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Abstract

 Rough terrain robotics is a fast evolving field of research and a lot of effort is de-
ployed towards enabling a greater level of autonomy for outdoor vehicles. Such ro-
bots find their application in scientific exploration of hostile environments like
deserts, volcanoes, in the Antarctic or on other planets. They are also of high in-
terest for search and rescue operations after natural or artificial disasters.

The challenges to bring autonomy to all terrain rovers are wide. In particular, it
requires the development of systems capable of reliably navigate with only partial
information of the environment, with limited perception and locomotion capabili-
ties. Amongst all the required functionalities, locomotion and position tracking are
among the most critical. Indeed, the robot is not able to fulfill its task if an inap-
propriate locomotion concept and control is used, and global path planning fails if
the rover loses track of its position. This thesis addresses both aspects, a) efficient
locomotion and b) position tracking in rough terrain.

The Autonomous System Lab developed an off-road rover (Shrimp) showing ex-
cellent climbing capabilities and surpassing most of the existing similar designs.
Such an exceptional climbing performance enables an extension in the range of
possible areas a robot could explore. In order to further improve the climbing ca-
pabilities and the locomotion efficiency, a control method minimizing wheel slip
has been developed in this thesis. Unlike other control strategies, the proposed
method does not require the use of soil models. Independence from these models
is very significant because the ability to operate on different types of soils is the
main requirement for exploration missions. Moreover, our approach can be adapt-
ed to any kind of wheeled rover and the processing power needed remains relative-
ly low, which makes online computation feasible.

In rough terrain, the problem of tracking the robot’s position is tedious because
of the excessive variation of the ground. Further, the field of view can vary signif-
icantly between two data acquisition cycles. In this thesis, a method for probabi-
listically combining different types of sensors to produce a robust motion
estimation for an all-terrain rover is presented. The proposed sensor fusion scheme
is flexible in that it can easily accommodate any number of sensors, of any kind.
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In order to test the algorithm, we have chosen to use the following sensory inputs
for the experiments: 3D-Odometry, inertial measurement unit (accelerometers, gy-
ros) and visual odometry. The 3D-Odometry has been specially developed in the
framework of this research. Because it accounts for ground slope discontinuities
and the rover kinematics, this technique results in a reasonably precise 3D motion
estimate in rough terrain.

The experiments provided excellent results and proved that the use of comple-
mentary sensors increases the robustness and accuracy of the pose estimate. In par-
ticular, this work distinguishes itself from other similar research projects in the
following ways: the sensor fusion is performed with more than two sensor types
and sensor fusion is applied a) in rough terrain and b) to track the real 3D pose of
the rover.

Another result of this work is the design of a high-performance platform for con-
ducting further research. In particular, the rover is equipped with two computers,
a stereovision module, an omnidirectional vision system, an inertial measurement
unit, numerous sensors and actuators and electronics for power management. Fur-
ther, a set of powerful tools has been developed to speed up the process of debug-
ging algorithms and analyzing data stored during the experiments. Finally, the
modularity and portability of the system enables easy adaptation of new actuators
and sensors. All these characteristics speed up the research in this field.
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Version abrégée

La robotique tout-terrain est un domaine de recherche très actif et beaucoup d’ef-
forts sont déployés pour rendre les robots totalement autonomes. Les domaines
d’application pour de tels robots sont l’exploration d’environnements hostiles
comme par exemple, des déserts, des volcans, l’Antarctique, la surface de Mars,
ou encore pour des opérations de sauvetage suivant des désastres naturels (trem-
blements de terre) ou artificiels.

La difficulté de rendre de tels robots autonomes est grande. La tâche nécessite,
en particulier, de concevoir des systèmes capables d’évoluer dans des environne-
ments inconnus, sans information à priori, avec la difficulté additionnelle de la
perception et de la locomotion en terrains accidentés. Parmi toutes les fonctions
nécessaires au fonctionnement du système, la locomotion et l’estimation de posi-
tion sont capitales. En effet, le robot ne pourra pas remplir la tâche qui lui est as-
signée si un principe de locomotion inadapté est utilisé et ne pourra pas planifier
correctement son chemin s’il ne connaît pas sa position actuelle. Cette thèse traite
spécifiquement les problèmes de locomotion et d’estimation de position en terrain
accidenté.

Le Laboratoire de Systèmes Autonomes a développé un robot tout-terrain appelé
Shrimp, qui présente de très bonnes aptitudes de franchissement d’obstacles. Ses
performances dépassent celles de la majorité des structures existantes et per-
mettent d’étendre le spectre des régions explorable par des robots tout-terrain. Afin
d’améliorer encore les capacités du robot et de minimiser l’énergie consommée,
une méthode visant à limiter le glissement des roues a été mise au point dans le
cadre de cette thèse. Contrairement à d’autres méthodes de contrôle, notre ap-
proche ne nécessite pas l’utilisation de modèles d’interaction roue-sol. Cette pro-
priété permet au système de fonctionner quel que soit le type de sol rencontré
durant sa mission. De plus, notre système peut être adapté à tous les robots passifs
à roues et peut fonctionner en temps réel.

En terrain accidenté, il est très difficile d’obtenir une bonne estimation de la po-
sition d’un robot car celui-ci est soumis à de fortes vibrations et le champ de vision
peut changer rapidement. Cette thèse décrit une technique robuste permettant, mal-
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gré toutes ces contraintes, d’obtenir une bonne estimation de position en fusion-
nant des informations provenant de différents capteurs. La méthode proposée est
très flexible et permet d’incorporer facilement de nouveaux capteurs. Afin de
tester les algorithmes, nous avons choisi d’utiliser les capteurs suivants: de
l’odométrie tridimensionnelle, une centrale inertielle (accéléromètres et gyro-
scopes) et une technique d’odométrie visuelle. La technique d’odométrie 3D a été
développée dans le cadre de cette recherche et est appliquée au robot pour estimer
son déplacement. La prise en compte de la structure mécanique et des change-
ments brusques de pente permet de produire des estimations de position relative-
ment bonnes compte tenu de la difficulté des terrains rencontrés. 

Les expériences de fusion de capteurs ont donné d’excellents résultats et prou-
vent que l’utilisation de capteurs complémentaires permet d’améliorer substan-
tiellement la précision et la robustesse de l’estimation de position en terrain
accidenté. Ce travail se distingue des autres par les éléments suivants: la fusion de
capteurs est faite avec plus de deux capteurs (ce qui n’est pas courant dans le do-
maine), la méthode est appliquée à un robot tout-terrain et finalement la position
est estimée en trois dimensions.

Un autre résultat intéressant de ce travail est le développement d’une plateforme
de recherche performante. Durant cette recherche, le robot a été équipé de deux or-
dinateurs, d’un système de stéréovision, d’une caméra omnidirectionnelle, de
nombreux capteurs et actionneurs et d’une électronique de gestion de l’énergie. De
plus, tout un ensemble d’outils logiciels a été développé pour la mise au point d’al-
gorithmes et l’analyse des données produites durant les expériences. Pour termin-
er, la modularité et la portabilité du système permet une adaptation facilitée de
nouveaux périphériques et d’actionneurs de toute sorte. Toutes ces caractéristiques
permettent d’accélérer la recherche dans ce domaine.
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Introduction

1.1   Autonomy in rough terrain
Making mobile robots move by themselves and take their own decisions is rela-

tively new. Thanks to the efforts of a large research community and the evolution
of technology, fully autonomous robots are today ready for applications in struc-
tured environments. However their level of autonomy is still very limited and the
environments in which they are deployed are generally engineered in order to
guarantee reliability. Most successful applications are limited to indoor, office or
industry-like environments.

Rough terrain robotics is a fast evolving field of research and a lot of effort is be-
ing put towards realizing fully autonomous outdoor robots. Such robots are applied
in the scientific exploration of hostile environments like deserts, volcanoes, the
Antarctic or other planets. There is also a high level of interest for such robots for
search and rescuing after natural or artificial disasters. Two examples of applica-
tion are given:

• The NASA project “Life in Atacama” aims to search autonomously for life 
in the Atacama desert in Chile. The first results are very promising but the 
following extract illustrates the encountered difficulties: “The farthest Zoë 
ran autonomously was 3.3 kilometers but on average a traverse would termi-
nate after just over 200 meters” (courtesy, [Atacama])

• The recent NASA “Mars Exploration Rover” mission (MER) aims to under-
stand how past water activity on Mars has influenced the red planet's envi-
ronment over time. Tele-operation of robots from earth is very slow because 
of the narrow bandwidth of communication and time delay. Thus a high 
level of autonomy would speed up exploration. However, for safety reasons, 
autonomous navigation was enabled only on relatively easy terrains and for 
short traverses.

These examples show that human supervision is still required for operating rov-
ers and that further effort is required in order to enable fully autonomous operation.
The aim of the following sections is to describe the challenges of autonomous ro-
botics for rough terrain and to present the contributions of this dissertation.
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1.2   The challenges of rough terrain navigation 

1.2.1   The lack of prior information

There is a paradox between exploration and localization and the problem is not
new. In the past, navigators had to explore and map unknown areas while keeping
track of their own position, which is difficult without a consistent map. For a mo-
bile robot, the problem is the same when navigating in a new area. There is no way
to guarantee an optimal path between two points without any prior information. In
order to reach a distant goal, the robot has to progressively gain knowledge about
the explored environment and store it in such a way that it can be used later for
planning a path to the final destination.

1.2.2   Perception

A mobile robot uses different types of sensors in order to acquire knowledge
about its environment. Unfortunately, all the sensors are error prone and their mea-
surements are uncertain. In comparison with indoor environments, the conditions
in natural scenes are even more demanding and the acquired data is more difficult
to analyze and understand. For example, changing lighting conditions can strongly
affect the quality of the images and the vibrations due to uneven soils lead to noisy
signals. In order to illustrate the problems involved in interpreting data, lets con-
sider scans acquired by a 2D laser range finder (360°) from a given position. In two
dimensions (e.g. flat ground in a static office-like environment), two scans taken
at the same place but with different heading are almost identical. A simple scan
matching algorithm confirms that both scans have been taken from the same posi-
tion. In rough terrain, even a small change in heading can lead to a large change in
attitude. Even if the scans have been taken at the exact same position they can be
completely different. This example demonstrates the exponential increase of com-
plexity when moving from 2D to 3D and shows the importance of choosing appro-
priate sensor configurations for outdoor environments.

Another problem of sensing in cluttered terrains is linked to the fact that the field
of view is usually limited to a small portion of the environment because of the oc-
clusions generated by the numerous obstacles and slope changes of the terrain.
This requires the robot to maneuver frequently to acquire more information and
forces it to take more risks while exploring an area. That kind of problem is intrin-
sic to ground vehicles whereas flying robots are less likely to encounter such con-
straints because they can adapt their altitude in order to get a global and consistent
view of the environment they are exploring.
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1.2.3   Locomotion

Indoors, the obstacle map used for navigation is usually composed of obstacle
and obstacle-free areas and the robot motion is considered as totally feasible within
the obstacle-free regions (in a static case). In rough terrain, this kind of represen-
tation is not possible because the obstacle configuration and the types of soils are
not precisely known beforehand. The difficulty is to determine if a specific area is
traversable or not, if the rover will have to roll on sand or on bare rock, if its me-
chanical architecture is adapted to the specific obstacle configuration and so on. A
single rock of the size of the wheel’s diameter can be overcome on a flat terrain but
can cause the rover to tilt over in some specific situations, such as on a steep slope.
These examples illustrate the complexity of locomotion in rough terrains. Thus,
both planning a safe path and actually controlling the rover actuators to execute the
requested trajectory are difficult tasks. A powerful all-terrain locomotion concept
together with a good wheel controller optimizing traction enables reaching more
challenging areas and increases the performance of the system.

1.3   About this work
In this section the contributions of the thesis and its structure are presented. Be-

cause the document refers to a lot of different topics, the state of the art is presented
in an abstract manner in this section and more deeply in the specific chapters.

1.3.1   Context of the research

A large part of the literature concerning autonomous navigation in rough terrain
focuses on high level functionalities such as environment modeling, perception
and path planing. In [Singh00], traversability maps are used instead of passable/
impassable maps to plan a path through an unknown scene. The D* algorithm is
used to dynamically replan an optimal path as the robot acquires more information
about the environment. The authors of [Gancet03] propose an unified process con-
sidering both perception planning and path planning so that the most relevant per-
ception can be performed regarding the current goal of the robot. This provides a
way to both, optimally explore an environment while planning a path to the goal.
[Lacroix02] nicely presents the state of the art on autonomous navigation in un-
known terrains and proposes solutions to integrate the required functionalities in a
consistent way. The publication also insists on the importance and difficulty of lo-
calization for autonomous navigation and the necessity to use a set of concurrent
and complementary algorithms to produce robust position estimates.
[Bonnafous01] focuses on the selection of feasible displacements based on the ki-
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nematics constraints of the rover and a digital elevation map. Ensuring the proper
execution of the selected motions is still an open challenge.

1.3.2   Contributions and structure of this work

Considering the state of the art and the open challenges of autonomous naviga-
tion in rough terrain, this thesis aims to contribute towards gaining a better under-
standing of the problems involved. In particular, it proposes concrete solutions for
improving both locomotion and localization. Furthermore, a research platform has
been developed for testing the proposed algorithms in real conditions and to con-
duct further research in this field.

• Locomotion: exploring hazardous environments requires the development of 
adapted locomotion concepts capable of handling rough terrain. Such struc-
tures have generally many degrees of freedom and their control is complex. - 
We propose both, an efficient mechanical design and a controller for opti-
mizing locomotion in rough terrain (wheel slip minimization). 

• Localization: the environment cannot be modelled as a 2D traversability 
map any more and the full 3D problem has to be considered. In rough ter-
rain, the complexity of the position tracking process increases exponentially. 
- We have implemented a method for fusing the measurements of several 
sensors in order to robustly track the 3D position of a robot in rough terrain.

• Research platform: complete systems including hardware and development 
tools are not commercially available for rough terrain applications. Such 
systems are complex and necessitate a good framework for conducting 
experiments. - We have developed a fully operational all-terrain prototype to 
conduct research.

Structure of this work

Chapter 2 presents the design of the rough terrain rover SOLERO capable of
passively handling obstacles with sizes ranging up to two times the wheel diame-
ter. This design has shown great potential in exploring hazardous environments. In
the framework of this research, specific software tools and hardware have been de-
veloped for the prototype, making the system fully operational to run experiments
in real conditions.

A new method, called 3D-Odometry, is presented in chapter 3. When combined
with an adapted mechanical structure it produces reliable three dimensional posi-
tion estimates in rough terrain, thus contributing towards more accurate localiza-
tion.
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A physics-based controller minimizing wheel slip is proposed in chapter 4. Min-
imizing wheel slip not only minimizes odometric errors (localization) but also en-
hances the climbing performance of the rover (locomotion). This method is
generalized and can be applied to any kind of passive mechanical structure with
wheels. 

 Finally, chapter 5 proposes a set of tools for combining proprioceptive and ex-
teroceptive sensors to robustly track the rover position in three dimensions. The
method allows for easy accommodation of any number of sensors, of any kind.
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The SOLERO rover

2.1   Introduction
SOLERO (SOlar-Powered Exploration Rover) is the name of a study carried out

jointly by Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland, and
von Hoerner & Sulger GmbH (vH&S), Germany, under a contract of the European
Space Agency (ESA). The objective of this activity was to develop a system design
for a regional exploration rover, including breadboarding for the demonstration of
locomotion capabilities, payload accommodation, power provision and control.
More information about this project can be found in [Michaud02].

At the end of this project, one of the breadboard kept at EPFL has been signifi-
cantly modified in order to accommodate more sensors and computational power.
The intent of this chapter is to describe the platform and the tools developed in the
framework of this research.

2.2   The mechanical design
The classification we generally use to study locomotion concepts makes the dif-

ference between active and passive locomotion. Passive locomotion is based on
passive suspensions, that means no additional actuators to guarantee stable move-
ment. On the other hand, an active robot implies a closed loop control to maintain
the stability of the system during motion. Active locomotion extends the climbing
capability of a robot but increases the complexity of the mechanics and the control.
The numerous motors and associated sensors have a negative impact on power
consumption, weight and reliability. On the other hand, some well designed pas-
sive concepts can offer very good climbing performance without suffering from
the drawbacks of active designs. A complete study of locomotion concepts for
rough terrain can be found in [Lauria03b].

The mechanical structure of SOLERO is similar to that of Shrimp, an all-terrain
rover developed at EPFL in 99 [Siegwart00][Estier00][Siegwart02]. This passive
structure shows excellent climbing abilities without any specific active suspension
control.
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SOLERO has one wheel mounted on a fork in the front, one wheel attached to
the main body at the rear and two bogies on each side (see Fig. 2.1). The parallel
architecture of the bogies and the spring suspended fork provide a high ground
clearance while keeping all six motorized wheels in ground-contact at any time.
This ensures excellent climbing capabilities over obstacles up to two times the
wheel diameter and an excellent adaptation to all kinds of terrains.

The front fork has two functions: its spring suspension guarantees ground contact
of all wheels and its particular parallel mechanism produces a passive elevation of
the front wheel if an obstacle is encountered. As shown in Fig. 2.2b, the front
wheel has an instantaneous centre of rotation situated under the wheel axis, which
makes it possible to get easily on an obstacle.

Figure 2.1:  SOLERO mechanical structure (a) B-prototype equipped with a solar panel (b).

(a) (b)

applied force

pin joints

resulting movement

virtual center of rotation

rotation axis

pin joints

Figure 2.2:   Parallel mechanisms a) virtual rotation axis of a bogie b) front fork kinematics.
Because the instantaneous rotation center is placed below the wheel axis, the fork passively fold
for climbing an obstacle.

(a) (b)
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The bogies provide lateral stability. To ensure similarly good ground clearance
and climbing capabilities, their virtual centre of rotation is set to the height of the
wheel axis using the parallel configuration shown on Fig. 2.2a. The steering of the
rover is realized by synchronizing the rotation of the front and rear wheel and the
speed difference of the bogie wheels (skid-steering).

The following table and figure summarize the overall characteristics of SOLE-
RO. All mechanical variables and parameters are defined in Appendix A.

Table 2.1: SOLERO main characteristics

Rover’s main body mass (inc. batteries, laptop etc.) 7.4 kg

Wheel mass (inc. motor, gears) 0.7 kg

Steering mechanism mass 0.6 kg

Spring constant 357 N/m

Wheel diameter 0.15 m

Figure 2.3:  Overall mechanical
dimensions of SOLERO (in mm)

solar array
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2.3   The control architecture
This section presents the different sensors that have been mounted on SOLERO

and the control system i.e. the actuators, the computers and the electronic devices.
These components are depicted in Fig. 2.4.

The global architecture of the robot is presented in Fig. 2.5. The grayed boxes
represent computers and the rounded rectangles the sensors and actuators. 

SOLERO is equipped with two computers communicating through a crossover
ethernet cable. The computer called solerovaio is a laptop in charge of image pro-
cessing. It acquires images from the stereo-vision rig and the omnicam through a
firewire bus and transmits processed data to the second computer, called
soleropc104. This second computer has access to all the other sensors and actua-
tors of the robot. It reads data from an Inertial Measurement Unit through an
RS232 port and interfaces an I2C bus through the parallel port. The devices at-
tached to the I2C serial bus are: six wheel controllers, three servo-controllers, one
angular sensor module (reading the three suspension angles) and a device for the
energy management of the rover. soleropc104 acts also as a gateway for the rover
subnet. A host computer (soleroap) can connect to the subnet through a wireless
ethernet interface. This allows, for example, to download images, remote control
the rover through a graphical user interface and get the rover state online.

a
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Figure 2.4:  Sensors, actuators and electronics of SOLERO. a) steering servo mechanism, the same
is used for the rear wheel b) passively articulated bogie and spring suspended front fork (equipped
with absolute angular sensors) c) 6 motorized wheels (DC motors) d) omnidirectional vision system
e) stereo-vision module, orientable around the tilt axis f) laptop (solerovaio) g) micro-computer
(soleropc104) h) energy management board i) batteries (NiMh 7000 mAh) j) I2C slaves modules
(motor controllers, angular sensor module, servo controllers etc.) k) Inertial Measurement Unit
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Figure 2.5:  Schematics of the control system
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2.3.1   Sensors and actuators

Using busses for interfacing the peripherals allows for the easy extension of the
number of sensors and actuators. A camera can be easily added to the firewire bus
and devices with lower bandwidth needs can be attached to the I2C bus.

2.3.1.1   The I2C modules

The ASL developed various I2C slaves implementing interfaces for different
kinds of sensors and actuators i.e. infrared and ultrasound distance sensors, linear
camera, inclinometer, GPS, servo controller and DC motor controller. Such archi-
tecture allows to attach up to 127 devices. Because the processing load is distrib-
uted at the slaves level, there is less computational load for signal processing on
the main CPU. 

For SOLERO, two new types of I2C slaves have been designed in the framework
of this research: an absolute angular sensor and an energy management module.

a. Angular sensor

The angular position of the bogies and the fork relative to the body have to be
measured in order to know the rover state during operation. To measure the an-
gle of a joint, a magnet is fixed to the joint axis and the direction of its magnetic
field is measured by means of a magneto-resistive bridge (fixed to the main
body). This contactless sensing mechanism has the advantage to provide mea-
sures with 0.2 degrees of precision, without being too sensitive to temperature
and drift. The resulting performance is much better than if a standard potentiom-
eter would have been used. Furthermore, this solution provides absolute angles
and does not require initialization every time the system is started. The electron-
ics of the module is depicted in Fig. 2.6.

fed

a

b

c

Figure 2.6:  Angular sensor for the front fork. a) magneto-resistive bridge b) communication and
power bus c) linearization chip d) magnet e) magnet holder (fixed to the axis) f) front fork
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b. Energy management board

The energy management board has many features but only the functional level
is described in this section. Here is a list of the main board features:

• Two power supplies can be connected: an external power supply (DC volt-
age between 11 and 15V or a solar panel) and a battery. It is possible to 
switch between the two sources using an external switch or the I2C interface.

• Delivers regulated 5V (10 Amps) and 12V (1.2 Amps) for the system.
• It is possible to turn on and off the voltage delivered to the motors and the 

system separately.
• Currents and voltages of all the sources and drains are measured and moni-

tored. This feature has been used to study the energy consumption of the 
rover.

• The battery voltage is monitored and the board warns the user by means of a 
blinking led and an acoustic signal. Below a certain voltage the system is 
turned off automatically in order to protect the battery and the system.

• The battery status can be read from a seven segment display.
• All the functions of the board can be accessed through I2C commands i.e. 

switch on/off, battery status, currents and voltages, etc.

Fig. 2.7 depicts the energy management board and its physical interfaces.

2.3.1.2   Stereovision

The stereovision rig is a MegaD module from VidereDesign. It can acquire gray-
scale images up to 1280 x 960 pixels. Equipped with lenses of a focal length of 4.8
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Figure 2.7:  The energy management board
and the rear panel. a) battery connector b)
external charger con. c) external power
supply con. d) I2C con. e) ext. display con. f)
regulated 5-12 Volts supplies for the system
g) source switch h) battery status display i)
system state display j) warning buzzer k)
main system on/off switch l) rear panel con.
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mm and with a CMOS of 2/3" it offers a field of view of 85° x 69°. It is mounted
on top of a mast and can be oriented around the tilt axis (in the vertical plane). This
allows to keep ground features in the field of view of the cameras even if the rover
is tilted upwards/downwards. Fig. 2.8 shows two views of the mechanism. In order
to keep the center of gravity as low as possible, the motor is mounted next to the
rover’s main body. The rotational motion is transmitted to the stereovision module
by mean of a traction pole. A lot of efforts have been deployed to design a system
with high stiffness and low mechanical play between the parts. This is important
because the relation between the camera coordinate system and the rover system
is used by the navigation algorithms. The transformation has to be known precisely
because even small inaccuracies can lead to significant error of localization.

2.3.1.3   Omnicam

The omnicam, depicted in Fig. 2.9, has been especially designed for SOLERO.
The imager is the DCAM camera from VidereDesign which has the advantage of
being compact and relatively low power. Grayscale and color images up to 640 x
480 pixels can be acquired. The mirror has a very interesting feature. It is equian-
gular: that means that each pixel on the image covers the same solid radial angle.
As a consequence, when moving radially in the image, the shape of a feature (i.e.
a small image subwindow) is less distorted than it would be by using other mirror
shapes. This facilitate feature tracking between two consecutive images and data
association. More information about that kind of mirror can be found in [Chahl97]
and [Ollis99].

In order to avoid occlusion and to protect the mirror and the camera from dust, a
transparent cylinder is used.

Figure 2.8:  Stereovision support with tilt
mechanism. a) global view b) enlarged view of
the motor transmission. The motor is equipped
with an optical encoder, used for measuring the
tilt angle.

(a) (b)
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2.3.1.4   Inertial Measurement Unit

The Inertial Measurement Unit (IMU) is the VG400CC-200 device from Cross-
bow. It is a solid-state inertial measurement system that utilizes MEMS micro-ma-
chined sensing technology. It is composed of a triad of accelerometers (velocity
rate sensors) and gyroscopes (angular rate sensors), which are combined internally
to provide roll and pitch angles in static and dynamic conditions (through a Kal-
man filter). Furthermore, the calibrated angular rates and accelerations are avail-
able and come together with a timestamp. This timing information allows to
perform accurate integration of angular and velocity rates over time.

2.3.2   Software architecture

The whole software has been programmed in C and C++ and runs under Linux.
However, substantial effort towards portability has been made by choosing cross-
platform components and libraries e.g. the widgets, mathematical optimization
and communication libraries. The system is divided into five functional modules
running as separate processes i.e. vme, central, onboard, Solero3D and SoleroGUI
(see Fig. 2.5). The modules can run on different computers and communicate using
the Inter-Process Communication messaging system [IPC]. This IPC library, de-
veloped at Carnegie Mellon University, can transparently send and receive com-
plex data structures, including lists and variable length arrays, using both
anonymous "publish/subscribe" and "client/server" message-passing paradigms.

In the current configuration vme runs on solerovaio, onboard and central on
soleropc104 and Solero3D and SoleroGUI on a remote computer soleroap. How-
ever, the architecture can be easily modified to accommodate another hardware
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Figure 2.9:  The SOLERO omnicam. The shape of the
mirror is specified by the equation. For this design, the
parameters r0 and α are respectively 14 cm and 11°. 
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configuration. For example, vme, central and onboard could run on the same ma-
chine e.g. solerovaio. Because vme and onboard exchange time critical data, the
internal clocks of solerovaio and soleropc104 have to be synchronized. This syn-
chronization is guaranteed by network time protocol deamons (ntpd) running on
both computers.

Central acts as a server for the IPC network. It is responsible for routing the mes-
sages and holds the system-wide information (such as defined message proto-
types). onboard, the main program of the architecture, has access to the low level
sensors and actuators i.e. the IMU and the I2C modules. Its main tasks are to per-
form sensor fusion and execute the motion commands coming from a remote con-
trol interface such as SoleroGUI. On solerovaio, the vme module has access to the
stereovision and the omnicam through the firewire bus. After images acquisition,
it performs some image processing and sends the result to onboard. Finally, the
two remaining modules Solero3D and SoleroGUI are described in the following
sections. 

2.3.2.1   Solero3D

This program has been developed for visualizing and logging data produced by
the robot during an experiment. It can also be used for testing and debugging algo-
rithms offline. Fig. 2.10 shows the main window (left) and the data browser (right). 

c

ba e

d

Figure 2.10:  The main window (left) and the data browser (right) a) data replay slider. By
manipulating this slider the scene is updated with the corresponding robot state b) 3D rendering
area c) variable selection lists one and two d) plot areas one and two e) data browser slider.
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The main window integrates a full 3D rendering area allowing the user to change
views. By manipulating a slider, the set of data stored during an experiment can be
replayed step by step. All the variables such as the robot position, the internal links
angles and the pitch angle are plotted in the data browser. This module is a precious
tool to test the system, debug and compare algorithms performance.

2.3.2.2   The remote control interface

A dedicated module called SoleroGUI has been developed for the tele-operation
of SOLERO (Fig. 2.11). In order to ease remote control, the graphical user inter-
face displays the images taken onboard the rover together with a 3D view of the
current rover state. Furthermore, stereoscopic information is displayed in the 3D
scene, allowing the operator to have a better understanding of the environment in
front of the rover and thus properly avoid obstacles. At the bottom of the main win-
dow, a panoramic image is displayed. It provides a wide view of the scene and
helps to plan a path without needing to turn the rover on the spot. All parameters
of the imagers are accessible through dialog boxes. 
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Figure 2.11:  The remote control interface for SOLERO. a) numerical values of the robot
position b) text box for warning messages e.g. the pitch angle exceed a predefined value c) 3D
representation of the robot state and 3D cloud of stereo points. The operator can interactively
change the perspective d) rover control area. The motion orders are given by clicking and
moving the mouse cursor. The robot can be also driven with a joystick e) first image area. The
user can select the left, right, stereo or omnicam image. All the imagers settings can be modified
f) second image area g) panoramic view area
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Other interesting features of the GUI (Graphical User Interface) are listed below

• Warning messages such as “low battery” and “dangerous rover posture” are 
printed on the screen in order to avoid critical situations, which could dam-
age the rover.

• The user can control the rover with a game pad or the mouse. Smooth trajec-
tories are generated using non-linear optimization accounting for both maxi-
mal wheel acceleration and speed.

• Two operation modes are available. The first one is called “coordinated” and 
allows the robot to drive on any arc of circle. The second mode is called 
“non-coordinated” and only straight line and point-turning motion are 
allowed.

• A watchdog timer is implemented to detect communication problems. The 
GUI sends a signal every second and the rover stops in case the signal is not 
received.

• The GUI uses cross-platform libraries and can be compiled and run on dif-
ferent OS.

2.4   Conclusion
Because no generic hardware setup exists for such rovers a lot of effort had to be

deployed for making SOLERO a performant platform for research. Furthermore,
a set of powerful tools has been developed for speeding up the process of debug-
ging the algorithms and analyzing the data stored during the experiments. The
modularity and portability of the system allows easy adaptation of new actuators
and sensors. For example, a GPS can be easily added to the I2C bus and more cam-
eras attached to the firewire or USB busses. The possibility to access all the sche-
matics and firmware of the I2C sensors allows to have a low-level control of data
transmission timings and thus improve the reactivity of the system. Off the shelf
components are rarely well documented, especially concerning time-stamping of
data, which is of high importance in robotics.

The energetic autonomy of the system running on batteries depends on the inten-
sity and duration of the driving phases. In average, the autonomy is around three
hours, allowing to run long sessions of experiments. This autonomy can be dou-
bled by replacing NiMh batteries by LiPo while keeping the same weight.
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3D-Odometry

3.1   Introduction
Up to recently autonomous mobile robots were mostly designed to run indoor,

yet partly structured and flat environments. In rough terrain many new problems
arise and position tracking becomes more difficult. Although odometry is widely
used indoors (2D), its application is limited in natural environments (3D). The
wheels are more likely to slip because of the rough structure of the soil and the er-
ror in the position estimation can grow quickly. For these reasons, one generally
avoids using odometry in challenging terrains. However, we can look at the prob-
lem differently and ask: “Why are the wheels slipping and how could this be avoid-
ed?”

There are two different aspects on which we can act directly. The first one is to
improve the mechanical structure of the robot. Indeed, a good mechanical design
allows the rover to move smoothly across obstacles and thus limits wheel slip. As
described in the previous chapter, SOLERO can passively adapt to a large range of
obstacles and allows limited wheel slip in comparison with rigid structures such as
four-wheel drive rovers. Thus, the odometric information is usable even in rough
terrain. A new technique, called 3D-Odometry, which provides 3D motion esti-
mates of SOLERO is presented in this chapter. 

The second action for limiting slip is to improve the way the wheels are con-
trolled. A good balance of the torques and speeds between the wheels is essential
to optimize the robot's motion. A torque controller minimizing slip and maximiz-
ing traction is presented in the next chapter.

3.2   3D-Odometry
Odometry is widely used for mobile robots moving on flat and even terrains. The

equations are well known and allows to estimate the position and the orientation
of the robot i.e. [xπ, yπ, ψ]T in a plane π. This vector is updated by integrating mo-
tion increments between two subsequent robot poses. The error due to integration
is minimized by keeping the time-step between the updates as small as possible.
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This 2D odometry method can be extended in order to account for slope changes
in the environment and to estimate the 3D position in a global coordinate system
i.e. [x, y, z, φ, θ, ψ]T. This technique uses typically an inclinometer for estimating
the roll (φ) and pitch (θ) angles relative to the gravity field [Lacroix02]. Thus, the
orientation of the plane π, on which the robot is currently traveling, can be estimat-
ed. The z coordinate is computed by projecting the robot displacements in π into
the global coordinate system. This method, which will be referred later as the stan-
dard method, works well under the assumption that the ground is relatively smooth
and doesn't have too many slope discontinuities. Indeed, the system accumulates
errors during transitions because of the planar assumption. In rough terrain this as-
sumption is not verified by definition and the transitions problem must be ad-
dressed properly.

The following sections describe a new method, called 3D-Odometry, which takes
the kinematics of the robot into account and treats the slope discontinuity problem.
The 3D-Odometry computation can be divided into two steps: the displacement es-
timation of the left and right sides of the robot (section 3.2.1) and the computation
of the resulting 3D displacement (section 3.2.2). Fig. 3.1 introduces the used ref-
erence frames and variables. 

3.2.1   Bogie displacement

For SOLERO, we have to consider the translations of the left and right bogie to
compute the motion of the robot’s body. The aim of this section is to describe how
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Figure 3.1:  Reference frames definition

O XwYwZw global reference frame (world frame)
O XrYrZr robot’s frame (linked to the main body)
Ob xz bogie frame (in the bogie plane)

L projection of O in the bogie plane
B left bogie center (rotation center)
∆,η norm/angle of L’s displacement
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to compute the displacement (∆ and η) of one bogie knowing the translations of
the wheels (encoder data ER, EF) and the change of the bogie angle (ε) between
the initial and final state (see Fig. 3.1, 3.2 and 3.3). In what follows, the equations
have been developed only for the left bogie. However, the same method can be ap-
plied for the right bogie and the corresponding equations can be obtained using
simple variable and parameter substitutions.

For computing the displacement of L we proceed in two steps: firstly we compute
the displacement of B (Fig. 3.2) and then propagate this motion through the bogie’s
mechanical structure to compute the effective displacement of L (Fig. 3.3).

Because the distance between the wheels remains constant one can write the fol-
lowing equations

These equations can be solved for φw and ρw (with ER, EF and ε as parameters).
However, this equation system can be inconsistent in some pathological cases. For
example, if ε is zero then ER must be equal to EF because of the constant wheels
distance constraint (see Fig. 3.2). In practice, ER and EF can be different because
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Figure 3.2:  Displacement of B between state t and t +1. The final position of the rear/front wheel is
on a circle of radius ER/EF centered at R/F respectively.
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the wheels can slip and have different speeds. When the set of parameters produces
an inconsistent equation system, we simply consider that the total bogie displace-
ment is the average of the displacements of the two wheels.

Then, the sine theorem is applied in the RR'R'' triangle (see Fig. 3.2) in order to
obtain ∆x' and ∆z', which are the coordinates of the displacement of B expressed in
the bogie’s coordinate system Ob xz

with

Fig. 3.3 defines the parameters for computing the displacement of L considering
the displacement of B and the mechanical structure of the parallel bogie.
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Figure 3.3:  Real bogie displacement and compression

L projection of the robot’s center O in the 
left bogie plane (initial position at time t)

L' final position of L (at time t +1)
∆ norm of LL' 
∆x, ∆z coordinates of LL' expressed in Ob xz

µ angle of LL' expressed in Ob xz
η angle of LL' expressed in Or xz
θ1, θ2 initial/final pitch angle
φ1, φ2 initial/final bogie angle (rel. to the body)
k+s+s' bogie leg length
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The effective bogie angle change between state t and t +1 is obtained using 

Because the relative position of L with respect to B depends on the bogie config-
uration, the displacement of B and L are not the same. This effect must be taken
into account to compute the effective displacement of L. Considering that the an-
gular changes and the translations between t and t +1 are small, the incremental
corrections are given by1 

Then cx and cz must be added to ∆x', ∆z' to get the effective displacements of
point L expressed in the bogie coordinate system Ob xz 

Finally, the norm of the displacement ∆ and the motion angle µ are defined as

and the displacement angle expressed in the robot’s frame Or xz is given by

3.2.2   3D displacement

The previous section showed how to compute the translation (∆ and η) of one bo-
gie. The aim of the current section is to derive the equations for computing the 3D
displacement of the robot center O using the left and right bogie translations. In
what follows, the subscripts l and r are used to denote variables related to the left
and right bogie respectively. For example, ηr is the displacement angle of the right
bogie defining the pane πr and ∆r is the norm of the translation. The main schemat-
ics for the 3D-Odometry is depicted in Fig. 3.4. 

1. additional definitions of geometric dimensions of SOLERO can be found in Appendix A
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The angles ηr and ηl define the planes πr and πl containing C' and L'. C' and L'
are situated on circles centered in C and L with radius ∆r and ∆l in the planes πr and
πl respectively. These considerations lead to the following constraints
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Figure 3.4:  3D-Odometry, variables definition

Wb distance between the bogie planes
C, C' initial/final pos. of the right bogie
L, L' initial/final pos. of the left bogie
O, O' initial/final position of the robot center
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∆r ∆l right/left absolute displacement
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SOLERO is non-holonomic and uses skid-steering for turning. Thus, the infini-
tesimal displacements of the left and right sides of the robot mainly occur in the
bogie planes. However, when the robot is turning the norm of the displacement of
one side is larger than the other and, because the wheelbase remains constant, that
forces a fraction of the motion to occur out of the bogie planes (along Yr). Because
of the non-holonomic constraint, this displacement cannot be measured directly.
Thus, we make the approximation that the smallest displacement among ∆r and ∆l
takes place in the corresponding bogie plane, giving to the other side an additional
degree of freedom along Yr. In the example of Fig. 3.4, ∆r is smaller than ∆l there-
fore  is constrained to remain in the bogie plane πb. This additional constraint
is expressed by equation 3.17. Since the wheelbase Wb remains constant one can
write 3.19. Finally, the vector  is obtained using equation 3.18.

Solving the system of nine equations with nine unknowns formed by 3.13 to 3.19
leads to the solutions for ,  and  (the nine unknowns). The yaw angle in-
crement is computed using 3.20. The roll increment dφ can be computed by sub-
stituting xr and xl by zr and zl in 3.20. However, we have chosen to rely on the value
of the roll angle provided by the inclinometer because this is an absolute angle and
therefore it is not subject to drift.

3.2.3   The contact angles

The 3D-Odometry technique provides an estimation of the translation in three di-
mensions and the heading change of the rover. It is interesting to note that the con-
tact angles between the bogie wheels and the ground are also computed by this
method (see Fig. 3.2). The contact angles of the fork and the robot’s rear wheel are
computed using parameter substitution in equation 3.1. To estimate the rear wheel
contact angle, ε is replaced by the pitch change of the rover (dθ) and the norm of
the robot motion (computed by the 3D-Odometry) is used instead of EF. The same
kind of parameter substitutions are used to compute the contact angle of the front
wheel. The estimation of these angles is very important because the contact angles
are required inputs for a predictive wheel controller minimizing wheel slip. Such
a controller is presented in chapter 4.
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3.3   Experimental results
In order to test the equations presented above, the robot has been driven forward

across an obstacle of known shape and the trajectory computed online with both
3D-Odometry and the standard method (see section 3.2). A proportional speed
controller has been implemented for the front bogie wheels and an integral term
has been added for the rear wheels. This allows the front and back wheels to have
slightly different speeds and therefore limits slip during the slope transitions. Some
tests with PI controllers on both bogie wheels have been performed but the results
were less good than the one presented in what follows.

The system has been tested in two different situations depicted in Fig. 3.5 and 3.6
respectively. The true trajectory is an approximation. It is built with characteristic
positions that can be computed knowing the shape of the obstacle, the kinematic
model and the state of the robot.

First experiment

Figure 3.5:  First experiment. The robot starts in front of the obstacle, climbs a 35 degrees slope
and stops on top after 870 mm in the x direction. The height of the obstacle is 175 mm. The
transitions are relatively smooth for this experiment.
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For both experiments, the position estimation computed with the standard meth-
od diverges quickly. This is due to the fact that the method does not account for the
kinematic model of the robot and only considers the attitude of the main body.
Whereas the consequences of this approximation are less relevant on smooth ter-
rains (Fig. 3.5), they become disastrous while climbing sharp shaped obstacles
(Fig. 3.6).

With the 3D-Odometry, it is possible to detect the slope discontinuities by com-
puting the angle ε (see equation 3.6). This angle together with the wheel encoders
data allow to compute the wheel-ground contact angles and the norm and direc-
tion of motion of a bogie (point L or C). This direction corresponds neither to the
pitch of the main body nor to the mechanical angle of the bogie: it is the actual di-
rection of motion of the point L or C. The effective incremental displacement (∆z)
along the axis zr is also computed (see Fig. 3.3). Its variation has been stored dur-
ing the first experiment and is depicted in Fig. 3.7. It is easy to see when the bogie's
first wheel starts climbing the obstacle (∆z > 0) and when it finally goes on the top
of the obstacle (∆z < 0). The transitions are well detected and this allow to correct
the z coordinate and thus better track the robot’s position.

Figure 3.6:  Second experiment. The robot goes over this 300 by 70 mm obstacle and stops after 1
meter. The transitions are sharp and since our method treats the transitions the 3D-Odometry curve
respects the obstacle shape.

Second experiment
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The x and z coordinates of the robot's final position have been measured for each
run. We did five runs for each experiment and computed the relative error. Table
3.1 lists the results corresponding to both experiments. One can see that the 3D-
Odometry demonstrates much better performance. The sharper the transitions, the
better it does in comparison with the standard method. The errors accumulated by
the 3D-Odometry method are due to several reasons. The first one we might think
about is wheel slip. In case of slip the calculated distance would be bigger than the
measured one and the results presented in Table 3.1 can be interpreted that way.

However, wheel slip is not the biggest source of error in these experiments. The
errors are mainly in the z direction and they are due to the sensors offsets and non-
linearities. Although we corrected the bogies angle sensors for offsets we didn't ac-
count for non linearity, which is difficult to calibrate. A difference of one degree

Table 3.1: Average relative errors for the first and second experiment

Figure 3.7:  z-coordinate correction during the transitions of the first experiment. For clarity
purpose both Pitch and Bogie Angle curve have been scaled (by a factor of 12 and 8
respectively). The time-step between two samples is about 60ms (computation time for the 3D-

x z x z x z
864 175 871 188 896 209
873 175 876 187 904 210
872 175 877 186 905 209
875 175 878 185 908 208
870 175 873 186 903 208

0.5% 6.4% 3.7% 19.2%

First experiment (870 mm)

Average error

Std. methodMeasured 3D-Odometry
x z x z x z

993 0 1000 1 1038 19
1010 0 1012 5 1056 24
1015 0 1008 7 1062 25
1009 0 1008 6 1059 25
996 0 1002 4 1046 22

0.2% 2.7% 5.5% 13.2%Average error

Second experiment (1000 mm)
Measured 3D-Odometry Std. method
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leads to an error of around 15 mm in the z direction for a 870 mm horizontal mo-
tion. It is approximatively the height error for the first experiment. Finally, varia-
tion of the wheels' diameters and inaccuracy in the mechanical dimensions are also
factors of odometric errors.

The 3D-Odometry produces much better results than the standard method in both
experiments. Accounting for transitions improves the position estimation signifi-
cantly. This is even more obvious when considering sharp transitions like in the
second experiment. Since there are a lot of discontinuities in hazardous terrains
this will help to provide usable odometric information.

Full 3D experiment

Fig. 3.8 depicts a trajectory computed online with 3D-Odometry and illustrates
the full 3D capability of the method. For this experiment, the rover has been re-
mote controlled through the scene. Only the right bogie wheels climbed the first
obstacle (a) whereas the other wheels kept ground contact. Then, the rover has
been driven over the second obstacle (b). The rover didn’t climb the obstacle
straight but with an angle of approximatively 20°. The interest of such an experi-
ment is that it forced asymmetric bogie configurations and allowed to test the full
3D capability of the method.

The true final position and orientation of the rover has been measured by hand
and compared with the computed final position. The absolute position and heading
angle are hand-measured as (1.43 m, -0.94 m, 0.175 m, 75°) and calculated by 3D-
Odometry as (1.45 m, -0.92 m, 0.18 m, 78°). This leads to a final relative error of
(1.4%, 2%, 2.8%, 4%)

Figure 3.8:  A 3D trajectory computed with 3D-Odometry from a real experiment: the obstacles a)
and b) are made of wood and the ground is concrete. It illustrate the full 3D capability of the
method. The trajectory follows the shape of the obstacle with good fidelity.

(b)

(a)
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3.4   Conclusion
This chapter described a new method called 3D-Odometry1 showing better per-

formance than the standard method used traditionally. The position estimation is
significantly improved when the rover overcomes sharp-shaped obstacles because
the method accounts for slope discontinuities and the kinematic model of the rover.

SOLERO has a non-hyperstatic mechanical structure that yields a smooth trajec-
tory in rough terrain. As a consequence wheel slip is intrinsically minimized.
When combined with 3D-Odometry, such a design allows to use odometry as a
mean to estimate the rover motion in rough terrain. Moreover, the quality of odom-
etry can still be significantly improved using a “smart” controller minimizing
wheel slip. The description of such a controller is presented in the next chapter.

Of course, the combination of a good mechanical design, a “smart” controller
and 3D-Odometry is not sufficient for localization because errors are still integrat-
ed over time. In order to improve robustness and decrease error growth, odometry
has to be fused with other sensors. This aspect is addressed in chapter 5. However,
the 3D-Odometry expands the range of speed and surface roughness over which
the rover is able to go and do reasonably precise motion prediction.

1. This work has been published at the ICRA’03 conference [Lamon03].
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Control in rough terrain

4.1   Introduction
For wheeled rovers, the motion optimization is somewhat related to minimizing

wheel slip. Minimizing slip not only limits odometric error but also increases the
robot's climbing performance and efficiency. In order to fulfill this goal, several
methods have been developed.

Methods derived from the well known Anti-lock Breaking System (ABS) can be
used for rough terrain rovers. This technique, essentially developed for the car in-
dustry, uses the information of wheel slip to correct individual wheel speed, and
thus allows to limit slip. [Burg97] propose to adapt the method to rough terrain by
considering the rover attitude and the load on the wheels. A set of accelerometers
and encoders are proposed for measuring individual wheel slip. However, because
the velocity of rovers in rough terrain is generally very low, the signal/noise ratio
of the accelerometers is small and the estimation of wheel slip is not accurate. An-
other method has been implemented on the Nasa FIDO rover [Baumgartner00]. It
is based on a velocity synchronization algorithm which minimizes the effect of the
wheels “fighting” each other. The first step of the method consists in detecting
which of the wheels are deviating significantly from the nominal velocity profile.
Then a voting scheme is used to compute the required velocity set point change for
each individual wheel. This technique accounts neither for the kinematics nor for
a physical model of the rover. Furthermore, the method attempts to adapt wheel
speed when slip already occurred. [Peynot03] propose to avoid creating any slip-
ping situation due to non-relevant wheel speed references. The technique is similar
to [Baumgartner00] but provides better performance in rough terrain because it ac-
counts for the kinematic model of the rover.

These methods, which will be referred later as reactive methods, have a common
point: no wheel-soil interaction models are used. Thus, they are expected to work
on various types of terrain. However, performance might be improved by consid-
ering both the physical model of the rover and wheel-soil interaction models for
specific types of soils. Thus, the traction of each wheel is optimized considering
the load distribution on the wheels and the soil characteristics. These methods are
called predictive methods.
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Only a few publications concerning physics-based motion control in rough ter-
rain can be found in the literature. A good overview is presented in [Iagnemma00]
[Iagnemma01] [Iagnemma02] and [Hung00]. [Yoshida02] propose a method min-
imizing slip ratios and thus avoid soil failure due to excessive traction. The method
requires to estimate the velocity of each wheel w.r.t the ground, which is difficult
to measure in rough terrain.

The physics-based controllers assume that the parameters of the wheel-ground
interaction models are known. Unfortunately, these parameters are difficult to es-
timate and are valid only for a specific type of soil and condition. [Iagnemma02]
propose a method for estimating the soil parameters as the robot moves, but it is
limited to rigid wheel traveling through deformable terrain. In practice, the rover
wheels are subject to roll on different kind of soils, whose parameters can change
quickly. Thus, physics based controllers are sensitive and difficult to implement on
real rovers.

In this chapter, a method combining the advantages of an ABS-based and phys-
ics-based method is proposed. As a consequence, no complex wheel-soil interac-
tion model is required and the load distribution on the wheels is considered. The
next section of the chapter describes the approach to model a complex wheeled
rover. Then, the model is used to select the optimal set of wheel-torques minimiz-
ing slip (section 4.3). Section 4.4 presents the algorithm allowing to avoid the use
of complex wheel-soil interaction models. The method is tested and compared
with a reactive controller in section 4.5. Finally, the technical aspects related to the
wheel-ground contact estimation are addressed in section 4.6 and 4.7 concludes
the chapter.

4.2   Quasi-static model of a wheeled rover
The speed of an autonomous rover must be limited in rough terrain in order to

avoid high shocks in the structure and for safety reasons. Furthermore, the naviga-
tion algorithms are computationally expensive (image processing, path planning,
obstacle avoidance, etc.) and the onboard processing power is limited: this requires
the rover to move slowly. In this range of speeds (typically 5 to 20 cm/s), the dy-
namic forces might be neglected and a quasi-static model is appropriate. Such a
model can be solved for contact forces and motor torques knowing the state of the
robot and the wheel-ground contact angles. 

To develop such a model, the mobility analysis of the rover’s mechanical struc-
ture has to be performed (4.2.1). It ensures to produce a consistent physical model
with the appropriate degrees of freedom at each joints. Then the forces are intro-
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duced and the equilibrium equations are written for each part composing the rov-
er’s chassis (section 4.2.2).

4.2.1   Mobility analysis

The mobility of a rolling robot in straight motion should ideally be one, indicat-
ing that the robot can move in a constrained direction. Grubler's Mobility Equation
in three dimensions [Mabie87], also known as the Kutz-Bach Criterion, can be de-
scribed as

where n is the number of mechanical parts and fj the number of joints of each type
( j = 1,..,5 for example f1: the number of pin joints, f3: the number of spherical
joints). The mobility equation is a guideline for determining if a system is statically
determinate. Many real systems contain redundancy in links and joints resulting in
hyperstatism. A four-legged table, for example, is statically indeterminate if con-
sidered rigid. More sophisticated modeling methods are required to analyze the
distribution of forces in a hyperstatic system. Another approach is to model selec-
tive joints with additional degrees of freedom. Intelligent selection of these joints
can minimize the error associated with a quasi-static solution. While the modeled
kinematic chain is a simplification, it can be good enough to support motor control.

Mobility analysis of SOLERO

In a first step, one can consider the wheel-ground contacts as spherical joints and
all the pin joints in the mechanism as one degree of freedom (DOF) revolute. For
the SOLERO, the calculation of the mobility using 4.1 is -20 rather than 1. The
system is, therefore, significantly hyperstatic and requires a modified model for a
possible quasi-static solution. Two significant modifications to joint degrees of
freedom assist the model.

The first one involves the representation of the wheel-ground joint mobility. For
a standard wheel without slip, the joint that represents the wheel-ground contact
can be modelled as a spherical joint allowing three degrees of freedom (rotations
about the three axes). Motor torque on the wheels will directly affect the forces in
that contact plane. Lateral forces are not influenced by the motor torque. There-
fore, the system was modelled with the lateral forces being carried by the wheel
fixed to the body (rear wheel) and the wheel on the front fork. The wheels on the
bogies were modelled with no resistance in the lateral direction (4 degrees of free-
dom). We have chosen such a model because there is not enough information to

1 2 3 4 56 5 4 3 2MO n f f f f f= ⋅ − ⋅ − ⋅ − ⋅ − ⋅ − (4.1)
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assess how the lateral forces are distributed amongst all the wheels and because the
error due to the simplification has almost no influence for the controller.

The second modification acts on the representation of the redundant kinematic
chains. It is possible to model selected joints on redundant kinematic chains with
more degrees of freedom. This results in forces being transmitted through direct
flow patterns. Because the model is being used to optimize motor torques, inaccu-
racies in the internal linkage forces have minimal effect.

Fig. 4.1 shows the resulting kinematic model of the SOLERO. The numbers at
the link connections indicate the degrees-of-freedom of that joint. 

The resulting model is mechanically equivalent to the real structure. The mobil-
ity of the bogies and the fork is one and the final mobility can be calculated using
equation 4.1 to produce

4.2.2   A 3D static model

For a 3D static model, 6 equations (3 torques and 3 forces) are applied to each
body, containing ground reaction forces, gravity forces (weight) and external forc-
es. Dynamic forces are considered to be negligible because the speed is low. The
mobility analysis is used to introduce the right number of forces/torques at each
joint. In three dimensions, the number of generalized forces (ng) to introduce fol-
lows the rule

mo4

mo4

mo4

mo3

mo3

mo2

mo1
mo3

mo3

mo1

mo1

mo3

mo1

mo1

mo1

mo1

mo1

mo1

Figure 4.1:  Final representation of the mobility of the joints

(4.2)6 18 5 14 4 1 3 7 2 6 1MO = ⋅ − ⋅ − ⋅ − ⋅ − ⋅ =

(4.3)6gn mo= −
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where mo is the mobility of the joint. For example, five generalized forces are
introduced for a pin joint (mo = 1): only one rotation is free, all the translations (3
forces) and the remaining rotations (2 torques) are blocked.

Model of SOLERO

SOLERO has 18 parts and is characterized by 6×18 = 108 independent equations
describing the static equilibrium of each part and involving 14 external ground
forces, 6 internal wheel torques and 93 internal forces and torques for a total of 113
unknowns. The weight of the fork and the bogies link has been neglected whereas
the weight of the main body and the wheels is considered.

Of course, it is possible to reduce this set of independent equations because we
have no interest in implicitly calculating the internal forces of the system. The vari-
ables of interest are the 3 ground contact forces on the front and the back wheel,
the 2 ground contact forces on each wheel of the bogies and the 6 wheel torques.
This makes 20 unknowns of interest and the system can be reduced to 20 - (113 -
108) = 15 equations. This leads to the following matrix equation

where M is the model matrix depending on the geometric parameters and the
state of the robot, U a vector containing the unknowns and R a constant vector. The
details of the model together with the mechanical parameters are described in Ap-
pendix A.

4.3   Torque optimization
It is interesting to note that there are more unknowns than equations in 4.4. That

means that there is an infinite set of wheel-torques guaranteeing the static equilib-
rium. This becomes obvious when considering that one motorized wheel is enough
to make the robot move. This characteristic can be used to control the traction of
each wheel and select, among all the possibilities, the set of torques minimizing
slip. Other functions, such as energy can be used instead. In this chapter, we focus
on slip minimization and this section describes the concepts and the algorithms.

4.3.1   Wheel slip model

The intent is to formulate a holistic model of a robot to control the wheel motor
torques in order to minimize wheel slip. Therefore it is helpful to review the gov-
erning equations on wheel slip and explain which function should be minimized to
reach this goal. The model presented in what follows assumes a rule of proportion-

(4.4)15 20 20 1 15 1x x xM U R⋅ =
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ality between the traction and the normal force on the wheel: the more pressure on
the wheel the more traction it can carry before slipping. This proportionality rule
is not perfectly verified in all circumstances. However, such a model is valid in
most of the cases and is appropriate because we are not interested in exactly com-
puting the forces at the interface but minimizing wheel slip.

Fig. 4.2 shows the common forces acting on the wheel of a mobile robot.

The wheel is balanced if the friction force fulfils the inequation 4.5. This case
represents static friction. If the static friction force can't balance the system, the
wheel slips and the friction force is set by equation 4.6.

In order to avoid wheel slip, the friction force which depends directly from the
motor torque, M, should satisfy 

The above equations suggest that there are two ways to reduce wheel slip. First,
assume that µ0 is known and set 

In fact, it is difficult to know µ0 precisely because it depends on the kind of
wheel-soil interaction. During exploration, the kind of soil interacting with the
wheels isn't known which makes µ0 impossible to pre-determine.

Another way to avoid wheel slip is to first assume that the wheel does not slip. It
is then possible to calculate the forces T and N as a function of the torque and the
result is optimized in order to minimize the ratio T/N.

N

R

M

T

P

P external wheel joint force
N normal force
µ0 static friction coefficient
µ dynamic friction coefficient
T traction force
R wheel radius
M motor torque

Figure 4.2:  Acting forces on a wheel
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Accounting to this assumption

µn is similar to a friction coefficient. In minimizing this ratio, then minimizing
µn, we optimize our chances that this coefficient is smaller than the real friction
coefficient µ0. If this is the truth, there is no slip. Therefore, it is possible to mini-
mize the ratio T/N without knowing the real static friction coefficient. The second
method is used here, because it is more robust.

4.3.2   Optimization algorithm

The controllable inputs of the system are the six wheel torques. Since there are
five more unknowns than equations it is possible to write an equation expressing
the torques as linearly dependant (a proof is presented in Appendix A.5.1). The 14
other equations define the external forces as a function of the torques.

The model of SOLERO is indeterminate because there are less equations than
variables and the set of solutions is of dimension five (number of wheels -1). The
goal of the optimization is to minimize slip. This can be achieved by maximizing
the traction forces, which is equivalent to minimizing the function max(Ti / Ni) for
the wheels. Since it is difficult to do reasoning in five dimensions, a simpler 2D
robot referred to as ThreeWheels (see Fig. 4.3) is used to present our optimization
algorithm. This process will then be extrapolated for the complete model. 

The model of the ThreeWheels rover has nine unknowns: two forces and one
torque on each wheel (m4 is a known spring suspension torque and depends direct-
ly on the geometry) and seven equations: three global equations, one torque equa-

n
n

NT
N N

µ µ⋅
= = (4.9)

Figure 4.3:  The ThreeWheels 2D model. This rover belongs to the passively suspended robots
family. m4 is a non-controllable torque generated by a torsion spring with known
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tion for each wheel and one torque equation for the fork. That means that the
solutions space is of dimension two. Equation 4.10 express the forces on the
wheels and 4.11 the torque of the first wheel as a function of m2 and m3 (m1, m2
and m3 are linearly dependant). α, β, γ, ε and δ are parameters depending on the
rover’s state and geometry (see A.5).

The solution space of the ThreeWheels rover is depicted in Fig. 4.4a. It corre-
sponds to the function f defined by 4.12, which is the function to minimize.

Since the system of equations is non-linear, a numerical method is implemented.
Our optimization method uses a combination of different algorithms and is depict-
ed in Fig. 4.5. Firstly, the Equal Torques solution (see A.8) is checked versus the
following constraints

a. Motors saturation: the torques of the optimal solution must be smaller than
the maximal possible torque.

b. Normal forces: the normal forces Ni must be greater than zero. The asymp-
totes of the hyperbolic functions in Fig. 4.4a define the sign inversion limit.

(4.10)1 2 1 3 1

2 2 2 3 2

i i i i

i i i i

N m m
T m m

α β γ
α β γ

= ⋅ + ⋅ +
= ⋅ + ⋅ +

with i = 1,2,3

(4.11)1 1 2 2 3m m mε ε δ= ⋅ + ⋅ +

(4.12)( ) ( )31 2
2 3 1 2 3

1 2 3

, max , , max , ,TT Tf m m
N N N

µ µ µ
⎛ ⎞

= =⎜ ⎟
⎝ ⎠

Figure 4.4:  Solution space for the ThreeWheels rover. The functions µ1, µ2 and µ3 are
hyperbolic and a linear optimization process is not possible. a) optimal solution (circled)
minimizing slip and fulfilling the Ni > 0 constraint b) cross section of figure (a) for m2 = -0.3.
One can see that the optimal solution (circled) corresponds to equal µ's.

(b)(a)
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If this solution is valid, it is taken as the initial solution for the Fixed Point opti-
mization (A) (see Fig. 4.5). If it doesn't fulfill the constraints, a valid initial solu-
tion is computed using the Simplex Method (B). The optimal solution is then
provided either by (A) or the Gradient optimization (C). We have chosen this
scheme because most of the states are handled by (A), which is computationally
very light in comparison with a single, non-linear optimization algorithm.

A. Fixed Point optimization

This optimization method is based on the fixed point algorithm. The aim of this
algorithm is to numerically find an intersection of curves when an analytical solu-
tion is difficult to obtain. In our case, the optimal solution corresponds to the inter-
section of µ1, µ2 and µ3. The corresponding flow chart is presented in Fig. 4.6.

This algorithm is computationally light and provides good results for most cases.
Nevertheless, it diverges sometimes and doesn't account for the aforementioned
constraints. This can lead to torques that cannot be provided by the motors.

B. Simplex method

This method is based on the Simplex algorithm which solves linear programs in
a constrained solution space. The Simplex method tries to maximize an objective

A

B

C
Method
Gradient

no

yes

no
Valid ?

91 %

78 %

Torques

Method
Fixed Point

Method
SimplexEqual

Valid ?

yes

Optimal torques (     )oM

Figure 4.5:  Optimization algorithm. The execution times for the algorithms A, B and C are 6
ms, 5 ms and 20 ms respectively (1.5 GHz processor). The worst case is about 31 ms but he
majority of the states (70%) are handled in only 6 ms.
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Computation of the corresponding torques

Initial
Solution Computation an average
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Computation of

Figure 4.6:  Fixed point based algorithm. The quasi-static model (2) is solved with an initial set
of torques (1). Block (3) computes an average friction coefficient based on the computed forces
(output of block 2). The corresponding torques are computed (4) and fed again in block (2).
Twenty iterations are generally sufficient for convergence.
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function considering a set of constraints on the variables. In our case, the algorithm
is only used to provide a valid initial solution, thus many objective functions can
be used. However, in order to get closer to the final optimal solution, we choose
the function h defined in 4.13, which tends to minimize the ratio Ti / Ni.

Furthermore, the function h is linear because it is a linear combination of the
torques. The solution provided by this method is guaranteed to fulfill the con-
straints and can be used as a starting point for both the Gradient and Fixed point
optimization. 

C. Gradient optimization

This algorithm seeks for an optimum in the constrained solutions space given a
known valid initial solution. The Gradient optimization is similar to the potential
field method: at each step the gradient is computed and the next solution is gener-
ated following the maximum slope.

4.3.3   Torque optimization for SOLERO

The optimization for the 3 dimensional SOLERO is similar to the method pre-
sented in the previous section. The solution space has now five dimensions and one
has to account for 18 constraints (with i  =  1,..,6 and MaxTrq the saturation torque).

An example of computed forces and torques is depicted in Fig. 4.7.

(4.13)ih N= ∑

(4.14)0i i im MaxTrq m MaxTrq N< > − >

Figure 4.7:  Forces and torques computed by the optimization procedure. The forces are
expressed in the global coordinate system. The user can interactively change the state of the
robot and the contact angles of the wheels a) side view: the pitch, the front fork and the left
bogie angles can be modified b) right bogie view: the angle of the right bogie can be modified in
this view c) decomposed view from rear: the roll angle can be modified. In this view, the arrows
represent the projections of the reaction forces in the global frame of reference.    

(a) (c)

(b)
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The optimization algorithm has been tested for around twenty thousand rover
postures. The different states have been generated automatically by varying each
input parameter (i.e. the wheel-ground contact angles, roll and pitch, the fork, left
and right bogies angles) in order to cover most of the robot’s configuration space.
For each state, the minimal friction coefficient (µn) has been computed and fed into
the histogram printed in Fig. 4.8.

It is interesting to note that, in 80% of the cases, the friction coefficient µn is
smaller than 0.6 (the static friction coefficient of a tire on a dry road is around 0.6).
As said in section 4.3.1, if µn is smaller than the real friction coefficient µ0 then
there is no slip. Thus, there is not slip for 80% of the chassis configurations when
the rover is traveling on a terrain with a friction coefficient higher or equal to 0.6
(e.g. a rocky terrain). For more slippery soils it becomes more and more difficult
to guarantee no slip. However, the exponential decay of the histogram is favorable
and the probability of slip is always minimized whatever the soil type.

The bar of the histogram corresponding to friction coefficients higher than one
groups pathological cases reflecting extreme situations where it is difficult to keep
static equilibrium. In such circumstances, it is impossible to avoid slip because, in
reality, a friction coefficient is always smaller than one. This is not critical in prac-
tice because, at a higher lever, the path planner avoids areas in which the rover has
a risk to reach such extreme configurations [Bonnafous01]. Thus, such cases can
be discarded from the statistics.

Figure 4.8:  Statistics of the optimization. The histogram plots the number of states as a function
of the friction coefficient. 80% of the states correspond to a friction coefficient smaller than 0.6.
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4.4   Rover motion
Rolling resistance is another important aspect to the quasi-static model, and is

therefore reviewed here. A static model balances the forces and moments on a sys-
tem to remain at rest or maintain a constant speed. Such a system is an ideal case
and does not include resistance to movement. Therefore, an additional torque com-
pensating the rolling resistance torque must be added on the wheels in order to
complete the model and guarantee motion at constant speed. This results in a qua-
si-static model.

Several rolling resistance models are developed in the literature and can be in-
corporated in the static model to ensure constant speed motion. A rolling resistance
model for an elastic wheel on an elastic soil is presented in [Kalker90]. Other mod-
els applicable for rigid wheels and deformable soils such as sand or earth can be
found in [Bekker56], [Bekker69] and [Andrade98]. In practice, the parameters of
these models are generally difficult to estimate and are valid only for a specific
type of soil and condition. Furthermore, the behavior of the controller is difficult
to predict when wrong parameters and/or models are used: what would happen if
a controller designed for sand is used on rock? Because an exploration rover is sub-
ject to deal with different types of terrain, using a controller endowing a wheel-
ground interaction model specific to one type of soil is generally not appropriate.
Fig. 4.9 is a good illustration: when driving on such a terrain some wheels might
roll on sand and some others on bare rock. Furthermore, the grit and compactness
of the sand changes depending on the local conditions.

Figure 4.9:  Images of Mars taken by Spirit next to the Bonneville Crater.
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 In order to avoid relying on such complex wheel-ground interaction models
(whose parameters are unknown), we have introduced a global control loop for es-
timating the rolling resistance as the robot moves. The final controller, minimizing
wheel slip and incorporating rolling resistance, is depicted in Fig. 4.10

The kernel of the control loop is a PID controller. It allows to estimate the addi-
tional torque to apply to the wheels in order to reach the desired rover velocity Vd
and thus, minimizes the error Vd - Vr

1. Mc is actually an estimate of the global roll-
ing resistance torque Mr, which is considered as a perturbation by the PID control-
ler. The rejection of the perturbation is guaranteed by the integral term I of the PID.
We assume that the rolling resistance is proportional to the normal force, thus the
individual corrections for the wheels are calculated by

where Ni is the normal force on wheel i and Nm the average of all the normal forc-
es. The derivative term D of the PID allows to account for non modeled dynamic
effects and helps to stabilize the system. The parameters estimation for the control-
ler is not critical because we are more interested in minimizing slip than in reach-
ing the desired velocity very precisely. For locomotion in rough terrain, a residual
error on the velocity can be accepted as long as slip is minimized. Furthermore, the
system offers an intrinsic smoothing because the ratio between inertia and motor
torques is large.

1. Vr can be estimated using the sensor fusion method presented in chapter 5.

PID

rV

Mc

Mr

Mw
Robot

Model & s

Optimization
− +

N

Distribution
Correction

+

+

dV

oM

Figure 4.10:  Rover motion control loop. The global loop is a speed control loop whereas the
local controllers for the wheels are torque controllers. The vector s includes the wheel-ground
contact angles, the internal links and the roll and pitch angles.

Vd desired rover velocity
Vr measured rover velocity
Mr rolling resistance torque
Mc correction torque

Mo vector of optimal torques (section 4.3)
N vector of normal forces
s rover state
Mw vector of wheel correction torques

(4.15)
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4.5   Experimental results
A simulation phase has been initiated in order to test the algorithms and verify

the theoretical concepts and assumptions. The simulation parameters have been set
as close as possible to the real operation conditions. However, the intent is not to
get exact outputs but to compare different control strategies and detect/solve po-
tential implementation problems.

4.5.1   Simulation tools

Simulations have been realized with the Open Dynamics Engine [ODE]. This en-
gine is a platform independent and open source library that simulates rigid body
dynamics in three dimensions. It has advanced joint types and integrates collision
detection with friction. The source code being available it is possible to integrate
more sophisticated simulation models such as rolling resistance, friction in the
joints etc. In this application, a rolling resistance proportional to the normal force
on the wheel has been implemented.

The simulation tools allow to test and compare different traction control strate-
gies. In our experiments, wheel slip has been taken as the main benchmark and the
performance of our controller (predictive control) has been compared to the con-
troller presented in [Baumgartner00] (reactive control). As said before, the reac-
tive controller implements speed controllers for the wheels whereas the torques of
the wheels are controlled for the predictive method.

4.5.1.1   Wheel slip

The slip of wheel i at time step k can be computed with

where  is the true wheel displacement,  the angular
change and R the wheel radius. The total slip of the rover integrated during an ex-
periment is defined as

4.5.1.2   Wheel-ground contact angles

The body collision algorithm of ODE provides n contact points around the wheel
together with the normal forces. This data is similar to what can be measured with
a tactile wheel (the wheel deflection is more or less proportional to the applied

(4.16)( 1, ) ( 1, )
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force) and the same method as presented in section 4.6 is applied for computing
the contact angles. In some rare cases, no contact point is provided by ODE at time
k. It is either that the wheel does not touch the ground or that the body collision
algorithm fails to compute contact between the wheel and the ground (a 3D mesh).
In these situations, assuming slow motion and a small simulation period (10 ms in
our case), we take the same contact angle for time k and k -1.

4.5.2   Experiments

Two sets of simulation experiments have been conducted. The first set comprises
different terrain profiles in two dimensions (in the plane x-z) and the second, full
3D environments. In both cases, the nominal speed of the rover is 0.1 m/s and the
friction coefficient has been set equal to 0.7.

A. Experiment set of type one

Terrain profiles similar to the one depicted in Fig. 4.11 have been generated and
the simulation performed with both torque and speed control. Thanks to the terrain
symmetry, the trajectories of the gravity center are the same whatever control type
is used.
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Figure 4.11:  Trajectory of the center of gravity for an experiment of type one. That kind of
terrain is difficult for a wheeled rover because it includes many sharp slope changes.
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Fig. 4.12 depicts typical results that have been obtained on such terrains. For a
specific wheel, slip can be locally higher with torque control than with speed con-
trol. However, the total slip remains always smaller with torque control for all the
experiments. Another interesting result is that the difference between the two
methods increases when the friction coefficient gets lower. In other words, the ad-
vantage of using torque control becomes more and more interesting as the soil gets
more slippery

B. Experiment set of type two

Here, full three dimensional terrains are used for the experiments. They have
been generated randomly with step, sinus, circle and particle deposition functions.
This time, because the terrains are not symmetric, the trajectory of the rover de-
pends on the control strategy. Therefore it is difficult to compare performance be-
tween predictive and reactive control. However, we have considered an
experiment as valid when the distance between the final positions of both trajecto-
ries is smaller than 0.1 m for a total distance of around 3.5 m. This distance is small
enough to allow performance comparison. For all the valid experiments, predictive
control showed better performance than reactive control. In some cases the rover
was even unable to climb some obstacles and to reach the final distance when driv-
en with reactive control. Otherwise, the simulations lead to the same conclusions
as for the experiments of type one. Fig. 4.13 depicts one of the terrains used for the
simulations and Fig. 4.14 the corresponding results.

Figure 4.12:  Total slip and rear wheel slip for both reactive (spd) and predictive (trq) control.
Total slip is scaled by a factor of 500. Locally wheel slip can be bigger with torque control but
the total slip remains always smaller: 31% better than speed control.
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Figure 4.13:  Snapshots of an experiment of type two. The total travelled distance along x is
3.5m. That kind of terrain is challenging for a wheeled rover because there is much side slip
when the rovers start climbing the slope.

Figure 4.14:  Total slip and front wheel slip for an experiment of type two. The difference gets
bigger as the rover deals with true rough terrain. Total slip is scaled by a factor of 800. At the
end of the experiment, the torque controller performs 26% better than the speed controller.
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4.5.3   Discussion

For these experiments, it is difficult to provide a quantitative result to compare
the performance of one controller with respect to the other. Indeed, the perfor-
mance depends on the topography: for easy terrains the performance of both con-
trollers is almost the same, whereas torque control performs better as the terrains
become more challenging. However, very interesting behaviors of the torque con-
troller have been systematically observed in all the experiments

• For each wheel, the slip signal is scaled down when using torque control. 
Such a behaviour can be observed in Fig. 4.12 and 4.14: the peaks are at the 
same places for both controllers but the amplitude is much smaller for the 
torque controller.

• The total slip of the rover is always smaller when using torque control.
• Strong assumptions have been used during the development of the torque 

controller i.e. no slip and the wheels touch the ground all the time. During 
the experiments both assumptions have been violated but the system was 
able to recover and keep its stability, even in difficult situations such as 
depicted in Fig. 4.13.

Finally, the simulations showed good results and promising perspectives. Fur-
thermore, they allowed to detect potential problems and address implementation
details. This is a step closer to the real application.

4.6   Wheel-ground contact angles
A key parameter required for traction optimization algorithms is the contact an-

gles between the wheels and the ground. There are many ways of sensing or cal-
culating these angles. The method presented in chapter 3 and the one described in
[Iagnemma01] are similar in a way that they both consider the displacement/veloc-
ity of each wheels for computing the angles. The quality of the estimation provided
by such methods strongly depends on wheel slip and terrain profile. In particular,
no estimation can be computed when the rover is at stand still and poor results are
obtained in slowly changing terrain profiles. [Peynot03] use the information of the
global rover motion for the estimation of the contact angles and thus limit the sen-
sitivity to individual wheel slip. However, all these indirect methods for computing
the wheel-ground contact angles assume no slip, or account for an accurate rover
velocity information. Therefore they are all subject to the chicken and egg para-
digm: bad wheel-ground contact angle estimations lead to unadapted motor com-
mands, which implies wheel slip and bad angles. As a consequence, direct
measurement of wheel-ground contact angles is required in order to be indepen-
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dent of the terrain profile and characteristics and to guarantee the systems stability.
An alternative to these indirect estimation methods is to directly measure the forc-
es on the wheels. This can be done using flexible wheels equipped with sensors
measuring deflection. It has the advantage to provide the contact points for static
conditions also. An example of such a device is depicted in Fig. 4.15 and more in-
formation can be found in [Lauria02]

With such a wheel, the contact angles are computed with a weighted mean of the
sensor signals. This way, a smooth transition is obtained when dealing with diffi-
cult terrain profile such as depicted in Fig. 4.15 b.

There are two other advantages of including deflection sensors in the wheels

• improvement of the accuracy of the 3D-Odometry: a) direct measurement 
provides better estimates of the contact angles, better than the one computed 
using 3.1 b) the sensors allow to measure the effective wheel radiuses, 
which are required inputs for 3D-Odometry (the accuracy of the odometry is 
very sensitive to these parameters)

• improvement of the torque controller: the deflection of the wheel at a given 
contact point is an image of the applied force at that point. This information 
can be incorporated to the model in order to improve the estimates of the 
normal forces, which are used in 4.15.

Figure 4.15:  The tactile wheel (developed at EPFL by Michel Lauria). a) Sixteen infrared
proximity sensors measure the tire compression all around the wheel. b) picture of the front
wheel of the robot Octopus, equipped with tactile wheels.

(b)(a)
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4.7   Conclusion
Most of the physics based control methods rely on the knowledge of a specific

wheel-soil interaction model. However, in a real application, the parameters of
such a model are unknown because the rover is subject to deal with different types
of soils i.e. sand, rocks, gravel, grass and a mix of all of them. An error on the pa-
rameters estimation has a direct impact on the performance of the controller.

In this chapter, a quasi-static model of a six-wheeled rover together with an op-
timization method to minimize slip have been presented1. Unless other control
strategies, the proposed method does not require the use of soil models. As a con-
sequence, the rover is able to operate on different types of soils: this is the main
requirement for exploration missions. Furthermore, our approach can be adapted
to any kind of rover and the needed processing power remains relatively low,
which makes online computation feasible. The simulations show promising results
and the system is mature enough to be implemented on the rover for real experi-
ments.

An interesting aspect of such a controller is that the normal forces are computed
and can be used to associate a slip probability for each wheel: the less pressure on
the wheel, the more likely the wheel slips. The slip probability can then be propa-
gated through the 3D-Odometry equations to finally obtain the covariance matrix
for the robot’s displacement, which is a valuable information for probabilistic
multi-sensors fusion (see next chapter).

1. This work has been published at ICRA [Lamon04a] [Lamon05]
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Position tracking in rough terrain

5.1   Introduction
A good pose estimate is essential for an autonomous mobile robot because posi-

tion is used by most of the navigation tasks and algorithms running onboard. The
first step in localization consists in the integration of high frequency dead reckon-
ing sensors to predict the vehicle motion. The second phase, which is usually acti-
vated at a much slower rate, uses an absolute sensing mechanism for extracting
relevant features in the environment and updating the predicted position. One of
the big challenges of this update is to associate data between the current and pre-
viously extracted landmarks and features. This task needs good pose prediction in
order to provide reliable results and a minimal number of false matches. This re-
quirement is even more important when the robot travels over cluttered terrain,
where the field of view can vary significantly between two features extration steps.

The intent of this chapter is to develop a method for combining different sources
of information in order to provide a robust three-dimensional initial estimate of the
six degrees of freedom of a rough terrain rover. This probabilistic method, based
on an extended information filter, is presented in section 5.4. Section 5.2 gives a
survey of the sensors that can be used in rough terrain and section 5.3 presents the
problematic of having sensors distributed at different places on the rover. Section
5.5 presents the experimental results, validating the theory. Finally, section 5.6
concludes the chapter.

5.2   Sensors for outdoors
The aim of this section is to give an overview of sensors that can be used for out-

door applications and emphasize on the difficulties involved in motion perception
in unstructured and unknown environments. 

The family of 1D/2D distance sensors such as ultrasound and 2D laser scanners
are commonly used indoors (structured) but are generally not well adapted for out-
doors (unstructured). In structured environments, we can generally assume that a
rover moves on a flat ground and that its working space is delimited by walls, per-
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pendicular to the soil. This strong assumption allows using simple world represen-
tations (2D maps) and distance information to detect obstacles and localize the
rover. Simple features such as corners, lines and segments can be easily extracted
from raw data and are relevant enough for autonomous navigation
[Tomatis01][Arras03]. When dealing with unstructured environments (3D world),
these sensors don’t provide enough information and the interpretation of data be-
comes tedious because of the lack of a priori knowledge. However, these distance
sensors can be used to detect contingency situations: for example, the case when
the rover gets too close to an obstacle.

Monocular vision (a single camera) provides a lot of information and has the ad-
vantage of covering a large field of view: from very close distances to the horizon
(this is not the case for distance sensors, which are limited to a predefined range).
Many applications use monocular vision as a source of information for localiza-
tion. When enhanced with a parabolic or equiangular shaped mirror, the field of
view of a camera can be extended to 360°. That kind of panoramic vision system
is used in [Strelow01] for tracking the six degrees of freedom of a robotic platform.
In [Cozman00], the skylines extracted from panoramic views are used to localize
a mobile robot, provided a topographic map is available. However, monocular vi-
sion provides only scaleless information. It is enough for topological localization
but the information has to be completed with metric data for metric localization.

Stereovision provides range images and is today the most used sensor for outdoor
applications. It allows for the creation of traversability maps and provides estima-
tion of the rover’s ego-motion (visual odometry). The principle of visual odometry
is to compute an estimate of the six displacement/orientation parameters between
two stereo frames on the basis of a set of 3D point-to-point matches (see Appendix
D). The matches are established by tracking the corresponding pixels in the image
sequence acquired while the robot moves. However, the use of stereovision has
some limitations: it works well only in environment with enough texture, its range
is limited and the images are subject to be affected by bad illumination conditions,
making the visual odometry unavailable.

As presented in chapter 3, 3D-Odometry is a method of motion estimation for an
all-terrain rover. It has been shown that it can be used on uneven terrains if the me-
chanical structure of the rover is adapted. However, because of wheel slip, the po-
sition estimation error can grow quickly and this technique cannot be used alone.

An IMU (Inertial Measurement Unit) is a device measuring accelerations and ro-
tation rates in three dimensions. In the presence of a known gravity field, the atti-
tude of the rover can be estimated without any drift. The double integral of the
accelerations and single integral of angular rates are computed to track the position
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and the orientation of the body on which it is mounted. However, the pose estima-
tion diverges quickly because the signals are affected by biases and errors integrat-
ed over time. Thus, such a sensor cannot be used alone to estimate motion and has
to be combined with other sensors to update the biases and scaling errors.

Heading sensors such as compasses are of high interest because they provide ab-
solute heading information and therefore are not subject to drift. However, the
magnetic field is generally not homogeneous. For example, the large amount of
iron ore on the surface of Mars strongly distorts the magnetic field.

The sun sensors and star sensors use respectively the sun and the stars as absolute
references (the design of a sun sensor is presented in [Trebi01]). Both provide ab-
solute heading whereas the star sensors also provide the latitude and the longitude.
These sensors can only be used when the rover is perfectly still and requires good
meteorological conditions. Furthermore, a sun sensor can be utilized only during
the day whereas the measurements of a star sensor are only available during the
night. However, they are of high interest for global localization. For example, the
absolute position acquired by a star sensor during the night can be used to globally
relocate the rover after a long traverse.

Three things can be inferred from the above mentioned discussion

• No single sensor is perfect and can provide all the required information. All 
of them have their own drawbacks and advantages. In general, the quality of 
the provided information is inversely proportional to the sampling rate e.g. 
an IMU can provide data at 100Hz but the heading estimation diverges 
quickly, whereas a sun sensor provides absolute heading but requires the 
rover to remain at rest and more measurement time.

• Since the data provided by absolute sensors contains no drift, it has more 
value than the one acquired using dead reckoning sensors.

• Because a small angle error (e.g. heading error) leads to a large position 
error, it is more important to have precise information about the angles than 
about the distances.

It is obvious that the use of complementary sensors is required for robust position
tracking. In this chapter, we use three different sources of information to test the
proposed sensor fusion method, but it can be easily extended to more sources

• Wheel encoders: as discussed in chapter 3, odometry can be used to predict 
the robot displacement and a reasonably accurate motion estimation can be 
obtained in rough terrain. Moreover, chapter 4 proposes algorithms to limit 



5.3  UNCERTAINTIES PROPAGATION

64

wheel slip and enhance the accuracy of the odometry. This motion estima-
tion technique provides data at a relatively high rate (10 Hz) and is not 
affected by bias errors.

• IMU: an Inertial Measurement Unit directly measures the dynamics of the 
system. When a gravity field is present, the attitude can be estimated without 
any drift, which is a very valuable information. Furthermore, the measure-
ments are available at a high frequency (75 Hz).

• Stereovision: a method similar to [Mallet00] and [Olson01] is used to esti-
mate the six degrees of freedom of the rover. Instead using pixel tracking, 
interest points are extracted for each frame and are matched using the algo-
rithm presented in [Jung01] and [Jung03]. This technique, which is called 
Visual Motion Estimation1 (VME), usually provides better pose estimation 
than the other sensors but at a much lower rate (0.5 Hz). However, it does 
not provide any information if features are not properly tracked between 
successive frames.

For this research, absolute sensors such as GPS have not been considered be-
cause the rover is supposed to track its position in an unknown environment with-
out the help of any artificial beacons (e.g. exploration of Mars).

5.3   Uncertainties propagation
A mobile robot is generally equipped with several sensors positioned at different

places on the chassis. In order to fuse their measurements, a common reference
frame has to be determined and the position of each sensor has to be expressed in
this reference coordinate system. The following sections develop the equations for
propagating the uncertainties associated to the sensors measurements (incremental
motion information) through coordinate system transformations.

5.3.1   Coordinate systems and transformations

The position of a sensor S expressed in the reference coordinate system is deter-
mined using an homogeneous transformation matrix (equation 5.1). Such a matrix
includes both rotation and translation in three dimensions. The rotation is a three
by three direction cosine matrix expressed in terms of the Euler angles2  φ, θ, ψ and
the components of the translation are xt, yt and zt. Thus, such a transformation is
parametrized by only six parameters. It is important to note that a homogeneous

1. The author would like to thank S. Lacroix and I.K. Jung for the code and the help related to VME (Appendix D).
2. The use of the Euler angles can be hazardous because a singularity appears for a pitch of 90° when propagating the 

angles trough time. Anyway, in our application the pitch is limited (< 30°) and will never reach this singular value.
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matrix (formed using six parameters) can also be used to describe motion informa-
tion between two poses or even describe the robot’s pose.

The different coordinate systems used in the sensor fusion scheme are depicted
in Fig. 5.1.

Between time t and t +1, the sensor moves from point S to S'. The 3D transfor-
mation reflecting the sensor motion is given by HS’S. Thus, the six parameters de-
fining HS’S include all the motion information between t and t +1, as perceived by
the sensor. Let’s define pS as being a vector of the parameters defining of HS’S

As said at the beginning of this section, we need to express this transformation
in a common coordinate system, which is the coordinate system linked to the ro-
bot’s body in our case (see Fig. 5.1). In other words, we need to compute the mo-
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Figure 5.1:  Transformations between the different coordinate systems. W, R and S are
respectively the centers of the coordinate systems linked to the World, the Robot and a Sensor
onboard the rover. The homogeneous matrix Hij allows for the transformation of coordinates
expressed in the coordinate system i to that in system j. “prime” signs added to variable names
(ex p’) denote values related to time step t +1.
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tion with respect to the robot’s center, i.e. HR’R. Considering that the position of the
sensor relative to the robot’s frame remains constant (HSR = HS’R’), one can write

where xs' is a point in the sensor frame at time t +1 and xR its coordinates in the
robot’s frame at time t. Using 5.3, the motion of the robot expressed in the robot’s
coordinate system is given by

and the corresponding vector of parameters is defined as

Using a similar approach, the pose of the robot at time t +1, expressed in the
world coordinates frame, is given by

We define pW and pW' as being the parameters vectors of HRW and HR'W respectively

5.3.2   Error propagation

For sensor fusion, we need to assess how the uncertainties associated with the
sensor measurement pS propagate through the coordinate system transformation
HR’R. The uncertainties associated to the transformation HSR have been neglected
because it can be calibrated with high accuracy. In what follows, we define CS and
CR as the covariance matrices associated to the vectors pS and pR respectively. In
order to propagate the uncertainties, the function q (a set of six functions), express-
ing pR as a function of pS has to be derived. One can find q using 5.4 and the prop-
erties of the homogeneous transformation matrices
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Then the covariance matrix associated to pR is given by1

Now, we are interested in computing the uncertainty associated to the robot’s
pose at time t +1. For that, we need to combine the uncertainty of the pose at time
t and the uncertainty associated to the incremental motion pR. The function q' (a
set of six functions), expressing pW' as a function of pW and pR is obtained using
5.6 and the properties of the homogeneous transformation matrices

Finally, the covariance matrix of the pose at time t +1 is given by2

where is the covariance matrix associated to pW and 

5.4   Sensor fusion

Probabilistic data fusion is the most used method for combining uncertain infor-
mation. All the probabilistic filters such as the Hidden Markov Models, the Par-
tially Observable Markov Decision Processes or the Kalman filter are derived
from the Bayes rule and provide a framework to fuse uncertain data. The choice of
one or an other depends on the application. For continuous state spaces, the Kal-
man filter is the preferred choice for sensor fusion. Even if this method can be ap-
plied to fuse the measurements acquired by any number of sensors, most of the
applications found in the literature generally use only two sensors. The most com-
monly used pairs are: odometry/laser scanner, odometry/inertial measurement unit

1. An introduction to error propagation is proposed in [Manyika94][Arras98]
2. Although these equations seem to be simple, their implementation generates very complicated expressions.

T
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[Borenstein96], inertial measurement unit/vision [Strelow03][Roumeliotis02]
[Vieville93], compass/inertial measurement unit [Roumeliotis99], inertial/GPS
[Nebot97] etc. Furthermore, even for rough terrain rovers, only the 2D case (x, y,
ψ) is generally considered. In this section, a method to estimate the six degrees of
freedom (x, y, z, φ, θ, ψ) using the measurements of three different sensors is pre-
sented.

In our approach an extended information filter (EIF) is used to combine the in-
formation coming from the sensors. This formulation of the Kalman filter has very
interesting features: its mathematical expression is well suited to implement a dis-
tributed sensor fusion scheme and allows for easy extension of the system in order
to accommodate any number of sensors, of any kind [Manyika94]. In this applica-
tion, the observation and transition equations are not linear and a non-linear infor-
mation filter is required. The observation equation assumes additive zero mean
Gaussian noise and is written

where zj is the measurement vector of sensor j and hj the non-linear observation
model transforming the state vector x(k) from the state space to the observation
space. We define the measurement covariance matrix as being the expectation of
the measurement noise: Rj = E{vj vj

T}. Similarly, the non-linear state transition
equation can be written as

where f is the non-linear state transition model describing the transition of the
state from one time-step to another as a non-linear function of the state. The cova-
riance matrix of the state transition is defined as Q = E{w wT}. The first order non-
linear information filter is similar to the linear information filter if the following
substitutions are made

The information filter, the information state vector y and the information matrix,
which is the inverse of the covariance matrix P, are updated according to

with S = {imu, inc, odo, zup, vme} (see Fig. 5.2) and
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The covariance matrix and the information vector are predicted as

The state vector may be obtained from

Fig. 5.2 depicts the schematics of the sensor fusion process.

for the linear filter, otherwise
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Figure 5.2:  The EIF sensor fusion scheme is easily extensible to more sensors. The INS is
divided into two sensors: an inclinometer (inc) and an inertial measurement unit (imu) (the unit
on SOLERO has a DSP that estimates the attitude and provides both accelerations and angular
rates). When the robot is stopped, at time ks, the ZUP (Zero Update Position) becomes active.
This allows to ensure fast convergence of the IMU biases and no drift while the robot is stopped.
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It is interesting to note that a sensor j can be easily incorporated in the sensor fu-
sion scheme if the observation model hj, the error model Rj and the measurement
vector zj are known. With the information filter, the update of the information vec-
tor and the information matrix take the form of simple equations (5.18 and 5.19).
The update of the information vector can be interpreted that way: the information
at time k is equal to the information at time k -1 plus the total amount of the infor-
mation provided by the sensors.

5.4.1   The sensor models

To implement such a filter, the relation between the measurement vectors and the
state vector has to be determined for all the sensors. The measurement models hj
together with their linear matrix form Hj are presented in this section whereas the
methodology for setting up the corresponding covariance matrices Rj is discussed
in the experimental results section. Indeed, the values in Rj are specific to the sen-
sors used in the experiments. The definitions of the measurement vector and ma-
trices for all the sensors are available in Fig. 5.2.

5.4.1.1   Inertial unit model

The position, velocity and attitude can be computed by integrating the readings
from the IMU 

However, both accelerometers and gyros can be influenced by bias errors. Even
if these offsets are small they will cause an unbounded growth of the error of inte-
grated measurements. The velocity and the attitude error diverge proportionally
over time and the position to the square of time. The measurements of the acceler-
ometers are thus modeled as

and the gyros as
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ΓWR is the direct cosine rotation matrix that transforms values expressed in the
world-fixed coordinates system W into the robot's coordinates system R. This ma-
trix is a function of the angles φ (roll), θ (pitch) and ψ (yaw). The b's and ν's are
the biases and the measurements noises of the signals respectively. Unlike roll and
pitch, the heading of the rover is not periodically updated by absolute data. There-
fore, in order to limit the error propagation, a special provision is included in the
z-gyro model: a more accurate modeling, incorporating the scaling error ∆ωz.

The equations 5.25 and 5.27 are not linear and the first order Taylor expansion is
used to provide

where the bars denotes operating point values and g is the gravitational constant,
which has to be removed before integrating the accelerations. Then, the matrix
Himu can be constructed using 5.26, 5.28 and 5.29 (the detailed linearized equa-
tions for the IMU are developed in Appendix B). Hinc is the identity matrix be-
cause the inclinometer directly measures φ and θ (the attitude of the robot).

Since the IMU is not placed exactly at the center of the robot, it is subject to cen-
tripetal accelerations due to the angular velocities. These perturbations have to be
subtracted from the measurements in order to consider the accelerations related to
the center of the robot, which is used as the reference point by all sensors. The cen-
tripetal contribution ci for each accelerometer is

where ri is the position of each accelerometer i with respect to the robot’s center.

5.4.1.2   3D-Odometry measurement model

The robot used for this research is a partially skid-steered rover and the natural
and controlled motion is mainly in the forward direction. Thus, the motion estima-
tion errors due to wheel slip and wheel diameter variations have much more effect
in the x-z plane of the rover than along the lateral direction y. Therefore, scaling
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errors (∆ox and ∆oz), modeling wheel slip and wheel diameter change, have been
introduced only for the x and z-axes.

3D-Odometry provides an incremental measurement of the rover’s motion be-
tween time t and t +1: podo= [dox  doy  doz  doψ]T (expressed in the robot’s coordinate
system). Thus, the corresponding transformation matrix HR’R (see Fig. 5.1) is ob-
tained by making the following substitution in equation 5.1

We set the roll and pitch increments to zero because the information about these
angles is not explicitly provided by odometry. As the odometry is updated at a rel-
atively high rate, we can consider the small angles approximation. Thus, setting
these angles to zero has minimal impact on the incremental motion error.

The position in the world coordinate system is computed as shown in equation
5.6, using the robot pose at time t and the incremental motion HR’R. Finally, 5.10
is used to find the relations between the state vector and the measurement vector.
These expressions are not linear and the Jacobian has to be developed to finally
obtain Hodo.

5.4.1.3   VME measurement model

VME computes the incremental camera motion between two stereo pairs acqui-
sitions i.e. pvme= [dvx  dvy  dvz  dvφ  dvθ  dvψ]T. This transformation, expressed in
the camera coordinate system, is first converted into the robot’s coordinate system
using 5.4. Then the same method as presented in section 5.4.1.2 is applied to derive
Hvme.

5.4.2   State prediction model

The state prediction model determines the transition of the state vector from one
time-step to another. In our case, it has the following form
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The angular rates, biases, scaling errors and accelerations are random processes
which are affected by the motion commands of the rover, time and other unmod-
eled parameters. However, they cannot be considered as pure white noise exclu-
sively because they are highly time correlated. In order to illustrate this statement,
let us assume that the rover is subject to an acceleration of 2g at time t. At time t
+1, the acceleration cannot reach -2g because the rover has a certain inertia and the
elapsed time between t and t +1 is small. Thus, the signals are time correlated and
cannot be considered as white noise. Instead they can be modeled as first order
Gauss-Markov processes1 whose auto-correlation function is

where 1/τ is the time constant defining the correlation time and σ2 is the variance
of the process. Such a process can also be considered as a low pass filter, with τ
being the time constant. The discrete differential equations of the first and second
integral of such a process are computed using the inverse Laplace operator 

where p2 and p3 are respectively the first and second integral of the Gauss-Mark-
ov process p1 and h is the sampling time. It is interesting to note that if τ tends to-
wards zero and if p1 corresponds to an acceleration then 5.34 becomes

This corresponds to the well known set of equations that represents uniformly ac-
celerated motion. Thus, the state propagation along x between k and k +1 is nothing
more than an accelerated motion using the best estimate of the acceleration at time
step k.

1. The detailed derivation of the equations related to the first and second intergral of a Gauss-Markov process is avail-
able in Appendix C. In particular, the covariance matrix associated to such a process is developed.
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The covariance matrix Qp associated with a Gauss-Markov process and the terms
in its integral are derived by computing the individual expectations E{pi pj} with
i, j = 1,..,3. Thus, because the accelerations, biases and scaling errors are modeled
as Gauss-Markov processes, one can write

where diag(a,b,c) refers to a diagonal matrix composed of the elements a, b and c. 

The derivation of Fω is more tedious because the dynamics of xω is non-linear.
Furthermore, the small-angle approximation cannot be made because the robot
moves on rough terrain, where angular variations can be of high amplitude. Equa-
tion 5.37 describes the non-linear state transition of xω

Finally, the linearized 6x6 matrix Fω is obtained by computing the Jacobian of
the q functions (see B.2).

5.5   Experimental results
The aim of this section is to describe the methodology to define the state transi-

tion and measurements covariance matrices (Q and Rj) and to validate the theory
through experiments conducted on SOLERO. In order to better illustrate how each
sensor contributes to the pose estimation and in which situation, the experiments
have been divided into two parts. The first part describes the results of sensor fu-
sion between Inertial sensor and Odometry only, whereas the second part involves
all the three sensors i.e. Odometry, Inertial sensor and VME (Visual Motion Esti-
mation).
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5.5.1   Inertial and 3D-Odometry

The Inertial Navigation Systems (INS) provides direct measurements of the dy-
namics of a system and is self-contained. For these reasons, it is used in many ap-
plications to predict the robot's position and orientation. INS’s were first used in
aerospace applications and a large part of the literature uses them in this context
(see [Titterton97] for theory and application of INS). The availability of integrated
low-cost and low-power solid-state sensors enabled the usage of the INS for
ground applications such as mobile robots. Nevertheless, these sensors provide
less accurate position information and their implementation on ground vehicles is
more difficult than on aircrafts. Indeed, trajectories are less smooth on the ground
where the system is subjected to strong vibrations.

Many research works are related to road vehicles applications, in which an INS
is used to provide higher update rate of the position between two consecutive GPS
data acquisition. In particular, this combination of sensors is used to estimate the
wheel diameter changes and the vehicle sideslip in [Wada00][Bevly01].
[Barshan95] showed that a low-cost INS can improve the system performance and
can be applied to mobile robotics if an accurate sensor model is provided. A meth-
od for combining data from gyroscopes and odometry is presented in
[Borenstein96]. The authors of [Scheding99] present interesting results for an un-
derground mining vehicle. They show clearly how inertial sensors can be used to
correct non-systematic errors due to soil irregularities when fused with other sen-
sors such as wheel encoders and laser scanners. In [Dissanayake01], the authors
propose to use the nonholonomic constraints that govern the motion of a vehicle
on a surface, to align the INS. 3D-simulation results of a sensor fusion between an
INS and a compass are presented in [Roumeliotis99]. The paper states that the sys-
tem can be used to localize a Mars rover prototype. Unfortunately, the position er-
ror grows quickly when localization is done on the sole basis of acceleration
integration. Furthermore, a compass cannot be used on Mars because of the high
density of iron.

Most of the published works involving INS on ground vehicles present results in
two dimensions and deal with the estimation of the planar position and orientation
only. Furthermore, the target environment is generally flat and the structure of the
soil can be known beforehand. This allows developing relatively accurate vehicle
models, which lead to good odometric information. The situation in rough terrain
is more challenging and these assumptions are not applicable. In particular, no ac-
curate wheel-ground interaction model can be developed and the planar assump-
tion cannot be considered. In this section, the experimental results show how INS
and 3D-Odometry can be combined to provide better position estimates in three di-
mensions.
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5.5.1.1   Setting the state transition covariance matrix Q

Most of the parameters in the state transition covariance matrix Q are estimated
based on the datasheet values and experimental data. The parameters associated
with Qx, Qy and Qz are based on assumptions on how the vehicle is driven and on
the general terrain type: the robot has ground contact at any time, it is non-holo-
nomic and the roll and pitch angles are limited to relatively small values (< 30°).
These constraints limit the robot motion to remain in the 2.5D space. In other
words, the z coordinate of the robot is a function of x and y. These considerations
are used to adjust the values in the different covariance matrices. The noise se-
quences of xx xy and xz are dependant from each other. Indeed, when the rover is
accelerating in the x-y plane both accelerations along x and y are affected. Model-
ing of this cross-correlation is highly complex because it is a function of nonlinear
transformations, which are in turn functions of time. However, in order to avoid
excessive complexity and benefit from a simpler filter, we have assumed no cross-
correlation between these axes.

Some simple heuristics can be applied for estimating how certain parameters are
related to each other and how they are expected to behave as a function of time.
For example, the bias affecting an accelerometer changes slower than the acceler-
ation itself. Finally, taking some margin on the variances of the processes allows
accounting for a larger range of situations, avoiding the filter to diverge. Table 5.1
lists all the parameters together with the heuristics that have been used in each
case. They might not be the optimal parameters but they have proven to give good
filter performance.

Table 5.1: State transition parameters

The experiments show that the z-axis is more subject to 
vibration when the rover is driving. Thus, it has to be fil-
tered to a greater extent as compared to x and y.

The acceleration along the z axis is generally smaller 
than the acceleration along x and y axes because the 
motors of the rover directly affect the acceleration in x 
and y. The acceleration along z is only due to slope 
changes in the terrain. 

The biases change slower than the accelerations, over 
time. Thus, their time constants are set shorter.

These values are set being equal to the square of the half 
of the maximum biases of the accelerometers (2σ), the 
values of which are given in the INS datasheet.

ωz is directly governed by the command signals to the 
rover. It is thus subject to change more rapidly than ωx,y. 
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5.5.1.2   Setting Rimu Rinc and Rodo

In order to set the variances for the IMU, the rover has been driven forward at
different velocities and on different types of soil while collecting data and comput-
ing statistics. The experiments showed that the variance of the signals doesn't
change significantly with change in velocity or terrain type. This can be attributed
to the passive mechanical structure of SOLERO, which allows for filtering and
smoothing of the trajectories. Thus, the worst-case set of variances has been select-
ed to set the matrix Rimu. For the inclinometer, the variances of the roll and pitch
angles have been set to the square of half the value given in the INS datasheet (2σ
= 1°). These values correspond to the diagonal elements of Rinc.

The sensor model for the odometry is much more tedious to assess because the
robot is subject to drive across all kind of terrain and soil such as sand, rock and
grass. It is very difficult to classify all types of terrains and configurations and to
associate the corresponding variances. Instead, we set the uncertainty of the odo-
metric information as being proportional to the acceleration undergone by the rov-
er (see 5.38). Indeed, slip mostly occurs in rough terrain, when negotiating an
obstacle, while the robot is subject to accelerations. Furthermore, at constant
speed, the acceleration is zero and thus acceleration does not bring much informa-
tion. In this particular case, position estimation can rely only on odometry. For the
same reasons, the variance for the yaw angle has been set proportional to the an-
gular rate (ωz). Thus, the covariance matrix associated to the 3D-Odometry is writ-
ten as

These values are set being equal to the square of half the 
maximum biases for the gyros (2σ), the values of which 
can be found in the INS datasheet.

The same reasoning used for setting the acceleration 
biases is applicable here. According to the INS datash-
eet, the scaling factor is less than 1%. So, we took the 
square of half of this value to set the variance for the 
scaling factor.

These values have been determined experimentally. 
However, the filter is not very sensitive to their varia-
tion. 
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where kx, ky, kz and kψ are constants set empirically and gx, gy and gz are the grav-
itational components in the rover-fixed frame. The constants kx and kz have been
set larger than ky because SOLERO is a skid-steered rover: the motion commands
affect the x-z position, y is not directly controllable. This set of constants has been
tested and validated during the experiments performed on different types of ter-
rains and obstacles. Finally, the same equations presented in section 5.3.2 are ap-
plied to propagate the covariance matrix CR through the coordinate system
transformation and obtain Rodo.

5.5.1.3   Experimental validation

In order to test the sensor fusion algorithm, the robot has been driven forward
across different experimental setups during a fixed interval of time. Then, the pure
3D-odometry and filtered trajectories have been compared. By filtered trajectory,
we mean the trajectory built out of the position estimates computed by the EIF fil-
ter. We have repeated the same experiment several times and measured the final
position of the robot in each run. Fig. 5.3 depicts the most difficult obstacle con-
figuration the rover has to climb during the experiments.

Due to the low friction coefficient between the wheels and the obstacle, a lot of
slip occurs during the step climbing. Furthermore, the robot literally bounces on
the ground when the rear bogie wheels go down from the obstacle. The shock oc-
curring during the experiment are easily identified when looking at the z-acceler-
ometer plot in Fig. 5.4.

Figure 5.3:  Picture of one of the experimental setups along with the corresponding 3D model
used to analyse the results. Because the dimensions of the obstacles are known, we can measure
precisely the true maximal and final position heights. In this case the maximal height is 135mm
and the final height is 45mm. This kind of obstacle is very difficult to negotiate for a wheeled
rover because of the sharp edges and the low friction coefficient.



5.5  EXPERIMENTAL RESULTS

79

Table 5.2 reports the final measurements together with the final position errors.
The third run, highlighted in the table, is used as the reference experiment for the
next two figures.

Table 5.2: Experimental measurements

The error along the x-axis is the same for both the 3D-odometry and the filtered
trajectories. This result can be explained: it is because wheel slip mainly occurs
when the robot starts climbing the obstacle at constant speed, while the trajectory
is smooth. During this phase, the accelerometers don't detect velocity change and
therefore cannot help in correcting the position (see Fig. 5.4a). On the other hand,
when the rover goes down the obstacle (Fig. 5.4c and d), the variance of the odom-
etry increases (5.38) and the z-accelerometer information allows for correction of
the trajectory. Thus, the error along the z-axis is only 5 mm instead of 8 mm. Fig.

da b c

Figure 5.4:  Raw x and z-accelerometer signals (in the robot’s coordinate system). The
amplitude of the accelerations can reach values higher than 1g (a) front bogie wheels climbing
on the obstacle (b) rear bogie wheels climbing (c) front bogie wheels going down the obstacle
(d) rear bogie wheels going down.

x y z x y z x y z
1020 4 45 1150 88 40 1160 17 44
1025 7 45 1149 66 40 1152 38 40
1030 5 45 1182 58 38 1184 18 45
1030 2 45 1149 31 33 1150 29 34
1025 1 45 1152 35 36 1152 16 37

130 52 8 131 20 5Average error

Experimental values (mm)
Measured 3D-Odometry only Filtered
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5.5 depicts this correction nicely. For all the experiments the filtered final z-coor-
dinate is always closer to the true height of 45mm.

The error in the y-direction is mostly due to the heading (yaw) error occurring
during asymmetric wheels slip. The odometry is very sensitive to this effect and
the yaw estimation can vary significantly even for limited slip. Fig. 5.6 shows how
the yaw gyro helps correcting the heading. The result is a noticeable diminution of
the error along the y-axis (see Table 5.2).

a

b
True final height

Figure 5.5:  The z trajectories for the third run (see Table 5.2). The ellipses (a) and (b) show the
correction occurring when the front, respectively rear, bogie wheels go down from the step.
These corrections correspond to the zones c and d of Fig. 5.4.

True final Yaw angle

Figure 5.6:  The yaw angles estimates for the third run (the true final angle is close to zero). The
yaw gyroscope (measuring the angular rate around z) allows to correct for asymmetric slip.
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The errors along the x-axis being the same, it is interesting to consider the abso-
lute errors in the y-z plane. Fig. 5.7 shows that the final positions, computed with
the sensor fusion algorithm, are systematically closer to the true position than the
pure 3D-odometry estimations.

For testing the system in a more general case, the rover has been driven twenty
times across the scene depicted in Fig. 5.8. Each time, the operator remote con-
trolled the rover in order to close the loop. For each run, the final error of the fil-
tered trajectory was smaller than that given by pure-odometry. An example is
depicted in Fig. 5.8

Figure 5.7:  Errors in the y-z plane. The triangles represent the filtered values and the circles,
the pure 3D-odometry estimations. The total travelled distance along x is one meter.

Figure 5.8:  Comparison between (a) pure odometry and (b) filtered trajectory. The final error
[εx, εy, εz, εψ ] is respectively [0.16, 0.142, 0.014, 18°] and [0.06, 0.029, 0.012, 1.2°] for this

a
b

b

a
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5.5.1.4   Discussion

The experimental results show that the inertial navigation system helps to correct
odometric errors and significantly improves the pose estimate. The main contribu-
tions occur locally when the robot overcomes sharp-shaped obstacles and during
asymmetric wheel slip. In all the experiments, the fusion between odometry and
inertial sensor provided better motion estimates than with odometry alone. The im-
provement brought by the sensor fusion process becomes more and more pro-
nounced as the total path length increases.

In comparison with other research projects which integrate inertial sensors to
mobile robots, this work1 has the following interesting features

• an error model for the 3D-Odometry is established based on the INS meas-
urements: accelerations and angular rates.

• the INS is used in rough terrain, where the ratio signal/noise is low.
• it has been shown that the integration of the accelerations can be used to 

locally correct the robot’s position.
• this work addresses the full 3D case.

5.5.2   Enhancement with VME

In the previous section, only proprioceptive sensors have been integrated to esti-
mate the robot’s position. Even if the inertial sensor helps to correct odometric er-
ror, there are situations where this combination of sensors does not provide enough
information. For example, the situation where all the wheels are slipping is not de-
tected by the system. In this case, only the odometric information is integrated to
produce erroneous position estimates. Thus, in order to increase the robustness of
the localization and to limit the error growth, it is necessary to incorporate extero-
ceptive sensors. These sensors allow to compute ego-motion by tracking charac-
teristic features in the environment and thus complete the missing information. In
this section, experimental results integrating an Inertial Sensor, 3D-Odometry and
Visual Motion Estimation are presented.

The matrices Rimu, Rinc and Rodo have already been determined in the previous exper-
iments. Here, only Rvme remains to be defined. The uncertainty model of VME is based
on an error model of stereovision, which uses the assumption that there is a strong cor-
relation between the shape of the similarity score curve around its peak and the standard
deviation of the disparity. More details about the error model of VME are available in

1. This work has been published at IROS ‘04 (see [Lamon04b])
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[Jung03]. Finally, the equations presented in section 5.3 are used to propagate the
covariance matrix of VME, expressed in the camera frame, in the robot’s frame.

5.5.2.1   Experimental results

The setup used to test the sensor fusion is depicted in Fig. 5.9. The use of obsta-
cles of known shape enables to both the pre-calculation of a reference trajectory
(ground truth) and to the determination of the exact final height of the rover.

The experiment consisted in driving the rover on top of the obstacle and run the
sensor fusion algorithm to compute the rover’s trajectory. A sequence of snapshots
taken during the experiment is shown in Fig. 5.10. 

The graph in Fig. 5.11 plots four trajectories i.e. the pure 3D-Odometry, the
VME, the Estimated trajectory and the Reference trajectory. The Estimated trajec-
tory is the result of the sensor fusion of all the three sensors. The Reference trajec-

Figure 5.9:  Experimental setup for
sensor fusion using VME, 3D-Odometry
and IMU. a) side view b) image taken by
the left camera of the stereovision system.
The dots represent the extracted Harris
features. In comparison with a natural
scene, only a few features are detected.

(a) (b)

Zone A Zone B Zone C

Figure 5.10:  Trajectory of SOLERO (decomposed in three zones)
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tory has been computed considering the kinematics of SOLERO and the known
shape of the obstacle (the final x coordinate has been measured at the end of the
experiment). As the rover did not deviate significantly from straight motion, this
trajectory is considered as the ground truth.

The graph is divided into three zones, characterizing different situations (see Fig.
5.10) and filter behaviors. In zone A, the VME trajectory is almost exactly super-
posed on the Reference trajectory whereas the Estimated trajectory is a slightly
offset. This is mainly due to the fact that odometry provides very divergent posi-
tion estimates in that situation, which is in turn due to wheel slip. Furthermore, be-
cause the trajectory of the robot is smooth in that part of the path, the IMU did not
detect significant acceleration along z and thus could not bring valuable informa-
tion. Even if the variance in the odometry is smaller than that of the VME it nev-
ertheless contributed towards moving the Estimated trajectory away from the
Reference.

In zone B, the Estimated trajectory is closer to the reference trajectory than VME
(see Fig. 5.12). In this part of the experiment, the VME started to produce less ac-
curate motion estimations due to a lower number of feature matches between suc-
cessive frames. As a consequence, the VME trajectory comprises of steps and
hence the uncertainty associated with the estimations increases. This explains why
these steps are filtered and almost invisible in the Estimated trajectory.

0

0.05

0.1

0.15

0.2

0.25

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

z 
[m

]

x [m]

X-Z trajectories

VME
3D-Odometry
Estimated
Reference

Zone A Zone B Zone C

Figure 5.11:  X-Z trajectories for the sensor fusion experiment. In zone A, the VME trajectory is
very close to the reference trajectory and the odometry provides very divergent information. As
a consequence the estimated trajectory is not perfectly aligned on the reference trajectory.
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Figure 5.12:  Enlarged view of zone B (see Fig. 5.11). On this graph the Estimated trajectory is
very close to the Reference trajectory whereas VME comprises an offset.
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Figure 5.13:  Enlarged view of zone C. Less than 30 features have been matched between image
31 and 32. This leads to a bad estimate of the VME (associated to a large uncertainty). Thanks
to the sensor fusion, the system successfully filtered this information to provide good position
estimation. 
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In zone C (Fig. 5.13), less than thirty features have been matched between image
number 31 and 32. The difficulty to find matches between these two images is due
to a high discrepancy between the views: when the rear wheel finally climbs the
obstacle, it causes the rover to tilt rapidly. As a consequence, the VME provided a
very bad motion estimate with a high uncertainty (see Fig. 5.13 and Fig. 5.14). In
this situation, less weight is given to VME and the sensor fusion could perfectly
filter this bad information to produce a reasonably good estimate using the odom-
etry and the IMU instead. Finally, the estimated final position is very close to the
measured final position. A final error of four millimeters for a trajectory longer
than one meter (0.4%) is very satisfactory, given the difficulty of the terrain.

It is interesting to plot the variance of the position estimation along the x direc-
tion as a function of the time. As shown in Fig. 5.15, the variance globally increas-
es, as a function of time. This is because no absolute information is available to
reset the position in a global reference frame. The “saw” shape of the function at
the global level is due to the VME updates whereas the “saw” shape at a local level
is due to the odometry updating the position estimated on the sole base of the in-
ertial measurement unit. In other words, the estimations of VME have the biggest
weight, followed respectively by the 3D-Odometry and the IMU. In Fig. 5.15, we
can also observe the effects of the updates when uncertain VME estimations are
provided. When the uncertainties of VME are large (see Fig. 5.14), the estimations

Figure 5.14:  Variance associated to the VME estimations along the x axis. The uncertainty
increases suddenly at image 32 because only a few features have been matched. 
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have less weight and the variance along x remains high. Such a behavior, is expect-
ed and prove that the filter provides consistent estimates. 

5.6   Conclusion
In this chapter, a method for combining different sensors to produce a robust mo-

tion estimate has been presented. The sensor fusion scheme is flexible and can eas-
ily accommodate any number of sensors of any type. To test the method, different
experiments have been performed and proved that the use of complementary sen-
sors increases the robustness and accuracy of the results emphatically.

This work distinguishes itself from other similar research projects in the follow-
ing respects:

• The sensor fusion is performed with more than two sensor types (usually 
only two sensors are used).

• Sensor fusion is applied in a rough terrain to track the 3D pose of the rover. 
Most of other research works assume flat environments and only track the 
position in 2D.

Figure 5.15:  The variance of the estimate along the x axis. Because no absolute sensor is used
to reset the position, the variance globally increases over time. The variance significantly
decreases each time a VME estimate is available. At a lower level, the odometry (see the
enlarged view) periodically resets the inertial estimation and this corrects the biases. 
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Conclusion and outlook

6.1   Conclusions

The challenge of realizing autonomous all terrain rovers warrants the develop-
ment of systems able to deal with a lack of a priori information, the problems of
perception and locomotion. One of the main difficulties encountered, in compari-
son with 2D indoor robotics, is that it is more difficult to decouple the various func-
tionalities involved. For example, a trajectory planner cannot be easily ported from
one platform to another because it has to account for the specific kinematic struc-
ture and climbing capabilities of the rover. Another example is related to the sen-
sors: it has been possible to use inertial information on SOLERO because it is a
passive architecture which intrinsically limits the ratio noise/signal. Extracting
motion information from inertial sensors is very difficult if they are mounted on a
fully active structure or a four-wheeled rover, for example. These two examples
show that the methods cannot be generalized and applied to any kind of robotic
structure. Finally, we can attempt to formulate the following rule: the more chal-
lenging the terrain, the more specific the solutions.

The intent of this thesis is to extend the range of possible areas a robot can ex-
plore. The contributions focus mainly on locomotion and localization.

• In chapter 2, the design of a performant platform for research has been pre-
sented. In particular, the rover is equipped with two computers, a stereovi-
sion module, an omnidirectional vision system, an inertial measurement 
unit, numerous sensors and actuators and electronics for power manage-
ment. Furthermore, a set of powerful tools has been developed to speed up 
the process of debugging the algorithms and analyzing the data stored dur-
ing the experiments. Finally, the modularity and portability of the system 
allows easy adaptation of new actuators and sensors.

• In chapter 3, 3D-Odometry has been developed for SOLERO. Because it 
accounts for the kinematics of the rover, it provides better odometric esti-
mates than a simpler method accounting only for the attitude of the main 
body (roll and pitch). An interesting feature of the method is that it internally 
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computes the contact angles between the wheels and the ground, which are 
required inputs for the proposed wheel controller.

• In chapter 4, a quasi-static model of a six-wheeled rover together with an 
optimization method for minimizing slip have been presented. Unlike other 
control strategies, the proposed method is independent of soil models, 
whose parameters are unknown in real applications. Indeed, the rover drives 
on different types of soils during exploration missions. Furthermore, the 
approach can be adapted to any kind of passive wheeled rover and the opti-
mization can be run online.

• In chapter 5, a sensor fusion scheme, extensible to any types/number of sen-
sors has been developed. Experiments involving inertial, 3D-Odometry and 
visual odometry have been performed. It has been shown that the use of 
complementary sensors improves the accuracy and the robustness of the 
motion estimation. In particular, the system was able to properly discard 
inaccurate and uncertain visual motion information.

Technically, doing research in this field is difficult because there is almost no all
terrain platform available in the market. Most of the rovers are prototypes and re-
quire specific tools and developments. There are a lot of constraints preventing the
use of standard technology and special care must be taken when choosing a spe-
cific sensor or actuator. In particular, a lot of efforts is requested to keep the weight
and the energy consumption as low as possible. Thus, in comparison with other
fields of research, a large part of this work is devoted to engineering and imple-
mentation. However, as mentioned before, understanding the specific kinematics
and the physics of the structure is important to develop appropriate algorithms,
which can actually be implemented on a real rover. Being aware of these con-
straints promotes bottom up solutions instead of top down approaches, often lead-
ing to solutions that cannot be implemented because they use unavailable
information about the environment or require to much processing power etc.

6.2   Outlook

Even if the experiments provided promising results, there are still some aspects
that can be improved to provide better performance

• For sensor fusion, the uncertainty in the odometry has been set proportional 
to the accelerations. However, this simple model can be improved by also 
accounting for the kind of wheel-ground interaction. Thanks to the quasi-
static model of SOLERO, the traction and normal forces can be computed 
and used to set a slip probability for each wheel: the lessen the pressure on 
the wheel, the more likely it slips (an alternative to this method is to measure 
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the torque of the wheels). These uncertainties can then propagated using the 
kinematic model of the rover to produce the global motion uncertainty for 
the odometry. 

• The state transition model for the sensor fusion can be refined. Until now, it 
does not account for the inputs of the system, which are the torques/speeds 
of the wheels. Again, accounting for the kinematics of the rover, the inputs 
can be used to better predict the next state.

• The accuracy of the position estimates can be improved by integrating more 
sensors to the system. Because the position errors (x,y,z) are very sensitive 
to a heading error it is important to give special care to the estimation of this 
angle. For this purpose, an omnicam is an interesting option because it offers 
a panoramic view that allows for tracking features all around the rover at the 
same time, without suffering from the problem of the lateral image borders. 
Ego-motion algorithms can be applied to the raw images to estimate the six 
degrees of freedom. However, this information is difficult to integrate to the 
sensor fusion scheme because it is difficult to establish an uncertainty model 
and the translation are given scaleless. This can be solved by introducing a 
scale factor in the sensor’s observation model: the scale factor is introduced 
in the state vector and is estimated using all the other sensors e.g. odometry, 
inertial and VME. 

• In this thesis, we have proposed a set of tools and algorithms to improve the 
accuracy of the position estimation and limit the error growth as much as 
possible. Periodically, the position of the rover has to be reset using absolute 
sensors such as star-sensor, sun sensor etc. In theory, we can avoid using 
these absolute sensors by doing SLAM (Simultaneous Localization and 
Mapping). Basically, this method consists in simultaneously estimating the 
rover position while creating a map, composed of relevant features of the 
environment. By constantly re-observing and matching the same features it 
is then possible to bound the position error. However, in practice, the method 
is very difficult to apply in rough terrain. The main constraints include:
a. Due to the problem of perception in rough terrain, it is difficult to constant-

ly re-observe and match the same features as the robot moves. The main
difficulties are related to occlusions and potentially important field of view
change between two data acquisition steps. Furthermore, even if the rover
is placed at the same position, the view can be very different depending on
the orientation (even with an omnicam). The perception of the environ-
ment can be extremely different when going from A to B or B to A, this
makes the problem of feature matching extremely difficult. Finally, most
of the time, the rover never comes back at the same place when exploring
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an area (e.g. the MER’s) and thus, SLAM does not provide a bounded po-
sitioning error.

b. SLAM becomes computationally expensive as the number of landmarks
increases. When exploring a large area a lot of landmarks have to be stored
and this problem appears quickly.

In spite of all these limits, SLAM can nevertheless be used locally to refine
the motion estimates. Indeed, even if the features are re-observed only a few
times and discarded when they disappear from the field of view of the robot,
these multiple observations help to limit the error growth in the position es-
timate.

• In hazardous terrains, the rover has to negotiate obstacles instead of avoid-
ing them. As a consequence of this, the task of planning a trajectory in 3D 
through the scene and that of controlling the rover’s motion become highly 
complex. For trajectory planning, a Digital Terrain Model (DTM) is required 
to select an optimal path considering the kinematic model of the rover. In 
challenging environments, the 3D information about the terrain in front of 
the rover is sparse because of the shadow effect (occlusions caused due to 
the presence of obstacles). Trajectory planning with incomplete information 
is difficult. Once a path is selected, the system has to generate motor com-
mands in order to properly execute the trajectory, this is tedious because of 
the wheel-slip phenomenon and the inability to have complete information 
about the terrain characteristics. Regardless of the problems mentioned 
above, a controller minimizing wheel slip and robust 3D position tracking 
are required functionalities for trajectory execution. This thesis contributes 
towards both these critical aspects of autonomous rover navigation.
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Parameters and model of SOLERO

This appendix defines all the constants and variables of the mechanical structure
of SOLERO and includes the complete mathematical expression of the quasi-static
model used for a wheel motor control minimizing slip. The units of all the param-
eters follow the SI convention (also known as MKSA convention). This formalism
is very useful because it allows different people to communicate and easily inte-
grate their work. In order to increase lisibility, all the internal forces of the joints
have been omitted in the figures. Only the relevant forces and torques are depicted.

For the coordinate systems, r refers to the robot and W to the global frame
(world).

A.1   Parts of SOLERO
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Figure A.1:  Parts numbering for SOLERO (part 1 is the main body)
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A.2   The bogies

T14,2
N14,2

R6,4

6,4
τ

R5,3

N15,3

5,3
τ T15,3

wm   g

Tw14,2

wm   g

xr

zr

yr

Tw15,3

φ
l,r

wheel 5,3

k

s

j

wheel 6,4

θ

K

J

θ

Figure A.2:  Variables and dimensions of the bogie. l and r denote the left and right bogie
respectively. The bogies are attached to the main body through pin joints placed at points J and
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A.3   The main body and the rear wheel

A.4   The front fork
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Figure A.3:  Variables and dimensions of the main body and the rear wheel
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A.5   Quasi-static model of SOLERO
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with

This set of equations still contains several internal forces. They are later removed
using the Gauss-Jordan elimination. 

A.5.1   Linear dependence of the wheel torques

With a Gauss-Jordan elimination, this equation system can be simplified. In par-
ticular all the internal variables are removed. The final system has 15 equations
with 20 unknown and can be written as

with F a vector containing the unknown forces and M the vector containing the
torques. The matrices Q, A and B contain the information about the gravity, the
rover’s geometry and state. The forces can be expressed as a function of the
torques

with pinv(Q), the pseudo-inverse of Q. Now the linear dependence of the torque
is proven using the null space property.
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Null space definition

M is a linear application. One call kernel (or null space) of M, the set of vectors
whose image by M is the null vector

One can write

and then

Using the property of A.5 applied to A.1 one can write

rewriting A.6 we obtain

Equation A.7 proves that the torques are linearly dependant. Furthermore, this
confirms that the solution space is of dimension m-1 where m is the number of
wheels.

A.5.2   Equal torques solution

For SOLERO the solution space is of dimension 5. Among all the possible solu-
tions, the set of torque defined by A.8 is a solution of the system.
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Linearized equations

The non-linear equations of chapter 5 are linearized in this appendix. In what fol-
lows c and s correspond to the cosine and sine functions, the bars on the symbols
denote of nominal values and h is the sampling time.

B.1   Accelerometers model

The Jacobian for the linearized accelerometers model has the following form

B.2   Gyroscopes state transition
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The Gauss-Markov process

The aim of this appendix is to derive the equations for a double integrated Gauss-
Markov process. A Gauss-Markov process is a stochastic process with zero mean
and whose autocorrelation function is

where 1/τ is the time constant defining the correlation time of the process and σ2

its variance. The power spectral density function of P is

A Gauss-Markov process can also be considered as a white noise being filtered
by a low pass filter with transfer function

which is derived from the following relationship

where SU(jω) is a unity white noise signal.

Fig. C.1 depicts the double integration of a Gauss-Markov process p1. u(t) is a
unity white noise and p2 and p3 are respectively the first and second integral of p1.

Figure C.1:  Double integration of a Gauss-Markov process
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The transfer functions between u and p1, p2 and p3 are respectively

and the impulse responses are

The continuous state transition model is in this case

In order to derive the state transition matrix Φ and the corresponding covariance
matrix Q, the discrete form of C.7 need to be derived. Using the inverse of the
Laplace function the state transition matrix is 

where h is the sampling time.

The determination of Q is more difficult because the expectations have to be
computed. The covariance between two sequences can be derived as
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If the signal u is a unity white noise C.9 can be simplified to

Using C.10 all the elements of the covariance matrix Q can be computed. Only
E[p2 p2] and E[p2 p3] are derived here. The other terms are obtained in a similar way 

Finally Q becomes
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Visual Motion Estimation

This appendix presents the principle of the Visual Motion Estimation technique
(VME, also known as visual odometry), which allows to compute an estimate of
the six displacement parameters between two stereo pairs acquisitions [Mallet00]
[Olson01]. The technique we use on SOLERO has been developed at LAAS (Lab-
oratoire d'Analyse et d'Architecture des Systèmes) and ported on SOLERO thanks
the help of Simon Lacroix and Il-Kyun Jung. The following figure summarizes the
approach

1. At time t a stereo pair is acquired and interest points are extracted in both im-
ages. The interest points extraction phase uses the Harris corner detector
[Harris88]. Then, the interest point matching technique presented in [Jung01]
is used to both find correspondences between the interest points in both imag-
es and reject false matches. Finally, the cloud of 3D points corresponding to
the interest points is obtained using stereovision and a second outliers rejec-

Figure D.1:  : Principle of the Visual Motion Estimation (the illustration comes from LAAS) 
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tion cycle is performed [Jung03]. For speeding up VME, stereo is only com-
puted for the interest points.

2. At time t +1, a new stereo pair is acquired and the Harris points are again ex-
tracted from both images. Then, the correspondences between the interest
point extracted in the left images (acquired at time t and t +1) are searched us-
ing the same technique as presented in 1.

3. The stereovision is used to compute the cloud of 3D points at time t +1.

4. Finally, the six displacement parameters between t and t +1 are computed us-
ing the least square minimization technique presented in [Haralick89].

More details about the Visual Motion Estimation technique can be found in
[Jung03]. In particular, the error model associated to the estimation of the six dis-
placement parameters is presented in details. This error model is required for sen-
sor fusion.
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