106 research outputs found

    Cooperation of unmanned systems for agricultural applications: A theoretical framework

    Get PDF
    Agriculture 4.0 comprises a set of technologies that combines sensors, information systems, enhanced machinery, and informed management with the objective of optimising production by accounting for variabilities and uncertainties within agricultural systems. Autonomous ground and aerial vehicles can lead to favourable improvements in management by performing in-field tasks in a time-effective way. In particular, greater benefits can be achieved by allowing cooperation and collaborative action among unmanned vehicles, both aerial and ground, to perform in-field operations in precise and time-effective ways. In this work, the preliminary and crucial step of analysing and understanding the technical and methodological challenges concerning the main problems involved is performed. An overview of the agricultural scenarios that can benefit from using collaborative machines and the corresponding cooperative schemes typically adopted in this framework are presented. A collection of kinematic and dynamic models for different categories of autonomous aerial and ground vehicles is provided, which represents a crucial step in understanding the vehicles behaviour when full autonomy is desired. Last, a collection of the state-of-the-art technologies for the autonomous guidance of drones is provided, summarising their peculiar characteristics, and highlighting their advantages and shortcomings with a specific focus on the Agriculture 4.0 framework. A companion paper reports the application of some of these techniques in a complete case study in sloped vineyards, applying the proposed multi-phase collaborative scheme introduced here

    Enhancement of Ride and Directional Performances of Articulated Vehicles via Optimal Frame Steering and Hydro-Pneumatic Suspension

    Get PDF
    Off-road vehicles employed in agriculture, construction, forestry and mining sectors are known to exhibit comprehensive levels of terrain-induced ride vibration and relatively lower directional stability limits, especially for the articulated frame-steered vehicles (AFSV). The transmitted whole-body vibration (WBV) exposure levels to the human operators generally exceed the safety limits defined in ISO-2631-1 and the European Community guidelines. Moreover, the directional stability limits are generally assessed neglecting the contributions due to terrain roughness and kineto-dynamics of the articulated frame steering (AFS) system. Increasing demand for high load capacity and high-speed off-road vehicles raises greater concerns for both the directional stability limits and WBV exposure. The criterion for acceptable handling and stability limits of such vehicles do not yet exist and need to be established. Furthermore, both directional stability performance and ride vibration characteristics are coupled and pose conflicting vehicle suspension design requirements. This dissertation research focuses on enhancement of ride, and roll- and yaw-plane stability performance measures of frame-steered vehicle via analysis of kineto-dynamics of the AFS system and hydro-pneumatic suspensions. A roll stability performance measure is initially proposed for off-road vehicles considering magnitude and spectral contents of the terrain elevations. The roll dynamics of an off-road vehicle operating on random rough terrains were investigated, where the two terrain-track profiles were synthesized considering coherency between them. It is shown that a measure based on steady-turning root-mean-square lateral acceleration corresponding to the sustained period of unity lateral-load-transfer-ratio prior to the absolute-rollover, could serve as a reliable measure of roll stability of vehicles operating on random rough terrains. The simulation results revealed adverse effects of terrain elevation magnitude on the roll stability, while a relatively higher coherency resulted in lower terrain roll-excitation and thereby higher roll stability. The yaw-plane stability limits of an AFSV are investigated in terms of free yaw-oscillations as well as transient steering characteristics through field measurements and simulations of kineto-dynamics of the AFS system. It was shown that employing hydraulic fluid with higher bulk modulus and increasing the steering arm lengths would yield higher yaw stiffness of the AFS system and thereby higher frequency of yaw-oscillations. Greater leakage flows and viscous seal friction within the AFS system struts caused higher yaw damping coefficient but worsened the steering gain and articulation rate. A design guidance of the AFS system is subsequently proposed. The essential objective measures are further identified considering the AFSV’s yaw oscillation/stability and steering performances, so as to seek an optimal design of the AFS system. For enhancing the ride performance of AFSV, a simple and low cost design of a hydro-pneumatic suspension (HPS) is proposed. The nonlinear stiffness and damping properties of the HPS strut that permits entrapment of gas into the hydraulic oil were characterized experimentally and analytically. The formation of the gas-oil emulsion was studied in the laboratory, and variations in the bulk modulus and mass density of the emulsion were formulated as a function of the gas volume fraction. The model results obtained under different excitations in the 0.1 to 8 Hz frequency range showed reasonably good agreements with the measured stiffness and damping properties of the HPS strut. The results showed that increasing the fluid compressibility causes increase in effective stiffness but considerable reduction in the damping in a highly nonlinear manner. Increasing the gas volume fraction resulted in substantial hysteresis in the force-deflection and force-velocity characteristics of the strut. A three-dimensional AFSV model is subsequently formulated integrating the hydro-mechanical AFS system and a hydro-pneumatic suspension. The HPS is implemented only at the front axle, which supports the driver cabin in order to preserve the roll stability of the vehicle. The validity of the model is illustrated through field measurements on a prototype vehicle. The suspension parameters are selected through design sensitivity analyses and optimization, considering integrated ride vibration, and roll- and yaw-plane stability performance measures. The results suggested that implementation of HPS to the front unit alone could help preserve the directional stability limits compared to the unsuspended prototype vehicle and reduce the ride vibration exposure by nearly 30%. The results of sensitivity analyses revealed that the directional stability performance limits are only slightly affected by the HPS parameters. Further reduction in the ride vibration exposure was attained with the optimal design, irrespective of the payload variations

    Effects of Turning Radius on Skid-Steered Wheeled Robot Power Consumption on Loose Soil

    Get PDF
    This research highlights the need for a new power model for skid-steered wheeled robots driving on loose soil and lays the groundwork to develop such a model. State-of-the-art power modeling assumes hard ground; under typical assumptions this predicts constant power consumption over a range of small turning radii where the inner wheels are rotating backwards. However, experimental results performed both in the field and in a controlled laboratory sandbox show that, on sand, power is not in fact constant with respect to turning radius. Power peaks by 20% in a newly identified range of turns where the inner wheels rotate backwards but are being dragged forward. This range of turning radii spans from half the rover width to R', the radius at which the inner wheel is not commanded to turn. Data shows higher motor torque and wheel sinkage in this range. To progress toward predicting the required power for a skid-steered wheeled robot to maneuver on loose soil, a preliminary version of a two-dimensional slip-sinkage model is proposed, along with a model of the force required to bulldoze the pile of sand that accumulates next to the wheels as it they are skidding. However, this is shown to be a less important factor contributing to the increased power in small-radius turns than the added inner wheel torque induced by dragging these wheels through the piles of sand they excavate by counter-rotation (in the identified range of turns). Finally, since a direct application of a power model is to design energy-efficient paths, time dependency of power consumption is also examined. Experiments show reduced rover angular velocity in sand around turning radii where the inner wheels are not rotated and this leads to the introduction to a new parameter to consider in path planning: angular slip

    Advances in Mechanical Systems Dynamics 2020

    Get PDF
    The fundamentals of mechanical system dynamics were established before the beginning of the industrial era. The 18th century was a very important time for science and was characterized by the development of classical mechanics. This development progressed in the 19th century, and new, important applications related to industrialization were found and studied. The development of computers in the 20th century revolutionized mechanical system dynamics owing to the development of numerical simulation. We are now in the presence of the fourth industrial revolution. Mechanical systems are increasingly integrated with electrical, fluidic, and electronic systems, and the industrial environment has become characterized by the cyber-physical systems of industry 4.0. Within this framework, the status-of-the-art has become represented by integrated mechanical systems and supported by accurate dynamic models able to predict their dynamic behavior. Therefore, mechanical systems dynamics will play a central role in forthcoming years. This Special Issue aims to disseminate the latest research findings and ideas in the field of mechanical systems dynamics, with particular emphasis on novel trends and applications

    Climbing and Walking Robots

    Get PDF
    With the advancement of technology, new exciting approaches enable us to render mobile robotic systems more versatile, robust and cost-efficient. Some researchers combine climbing and walking techniques with a modular approach, a reconfigurable approach, or a swarm approach to realize novel prototypes as flexible mobile robotic platforms featuring all necessary locomotion capabilities. The purpose of this book is to provide an overview of the latest wide-range achievements in climbing and walking robotic technology to researchers, scientists, and engineers throughout the world. Different aspects including control simulation, locomotion realization, methodology, and system integration are presented from the scientific and from the technical point of view. This book consists of two main parts, one dealing with walking robots, the second with climbing robots. The content is also grouped by theoretical research and applicative realization. Every chapter offers a considerable amount of interesting and useful information

    3D position tracking for all-terrain robots

    Get PDF
    Rough terrain robotics is a fast evolving field of research and a lot of effort is deployed towards enabling a greater level of autonomy for outdoor vehicles. Such robots find their application in scientific exploration of hostile environments like deserts, volcanoes, in the Antarctic or on other planets. They are also of high interest for search and rescue operations after natural or artificial disasters. The challenges to bring autonomy to all terrain rovers are wide. In particular, it requires the development of systems capable of reliably navigate with only partial information of the environment, with limited perception and locomotion capabilities. Amongst all the required functionalities, locomotion and position tracking are among the most critical. Indeed, the robot is not able to fulfill its task if an inappropriate locomotion concept and control is used, and global path planning fails if the rover loses track of its position. This thesis addresses both aspects, a) efficient locomotion and b) position tracking in rough terrain. The Autonomous System Lab developed an off-road rover (Shrimp) showing excellent climbing capabilities and surpassing most of the existing similar designs. Such an exceptional climbing performance enables an extension in the range of possible areas a robot could explore. In order to further improve the climbing capabilities and the locomotion efficiency, a control method minimizing wheel slip has been developed in this thesis. Unlike other control strategies, the proposed method does not require the use of soil models. Independence from these models is very significant because the ability to operate on different types of soils is the main requirement for exploration missions. Moreover, our approach can be adapted to any kind of wheeled rover and the processing power needed remains relatively low, which makes online computation feasible. In rough terrain, the problem of tracking the robot's position is tedious because of the excessive variation of the ground. Further, the field of view can vary significantly between two data acquisition cycles. In this thesis, a method for probabilistically combining different types of sensors to produce a robust motion estimation for an all-terrain rover is presented. The proposed sensor fusion scheme is flexible in that it can easily accommodate any number of sensors, of any kind. In order to test the algorithm, we have chosen to use the following sensory inputs for the experiments: 3D-Odometry, inertial measurement unit (accelerometers, gyros) and visual odometry. The 3D-Odometry has been specially developed in the framework of this research. Because it accounts for ground slope discontinuities and the rover kinematics, this technique results in a reasonably precise 3D motion estimate in rough terrain. The experiments provided excellent results and proved that the use of complementary sensors increases the robustness and accuracy of the pose estimate. In particular, this work distinguishes itself from other similar research projects in the following ways: the sensor fusion is performed with more than two sensor types and sensor fusion is applied a) in rough terrain and b) to track the real 3D pose of the rover. Another result of this work is the design of a high-performance platform for conducting further research. In particular, the rover is equipped with two computers, a stereovision module, an omnidirectional vision system, an inertial measurement unit, numerous sensors and actuators and electronics for power management. Further, a set of powerful tools has been developed to speed up the process of debugging algorithms and analyzing data stored during the experiments. Finally, the modularity and portability of the system enables easy adaptation of new actuators and sensors. All these characteristics speed up the research in this field

    Path planning, modelling and simulation for energy optimised mobile robotics

    Get PDF
    This thesis is concerned with an investigation of a solution for mobile robotic platforms to minimize the usage of scarce energy that is available and is not wasted following traditionally planned paths for complex terrain environments. This therefore addresses the need to reduce the total energy cost during a field task or mission. A path planning algorithm is designed by creating a new approach of artificial potential field method that generates a planned path, utilising terrain map. The new approach has the capability of avoiding the local minimum problems which is one of the major problems of traditional potential field method. By solving such problems gives a reliable solution to establish a required path. Therefore the approach results in an energy efficient path of the terrain identified, instead obvious straight line of the terrain. A literature review is conducted which reviews the mainstream path planning algorithms with the applications in mobile robotic platforms was analysed. These path planning algorithms are compared for the purpose of energy optimized planning, which concludes the method of artificial potential field as the path planning algorithm which has the most potential and will be further investigated and improved in this research. The methodology of designing, modelling and simulating a mobile robotic platform is defined and presented for the purpose of energy optimized path planning requirement. The research is to clarify the needs, requirements, and specifications of the design. A complete set of models which include mechanical and electrical modelling, functional concept modelling, modelling of the system are established. Based on these models, an energy optimized path planning algorithm is designed. The modelling of force and the kinematics is established to validate and evaluate the result of the algorithm through simulations. Moreover a simulation environment is established which is constructed for multi perspective simulation. This also enables collaborative simulation using Simulink and ADAMS to for simulating a path generated by the path planning algorithm and assess the energy consumption of the driven and steering mechanism of an exemplar system called AgriRover. This simulation environment allows the capture of simulated result of the total energy consumption, therefore outlines the energy cost behaviour of the AgriRover. A total of two sets of paths was tested in the fields for validation, one being generated by the energy optimized path planning algorithm and the other following a straight path. During the field tests the total cost of energy was captured . Two sets of results are compared with each other and compared with the simulation. The comparison shows a 21.34% of the energy saving by deploying the path generated with the energy optimized path planning algorithm in the field test. This research made the following contribution to knowledge. A comparison and grading of mainstream path planning algorithms from energy optimisation perspective is undertaken using detailed evaluation criteria, including computational power required, extendibility, flexibility and more criteria that is relevant for the energy optimized planning purpose. These algorithms have not been compared from energy optimisation angle before, and the research for energy optimised planning under complex terrain environments have not been investigated. Addressing these knowledge gaps, a methodology of designing, modelling and simulating a mobile platform system is proposed to facilitate an energy optimized path planning. This , leads to a new approach of path planning algorithm that reduces unnecessary energy spend for climbing of the terrain, using the terrain data available. Such a methodology derives several novel methods: Namely, a method for avoiding local minimum problem for artificial potential field path planning using the approach of approximation; A method of achieving high expendability of the path planning algorithm, where this method is capable of generate a path through a large map in a short time; A novel method of multi perspective dynamic simulation, which is capable of simulating the behaviour of internal mechanism and the overall robotic mobile platform with the fully integrated control, The dynamic simulation enables prediction of energy consumption; Finally, a novel method of mathematically modelling and simplifying a steering mechanism for the wheel based mobile vehicle was further investigated.This thesis is concerned with an investigation of a solution for mobile robotic platforms to minimize the usage of scarce energy that is available and is not wasted following traditionally planned paths for complex terrain environments. This therefore addresses the need to reduce the total energy cost during a field task or mission. A path planning algorithm is designed by creating a new approach of artificial potential field method that generates a planned path, utilising terrain map. The new approach has the capability of avoiding the local minimum problems which is one of the major problems of traditional potential field method. By solving such problems gives a reliable solution to establish a required path. Therefore the approach results in an energy efficient path of the terrain identified, instead obvious straight line of the terrain. A literature review is conducted which reviews the mainstream path planning algorithms with the applications in mobile robotic platforms was analysed. These path planning algorithms are compared for the purpose of energy optimized planning, which concludes the method of artificial potential field as the path planning algorithm which has the most potential and will be further investigated and improved in this research. The methodology of designing, modelling and simulating a mobile robotic platform is defined and presented for the purpose of energy optimized path planning requirement. The research is to clarify the needs, requirements, and specifications of the design. A complete set of models which include mechanical and electrical modelling, functional concept modelling, modelling of the system are established. Based on these models, an energy optimized path planning algorithm is designed. The modelling of force and the kinematics is established to validate and evaluate the result of the algorithm through simulations. Moreover a simulation environment is established which is constructed for multi perspective simulation. This also enables collaborative simulation using Simulink and ADAMS to for simulating a path generated by the path planning algorithm and assess the energy consumption of the driven and steering mechanism of an exemplar system called AgriRover. This simulation environment allows the capture of simulated result of the total energy consumption, therefore outlines the energy cost behaviour of the AgriRover. A total of two sets of paths was tested in the fields for validation, one being generated by the energy optimized path planning algorithm and the other following a straight path. During the field tests the total cost of energy was captured . Two sets of results are compared with each other and compared with the simulation. The comparison shows a 21.34% of the energy saving by deploying the path generated with the energy optimized path planning algorithm in the field test. This research made the following contribution to knowledge. A comparison and grading of mainstream path planning algorithms from energy optimisation perspective is undertaken using detailed evaluation criteria, including computational power required, extendibility, flexibility and more criteria that is relevant for the energy optimized planning purpose. These algorithms have not been compared from energy optimisation angle before, and the research for energy optimised planning under complex terrain environments have not been investigated. Addressing these knowledge gaps, a methodology of designing, modelling and simulating a mobile platform system is proposed to facilitate an energy optimized path planning. This , leads to a new approach of path planning algorithm that reduces unnecessary energy spend for climbing of the terrain, using the terrain data available. Such a methodology derives several novel methods: Namely, a method for avoiding local minimum problem for artificial potential field path planning using the approach of approximation; A method of achieving high expendability of the path planning algorithm, where this method is capable of generate a path through a large map in a short time; A novel method of multi perspective dynamic simulation, which is capable of simulating the behaviour of internal mechanism and the overall robotic mobile platform with the fully integrated control, The dynamic simulation enables prediction of energy consumption; Finally, a novel method of mathematically modelling and simplifying a steering mechanism for the wheel based mobile vehicle was further investigated

    Integrasjon av et minimalistisk sett av sensorer for kartlegging og lokalisering av landbruksroboter

    Get PDF
    Robots have recently become ubiquitous in many aspects of daily life. For in-house applications there is vacuuming, mopping and lawn-mowing robots. Swarms of robots have been used in Amazon warehouses for several years. Autonomous driving cars, despite being set back by several safety issues, are undeniably becoming the standard of the automobile industry. Not just being useful for commercial applications, robots can perform various tasks, such as inspecting hazardous sites, taking part in search-and-rescue missions. Regardless of end-user applications, autonomy plays a crucial role in modern robots. The essential capabilities required for autonomous operations are mapping, localization and navigation. The goal of this thesis is to develop a new approach to solve the problems of mapping, localization, and navigation for autonomous robots in agriculture. This type of environment poses some unique challenges such as repetitive patterns, large-scale sparse features environments, in comparison to other scenarios such as urban/cities, where the abundance of good features such as pavements, buildings, road lanes, traffic signs, etc., exists. In outdoor agricultural environments, a robot can rely on a Global Navigation Satellite System (GNSS) to determine its whereabouts. It is often limited to the robot's activities to accessible GNSS signal areas. It would fail for indoor environments. In this case, different types of exteroceptive sensors such as (RGB, Depth, Thermal) cameras, laser scanner, Light Detection and Ranging (LiDAR) and proprioceptive sensors such as Inertial Measurement Unit (IMU), wheel-encoders can be fused to better estimate the robot's states. Generic approaches of combining several different sensors often yield superior estimation results but they are not always optimal in terms of cost-effectiveness, high modularity, reusability, and interchangeability. For agricultural robots, it is equally important for being robust for long term operations as well as being cost-effective for mass production. We tackle this challenge by exploring and selectively using a handful of sensors such as RGB-D cameras, LiDAR and IMU for representative agricultural environments. The sensor fusion algorithms provide high precision and robustness for mapping and localization while at the same time assuring cost-effectiveness by employing only the necessary sensors for a task at hand. In this thesis, we extend the LiDAR mapping and localization methods for normal urban/city scenarios to cope with the agricultural environments where the presence of slopes, vegetation, trees render the traditional approaches to fail. Our mapping method substantially reduces the memory footprint for map storing, which is important for large-scale farms. We show how to handle the localization problem in dynamic growing strawberry polytunnels by using only a stereo visual-inertial (VI) and depth sensor to extract and track only invariant features. This eliminates the need for remapping to deal with dynamic scenes. Also, for a demonstration of the minimalistic requirement for autonomous agricultural robots, we show the ability to autonomously traverse between rows in a difficult environment of zigzag-liked polytunnel using only a laser scanner. Furthermore, we present an autonomous navigation capability by using only a camera without explicitly performing mapping or localization. Finally, our mapping and localization methods are generic and platform-agnostic, which can be applied to different types of agricultural robots. All contributions presented in this thesis have been tested and validated on real robots in real agricultural environments. All approaches have been published or submitted in peer-reviewed conference papers and journal articles.Roboter har nylig blitt standard i mange deler av hverdagen. I hjemmet har vi støvsuger-, vaske- og gressklippende roboter. Svermer med roboter har blitt brukt av Amazons varehus i mange år. Autonome selvkjørende biler, til tross for å ha vært satt tilbake av sikkerhetshensyn, er udiskutabelt på vei til å bli standarden innen bilbransjen. Roboter har mer nytte enn rent kommersielt bruk. Roboter kan utføre forskjellige oppgaver, som å inspisere farlige områder og delta i leteoppdrag. Uansett hva sluttbrukeren velger å gjøre, spiller autonomi en viktig rolle i moderne roboter. De essensielle egenskapene for autonome operasjoner i landbruket er kartlegging, lokalisering og navigering. Denne type miljø gir spesielle utfordringer som repetitive mønstre og storskala miljø med få landskapsdetaljer, sammenlignet med andre steder, som urbane-/bymiljø, hvor det finnes mange landskapsdetaljer som fortau, bygninger, trafikkfelt, trafikkskilt, etc. I utendørs jordbruksmiljø kan en robot bruke Global Navigation Satellite System (GNSS) til å navigere sine omgivelser. Dette begrenser robotens aktiviteter til områder med tilgjengelig GNSS signaler. Dette vil ikke fungere i miljøer innendørs. I ett slikt tilfelle vil reseptorer mot det eksterne miljø som (RGB-, dybde-, temperatur-) kameraer, laserskannere, «Light detection and Ranging» (LiDAR) og propriopsjonære detektorer som treghetssensorer (IMU) og hjulenkodere kunne brukes sammen for å bedre kunne estimere robotens tilstand. Generisk kombinering av forskjellige sensorer fører til overlegne estimeringsresultater, men er ofte suboptimale med hensyn på kostnadseffektivitet, moduleringingsgrad og utbyttbarhet. For landbruksroboter så er det like viktig med robusthet for lang tids bruk som kostnadseffektivitet for masseproduksjon. Vi taklet denne utfordringen med å utforske og selektivt velge en håndfull sensorer som RGB-D kameraer, LiDAR og IMU for representative landbruksmiljø. Algoritmen som kombinerer sensorsignalene gir en høy presisjonsgrad og robusthet for kartlegging og lokalisering, og gir samtidig kostnadseffektivitet med å bare bruke de nødvendige sensorene for oppgaven som skal utføres. I denne avhandlingen utvider vi en LiDAR kartlegging og lokaliseringsmetode normalt brukt i urbane/bymiljø til å takle landbruksmiljø, hvor hellinger, vegetasjon og trær gjør at tradisjonelle metoder mislykkes. Vår metode reduserer signifikant lagringsbehovet for kartlagring, noe som er viktig for storskala gårder. Vi viser hvordan lokaliseringsproblemet i dynamisk voksende jordbær-polytuneller kan løses ved å bruke en stereo visuel inertiel (VI) og en dybdesensor for å ekstrahere statiske objekter. Dette eliminerer behovet å kartlegge på nytt for å klare dynamiske scener. I tillegg demonstrerer vi de minimalistiske kravene for autonome jordbruksroboter. Vi viser robotens evne til å bevege seg autonomt mellom rader i ett vanskelig miljø med polytuneller i sikksakk-mønstre ved bruk av kun en laserskanner. Videre presenterer vi en autonom navigeringsevne ved bruk av kun ett kamera uten å eksplisitt kartlegge eller lokalisere. Til slutt viser vi at kartleggings- og lokaliseringsmetodene er generiske og platform-agnostiske, noe som kan brukes med flere typer jordbruksroboter. Alle bidrag presentert i denne avhandlingen har blitt testet og validert med ekte roboter i ekte landbruksmiljø. Alle forsøk har blitt publisert eller sendt til fagfellevurderte konferansepapirer og journalartikler
    corecore