑
I P (B|I)

(5.20)

σj+1
A =

∑
I P (A|I)(I − µj+1

A )2∑
I P (A|I)

, (5.21)

σj+1
B =

∑
I P (B|I)(I − µj+1

B )2∑
I P (B|I)

(5.22)

4. Calculate the log likelihood value Ej =
∑

I log(P j(I)). Consider a fixed stopping

criterion ε, then if |EjEj+i| ≤ ε, then stop; else set j = j + 1.

EM can decide how many clusters to create by cross validation (as is the case in the present

study), or it may be specified apriori (normal and abnormal clusters). In the scenario of Fig.

5.14, the patient continuously sends the compressed ECG information to the hospital, which

clusters the new information and checks to see if there are two clearly segregated clusters. In

cases where the compressed ECG falls under abnormal cluster (or inclines towards abnormal

cluster), as shown in Fig. 5.24, abnormality is detected. If such an abnormality is observed

then an immediate alarm is raised, since the ECG pattern has been found to be significantly

different from normal patterns. In our experiments, the EM algorithm has been successful in

isolating the normal and abnormal compressed ECG with remarkable accuracy (100%) using

the 20 ECG segment dataset.
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5.2.5 Instant Abnormality Detection from Compressed ECG

Once the proposed model is trained, we know the cluster centers (or means) for all the

selected attributes (for the classes). With this knowledge, whenever a new compressed ECG

is sent by the patient, the DMA calculates the frequency of selected characters (selected

attribute in training stage). These inputs (attribute values of the instance) are fed along

with the cluster centers to Algorithm 5, which determines initialization of abnormality.

During an initialization of abnormality, we expect the compressed ECG packet to contain

both normal and abnormal ECG. Therefore, for these initialization of abnormality packets,

distances from normal cluster centers (for the selected attributes) will start to increase.

Abnormality can be signalled, once the distance between the instance (initialization ECG

packet) and normal cluster mean goes beyond a threshold value. After the detection of

abnormality initialization, the emergency personnel can be contacted for the rescue of the

patient (Fig. 5.14).

5.3 Results and Discussion

Figure 5.21 shows 20 different segments of ECG for CU1 entry of CU Ventricular Arrhythmia

database ([Phy, Accessed 2009]) in a matrix format. Sub-figures 1 to 3 ([1,1], [1,2] and [1,3])

of Fig. 5.21 are normal ECG segments. Sub-figure 4 or [1,4] shows initiation of ventric-

ular arrhythmia. Sub figures 5 to 10 represent continual cardiac abnormality (ventricular

tachyarrhythmia episode). The rest of the sub figures of Fig. 5.21 show normal ECG seg-

ments for patient CU1. It should be noted that for our proposed architecture (in Fig. 5.14),

plain ECG (as in Fig. 5.21) is not viewed anywhere. Figure 5.21 only serves the purpose of
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Algorithm 5: Detection of the Abnormality Initialization
//Notation Description:
//Input: Attribute values for all the instances
//Input: Cluster means of the 2 clusters for all the attributes
//Output: The most equidistant instance

Step 1

Create distance vector, Aj and Bj for
Cluster 1 and 2, where j is the number of instances

Aj =
√∑I

i=1(f
j
i − C1

i )2

Bj =
√∑I

i=1(f
j
i − C2

i )2

here, fi is the attribute value vector for all I
attributes and C1

i and C2
i are the centroid

vectors of cluster means 1 and 2 (normal & abnormal)
and i = 1, 2, 3, · · · , I is the number of attributes

Step 2

Symmetricity metric is generated by normalizing the
difference in distance vectors for the 2 clusters

Sj = |Aj−Bj |
Max(Aj ,Bj)

Step 3

The most equidistant instance, R has the lowest value of Sj

SR = Min(Sj)

261 (October 31, 2011)



CHAPTER 5. EFFICIENT CARDIOVASCULAR DIAGNOSIS

understanding the concept behind this section.
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Figure 5.21: 20 Randomly Selected ECG Segments for CU1 Entry (from CU Ventricular
Tachyarythmia - MIT BIH)

As shown in Fig. 5.20, we only receive compressed ECG from which the frequencies for

all attributes (Fig. 5.19) are calculated. After calculating frequencies of the 157 attributes

from the compressed ECGs of Fig. 5.21, we can observe that certain group of characters
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have different frequency bands for normal and abnormal ECGs. Figure 5.22 illustrates the

fact that sub figures 3 to 10 have notably higher frequencies for attributes 115 to 131 (for

character set {[t-z], [A-J]}). However, these sub figures (3 to 10) actually correspond to

abnormal ECG. Therefore, Fig. 5.22 represents the fact that certain compressed character

frequencies behave differently for abnormal ECG.
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Figure 5.22: Frequency Distribution of the 20 Randomly Selected ECG Segments for CU1
Entry (of Fig. 5.21). Boxed Region Shows high Frequencies of Attribute 115 to 131 Denoting
Abnormality from the Compressed ECG.
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However, rather than manual inspection of the characters responsible to signal abnor-

mality, an accurate and automated attribute selection procedure is highly desirable. Our

attribute selection process on 20 different instances provides us 48 key characters or at-

tributes that are shown in the left column of Table 5.5, Table 5.6, Table 5.7 and Table 5.8.

Based on these 48 attributes, we generated cluster with previously described EM method-

ology. EM generates 2 clusters with 100% accuracy when the clusters are compared (or

cross-validated) to the known class (abnormal ECG segment and normal ECG segment). It

is worth mentioning that EM was not informed about the number of clusters (i.e. 2). The log

likelihood measured by EM, after creation of 2 clusters based on the 48 selected attributes,

is -100.27906. Table 5.5 and 5.6 show the frequency of these characters on the 13 different

instances for normal ECG. On the other hand, Table 5.7 and Table 5.8 show 7 instances of

abnormalities. For all the tables, cluster means or centers (right most columns for Table 5.5,

5.6, 5.7 and 5.8) are distant. Also, for normal and abnormal cases, the respective attributes

show affinity towards their corresponding class means. Figure 5.23 shows the difference in

normal and abnormal ECGs for the selected 48 attributes. Unlike Fig. 5.22, where 16 char-

acters show visual distinction (from 115 to 131), Fig. 5.23 shows clear distinction of 48

automatically selected attributes.

This study was the first demonstrated in [Sufi and Khalil, 2009c] and enhanced in [Sufi

and Khalil, 2011b; Sufi et al., 2011] to show the feasibility of an automated alert mechanism.

This alert mechanism was based on data mining techniques and compressed ECG, designed

to save lives of monitored CVD patients.

Now that we can observe two distinct clusters for normal and abnormal compressed ECG
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Normal Cluster Mean

Abnormal Cluster Mean

Attributes Attributes

Figure 5.23: Normal and abnormal cluster means

segments, the question of belonging arises for the compressed ECG segments that contain

half normal ECG and half abnormal ECG. For example, this situation can be observed for

the case of 4th sub figure of Fig. 5.21 (row 1, column 4). This initialization of abnormality

is also depicted in Fig. 5.16. It should be mentioned again that for the sake of clarity of

this chapter, original ECG segments are shown in Figs. 5.16 and 5.21. However, in real

monitoring scenario, only compressed ECGs are dealt by the patient and the DM agent (in

Fig. 5.14). For this initialization of abnormality case (Fig. 5.16), we logically expect it

to be equidistant from the two clusters, as this particular segment contains both normal

and abnormal ECG. To represent this fact, in a two dimensional coordinate is not straight

forward, as we are dealing with 48 attributes and each attribute provides individual decision

of belonging towards a particular cluster.

To represent the fact that compressed ECG packets containing both normal and abnormal

ECG are nearly equidistant from both the clusters, in two dimensional coordinate, we define

the concept of symmetricity of instances in a bi-class clustering. An instance is said to be

symmetric with respect to a bi-class clustering, when the location of the instance is nearly
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Table 5.5: Selected Characters (First Half Attributes) and their Respective Frequencies in
Compressed ECGs (Normal) for 13 Different Instances

At. N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12 N13 CCtr

@ 7 10 8 7 7 5 10 8 9 8 10 9 7 8.0769

$ 6 8 5 5 10 15 9 7 4 9 11 6 10 8.0769

Ø 5 9 6 5 8 8 6 2 5 8 12 9 7 6.9231

Å 8 10 8 12 9 9 15 9 18 11 9 10 6 10.3077

å 5 12 14 11 7 7 5 11 7 7 15 12 11 9.5385

6 9 9 7 8 17 2 7 6 5 8 12 8 8

[ 5 3 5 7 4 7 9 4 2 8 5 5 4 5.2308

] 13 9 5 8 10 7 7 8 6 12 4 10 12 8.5385

| 15 13 11 11 11 15 8 17 11 11 8 5 7 11

Æ 8 14 10 6 7 8 15 12 8 11 12 8 13 10.1538

& 14 13 10 10 8 10 9 7 12 11 6 8 8 9.6923

( 7 11 5 15 11 10 11 12 10 14 6 13 9 10.3077

* 4 7 7 7 9 6 5 6 6 14 5 8 6 6.9231

: 12 8 8 13 8 8 11 5 8 8 9 13 8 9.1538

; 12 14 6 12 10 13 15 13 10 6 11 10 9 10.8462

ü 11 5 12 7 7 6 8 6 7 6 12 8 2 7.4615

Á 9 9 5 11 14 7 8 9 12 7 13 8 13 9.6154

Ë 5 0 3 3 3 1 2 4 3 2 2 6 6 3.0769

k 14 8 7 11 9 4 11 5 10 9 9 6 6 8.3846

l 9 6 4 4 5 9 6 9 4 8 3 7 7 6.2308

m 7 6 7 8 7 3 5 4 4 6 6 4 7 5.6923

o 2 8 4 2 1 6 3 4 1 3 3 4 5 3.5385

r 10 14 7 11 9 9 12 11 8 16 13 11 8 10.6923

s 19 10 9 9 9 9 6 8 9 7 8 11 6 9.2308

equidistant from both the cluster centroids.

Algorithm 5 basically determines the instance, which is equidistant from both the classes.

In first step, algorithm 5 calculates the cluster distances for all the 20 instances of the example

case (i.e. distance from normal cluster, Aj and distance from abnormal cluster, Bj). For this
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Table 5.6: Selected Characters (Last Half Attributes) and their Respective Frequencies in
Compressed ECGs (Normal) for 13 Different Instances

At. N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12 N13 CCtr

t 6 6 6 5 6 6 7 5 6 4 5 6 2 5.3846

u 3 2 6 3 1 3 5 2 4 3 4 1 5 3.2308

v 4 4 4 1 2 5 3 1 3 1 3 1 3 2.6923

w 0 1 3 1 2 3 3 2 2 4 4 0 1 2

x 0 4 2 0 3 1 0 1 0 2 0 0 2 1.1538

y 2 0 0 4 0 2 0 1 2 0 0 0 1 0.9231

z 0 2 2 1 1 3 0 1 2 2 0 1 1 1.2308

A 0 1 1 2 0 0 1 2 0 2 1 0 1 0.8462

B 3 0 2 2 3 2 0 1 3 1 1 0 0 1.3846

C 1 3 2 0 0 0 0 0 1 0 0 0 0 0.5385

D 1 0 0 2 2 2 0 0 1 3 2 1 0 1.0769

E 0 1 2 0 0 2 0 1 1 0 1 0 3 0.8462

F 1 2 2 0 1 1 3 2 1 0 0 1 0 1.0769

G 1 0 1 1 2 2 2 1 2 2 2 3 4 1.7692

H 0 0 0 0 0 0 0 0 2 0 0 1 0 0.2308

I 0 1 0 1 0 1 0 1 1 0 0 1 1 0.5385

J 0 1 0 0 0 0 2 1 2 0 0 1 0 0.5385

K 0 1 1 0 0 2 0 0 0 0 1 0 0 0.3846

L 0 0 0 0 0 0 0 2 0 0 0 1 0 0.2308

M 0 1 0 1 0 1 2 0 0 1 2 0 1 0.6923

N 0 0 1 0 0 0 0 0 0 0 0 0 1 0.1538

O 0 0 0 0 0 1 0 0 1 1 0 0 0 0.2308

R 0 0 0 1 1 0 0 0 1 0 0 0 1 0.3077

50-100 31 35 30 36 30 31 29 29 34 34 26 29 31 31.1538

examples case, cardinality of Aj and Bj is 20 (|Aj | = |Bj | = 20).

Using step 2 of Algorithm 5, we can also ascertain our proposed symmetricity metric, Sj

for the 20 instances of our example case (as seen from Table 5.9). We can clearly see that the

most equidistant case, R is the 4th (4th subplot of Fig. 5.21 or Fig. 5.16) case. Therefore,
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Table 5.7: Selected Characters (First Half Attributes) and their Respective Frequencies in
Compressed ECGs (abnormal) for 7 Different Instances

Att. An1 An2 An3 An 4 An5 An6 An7 CCtr

@ 24 50 47 53 52 46 48 45.7143

$ 6 3 1 1 2 1 2 2.2857

Ø 4 1 1 1 1 0 0 1.1429

Å 4 3 3 1 1 2 1 2.1429

å 4 2 5 0 2 2 0 2.1429

0 2 2 1 3 2 1 1.5714

[ 2 2 0 1 0 0 0 0.7143

] 1 6 1 2 0 0 0 1.4286

| 5 4 0 3 0 0 0 1.7143

Æ 4 3 3 3 3 1 1 2.5714

& 6 1 2 3 2 3 0 2.4286

( 3 1 0 3 0 2 1 1.4286

* 0 0 3 2 1 3 1 1.4286

: 2 1 1 0 1 0 1 0.8571

; 5 2 1 4 3 0 1 2.2857

ü 5 2 1 0 2 1 0 1.5714

Á 5 3 3 0 1 1 0 1.8571

Ë 0 0 1 1 1 0 1 0.5714

k 14 13 13 12 19 14 12 13.8571

l 14 17 11 9 14 6 11 11.7143

m 8 16 16 14 15 15 16 14.2857

o 10 13 18 15 26 20 10 16

r 32 34 44 33 47 37 26 36.1429

s 33 39 32 29 54 38 26 35.8571

R = 4 as S4 = Min(Sj), where, j = 1, 2, 3, · · · , 20.

Algorithm 5 can clearly identify the initialization of abnormality, and as soon as the

algorithm detects shifts from normal cluster, it can notify the emergency personnel for as-

sistance of the monitored patient. This section serves as a proof of concept to show that
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Table 5.8: Selected Characters (Last Half Attributes) and their Respective Frequencies in
Compressed ECGs (abnormal) for 7 Different Instances

Att. An1 An2 An3 An 4 An5 An6 An7 CCtr

t 14 34 34 34 28 28 21 27.5714

u 21 36 28 40 37 39 34 33.5714

v 19 29 29 31 31 26 27 27.4286

w 16 33 36 19 30 30 32 28

x 15 37 26 30 33 33 20 27.7143

y 17 28 24 19 37 35 31 27.2857

z 15 48 23 39 41 33 34 33.2857

A 8 31 20 20 21 27 17 20.5714

B 15 23 27 22 30 25 23 23.5714

C 14 28 21 21 19 36 16 22.1429

D 9 21 26 13 23 25 16 19

E 10 9 19 26 14 31 21 18.5714

F 17 23 19 27 13 21 20 20

G 25 46 39 41 40 63 52 43.7143

H 7 17 15 17 11 18 19 14.8571

I 7 14 8 20 4 19 14 12.2857

J 6 8 13 12 12 16 15 11.7143

K 5 8 12 13 8 14 13 10.4286

L 3 9 8 12 6 13 22 10.4286

M 4 8 7 12 3 10 17 8.7143

N 2 7 8 2 2 7 19 6.7143

O 3 3 12 6 2 9 16 7.2857

R 3 4 4 4 1 5 7 4

50-100 15 13 15 49 6 9 42 21.2857

cardiac abnormality can be detected directly from the compressed ECG with the application

of data mining technique like EM.

Figure 5.24 shows the fact that sub figure 4 of Fig. 5.21 (or Fig. 5.16) is equidistant

(being more closer to abnormal cluster) from the 2 clusters (according to Algorithm 1), even
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Table 5.9: Aj, Bj and Sj values for the 20 ECG segments

Aj = {17.30530722, 12.36044732, 13.77612638,
72.26985027, 134.7904569, 120.5433543,
125.0978411, 137.5469333, 144.1012035,
123.8610014, 12.08989901, 9.406054328,
16.00034556, 14.48650607, 12.22903341,
13.18553215, 14.27789403, 15.17882927,
12.32616964, 13.55373225}

Bj = {118.8628916, 118.3491715, 117.4859846,
54.51042274, 29.27631103, 23.41155244,
38.1514297, 37.79026049, 35.32039337,
38.08583448, 121.1030833, 120.3706758,
119.8604513, 119.2606355, 120.2970672,
118.8009722, 119.3707786, 118.8893224,
120.5503405, 120.1616153}

Sj = {0.854409505, 0.895559494, 0.882742385,
0.24573771, 0.782801307, 0.805783134,
0.695027273, 0.725255521, 0.754891753,
0.692511492, 0.900168529, 0.921857593,
0.866508549, 0.878530699, 0.898343046,
0.88901158, 0.880390375, 0.87232807,
0.897750852, 0.887204144}

though it belongs to Abnormal cluster according to EM. Other instances (or compressed

ECG segments) are clearly identified as a member of normal or abnormal clusters.

In a conventional wireless telecardiology, compressed ECG is transmitted by the patient

and for detection of cardiovascular abnormality and the compressed ECG is decompressed

first before applying existing ECG abnormality detection algorithms. The delay generated by

decompression before detection may cost the longevity of the patient, as cardiac cell damage

after an abnormality symptom is irrecoverable [Luca et al., 2004]. Within this chapter, we

present an innovative algorithm that detects cardiovascular abnormality directly from the

compressed ECG without any delay.
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Figure 5.24: Segregation of normal and abnormal ECG (in two different clusters)
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Figure 5.25: Suitability of different algorithms in mobile platform

The abnormality detection algorithm presented in this section is based on an existing at-

tribute selection process and a clustering algorithm (EM). The presented techniques achieved

100% accuracy in identifying cardiac abnormality from compressed ECG, when experimented

on CU Ventricular Tachyarrhythmia database [Phy, Accessed 2009]. Finally, figure 5.25

shows the suitability of different detection methods on mobile platform, described within

this chapter.
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5.4 Conclusion

In this chapter, the focus was on mobile phone based faster cardiovascular diagnosis. Faster

diagnosis is possible if the ECG file (from where diagnosis is to be performed) lengths are

smaller by harnessing specialized ECG compression technology (as compared to larger plain

ECG). Since a lossless compression (such as the one in Chapter 2) transforms a larger file

into a smaller one, if diagnosis is performed from the smaller compressed file (containing

same information in different form), there will less file input/ output operations.

HR estimation algorithm (i.e. instant detection algorithm) was 6.72 times faster than ex-

isting algorithms when experimented on our compressed ECG based tele-monitoring system.

On the other hand, HR Calculation method (i.e. direct approach on compressed ECG) was

1.249 times faster than existing methods. It should be mentioned that while instant detection

algorithm and direct approach on compressed ECG served the purpose of initial assessment

and feasibility study, detailed experimentation on detection accuracy was performed after

improvement was made with data mining technique. Our experimentation with data mining

technique showed that different CVD could be detected with 100% accuracy.

In the next chapter, we will explore another technique of CVD diagnosis that has the

potential of executing as fast as diagnosis from compressed ECG (described in this chapter)

but suitable for graphical display and visualization on mobile devices. The techniques de-

scribed in our next chapter can easily be adopted by existing systems not running our ECG

compression algorithms.
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Chapter 6

Cardiod based Diagnosis and

Person Identification

In our previous four chapters, we have already answered all the research questions that we

posed to ourselves during the beginning of our research. However, the most urgent objective is

to identify a patient and provide the patient with healthcare support in case of urgency (such

as a heart attack) while reducing any associated delays. The previous chapter on diagnosis

from ECG signal was mainly based on compressed ECG, which doesnt have any visual appeal.

However, despite all the automations in the area of cardiac anomaly diagnosis, doctors and

cardiologists still heavily rely on manual inspection with ECG paper strip. Viewing minutes

worth of ECG on limited screen size of mobile phone may take hundreds of clicks for browsing

forward (or backward).

While most of ECG diagnosis algorithms ([Hamilton and Tompkins, 1986; Akselrod et al.,

2007; Bartolo et al., 2001; Kumar et al., 2007; Clifford et al., 2006; Kusumoto, 2009]) being
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designed and tested primarily on PC based environment, mobile phone based cardiovascular

abnormality detection algorithm is a very recent area of research [Lee et al., 2007; Hung

and Zhang, 2003]. Within this chapter, we present the novel idea of cardioid based ECG

abnormality detection and patient authentication mechanism on mobile, handheld and server

platform. This cardioid based technique provides fast visualization of several minutes ECG

on a single screen of mobile phone. Therefore, the doctors or cardiologists hardly require more

than one click to browse through the ECG. Apart from providing faster display on limited

screen size, the Cardioid based technique provides very fast diagnosis and authentication

with our proposed set of algorithms. Our experimentation results suggest that Cardioid

based abnormality detection and patient authentication substantially minimize the delay

associated with the treatment of cardiovascular patient.

First, we present the concept of centre of cardioid followed by its application in per-

son identification/authentication. Then, we demonstrate its applicability in faster diagnosis.

Both authentication and diagnosis components are the integral part of a Mission Critical

Cardiovascular Abnormality Alerting (MCCAA) mechanism designed to provide faster pa-

tient care and save precious life. According to our experimentations, the authentication time

can be reduced from 30.64 sec. (manual authentication in novice mobile user) to 0.4398

sec. (automated authentication). Our ECG based patient authentication mechanism is

several times faster than conventional biometrics like face recognition. The diagnosis time

could be improved from several minutes to less than 0.5 sec. (cardioid display on a single

screen). Therefore, with our presented mission critical alerting mechanism on wireless de-

vices, minutes worth of tasks can be reduced to seconds, without compromising the accuracy
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of authentication and quality of diagnosis.

6.1 Motivation

This section provides a general understanding of the medical significance for faster cardio-

vascular care, which is driving our research in mobile phone based alert mechanism. To

delve into the understanding of faster cardiovascular patient care, the concept of Door to

Ballooning Time (D2B) and Symptom-Onset-to-Balloon Time can be reviewed.

Door to ballooning refers to the measurement of time for the treatment of ST segment

elevation myocardial infraction (STEMI) or acute Myocardial Infraction (MI) [Bradley et

al., 2006; Otsuka et al., 2009; Sillesen et al., 2008; Ortolani et al., 2007; Luca et al., 2004].

This is the time between a patient’s arrival in the Emergency Department (ED) and balloon

angioplasty (or Balloon inflation). Delay in balloon inflation and subsequent insertion of

mesh wire to enable free blood flow with the heart, effectively creates an environment where

blood gets coagulated and forms blood clot. Formation of blood clot leads to irreversible

cardiac cell damages. ACC/AHA guidelines recommend the D2B time less than 90 minutes.

Symptom-Onset-to-Balloon time refers to the time interval between the patient feeling

discomfort (cardiac symptom) and catheter guide wire crossing the culprit lesion in the

cardiac cathlab. When the patient initially feels a cardiac discomfort identifying possible

incident of MI, he/she calls the ambulance. The ambulance then brings the suspected MI

affected patient in the ED. The ED personnel then undergo a detailed ECG acquisition of the

patient and decide the procedure to be taken. Based on their decision with cardiovascular

experts, the patient may be taken to the cathlab. This lengthy process is susceptible to
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deteriorate patient’s cardiovascular health. To minimize the detrimental effect of this delay,

many ambulances are equipped with ECG equipments. Therefore, ECG can be obtained from

the patient, while the patient is being transported to the ED. The acquired ECG can then be

sent to the ED / Cardiovascular experts within the hospital, prior to patient’s encounter to

the hospital. Thus, the hospital can take early diagnosis and treatment decision. The hospital

can instruct the ambulance personnel, where to take the patient. This process can bypass

the patient’s admittance in ED and enable urgent patients be directly endured surgery in

cathlab. This ambulance to hospital communication can be performed by Fax, Email, MMS,

HTTP etc.

The usefulness of this type process is very recently drawn in [Otsuka et al., 2009]. The

researchers in [Otsuka et al., 2009] transmitted real-time ECG, vital signs (Blood pressure,

heart rate and oxygen saturation) and live video directly from the ambulance to the on

duty cardiologist in the hospital. After viewing the ECG trace and diagnosing the possible

STEMI, the cardiologist in [Otsuka et al., 2009] can activate the catheterization laboratory.

The ambulance to hospital transmission delay was within 10 seconds. The crucial importance

of pre-hospital diagnosis is also reported in recent literature [Ortolani et al., 2007].

Researchers in [Luca et al., 2004] have plotted the relationship between ischemic time

and 1 year mortality. They have showed that each 30 minutes of delay was associated with

a relative risk for 1-year mortality of 1.075 (95% CI 1.008 to 1.15; P=0.041). The conclusion

drawn by them [Luca et al., 2004] was simple; all efforts should be made to reduce the total

ischemic time.

For the research presented in [Otsuka et al., 2009], a mobile phone connected with an
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in-ambulance server was deployed for enabling data transmission between the ambulance

and the server. In [Sillesen et al., 2008], usage of mobile phone in diagnosis of heart attack

minimized delay in treatment from 94 to 22 minutes. The study in [Sillesen et al., 2008],

transmitted 12 lead ECG data to the attending cardiologist’s mobile phone. This study

[Sillesen et al., 2008], not only make it evident that usage of mobile phone in cardiovascular

monitoring provides faster patient care but also it shows that important diagnosis decisions

can be made based on the ECG plot drawn on mobile phone’s screen.

In fact, taking ECG before the patient’s admittance to the hospital significantly reduces

the Symptom-Onset-to-Balloon time. Any efforts in minimizing delays associated with pa-

tient care impacts in saving patients life [Otsuka et al., 2009; Luca et al., 2004; Sillesen et al.,

2008; Ortolani et al., 2007]. However, this process demands significant improvement in terms

of minimizing end-to-end delay.

According Chapter 2, the delay associated with ECG data transmission has been reduced

drastically with the usage of specialized lossless compression techniques (designed for ECG).

Therefore, our recent research activities as demonstrated in Chapter 2 have successfully min-

imized the delay associated with ECG data transmission. However, existing mobile phone

based remote monitoring systems [Blount et. al., 2007] with username and password based

authentication mechanism takes 12 ˜35 seconds of time, according to our experimentation.

As the patient requires manual input of the username and password, these types of solu-

tions (in [Blount et. al., 2007]) are not fruitful for patients having cardiac attacks which

subsequently triggers anomaly in regular finger movement. As a result, we came up with

an automated solution with ECG based biometric with polynomial distance measurements
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(described earlier in Chapter 3). However, generation of polynomial coefficients in mobile

devices takes significant amount of time (around 12 seconds).

On the other hand, reducing the delay associated with ECG based authentication is a

challenging issue for faster patient care. Existing ECG diagnosis algorithms are mainly based

on PC and Servers [Hamilton and Tompkins, 1986; Friesen et al., 1990; Clifford et al., 2006;

Bartolo et al., 2001; Kusumoto, 2009; Kumar et al., 2007; Akselrod et al., 2007] and can be

classified in three broader categories in terms of complexities.

• Fiducial Technique (e.g. Detection of Wave onset, offset, amplitude, duration, slope

etc.) [Hamilton and Tompkins, 1991; Friesen et al., 1990]

• Transformational Techniques (e.g. Wavelet transform, Fourier Transform, Cosine Trans-

form etc.) [Kim et al., 2006; Miaou and Lin, 2002]

• Intelligent Techniques (e.g. Support Vector Machines, Fuzzy logic, Neural Network and

Other classifiers) [Kumar et al., 2007]

Fiducial Point based technique generally being the fastest method of ECG diagnosis,

includes multiple steps. These steps start with the detection QRS Complex. Then, onset

and offset of QRS is detected. Next amplitude and duration of QRS is detected. Then,

other parameters such as slope of QRS are detected. Similarly, onsets, offsets, amplitudes,

durations are calculated of P wave and T waves. Detection of all these parameters for all the

feature waves within the ECG trace entails significant delay in mobile environment. Trans-

formational and Intelligent techniques are generally more complex than fiducial point based

techniques, making them unsuitable for resource constraint mobile devices (described earlier
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in Chapter 2). On the contrary, the proposed Cardioid based technique does not employ

multiple steps nor adopt any complex technique for patient identification and detection pur-

pose. Therefore, the proposed techniques reduce delay in ”Door to Ballooning Time” or

”Symptom-Onset-to-Balloon time”.

6.2 Architecture & System Design

The proposed architecture of our mission critical cardiovascular abnormality alert system

monitors the patient’s ECG in real-time. In the event of cardiovascular abnormality, the

proposed alerting mechanism notifies the hospital personnel. The hospital can come to a

quick decision by undergoing rapid diagnosis. The hospital personnel then initiate life saving

protocols by sending emergency rescue team, ambulance etc. With the proposed framework,

faster life saving effort is established with both faster authentication and faster diagnosis. The

underlying technology of both authentication and diagnosis is focused on a computationally

inexpensive, yet effective method called center of cardioid.

In the MCCAA architecture presented in Figure 6.1, when the ECG trace of a subscribed

patient is normal, the major task established by the system is to obtain back-up of the current

data (referred as previous data). The saved data is used to create the biometric template

for authentication purposes in the case of heart abnormality. Therefore, the routine task

for the scenario when the patient’s ECG signal remains normal is to acquire ECG data

from the acquisition device, calculate the center of the cardioid, save the current ECG data

(provided that ECG data is normal as center of centroid lies within a preset range). This

range is dependent on the monitored person, the monitoring device and the sensor placement
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Figure 6.1: Architecture of Mission Critical Cardiovascular Abnormality Alerting System

configuration (Lead I, II, III, V1-V6 etc.).

On an event of cardiovascular abnormality, the centroid location will be shifted from the

normal range. Since authentication must be carried out to ensure that this event of abnor-

mality reaches to the hospital, previously saved data is engaged in authentication procedure.

As the abnormal data (current ECG data) hardly inherit any biometric trait for the patient,

it cannot be used for biometric feature extraction. Therefore, the previously saved normal

ECG trace (without the occurrence of the abnormal trait) is fetched and segregated to extract

P wave, QRS complex and T wave. From the individual feature waves biometric recognition

data is prepared.

In the next phase, listener (of the patient’s mobile) is turned on and a message contain-

ing the biometric features (for patient authentication) is created and sent to the hospital.

The listener handles communication protocol with the hospital. On arrival of the biometric

template message, the hospital’s biometric server performs one to many matching against

it’s entire subscribers’ list. If the hospital’s authentication mechanism recognizes the bio-

metric template as a valid subscriber, then in the next step, it obtains the abnormal ECG

data (current data containing the ECG abnormalities) through the listener (already turned
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Figure 6.3: A typical Cardioid

on) of the patient’s mobile phone. The hospital then runs their algorithms in ascertaining

the seriousness of the abnormalities. In case of urgency, patients location information (GPS

coordinates) is pulled through the listener and emergency team is informed. Even if the

patient is unconscious, the emergency team will be able to locate the patient to undergo life

saving procedures. On the other hand, if the patient is not a member within the hospitals

enlisted patients then the listener is turned off (the general hospitals may be notified). In

case of less serious event (determined by hospitals diagnosis algorithms), the listener is also

communicated and instructed to undergo shut down procedures.
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6.3 Cardioid based Authentication Mechanism

Template matching is the core process for any biometric authentication. Identification tem-

plate or verification template is matched against the enrolment template. For our cardioid-

based biometric, both identification and verification ECG templates are commonly termed as

recognition ECG template. These recognition ECG templates and enrolment ECG templates

are matched against each other to determine the identity of a person. Within the context of

this chapter, we have designed, developed and investigated two cardioid based authentication

mechanisms referred as method 1 and method 2.

A cardioid (as shown in Figure 6.3) drawn from ECG sample has distinguishing features

such as its area, perimeter and center coordinates. This is obvious in Table 6.1 where cardioids

of different segments of ECGs from two different persons are plotted. This is the basis and

motivation of our work for this novel authentication mechanism. Most of the ECG biometric

features are kept as points in Cartesian co-ordinate system in both the methods. However,

for our method 1 there are two parameters (Area and Circumference), which are maintained

as decimal values. Therefore, within the context of this research, matching essentially means

obtaining two types of distances: straight line distance and percentage distance. Therefore,

enrolment ECG can be represented as follows:

E1 = {(ce
x, ce

y), Ae, Ue} (6.1)

Similarly, recognition ECG can be expressed as:
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Figure 6.4: Matching Process (Method 1 as an Example) in ECG Cardioid based Biometric

R1 = {(cr
x, cr

y), Ar, Ur} (6.2)

Here, (cx, cy) is the Cartesian coordinate points (r and e denotes recognition and enrol-

ment respectively), A is the area and U is the circumference or perimeter.

The matching function (Θ(E1, R1)) for method 1 produces a set of thresholds, Γ =

{Γ1,Γ2, Γ3}. In fact,

Θ(E1, R1) =

{√
(c2

x − cr
x)2 + (c2

y − cr
y)2,

Ae −Ar

Ae
× 100,

Ue − Ur

Ue
× 100

}

= Γ (6.3)

Whenever, during a matching process (as shown in Figure 6.4) the threshold is less than

a pre-defined value, a successful recognition is thought to be made.

Template creations for both methods are preceded by acquisition, loop generation and
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loop segregation process in the cardioid-based system as shown in Figure 6.5. However,

the actual template creation for method 1 and method 2 are quite different. Owing to

this difference in template creation for both the methods, method 1 provides computational

intensive and highly accurate ECG biometric (since this method has more feature templates

like A and U), and method 2 provides lower complexity ECG biometric.

• Acquisition: During the acquisition of ECG, as a biometric entity, acquisition devices

like GE ST 5500, Alive Heart Monitor, Phillips Page Writer etc. can be used. After

the data acquisition, data is converted to millivolt (mV) ranges from their proprietary

format. ECG data can be de-noised with the help of embedded feature of the ECG ac-

quisition device. However, for the research presented in this chapter, we have only used

publicly available ECG data from MIT BIH [Phy, Accessed 2009]. MIT BIH Database

contains ECG data that were collected from numerous patients with cardiac abnormal-

ity using ECG acquisition devices following digitization of the data. Mathematically,

ECG can be represented by x(n) as in Eq. (1).

x(n) = {x(1), x(2), x(3), ...., x(N)} (6.4)

where x(1), x(2)... are ECG samples and N is the length of ECG signal.

• Loop Generation: Apart from ECG, none of the biometric modalities are time series

signal. For biometric detection, discarding time information is sometimes important as

this allows us to utilize techniques adopted in other biometric modalities. This is the

purpose of our proposed loop generation phase. With our loop generation process, time
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series ECG graph is converted to a 2 dimensional loop. From this closed loop pattern,

features can be extracted like other popular biometric mechanisms (e.g. finger print,

iris, palm print, face etc.).

At the commencement of the loop generation procedure, ECG data is differentiated.

y(l) = x(n)− x(n− 1) (6.5)

where , l = 1, 2, 3, ...., (M − 1)

After obtaining vector x (original ECG in millivolt range) and vector y (differentiated

ECG), loop generation is plotted as a scatted xy graph. Therefore, the X-axis of the

graph holds all the mV ranges ECG amplitudes (vector x) and Y-axis of the graph

holds differentiated ECG (vector y). Figure 6.6 shows the original ECG on the left

side and the generated loop on the right side. It is clearly seen that with the loop

generation process, time information is not retained (ECG is time varying signal). Our

experimentation with 30 randomly selected ECG entries from MIT BIH reveal all the

loops are quite different. This the basis of our research in person identification with

ECG based biometric, presented in this chapter.

• Loop Segregation: A loop is defined as a curvature that originates from a particular

point and ends at the same point. Therefore, in our experimentation, we used a .Net

program to detect a drawing point (in pixel) that was previously painted. By doing so,

in a window sliding fashion, the program can efficiently detect the previous point (or

the originator of the loop) and the current point (or the end point of the loop) as these

285 (October 31, 2011)



CHAPTER 6. CARDIOD BASED DIAGNOSIS AND PERSON IDENTIFICATION

A c q u i s i t i o n L o o p  G e n e r a t i o n L o o p  S e g r e g a t i o n T e m p l a t e  C r e a t i o n

Figure 6.5: 3 Steps in Biometric Template Creation for Patient Authentication

Figure 6.6: Cardioid based Patient Authentication and Diagnosis System (Desktop Imple-
mentation)

two points are being placed at the same pixel location (or in a close proximity).

6.3.1 Method 1: ECG based Person Identification with Centroid, Four Ex-

tremas, Area and Perimeter as template

The loop resulting from QRS complex appears as the shape of cardioid as seen in Figure 6.6.

From the equation of the cardioids (Eq. 6.6), the area (A) and the perimeter (U) can be

calculated from Eq. 6.7 and Eq. 6.8.

r = 2a[1 + cos(t)] (6.6)

286 (October 31, 2011)



CHAPTER 6. CARDIOD BASED DIAGNOSIS AND PERSON IDENTIFICATION

Q R S  L o o p

P  L o o p

T  L o o p

C e n t r o i d  C a l c u l a t i o n

P e r i m e t e r  C a l c u l a t i o n

A r e a  C a l c u l a t i o n

V e r t i c a l  e x t r e m e s  C a l c u l a t i o n  w i t h  A l g o r i t h m  2

C e n t r o i d  C a l c u l a t i o n  w i t h  E q n  1 2

G e n e r a t e  E q u a t i o n

T e m p l a t e  
  F u s i o n

H o r i z o n t a l  e x t r e m e s  C a l c u l a t i o n  w i t h  A l g o r i t h m  1

Figure 6.7: Block Diagram of ECG based Person Identification with Centroid, Area and
Perimeter as Template (Method 1)

A =
1
2

∫ 2π

0
r2 dϕ = ..

= 2a2

∫ 2π

0
(1 + cosϕ)2 dϕ = ..

= 6πa2 (6.7)

U = 2

∣∣∣∣∣
∫ π

0

√
(

dr

dϕ
)2 + r2 dϕ

∣∣∣∣∣ = ....

= 2
√

2a

∣∣∣∣∣
∫ π

0

√
(1 + cosϕ) dϕ

∣∣∣∣∣ = ....

= 16a (6.8)
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However, the loops generated from P wave and T wave appears to be ellipse. The equation

for cardioid is given as:

x2

a2
+

y2

b2
= 1 (6.9)

Here, a is called vertex or major axis and b is co-vertex or minor axis. The vertex and

the co-vertex for P wave loop are ap and bp. On the other hand, the vertex and the co-vertex

for T wave loop are at and bt. Our initial experimentation shows that a, for T wave is more

than three times a, for P wave. Therefore, at > 3ap

Area, A and Perimeter (circumference), U can be calculated (or approximated) with the

following equations.

A = π × a× b (6.10)

U ≈ π
⌊
3(a + b)−

√
(3a + b)(a + 3b)

⌋
(6.11)

Calculation of U is based on Ramanujan’s ellipse approximation. U approximation for

ellipse with U ≈ 2π
√

a2+b2

2 is unsuitable for T wave, since b > 3a, according to our experi-

mentation. Centroid is created by the following equation, for all the loops (QRS Complex,

P wave and T wave).
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centroid =

[∑N
i=1 xi

N
,

∑N
i=1 yi

N

]
(6.12)

To calculate the extreme points as shown in Figure 6.9, intersections of the coordinates

(transformed) and approximated equation of the original shape (loop) are required to be

calculated. However, estimations of the exact equations that represent the loops are compu-

tationally expensive for mobile and embedded devices using existing curve fitting techniques.

The procedures involved in method 1 are summarised in Fig 6.7. Advantage of method

1, is its accuracy, with possible lower misclassification rate, as this method has two extra

template parameters (Area and perimeter). However, it has a higher computational expense.

This computational expense is mainly caused by the custom equation-based-curve-fitting

technique on the loop points. The average time taken from these custom equation-based-

curved-fitting was more than 1.8 second on our desktop system. However, when implemented

on smart phones the calculation time was found to be as high as 30 seconds. Therefore, for

biometric authentication on remote telecardiology (involving mobile phone), a computation-

ally inexpensive method is required.

6.3.2 Method 2: ECG Biometric based on Centroid and Extreme Points

This method, as depicted in Figure 6.8, is simpler compared to method 1 as it does not

require computations of A and U . After generating the loops for the heart shape (orig-

inated from QRS complex), ellipse originated from T wave and ellipse originated from P

wave, 15 points were initially selected for representing each ECG sample. For the QRS,

289 (October 31, 2011)



CHAPTER 6. CARDIOD BASED DIAGNOSIS AND PERSON IDENTIFICATION

Q R S  L o o p

P  L o o p

T  L o o p
V e r t i c a l  e x t r e m e s  C a l c u l a t i o n  w i t h  A l g o r i t h m  2

C e n t r o i d  C a l c u l a t i o n  w i t h  E q n  1 2

T e m p l a t e  
  F u s i o nH o r i z o n t a l  e x t r e m e s  C a l c u l a t i o n  w i t h  A l g o r i t h m  1

Figure 6.8: Block Diagram of ECG based Person Identification with Centroid and Four Ex-
tremas

Figure 6.9: Calculation of Centroid and Four Extremas for QRS Complex, T Wave and P
Wave

loop the points are Centroid (d1, c1), (f qrs(c1, y), c1), (−f qrs(c1, y), c1), (d1, f qrs(c1, y)),

(d1,−f qrs(c1, y)). For the T wave, loop the points are Centroid (d2, c2), (f qrs(c2, y), c2),

(−f qrs(c2, y), c2), (d2, f qrs(c2, y)), (d2,−f qrs(c2, y)). For the P wave, loop the points are

Centroid (d3, c3), (f qrs(c3, y), c3), (−f qrs(c3, y), c3), (d3, f qrs(c3, y)), (d3,−f qrs(c3, y)).

The functions f qrs(x, y), f t(x, y) and f p(x, y) are all estimated functions, that can be

approximated based on different techniques. Curve fitting is one of the techniques, which has

been used in our earlier researches on PDM (Chapter 3). In those previous researches, we

have used the polynomial coefficients as the ECG feature, which were compared to identify
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human. However, the major problem for using coefficients as ECG feature is the size of the

coefficients. Multiple coefficients (as high as 32) increase the overall template size of the

feature set. Higher template size requires higher computational expense as well as time to

perform comparison task (biometric matching time) for biometric identification. Therefore,

within this chapter, we initially selected only five points to represent shapes (Centroid and

the four extreme points for each of the shapes).

To save computational resources for resource limited devices, approximation of the ex-

treme points (Figure 6.9) is crucial. Rather than approximating the equations of the loops

and finding the intersections with the coordinates (as it was done for method 1), four vertical

extreme points can be calculated for each of the loops, using the following rules.

Rule 1: Point p(xn, yn) is the chosen to be upper extrema, when yn > c and |(xn − d)|

is minimum for all points p(x, y) in the loop. In the same way for lower extrema, yn < c and

|(xn − d)| is minimum (notation descriptions can be found in 6.9). Therefore:

∀p(x, y)∃yn :
∣∣∣(xn − d)

∣∣∣

Rule 2: Point p(xn, yn) is the chosen to be the right extrema, when xn > d and |(yn−c)|

is minimum for all the points p(x, y) in the loop. For the left extrema xn < d and |(yn − c)|

is minimum (notation descriptions can be found in 6.9). Therefore,

∀p(x, y)∃xn :
∣∣∣(yn − c)

∣∣∣

Based on these rules, algorithm 1 and 2 were designed and implemented.

From experimentations, we noted for the left and right extreme points, y value is very

close to c. This is because, y is basically the change (derivative) in waveform and for all the

wave forms, negative change is followed by equivalent positive change. From Figure 6.6, we
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Algorithm 1: Detection of Right and Left Point of the Loop
rightX, rightY, leftX, leftY, tempDistance
Loop for all points in the feature loop

if (yi − c) < tempDistance and yi > d then
tempDistance = |(yi − c)|
rightX = xi

rightY = yi

endif
if (yi − c) < tempDistance and yi < d then

tempDistance = |(yi − c)|
leftX = xi

leftY = yi

endif
End Loop

can clearly see that for all the waves (QRS Complex, P wave and T wave), positive wave

change is followed by equivalent negative change. Left and Right extreme points are situated

on the vertically opposite side of the Centroid and the y value of the Centroid is essentially

the average of change of the waveform (which is near zero). This can be clearly seen from

Table 6.1, where all the y values for the three persons are approximately 100.

Hence, for all the loops, y values of Centroid, left extrema and right extrema are least

important. Y values for these three points for all the loops can easily be omitted for generation

of template. The insignificance of these values (y values for left and right extreme points)

for identifying person also become apparent by using Principal component analysis (PCA).

6.3.3 Implementation & Experimentation Results

We have implemented the cardioid based biometric authentication both on PC (desktop)

and mobile phone environment. Method 1 based biometric authentication took about 24

seconds in PC based environment. This higher requirement of processing time is mainly
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Algorithm 2: Detection of Upper and Lower Extreme Points of the Loop
upperX, upperY, lowerX, lowerY, tempDistance
Loop for all points in the feature loop

if (xi − d) < tempDistance and yi > c then
tempDistance = |(xi − d)|
upperX = xi

upperY = yi

endif
if (xi − d) < tempDistance and yi < c then

tempDistance = |(xi − d)|
lowerX = xi

lowerY = yi

endif
End Loop

Table 6.1: The Difference in ECG Feature Waves between Two Different Individuals

ECG Person A Person B
Wave Original Generate Original Generated

Segment Wave Loop Wave Loop

QRS Complex

T Wave

P Wave
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because of the estimation of the equation from the cardioid shape, calculation of area and

calculation of perimeter. To estimate the equation, curve fitting tools were utilized similar to

our previous research (Chapter 3). After approximation of the equation of the cardioid, area

and perimeter were calculated. Again, the calculation process for Area and Perimeter were

quite different in every individual, as the cardioid equation varied from person to person.

Higher computational complexity was the man obstacle for implementing method 1 based

biometric authentication on mobile environment.

In method 1 (desktop system), area for the QRS loop ranges from 42 to 117, while the

perimeter lies between 24 and 44. T wave loop area spans between 1.5 and 7.8. T wave loop

perimeter ranges from 5.21 to 13. Similarly, P wave loop area ranged from 2.355 to 9.42 and

P wave loop perimeter ranged from 2.13 to 8. When implemented in our desktop system,

method 2 only consumed 300 milliseconds and on smart phones, it only took 2 second.

We have used the publicly available ECG entries from MIT-BIH Normal Sinus Rhythm

Database (nsrdb) to show the difference in centroid across different individual (Table 6.2).

Table 6.2 also shows the similarity of enrolment centroid (for QRS only) and recognition

centroid. As QRS complex demonstrates the most uniqueness across individuals [Wubbeler

et al., 2007], centroid of QRS are matched first. Then, the other templates (centroid for T

wave / P wave, four extremas) are matched. However, it appears obvious that centroid of QRS

alone can uniquely identify persons. When other QRS extremas are added as identification

features, centroid and extremas of P or T waves may not be necessary.
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Table 6.2: Uniqueness of Cardioids of Various MIT BIH Entries

Entry Centroid of
Enrolment
QRS

Location of
Enrolment

Centroid of
Recognition
QRS

Location of
Recognition

16265 (127, 100.8) [47:57] (128, 100.4) [1233:1243]
16420 (146, 99.89) [66:75] (146, 100.11) [1226:1235]
16773 (138, 100) [48:58] (138, 99.7) [982:992]
16795 (151, 100.1) [10:20] (152, 100.2) [1198:1208]
17453 (143, 100.38) [89:102] (142:100.38) [1131: 1144]

Table 6.3: Misclassification Rate for PRD, CC, WDM and PDM

Method Misclassification Rate
(%)

PRD [Chan et al., 2008] 25
CC [Chan et al., 2008] 21
WDM [Chan et al., 2008] 11
PDM (without Alg. 1, without Alg.2) [Sufi et al.,
2010a; Sufi and Khalil, 2008a]

13.33

PDM (with Alg. 1, without Alg.2) [Sufi et al., 2010a;
Sufi and Khalil, 2008a]

6.66

PDM (with Alg. 1, with Alg.2) [Sufi et al., 2010a;
Sufi and Khalil, 2008a]

0

Proposed (Method 1) 1
Proposed (Method 2) 1

Misclassification Rate

Both Method 1 and Method 2 had single misclassification errors (for each of them) as seen

in Table 6.3. However, we believe that experimenting with a larger sample size will reveal

higher accuracy of method 1 with the expense of higher computational requirements. Table

6.4 shows the False Match Rate (FMR) and False Non Match Rate (FNMR) wise comparisons

of Method 1 and 2 with other existing biometric techniques.
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Table 6.4: FRM and FNMR Accross Different Modalities

Modality FMR (%) FNMR (%) Reference
Face 1 10 [Phillips et al., Last accessed:

Jan. 2009]
Fingerprint 0.01 2.54 [Maio et al., 2004]
Iris 0.00129 0.583 [Group, 2005]
On-line signa-
ture

2.89 2.89 [D.-Y. et al., 2004]

Speech 6 6 [Reynolds et al., 2004]
ECG 6.66 6.66 PDM (without Alg. 1,

without Alg. 2) [Sufi et al.,
2010a; Sufi and Khalil, 2008a]

ECG 3.33 3.33 PMD (with Alg. 1,
without Alg. 2) [Sufi et al.,
2010a; Sufi and Khalil, 2008a]

ECG 0 0 PDM (with Alg. 1
+ with Alg. 2) [Sufi et al.,
2010a; Sufi and Khalil, 2008a]

ECG 0.5 0.5 Proposed (Method 1)
ECG 0.5 0.5 Proposed (Method 2)

Template Size

Shorter template size results in faster processing, during one to many matching performed

during person identification. Table 6.5 shows differences in template sizes for different ECG

biometric.

If matching of 1 byte takes tb amount of time, then according to Table 6.5, method 1

and method 2 consume (69 × tb) and (63 × tb) times respectively. Therefore, method 1 is

approximately 4452 times faster and method 2 is approximately 4876 times faster then face

[Yu et al., 2008] recognition, which has a template size of approximately 307200 bytes of

data. Clearly, the proposed method 2 requires less storage and executes faster for person

identification task compared to the existing biometric mechanisms.
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Table 6.5: Comparison of Template Sizes

Biometric Data Type Size in bytes
Iris [Yu et al., 2008] 512
Face [Yu et al., 2008] 153600-307200
Voice [Yu et al., 2008] 2048-10240
ECG [Wubbeler et al., 2007] 600
ECG (WDM) [Chan et al., 2008] 1371
ECG (PRD / CC) [Chan et al., 2008] 2210
ECG (PDM) [Sufi et al., 2010a; Sufi and Khalil, 2008a] 340
ECG (Proposed Method 1) 69
ECG (Proposed Method 2) 63

Authentication Time

To estimate how this cardiod based automated authentication mechanism (method 2) helps

in mission critical health application, we have compared this innovative patient authentica-

tion mechanism with existing username / password based telecardiology application. Three

different level of mobile phone users (novice, moderate and expert) were put under the test

of providing their username/password pair to mimic a cardiovascular subscriber establishing

a connection with the service provider. Each group consisted of 5 people. Table 6.6 shows

the timing requirement of the three groups.

Apart from saving time, the obvious benefit from this automated biometric scheme is the

correctness of authentication process. If the cardiovascular patient suffers a sudden attack,

patient may enter wrong username and password as manual task becomes harder because of

anomaly in autonomic nervous system (ANS).
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Table 6.6: Comparison of Cardioid based Automated Authentication Technique Against User-
name / Password based Authentication (Times are in Seconds. Cardioid Biometric were
Performed on Randomly Selected MIT BIH Entries)

Novice Moderate Expert cardioid
Users Users Users Biometric
33.50 20.25 14.50 0.235
32.2 22.90 15.90 0.339
29.6 23.80 11.90 0.487
26.0 18.85 13.75 0.912
31.9 27.30 12.40 0.226

Figure 6.10: Mobile Phone Implementation of Cardioid (for ECG Abnormality Diagnosis
within Doctor’s Mobile Phone) Running in Pocket PC Emulator under MS Visual Studio
2005.
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6.4 Cardioid based Diagnosis

We can employ this cardioid based technique for detecting abnormal cardiac conditions. Any

abnormality in ECG trace can be either manually detected by the expert cardiologists, or

by automated algorithms. These algorithms usually detect onset and offset of QRS com-

plex, T wave and P waves. After detection of these fiducial points (3 onsets and 3 offsets),

width, amplitude and other parameters are calculated for each of the waves. Performing all

these calculations simultaneously in real time is resource extensive. Therefore, most of the

automated algorithms for detecting heart abnormalities are designed for PC based systems

(or resource expensive ECG Acquisition devices). Center of cardioid can play a significant

role in instant detection of cardiovascular abnormality, as any sudden change of ECG trace

will cause instant change in the center of cardioid. As discussed earlier, calculation of center

of cardioid is a simple and resource efficient technique, that can be easily implemented on

mobile devices. This will help a roaming cardiologist to instantly detect abnormalities of

cardiac conditions for ECG traces forwarded by the medical server (medical server on the

other hand, received this ECG messages from the patient’s mobile phone). Experimentation

with MIT BIH entries proves this point.

The diagnosis programs were implemented in Visual Studio .Net environment and tested

on the pocket PC emulator environment (as shown in Figure 6.11). After the successful

deployment on the emulator platform, the cardioid based programs were deployed on HP

912 Business Messenger Smart phone (Figure 6.11). Our real life experimentation revealed

that cardioid based authorization and diagnosis is the fastest solution for Mission Critical

Alerting mechanism, where every seconds count towards saving irrecoverable cardiac cell
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Figure 6.11: Deployment of Cardioid based Patient Authorization and Diagnosis on HP 912
Business Messenger Mobile Smartphone
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Figure 6.12: Occurrence of Ventricular Beat from MIT-BIH Supraventricular Arrhythmia
Database (svdb) Entry No. 803

damage.

Figure 6.12 shows a sudden Ventricular beat (shown by box) from record 803 of MIT BIH

Supra-ventricular Arrhythmia Database (svdb). This record corresponds to only a subsection

of the whole record (from 29:40 minute to 29:50 minute), and a random window size of 100

samples (out of the total 128 samples) is used for calculation of center of cardioid. For

these normal beats, the x coordinate of the centroid ranged from 150 to 153. On the other

hand the y coordinate ranged from 99.77 to 100.29. One such plot using normal beat is

shown in Figure 6.16. However, during the onset of the Ventricular beat the centroid was
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Figure 6.13: Cardioid Drawn from the Entire ECG Strip Presented in Figure 6.12 (from
MIT-BIH Supraventricular Arrhythmia Database (svdb) Entry No. 803)
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Figure 6.14: Occurrence of Ventricular Fibrillation from CU Ventricular Tachyarrhythmia
Database (cudb) Entry No. 01

Figure 6.15: Drawing of ECG Curve in Multiple Screens of a Mobile Phone
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Figure 6.16: Centroid using the Normal Beats of Figure 6.12

(147, 99.73) as shown in Figure 6.17, when the centroid calculation period was from 700 to

800. A sudden drop of x coordinate of the centroid identified sudden abnormality within

the ECG trace. This deviation in the values of centroid clearly shows how normal heart

conditions suddenly changes. This form of presentation can help not only cardiologists, but

also medical technicians to quickly diagnose cardiac abnormalities at the hospitals. Similarly,

the centroid values calculated for sample range (800-900) and (810-910) of the same record

are (156, 100.35) and (156, 99.93). These values are out of the normal ranges of centriod

for that person, and therefore, identify cardiac abnormality. It should be noted that these

values were calculated by our software (both desktop as in Figure 6.6 and mobile as in Figure

6.11). Figure 6.13 shows the entire ECG trace of Figure 6.12 transformed into cardioid. Even

though the plot in Figure 6.13 is similar to the output of our software (both desktop and

mobile), our software has normalized the coordinates (both X and Y) for obtaining integer

values (as the pixels in desktop and mobile screens are represented by integer values). This

fact (the difference in value range) is true for the subsequent cardioid figures presented in

this chapter (Figure 6.22, Figure 6.20, Figure 6.21 and Figure 6.24).

Now if we look into more serious event of cardiac abnormality, such as ventricular fibrilla-

302 (October 31, 2011)



CHAPTER 6. CARDIOD BASED DIAGNOSIS AND PERSON IDENTIFICATION

Figure 6.17: Centroid using the Abnormal Beats (i.e. During the Onset of the Ventricular
Beat) of Figure 6.12

Figure 6.18: Centroid using the Normal Beats of Figure 6.14

tion (VF), we will also find the center of cardioid method useful for disease identification. We

randomly selected an ECG trace containing VF onset to test the center of cardioid method.

Figure 6.14 shows a 10 second segment (from 3:30 min to 3:40 min) ECG record (Entry no.

cu01) from CU Ventricular Tachycardia Database (cudb). The onset of VF is annotated and

marked within this trace. The normal, abnormal and the entire section of Figure 6.14 are

represented by Figure 6.20, Figure 6.21 and Figure 6.22.

For testing the center of cardioid method, we selected a window size of 250 and calculated

the center of cardioid in a window sliding fashion. For all the 4 normal QRS complexes of

Figure 6.14, the centroid was (156± 2, 100.03± 0.26) as shown in Figure 6.18. At the event

of VF, the center of cardioid changes to (160, 100.2) for segment 1100 to 1350 as visible in

Figure 6.19.
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Figure 6.19: Centroid using the Abnormal Beats of Figure 6.14 (during Occurrence of Ven-
tricular Fibrillation)

An ECG trace with 360 Hz sampling frequency and 1 minute duration spans horizontally

and needs long scrolling facility even on a 20 inch monitor with 1280×1024 resolutions. Even

if we use a single pixel (of Mobile phone) to represent a single sample of ECG point, the

mobile phone screen needs to be 21600 pixels wide to draw the 1 minute ECG curve (in a

single screen) without the necessity of horizontal scrolling for ECG signal (with an acquisition

sampling frequency of 360 Hz). However, mobile phones used during our experimentation

had only 170 to 240 pixels in width. Therefore, the MIDlets were designed with horizontal

scrolling facility to navigate forward the ECG with multiple screens (Figure 6.15).

Further more, drawing ECG curve onto a mobile phone screen is different than PC display,

because of their variation in coordinate system. In mobile phone’s screen, the coordinate

(0, 0) starts from top left corner (Figure 6.15), unlike bottom left corner for PC graphics.

Therefore, a coordinate transformation is required for the ECG signal xn, before drawing

them on mobile phone screen. Equation 6.13, demonstrates the transformation operation.

yn = h− xn (6.13)

where h is the height of supported pixels for mobile phone. Therefore, generating curves
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and graphs of biosignals needs proper calculation and translation before drawing them on to

the mobile phone’s screen. Figure 6.15 shows the end result of graphing (schematic). Figure

6.15 makes it obvious that a particular ECG signal can be spanned to W number of screens,

where W is determined by Eq. 6.14.

W = ceil(f × t(w − 1)) (6.14)

where, ceil denotes the ceiling operation, f is the sampling frequency of ECG acquisition and

t is the total duration of the ECG trace.

If the mobile phone, used by the doctor, has moderately higher resolution and supports

240 pixel in width then 1 minute ECG (250 sampling frequency) requires Ceil (15000/239)

or 63 screen. Therefore, if the doctor intends to browse through the entire 1 minute ECG

trace, then he requires at least 62 clicks on the mobile phone. Now if each click consumes 0.5

seconds of delay, the mobile cardiologist needs at least 31 second, just to draw the complete

ECG trace. Viewing and taking decision on the ECG will take further time on top of the

drawing time.

However, using our cardioid based diagnosis approach, this time (i.e. clicking and viewing

of the screens) could be minimized to less than 0.5 second, as no clicking operation is required

by the cardiologist. The entire signal can be plotted on a single screen. On that screen, the

abnormal ventricular beats will be clearly misaligned. As seen in the cu 1 record (in Figure

6.14), VF event started (approximately from sample no. 1026) after first four normal beats.

If the cardioid is drawn from 0 to 1026 sample, we would see the regular (normal) beat
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Figure 6.20: Cardioid Drawn from the Four Normal Beats of Figure 6.14
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Figure 6.21: Cardioid Drawn After the Occurrence of VF in Figure 6.14
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Figure 6.22: Cardioid Drawn from the Entire ECG Trace Presented in Figure 10

pattern for that person as seen in Figure 6.20.

However, just after the initiation of the deadly VF event, the cardioid takes a totally

different pattern as shown in Figure 6.21. It is evident from the pictures (Figure 6.20 and

Figure 6.21) that the regular beat and VF beat doesn’t share the same pattern. If a cardi-

ologist is given with the cardioid drawn from the entire 10 second ECG trace (from sample

1 to sample 2500) for the same record, then he / she will see two different patterns and will

instantly identify occurrences of abnormality (as depicted in Figure 6.22). In fact, automated

algorithms can be developed and deployed to notify any instance of drawing on highlighted

area (termed as abnormal area) on the mobile phone screen (canvas class [Sufi, 2007; Yuan,

c2004]). In Figure 6.22, we can see the possible VF region marked with boxes. Any drawing

on that box signifies occurrence of Ventricular abnormal beat.

Algorithm 3 performs the automated abnormality detection by detecting any drawing

on a boxed region. Boxed region (x1, y1, x2, y2) is area of the Cartesian coordinate (either

implemented on PC or Mobile Screen) that has been marked as abnormal region. During the
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Algorithm 3: Cardioid based Automated ECG Diagnosis
Cur Point, PreP oints //the points are in Cartesian coordinate
Cur Point = (0, 0)
Pre Point = (0, 0)
Cur Point = GetCurrentPoint() // Using Eqs. (4-5)
Loop

if x1 ≤ Cur Point.X ≤ x2 AND y1 ≤ Cur Point.Y ≤ y2 then
Abnormality Detected = TRUE
Count = Count + 1

endif
Drawline (Pre Point, Cur Point)
Pre Point = Cur Point

EndLoop
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Figure 6.23: Occurrences of Ectopic beats / premature beats (ectopic beats marked with red
boxes and a suspected beat marked with blue box) from AHA Database entry no. 01

regular plotting activity (looping in Algorithm 3), if the current coordinate (Cur Point.X,

Cur Point.Y) is bounded within the boxed region, then abnormality is identified. More than

one boxed region can be created for identifying multiple cardiac abnormalities.

Figure 6.23 represents the first 1 minute’s ECG data from AHA Database Entry no. 01.

We can see that four abnormal beats are highlighted with boxes. If the same ECG extract

is used for generating a cardioid, all the abnormal beats will be clearly identified as shown

in Figure 6.24. Within the cardioid map, all the similar beat patterns share the same region

of the screen.

Similarly, if cardioid is drawn using the Supraventricular Arrhythmia Database (svdb)

entry no. 803 that is plotted in Figure 6.12, then the event of ’V’ or wide QRS complex can
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Table 6.7: Execution Time (in seconds) on HP iPAQ 912 Business Messenger for Cardioid,
First Derivative based Technique, Second Derivative based Technique and Threshold based
Technique

ECG No. ABT FDT SDT Cardioid
100 3 16 17 1
102 4 16 18 1
105 3 16 19 1
111 3 16 18 1
114 3 16 18 1
201 4 16 18 1
210 4 17 18 1
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Figure 6.24: Cardioid Drawn from the Entire ECG Strip Presented in Figure 6.23
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be easily visible (Figure 6.13).

Beat alignment operation in time series (original ECG trace) can also reveal abnormal

beats from normal beats, as seen from Figure 6.25. These types of beat alignment can

be performed with direct threshold based techniques [Friesen et al., 1990], transformational

techniques [Kim et al., 2006] or ever other complex techniques involving Artificial Intelligence

[Kumar et al., 2007].

In Table 6.7, we have performed beat alignments based on three existing direct methods.

These three methods, namely Amplitude based technique (ABT), First Derivative based

technique (FDT) and Second Derivative based (SDT) beat detection (for the experimentation

in Table 6.7) are explained in detail by earlier research works [Friesen et al., 1990; Sufi

et al., 2007]. Using these techniques, the QRS complex is located first and then the actual

alignment is performed. Our cardioid based technique can offer beat alignment facility on

small handheld platform in a very fast manner. Implementing the most simple existing beat

alignment techniques (ABT, FDT and SDT) [Friesen et al., 1990] consumes at least 3 times

more computational time, compared to the presented cardioid based diagnosis as seen from

Table 6.7.

6.5 Discussion

In this chapter, we intend to reduce the delay in cardiac care in two main areas: patient au-

thentication and diagnosis. The Authentication mechanism ensures security in Mission Crit-

ical Alert (MCA) Mechanism. The communication framework is tied with HTTP/ MMS/

SMS/ Bluetooth/ WiFi. Therefore, the presented MCA uphold elastic and distributed net-
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Figure 6.25: Beat Alignment in time Series Domain

work. In case, HTTP fails, patient’s mobile to hospital communication can be executed on

MMS or SMS [Sufi et al., 2009a], for ensuring reliability. Within the mobile phone based

wireless cardiac care solution, we can observe the following five key actors:

• Patient : This patient is monitored with portable ECG acquisition devices. Patient is

the center (or key player) within the mobile phone based patient centric solution.

• Patient’s Mobile Phone: Patient’s mobile phone serves as the communicator between

the patient and the hospital / cardiologist / ambulance service provider. Also, this

mobile phone performs repeated detection facility that continuously searches for ab-

normality from the patient’s ECG trace. This is done via calculating the centroid of an

ECG trace and measuring the centroid against a set threshold. Any centroid outside

the threshold range signals a possible abnormality and initiates communication with

the hospital. The mobile phone also performs local authentication (before local moni-

toring) as well as remote authentication (before connecting and informing the hospital

about an abnormal event).
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• Hospital : Hospital provides the cardiovascular monitoring facility to the patient, who

subscribed for the continuous monitoring facility. The hospital runs its existing al-

gorithms to check the validity and seriousness of the cardiac abnormality. In case

of serious abnormality, the hospital informs the cardiologist and the ambulance for

rescuing the patient.

• Ambulance: The ambulance locates the patient by retrieving GPS locations from the

patient’s mobile phone (a listener within the patient’s mobile phone is responsible as in

6.1). Within the ambulance, a 12 lead ECG acquisition is performs and transmitted to

the hospital via HTTP or Socket routine. The Hospital then views the ECG and decides

on the action plan (e.g. Surgery in catheterization lab and therefore, activates the

catheterization lab) for the patient in consultation with cardiologist. The ambulance

is instructed accordingly about where to admit the patient (e.g. catheterization lab).

• Mobile cardiologist : The hospital can also receive expert opinions on special cases from

the remote cardiologists. The cardiologist receives ECG information in compressed and

encrypted format either from the patient or from the hospital. Cardiologist’s mobile

phone executes the cardioid based diagnosis program, which assists in faster diagnosis

of the abnormal event.

The ECG transmission from the patient to the hospital / cardiologist or from the am-

bulance to the cardiologist is performed utilizing compression and encryption technology

described in Chapter 2. Therefore, fast and secured transmission is guaranteed upholding

Health Insurance Portability and Accountability Act (HIPAA) act of US (1996) [Cen, Ac-
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cessed 2008; Off, Accessed 2009; Lee and Lee, 2008]. The value added to the MCN alert

mechanism by this chapter, is by the innovative utilization of cardioid based authentication

and diagnosis method and by strategically placing them on the existing cardiac care scenario

[Otsuka et al., 2009; Sillesen et al., 2008; Ortolani et al., 2007; Khalil and Sufi, 2008b; Lee

et al., 2007; Hung and Zhang, 2003]. With this piece of research in place even the fastest

timing (22 minutes in [Sillesen et al., 2008]) in patient rescue can be reduced farther. More-

over, the architecture outlined in this chapter addresses the following two main criteria (as

urged by [Bradley et al., 2006]) for reducing door-to-balloon time:

• Innovative, standardized protocols

• Data feedback to monitor progress and identify problems or successes

6.6 Conclusion

According to the cardiovascular experts, the delay in diagnosis can cause significant and ever

lasting damage to patient’s heart and drastically increase the chance of reduced life span [Ot-

suka et al., 2009; Luca et al., 2004]. Therefore, minimizing the delay in cardiovascular patient

care is a global urge, with cardiovascular disease being the number one killer of modern era.

Within this chapter, we endeavoured in minimizing the cardiovascular patient care by har-

nessing the modern technological settlements of wireless communication and portable ECG

sensors. By identifying two specific long haul bottlenecks (authentication and diagnosis) in

mobile phone based cardiovascular patient monitoring, we have shown that several minutes

delays can be reduced to a mere 0.5 second with Cardioid based techniques. Moreover, due

to smaller template size our ECG based biometric method with Cardioid based technique
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is much faster than existing biometrics systems like Face recognition. Apart from minimiz-

ing the delay in CVD patient care, we have also depicted a structured process of alerting

mechanism which can potentially save lives of the CVD afflicted person.
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Conclusion

This chapter draws conclusion of our research work based on the preceding chapters. It also

outlines the contributions and states suggestions for future work. Finally, a short summary

for this research work is presented.

7.1 Summary of Research Progress

Table 7.1 provides a glimpse of our research achievements. The objective column relates

directly to our research questions. Result column depicts how the objectives have been met,

in terms of research output. The core contributions of this research outcome are briefed as

follows:

• According to the literature, we have achieved the highest possible compression ratio of

20.06 (95% compression) on ECG signal, without any loss of information. According to

our experiments, execution of our unique compression, which was designed specifically

for running on mobile devices with lower computational ability, causes minimal delay
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Table 7.1: Summary of research progress

Objective Result Conclusion
Minimizing
transmission
Delay

Substantially achieved with
our proposed ECG compres-
sion algorithms [Sufi and
Khalil, 2008b; Sufi et al.,
2009a; Sufi and Khalil, 2010a;
Sufi et al., 2006b]

Our proposed ECG compression al-
gorithm can execute in realtime and
provides substantially higher compres-
sion ratio (about 90%). Therefore,
during compressed ECG packet trans-
mission between the patient and the
doctor, minimal delay is incurred.

Minimizing the
authentication
time

Substantially achieved with
proposed ECG based Bio-
metric techniques [Sufi et al.,
2010a;c; 2009b; Sufi and
Khalil, 2008a; Khalil and Sufi,
2008a; Sufi and Khalil, 2011a;
Sufi et al., 2010b]

Compared to the existing user name
and password based techniques of
[Blount et. al., 2007], one of our
automated ECG biometric methods
(cardioid based) perform substantially
faster authentication (approximately
70 times faster) [Sufi et al., 2010b].
Our innovative methods successfully
minimized the delay of authentication
with faster ECG biometric technique.

Protecting pa-
tient’s privacy
and upholding
HIPAA reg-
ulations with
secured ECG
transmission

Fully achieved with innovative
mechanisms [Sufi and Khalil,
2008b; Sufi et al., 2009a; Sufi
and Khalil, 2009b; Sufi et al.,
2008e;d;f; Sufi and Khalil,
2010b]

Our methods provide significantly
higher level of security strengths after
encrypting the ECG (compared to ex-
isting encryption algorithms like DES,
AES etc.) [Sufi and Khalil, 2008b; Sufi
et al., 2009a].

Saving pa-
tient’s life and
increasing pa-
tient’s life span
with faster
cardiovascu-
lar disease
diagnosis

Substantially achieved with
different techniques [Sufi et al.,
2009a; 2005; Sufi and Khalil,
2010c; Sufi et al., 2011; 2010b]

Our novel diagnosis methods based
on compressed ECG provide several
times faster diagnosis of cardiovascu-
lar abnomality. Therefore, faster pa-
tient care is achieved.
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(detailed in Chapter 2).

• We have proposed new methods of ECG based biometric authentication mechanisms

that work on plain ECG (i.e. suitable for existing tele-cardiology applications that

do not harness efficient transmission with compressed ECG). On the other hand, we

have proposed innovative solutions that perform ECG based biometric directly from

the compressed ECG. Most of these proposed methods are substantially faster than

existing methods of ECG based biometrics (detailed in Chapter 3). For example,

our Data Mining based compressed-ECG-Biometric method is approximately 16.67

times faster than [Wubbeler et al., 2007], 38.08 times faster than WDM [Chan et al.,

2008] and 61.38 times faster than PRD / CC [Chan et al., 2008] while still providing

the lowest level of misclassification. Moreover, we proposed another completely new

approach of faster ECG based biometric with our cardioid system. According to our

experimentations (shown in Chapter 6), the authentication time can be reduced from

30.64 sec. (manual authentication by novice mobile user as depicted in [Blount et. al.,

2007]) to 0.4398 sec. in mobile platform (automated authentication).

• Our 3 layer permutation cipher based ECG encoding mechanism can raise the security

strength substantially higher than conventional AES or DES algorithms. If in near fu-

ture, a grid of supercomputers can compare a trillion trillion trillion (1036) combinations

of one ECG segment (comprising 500 ECG samples) per second for ECG morphology

matching, it will take approximately 9.333× 10970 years (detailed in Chapter 4). This

encoding also drastically reduces the ECG packet size (i.e. perform compression). How-
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ever, for tele-cardiology systems not utilizing our compression algorithm, we proposed

wavelet based anonymization techniques (discrete wavelet and wavelet packet) that

work on plain ECG. These techniques also remove most of the ECG features required

to identify the patients and their cardiovascular conditions. Lastly, we proposed noise

based ECG obfuscation technique, which tricks the hacker in believing the obfuscated

ECG as the plain ECG (i.e. for tele-cardiology systems not adopting our compression

technique). Only the authorized personnel possessing the secret key, which is only 0.04

% of the original ECG in size, can de-obfuscate the obfuscated ECG.

• We have proposed and implemented new techniques for faster ECG based CVD di-

agnosis (detailed in Chapter 5). The first method was our implementation of a rule

based CVD detection algorithm that works on plain ECG, on mobile platform. Then

we introduced our Instant Detection Algorithm, which does not require to read the

compressed ECG packet (i.e. this method only reads the payload size of the com-

pressed ECG packet). This algorithm is approximately 3 times faster than existing

Amplitude Based Method (ABM) ([Sufi et al., 2009a]) and more than 13 times faster

than existing Second Derivative Based Method (SDBM) [Sufi et al., 2007]. Next, our

direct compressed ECG based method [Sufi et al., 2009a] produces faster diagnosis by

directly reading compressed ECG. Our Data Mining (DM) based intelligent approach

also reads compressed ECG and performs more accurate diagnosis [Sufi et al., 2011;

Sufi and Khalil, 2011b] and even detect the on-set (start) of abnormality. Lastly, our

cardioid based technique is about 4 times and 18 times faster than ABM and SDBM

[Sufi et al., 2010b] respectively.
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• Finally, we have established a tele-cardiology framework comprising of faster and se-

cured transmission of compressed ECG, faster authentication, faster diagnosis, portable

computational platform (with regular mobile phones), portable ECG sensors and back-

ground surveillance agent with data mining techniques [Sufi et al., 2006b; Sufi and

Khalil, 2011b; Sufi et al., 2011; 2008a; Sufi, 2007; Khalil and Sufi, 2008b; Sufi et al.,

2008c; 2009a; Sufi and Khalil, 2008b; 2009b; Sufi et al., 2010c; 2007; Sufi and Khalil,

2008a; Khalil and Sufi, 2008a; Ibaida et al., 2009; Sufi and Khalil, 2009a; Sufi et al.,

2008e;d; 2010b; Sufi and Khalil, 2011a; Sufi et al., 2009b; Sufi and Khalil, 2010a;b;c; Sufi

et al., 2008b;f; Khalil and Sufi, 2008b; 2009]. Our tele-cardiology framework has been

designed to save CVD patients from sudden death occurring from cardiac anomaly.

7.2 Limitations and Suggested Future Work

Our research work presented within this thesis provides a complete solution for remote mon-

itoring of CVD patients harnessing the power of mobile computational platform, wireless

sensors (ECG sensors), telecommunication infrastructure and a new breed of algorithms.

The telecardiology platform presented within this thesis assists in saving the life of CVD pa-

tient with faster solutions for transmission, authentication, diagnosis and privacy (security).

However, there is room for improvement in the following areas:

• Research on even faster and efficient ECG transmission with innovative lossless ECG

compression algorithms is needed. With our research, we were able to raise the com-

pression ratio up to 20.06 from 3.281 mark of DCCR + SPIHT +BPC (Suggested

Method of [Jalaleddine et al., 1990]) without any loss of information.
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• Our compression algorithm was mainly designed for MIT-BIH Arrhythmia Database

[Phy, Accessed 2009] entries (i.e. 360 Hz. sampling frequency, 10 bit resolution with 5

mV stepping). Research on innovative ECG compression algorithms suitable for other

ECG devices (preferably generic and implantable devices) needs to be carried out.

Compression of ECG in HL7 format also needs to be researched on .

• Our authentication mechanisms were tested against a limited set of ECG data collected

from only a handful of individuals (mostly MITBIH entries). The authentication mech-

anisms needs to be rigorously validated for misclassification, False Match Ratio (FMR),

False Non Match Ratio (FNMR) on a larger set of ECG data (collected from more hu-

man participants under varying physiological conditions).

• For securing ECG transmission, this thesis describes several mechanisms (ECG encod-

ing/ encryption with 3 layer permutation cipher, ECG obfuscation with noise smear-

ing, ECG anonymization with discrete wavelet and ECG anonymization with wavelet

packet). All of these mechanisms are shared key based encryption techniques, meaning

the people knowing the shared key would be able reconstruct the ECG. Research on

secured key distribution techniques, needs to carried out for telecardiology scenarios,

since this topic has not been addressed in our thesis. Apart from the symmetric ciphers

described in this thesis, research on asymmetric ciphers for ECG encryption should be

investigated.

• Within this thesis, we have investigated the detection of only handful of ECG abnor-

malities (such as Arrhythmia, Bradycardia, Tachycardia, Wide QRS syndrome, WPS,
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Right Bundle Branch Block, Left Bundle Branch Block, Ventricular Conduction Prob-

lem etc.). Research on more CVD detection mechanisms must be carried out for cov-

ering all of the common cardiac anomalies.

• For ECG transmission, we have only used MMS, SMS, Bluetooth and HTTP. Trans-

mission via other communication protocols (e.g. Zigbee) needs to be evaluated for

feasibility.

• In the limited scope of this thesis, we have not performed security strength analysis

of wavelet based and noise based anonymization techniques. However, we understand

that with billions of noise signal combinations, the security strength of noise based

anonymization technique would be unmatched. Detailed experimentation and calcula-

tion on security strengths should be performed in future.

7.3 Summary

CVD being the number one killer of modern age, more people are diagnosed with cardiac

abnormalities [Acc, Accessed 2008]. If the CVD affected patients are diagnosed and treated

with urgency (i.e. within shortest possible time) then abnormal deaths could be prevented

and longevity of the patients could be preserved [Luca et al., 2004; Otsuka et al., 2009;

Sillesen et al., 2008; Ortolani et al., 2007; Bradley et al., 2006]. Therefore, within this thesis

our primary effort was focused on faster CVD monitoring solution. We have achieved our

objectives by introducing a unique telecardiology scenario, where the patient is attached with

ECG acquisition device that sends ECG packets to the patient’s mobile phone. The patient’s

mobile phone then compresses the ECG packets achieving a significantly higher compression
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ratio of up to 95%. Moreover, our proposed set of algorithms are applied to encrypt the

compressed ECG for protection of patient’s privacy, upholding HIPAA regulations. The

compressed (and encrypted) ECG packets being smaller in size, transmit faster to the CVD

monitoring agencies (like hospital or doctor). The receiver then performs faster patient

authentication and diagnosis with a new breed of proposed algorithms. Therefore, faster

patient care is achieved with our innovative model.
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Definitions of Selected

Abbreviations

3G : The third generation of developments in wireless technology, especially mobile com-

munications

ABT: Amplitude based technique, a technique used for QRS Complex detection

AES: Advanced Encryption Standard is a symmetric key encryption adopted by US Gov-

ernment

ANS: Autonomic Nervous System is part of the peripheral nervous system that acts as a

control system functioning mostly below the level of consciousness

API : Application Programming Interface defines how to access a software based service

BDA: Bluetooth Device Address, a 6 byte long globally unique identifier for Bluetooth
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devices

BSN: Body Sensor Network, a network of ambulatory sensors (e.g. ECG sensor, movement

sensor etc.) situated within a single human body

CC: Cross-Correlation, used for measuring the difference

CLDC: Connected Limited Device Configuration, a configuration of java based mobile de-

vices

CVD: Cardiovascular Disease (i.e. disease of the heart) between two ECG signals in [Chan

et al., 2008]

DDoS: Distributed Denial of Service Attack, an attempt to make a computer resource

unavailable to its intended users

DES: Data Encryption Standard is a complete description of a mathematical algorithm for

encrypting and decrypting binary coded information

DM: Data Mining, a computational approach that can be used for making sense out of

unstructured data

DMA: Data Mining Agent

ECG: Electrocardiogram, graphical display of the electrical activity of the heart

EEG : Electroencephalogram is a device that records the electrical activities of different

parts of the brain
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EM: Expectation Maximization, is a data mining technique that has been used within this

thesis for ECG based biometric and abnormality detection

EMG : Electromyography is a diagnostic test that records the electrical activities of muscles

FDBT: First Derivative based Technique, an algorithm for QRS complex detection

FMR: False Match Rate, a metric used for performance comparison of biometric modalities

FNMR: False Non Match Rate, a metric used for performance comparison of biometric

modalities

GSM : Global System for Mobile Communication, a popular standard for mobile telephony

system

HIPAA: Health Insurance Portability and Accountability Act (HIPAA) of United States in

1996

HR: Heart Rate, the number of heart beats per Minute

HTTP: Hyper Text Transfer Protocol, a popular networking protocol

J2ME: Java 2 Micro Edition, a platform for mobile computation. Most of our programming

on mobile phones was performed with J2ME using NetBeans environment

JCP: Java Community Process, a formalized process that allows interested parties to get

involved in the definition of future versions and features of the Java platform

JSR: Java Specification Requests, the formal documents that describe proposed specifica-

tions and technologies for adding to the Java platform
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KVM: Kilobyte Virtual Machine, a java runtime environment for miniature devices

LZW: Lempel-Ziv-Welch Algorithm, a common compression technique

MIDP: Mobile Information Device Profile, a specification published for the use of Java on

embedded devices such as mobile phones

MMS: Multimedia Messaging Service, a popular telecommunication protocol

NFC : Near Field Communication is a data transmission scheme based on radio frequency

NSRDB: Normal Sinus Rhythm Database, an ECG repository containing normal ECG

segments

NOp/S: Number of Operations per Second, a metric used for measuring the complexity of

an algorithm

PDM: Polynomial Distance Measurement, one of our mechanisms for ECG based biometric

on plain ECG

PRD: Percentage Root-Mean-Square Deviation, used for measuring the difference between

two ECG signals in [Chan et al., 2008]

PIN: Personal Identification Number, codes used for securing digital devices

SpO2 : Oxygen Saturation measures the capacity of blood in transporting oxygen to other

parts of a body from the lungs

SAPA: Scan Along Polynomial Approximation, a compression algorithm

SDBT: Second Derivative based Technique, an algorithm for QRS complex detection
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SMS: Short Messaging Service, a popular telecommunication protocol

WDM: Wavelet Distance Measurement, used for measuring the difference between two ECG

signals in [Chan et al., 2008]

WP: Wavelet Packet, a signal processing technique based on Wavelet

WSP: Weighted Signal Processing, one of our mechanisms for ECG based biometric on

plain ECG using PRD, CC and WDM

ZOP: Zero Order Prediction, a compression algorithm
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